ON THE EXTENDABILITY OF PROJECTIVE SURFACES AND A GENUS BOUND FOR ENRIQUES-FANO THREEFOLDS

Andreas Leopold Knutsen, Angelo Felice Lopez \& Roberto Muñoz
To the memory of Giulia Cerutti, Olindo Ado Lopez and Saúl Sánchez

Abstract

We introduce a technique based on Gaussian maps to study whether a surface can lie on a threefold as a very ample divisor with given normal bundle. We give applications, among which one to surfaces of general type and another to Enriques surfaces. In particular, we prove the genus bound $g \leq 17$ for EnriquesFano threefolds. Moreover we find a new Enriques-Fano threefold of genus 9 whose normalization has canonical but not terminal singularities and does not admit \mathbb{Q}-smoothings.

1. Introduction

One of the most important contributions in algebraic geometry is the scheme of classification of higher dimensional varieties proposed by Mori theory. The latter is particularly clear in dimension three: starting with a threefold with terminal singularities and using contractions of extremal rays, the Minimal Model Program predicts to arrive either at a threefold X with K_{X} nef or at a Mori fiber space. Arguably the simplest case of such spaces is when X is a Fano threefold. As is well known, smooth Fano threefolds have been classified [18, 19, 27], while, in the singular case, a classification, or at least a search for the numerical invariants, is still underway.

In $[\mathbf{7}, \mathbf{8}]$ a good part of the classification, in the smooth case, was recovered, using the point of view of Gaussian maps. The starting step of the latter method is Zak's theorem [32], [24, Thm. 0.1]: If $Y \subset \mathbb{P}^{r}$ is a smooth variety of codimension at least two with $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right) \leq r+1$, then the only variety $X \subset \mathbb{P}^{r+1}$ that has Y as hyperplane section is a

[^0]cone over Y. When this happens $Y \subset \mathbb{P}^{r}$ is said to be nonextendable. The key point in the application of this theorem is to calculate the cohomology of the normal bundle. It is here that Gaussian maps enter the picture by giving a big help in the case of curves [31, Prop. 1.10]: if Y is a curve then
\[

$$
\begin{equation*}
h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right)=r+1+\operatorname{cork} \Phi_{H_{Y}, \omega_{Y}} \tag{1}
\end{equation*}
$$

\]

where $\Phi_{H_{Y}, \omega_{Y}}$ is the Gaussian map associated to the canonical and hyperplane bundle H_{Y} of Y. For example when $X \subset \mathbb{P}^{r+1}$ is a smooth anticanonically embedded Fano threefold and Y is a general hyperplane section, $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right)$ was computed in $[\mathbf{7}]$ by considering the general curve section C of Y. That proof was strongly based on the fact that C is a general curve on a general K3 surface and that the Hilbert scheme of K3 surfaces is essentially irreducible. As the latter fact is peculiar to K3 surfaces, we immediately realized that if one imposes different hyperplane sections to a threefold, for example Enriques surfaces, it gets quite difficult to rely on the curve section. To study this and other cases one therefore needs an analogue of the formula (1) in higher dimension. We accomplish this in Section 2 by proving the following:

Theorem 1.1. Let $Y \subset \mathbb{P}^{r}$ be a smooth irreducible linearly normal surface and let H be its hyperplane bundle. Assume there is a base-point free and big line bundle D_{0} on Y with $H^{1}\left(H-D_{0}\right)=0$ and such that the general element $D \in\left|D_{0}\right|$ is not rational and satisfies
(i) the Gaussian map $\Phi_{H_{D}, \omega_{D}\left(D_{0}\right)}$ is surjective;
(ii) the multiplication maps $\mu_{V_{D}, \omega_{D}}$ and $\mu_{V_{D}, \omega_{D}\left(D_{0}\right)}$ are surjective
where $V_{D}:=\operatorname{Im}\left\{H^{0}\left(Y, H-D_{0}\right) \rightarrow H^{0}\left(D,\left(H-D_{0}\right)_{\mid D}\right)\right\}$. Then

$$
h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right) \leq r+1+\operatorname{cork} \Phi_{H_{D}, \omega_{D}} .
$$

The above theorem is a flexible instrument to study threefolds whose hyperplane sections have large Picard group, since, if both D_{0} and H D_{0} are base-point free and the degree of D is large with respect to its genus, the hypotheses are fulfilled unless D is hyperelliptic (note that the case where Y is a K 3 and H has no moving decomposition has been considered by Mukai [26]).

As we will see in Section 3, Theorem 1.1 has several applications. A sample of this is for pluricanonical embeddings of surfaces of general type:

Corollary 1.2. Let $Y \subset \mathbb{P} V_{m}$ be a minimal surface of general type with base-point free and nonhyperelliptic canonical bundle and $V_{m} \subseteq$ $H^{0}\left(\mathcal{O}_{Y}\left(m K_{Y}+\Delta\right)\right)$, where $\Delta \geq 0$ and either Δ is nef or Δ is reduced
and K_{Y} is ample. Suppose that Y is regular or linearly normal and that
$m \geq \begin{cases}9 & \text { if } K_{Y}^{2}=2 ; \\ 7 & \text { if } K_{Y}^{2}=3 ; \\ 6 & \text { if } K_{Y}^{2}=4 \text { and the general curve in }\left|K_{Y}\right| \text { is trigonal or if } \\ & K_{Y}^{2}=5 \text { and the general curve in }\left|K_{Y}\right| \text { is a plane quintic; } \\ 5 & \text { if either the general curve in }\left|K_{Y}\right| \text { has Clifford index } 2 \text { or } \\ & 5 \leq K_{Y}^{2} \leq 9 \text { and the general curve in }\left|K_{Y}\right| \text { is trigonal; } \\ 4 & \text { otherwise. }\end{cases}$
Then Y is nonextendable.
In general, the conditions on K_{Y}^{2} and m are optimal (see Remark 3.4).

Besides the applications in Section 3, we will concentrate our attention on the following threefolds:

Definition 1.3. An Enriques-Fano threefold is an irreducible three-dimensional variety $X \subset \mathbb{P}^{N}$ having a hyperplane section S that is a smooth Enriques surface, and such that X is not a cone over S. We will say that X has genus g if g is the genus of its general curve section.

Fano [13] claimed a classification of such threefolds, but his proof contains several gaps. Conte and Murre [9] remarked that an EnriquesFano threefold must have some isolated singularities and, under special assumptions on the singularities, recovered some of the results of Fano, but not enough to give a classification, nor to bound the numerical invariants. Assuming that the Enriques-Fano threefold is a quotient of a smooth Fano threefold by an involution (this corresponds to having only cyclic quotient terminal singularities), a list was given by Bayle [2, Thm. A] and Sano [29, Thm. 1.1]. Moreover, by [25, MainThm. 2], any Enriques-Fano threefold with at most terminal singularities admits a \mathbb{Q}-smoothing, that is, it appears as central fiber of a small deformation over the 1-parameter unit disk such that a general fiber has only cyclic quotient terminal singularities. This, together with the results of Bayle and Sano, gives the bound $g \leq 13$ for Enriques-Fano threefolds with at most terminal singularities. Bayle and Sano recovered all of the known examples of Enriques-Fano threefolds. Therefore it has been conjectured that this list is complete or, at least, that the genus is bounded, in analogy with smooth Fano threefolds $[\mathbf{1 8}, 19]$. In Section 13, we will show that the list of known Enriques-Fano threefolds is not complete (not even after specialization), by finding a new Enriques-Fano threefold enjoying several peculiar properties (for a more precise version, see Proposition 13.1):

Proposition 1.4. There exists an Enriques-Fano threefold $X \subset \mathbb{P}^{9}$ of genus 9 such that neither X nor its normalization belong to the list of Fano-Conte-Murre-Bayle-Sano.

Moreover, X does not have $a \mathbb{Q}$-smoothing and in particular X is not in the closure of the component of the Hilbert scheme made of Fano-Conte-Murre-Bayle-Sano's examples. Its normalization \widetilde{X} has canonical but not terminal singularities and does not admit \mathbb{Q}-smoothings.

Observe that \widetilde{X} is a \mathbb{Q}-Fano threefold of Fano index 1 with canonical singularities not having a \mathbb{Q}-smoothing, showing that [25, MainThm. 2] cannot be extended to the canonical case.

In the present article (and [20]) we apply Theorem 1.1 to get a genus bound on Enriques-Fano threefolds, under no assumption on their singularities:

Theorem 1.5. Any Enriques-Fano threefold has genus $g \leq 17$.
A more precise result for $g=15$ and 17 is proved in Proposition 12.1. We remark that simultaneously and independently, Prokhorov [28] proved the same genus bound at the same time constructing an example of a genus 17 Enriques-Fano threefold, thus showing that the bound $g \leq 17$ is optimal. His methods, relying on the MMP, are completely different from ours.

Now a few words on our method of proof. In Section 4 we review some basic results. In Section 5 we apply Theorem 1.1 to Enriques surfaces and obtain the main results on nonextendability needed in the rest of the article. In Section 6 we prove Theorem 1.5 for all EnriquesFano threefolds except for some concrete embedding line bundles on the Enriques surface section. These are handled case by case in Sections $7-11$ by finding divisors satisfying the conditions of Theorem 1.1, thus allowing us to prove our theorem and a more precise statement for $g=15$ and 17 in Section 12. A part of the proof for a special class of line bundles has been moved to the note [20]. This part involves no new ideas compared to the parts treated in the present article.

To prove our results we use criteria for the surjectivity of Gaussian maps on curves on Enriques surfaces from $[\mathbf{2 2}, \mathbf{2 3}]$ and of multiplication maps of linear systems on such curves, which we obtain in Lemma 5.6 (which holds on any surface) in the present article.

2. Proof of Theorem 1.1

Let L and M be line bundles on a smooth projective variety. Given $V \subseteq H^{0}(L)$ we denote by $\mu_{V, M}: V \otimes H^{0}(M) \longrightarrow H^{0}(L \otimes M)$ the multiplication map of sections, $\mu_{L, M}$ when $V=H^{0}(L)$, and by $\Phi_{L, M}$: Ker $\mu_{L, M} \longrightarrow H^{0}\left(\Omega_{X}^{1} \otimes L \otimes M\right)$ the Gaussian map [31, 1.1].

Proof of Theorem 1.1. To prove the bound on $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right)$, we use the short exact sequence
$0 \longrightarrow N_{Y / \mathbb{P}^{r}}\left(-D_{0}-H\right) \longrightarrow N_{Y / \mathbb{P}^{r}}(-H) \longrightarrow N_{Y / \mathbb{P}^{r}}(-H)_{\mid D} \longrightarrow 0$
and prove that

$$
\begin{gather*}
h^{0}\left(N_{Y / \mathbb{P}^{r}}\left(-D_{0}-H\right)\right)=0, \text { and } \tag{2}\\
h^{0}\left(N_{Y / \mathbb{P}^{r}}(-H)_{\mid D}\right) \leq r+1+\operatorname{cork} \Phi_{H_{D}, \omega_{D}} . \tag{3}
\end{gather*}
$$

To prove (2), note that since $\operatorname{dim}\left|D_{0}\right| \geq 1$, it is enough to have

$$
\begin{equation*}
h^{0}\left(N_{Y / \mathbb{P}^{r}}\left(-D_{0}-H\right)_{\mid D}\right)=0 \text { for a general } D \in\left|D_{0}\right| \tag{4}
\end{equation*}
$$

Now, setting $D_{1}:=D_{0}+H$, (4) follows from the exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{D / Y}\left(-D_{1}\right) \xrightarrow{\alpha} N_{D / \mathbb{P}^{r}}\left(-D_{1}\right) \longrightarrow N_{Y / \mathbb{P}^{r}}\left(-D_{1}\right)_{\mid D} \longrightarrow 0 \tag{5}
\end{equation*}
$$

and the facts, proved below, that $h^{0}\left(N_{D / \mathbb{P}^{r}}\left(-D_{1}\right)\right)=0$ and $H^{1}(\alpha)$ is injective.

To see that $h^{0}\left(N_{D / \mathbb{P}^{r}}\left(-D_{1}\right)\right)=0$, we note that $\mu_{H_{D}, \omega_{D}\left(D_{0}\right)}$ is surjective by the H^{0}-lemma [15, Thm.4.e.1], since $\left|D_{0 \mid D}\right|$ is base-point free, whence $D_{0}^{2} \geq 2$, therefore $h^{1}\left(\omega_{D}\left(D_{0}-H\right)\right)=h^{0}\left(\left(H-D_{0}\right)_{\mid D}\right) \leq$ $h^{0}\left(H_{D}\right)-2$, as H_{D} is very ample. Now let $\mathbb{P}^{k} \subseteq \mathbb{P}^{r}$ be the linear span of D. Then

$$
\begin{equation*}
0 \longrightarrow N_{D / \mathbb{P}^{k}}\left(-D_{1}\right) \longrightarrow N_{D / \mathbb{P}^{r}}\left(-D_{1}\right) \longrightarrow\left(-D_{0}\right)_{\mid D}^{\oplus(r-k)} \longrightarrow 0 \tag{6}
\end{equation*}
$$

implies that $h^{0}\left(N_{D / \mathbb{P}^{r}}\left(-D_{1}\right)\right)=h^{0}\left(N_{D / \mathbb{P}^{k}}\left(-D_{1}\right)\right)$, as $D_{0}^{2}>0$. Since Y is linearly normal and $H^{1}\left(H-D_{0}\right)=0$, also D is linearly normal. As $\mu_{H_{D}, \omega_{D}\left(D_{0}\right)}$ is surjective, $h^{0}\left(N_{D / \mathbb{P}^{k}}\left(-D_{1}\right)\right)=\operatorname{cork} \Phi_{H_{D}, \omega_{D}\left(D_{0}\right)}=0$ by [31, Prop. 1.10] because of (i). Hence $h^{0}\left(N_{D / \mathbb{P}^{r}}\left(-D_{1}\right)\right)=0$. As for the injectivity of $H^{1}(\alpha)$, we prove the surjectivity of $H^{1}(\alpha)^{*}$ with the help of the commutative diagram

Here f is surjective by linear normality of Y, while h is surjective by (ii) since it factors as the composition of the (surjective) restriction map $H^{0}\left(\mathcal{J}_{D / Y}(H)\right) \otimes H^{0}\left(\omega_{D}\left(D_{0}\right)\right) \rightarrow V_{D} \otimes H^{0}\left(\omega_{D}\left(D_{0}\right)\right)$ and the multiplication map $\mu_{V_{D}, \omega_{D}\left(D_{0}\right)}: V_{D} \otimes H^{0}\left(\omega_{D}\left(D_{0}\right)\right) \rightarrow H^{0}\left(N_{D / Y}^{*} \otimes \omega_{D}\left(D_{1}\right)\right)$.

Finally, to prove (3), recall that $\mu_{H_{D}, \omega_{D}}$ is surjective by [1, Thm. 1.6] since D is not rational, whence $h^{0}\left(N_{D / \mathbb{P}^{k}}(-H)\right)=k+1+\operatorname{cork} \Phi_{H_{D}, \omega_{D}}$
by [31, Prop. 1.10]. Therefore, twisting (6) by $\left(D_{0}\right)_{\mid D}$, we find that $h^{0}\left(N_{D / \mathbb{P} r}(-H)\right) \leq r+1+\operatorname{cork} \Phi_{H_{D}, \omega_{D}}$ and (3) will follow by the sequence (5) tensored by $\left(D_{0}\right)_{\mid D}$ and injectivity of $H^{1}\left(\alpha \otimes\left(D_{0}\right)_{\mid D}\right)$, which is proved exactly as the injectivity of $H^{1}(\alpha)$ above, using now the surjectivity of $\mu_{V_{D}, \omega_{D}}$.

Remark 2.1. In the above proposition and also in Corollary 2.2 below, the surjectivity of $\mu_{V_{D}, \omega_{D}\left(D_{0}\right)}$ can be replaced by either one of the following conditions: (i) $\mu_{\omega_{D}\left(H-D_{0}\right), D_{0 \mid D}}$ is surjective; (ii) $h^{0}\left(\left(2 D_{0}-\right.\right.$ $\left.H)_{\mid D}\right) \leq h^{0}\left(D_{0 \mid D}\right)-2$; (iii) H. $D_{0}>2 D_{0}^{2}$. Indeed, condition (iii) implies $h^{0}\left(\left(2 D_{0}-H\right)_{\mid D}\right)=0$, whence (ii), while (ii) implies (i) by the H^{0}-lemma [15, Thm. 4.e.1]. Finally, (i) is enough by surjectivity of $\mu_{V_{D}, \omega_{D}}$ and the commutative diagram

Whereas the upper bound in Theorem 1.1 can be applied to control how many times Y can be extended to higher dimensional varieties, we will concentrate on the case of one simple extension.

Corollary 2.2. Let $Y \subset \mathbb{P}^{r}$ be a smooth irreducible surface which is linearly normal or regular and let H be its hyperplane bundle. Assume there is a base-point free and big line bundle D_{0} on Y with $H^{1}\left(H-D_{0}\right)=$ 0 and such that the general element $D \in\left|D_{0}\right|$ is not rational and satisfies
(i) the Gaussian map $\Phi_{H_{D}, \omega_{D}}$ is surjective;
(ii) the multiplication maps $\mu_{V_{D}, \omega_{D}}$ and $\mu_{V_{D}, \omega_{D}\left(D_{0}\right)}$ are surjective,
where $V_{D}:=\operatorname{Im}\left\{H^{0}\left(Y, H-D_{0}\right) \rightarrow H^{0}\left(D,\left(H-D_{0}\right)_{\mid D}\right)\right\}$.
Then Y is nonextendable.
Proof. Note that $g(D) \geq 2$, as $\Phi_{H_{D}, \omega_{D}}$ is surjective. Since $\mu_{V_{D}, \omega_{D}\left(D_{0}\right)}$ is surjective, we have that V_{D} (whence also $\left|\left(H-D_{0}\right)_{\mid D}\right|$) is base-point free, as $\left|\omega_{D}(H)\right|$ is such. Therefore $2 g(D)-2+\left(H-D_{0}\right) . D>0$, whence $h^{1}\left(\omega_{D}^{2}\left(H-D_{0}\right)\right)=0$, and the H^{0}-lemma [15, Thm.4.e.1] implies that $\mu_{\omega_{D}^{2}(H), D_{0 \mid D}}$ is surjective. Now $\Phi_{H_{D}, \omega_{D}\left(D_{0}\right)}$ is surjective by (i) and the commutative diagram

$$
\begin{aligned}
& \operatorname{Ker} \mu_{H_{D}, \omega_{D}} \otimes H^{0}\left(D_{0 \mid D}\right) \xrightarrow{\Phi_{H_{D}, \omega_{D}} \otimes \mathrm{Id}} H^{0}\left(\omega_{D}^{2}(H)\right) \otimes H^{0}\left(D_{0 \mid D}\right) \\
& \underset{\operatorname{Ker} \mu_{H_{D}, \omega_{D}\left(D_{0}\right)} \xrightarrow{\Phi_{H_{D}, \omega_{D}\left(D_{0}\right)}} H^{0}\left(\omega_{D}^{2}\left(H+D_{0}\right)\right) .}{\downarrow \mu_{\omega_{D}^{2}(H), D_{0 \mid D}}}
\end{aligned}
$$

If Y is linearly normal, we are done by Zak's theorem [32] and Theorem 1.1.

Assume now that $h^{1}\left(\mathcal{O}_{Y}\right)=0$ and that $Y \subset \mathbb{P}^{r}$ is extendable, that is, that Y is a hyperplane section of some nondegenerate threefold $X \subset$ \mathbb{P}^{r+1} which is not a cone over Y. Let $\pi: \widetilde{X} \rightarrow X$ be a resolution of singularities and let $L=\pi^{*} \mathcal{O}_{X}(1)$ and $\widetilde{Y}=\pi^{-1}(Y) \cong Y$, as Y is smooth, so that $Y \cap \operatorname{Sing} X=\emptyset$. Using $H^{1}\left(\mathcal{O}_{\tilde{Y}}\right)=H^{1}\left(\mathcal{O}_{Y}\right)=0$ and Kawamata-Viehweg vanishing, one easily deduces the surjectivity of the restriction map $H^{0}(\widetilde{X}, L) \rightarrow H^{0}\left(\widetilde{Y}, L_{\mid \widetilde{Y}}\right)$. Consider the birational map $\varphi_{L}: \widetilde{X} \rightarrow \mathbb{P}^{N}$ where $N \geq r+1$. Then $\bar{Y}:=\varphi_{L}(\widetilde{Y}) \cong Y$ is a hyperplane section of $\varphi_{L}(\widetilde{X})$ that is linearly normal and extendable and we reduce to the linearly normal case above.
q.e.d.

3. Absence of Veronese embeddings on threefolds

It was known to Scorza [30] that the Veronese varieties $v_{m}\left(\mathbb{P}^{n}\right)$ are nonextendable for $m, n>1$. For an arbitrary Veronese embedding we can use Zak's theorem [32], [24, Thm. 0.1] as follows:

Remark 3.1. Let $X \subset \mathbb{P}^{r}$ be a smooth irreducible nondegenerate n-dimensional variety, $n \geq 2, L=\mathcal{O}_{X}(1)$ and let $\varphi_{m L}(X) \subset \mathbb{P}^{N}$ be the m-th Veronese embedding of X.

If $H^{1}\left(T_{X}(-m L)\right)=0$ then $\varphi_{m L}(X)$ is nonextendable. In particular the latter holds if $m>\max \left\{2, n+2+\frac{K_{X} \cdot L^{n-1}-2 r+2 n+2}{L^{n}}\right\}$.

Proof. Set $Y=\varphi_{m L}(X)$. From standard sequences and Kodaira vanishing one gets $h^{0}\left(N_{Y / \mathbb{P}^{N}}(-1)\right) \leq h^{0}\left(T_{\mathbb{P}^{N}}(-1)_{\mid Y}\right)+h^{1}\left(T_{Y}(-1)\right)=$ $N+1+h^{1}\left(T_{X}(-m L)\right)=N+1$, and we just apply Zak's theorem [32].

To see the last assertion, observe that since $n \geq 2$ and $m \geq 3$ we have, as is well-known, $h^{1}\left(T_{X}(-m L)\right)=h^{0}\left(N_{X / \mathbb{P}^{r}}(-m L)\right)$. If the latter were not zero, the same would hold for a general curve section $C \subset$ \mathbb{P}^{r-n+1}. Taking $r-n-1$ general points $x_{j} \in C$, we get from the exact sequence $[4,(2.7)]$ that $h^{0}\left(N_{C / \mathbb{P}^{r-n+1}}(-m)\right)=0$ for reasons of degree, a contradiction. q.e.d.

In the case of surfaces, Corollary 2.2 yields an extension of this remark:

Definition 3.2. Let Y be a smooth surface and let L be an effective line bundle on Y such that the general divisor $D \in|L|$ is smooth and irreducible. We say that L is hyperelliptic, trigonal, etc., if D is such. We denote by $\operatorname{Cliff}(L)$ the Clifford index of D. Moreover, when $L^{2}>0$, we set

$$
\begin{gathered}
\varepsilon(L)=3 \text { if } L \text { is trigonal; } \varepsilon(L)=5 \text { if } \operatorname{Cliff}(L) \geq 3 ; \\
\varepsilon(L)=0 \text { if } \operatorname{Cliff}(L)=2 ;
\end{gathered}
$$

$$
m(L)= \begin{cases}\frac{16}{L^{2}} & \text { if } L \cdot\left(L+K_{Y}\right)=4 \\ \frac{25}{L^{2}} & \text { if } L \cdot\left(L+K_{Y}\right)=10 \text { and the general } \\ & \text { divisor in }|L| \text { is a plane quintic } \\ \frac{3 L \cdot K_{Y}+18}{2 L^{2}}+\frac{3}{2} & \text { if } 6 \leq L \cdot\left(L+K_{Y}\right) \leq 22 \text { and } L \text { is trigonal } \\ \frac{2 L \cdot K_{Y}-\varepsilon(L)}{L^{2}}+2 & \text { otherwise }\end{cases}
$$

Corollary 3.3. Let $Y \subset \mathbb{P V}$ be a smooth surface with $V \subseteq H^{0}\left(L^{\otimes m} \otimes\right.$ $\mathcal{O}_{Y}(\Delta)$), where L is a base-point free, big, nonhyperelliptic line bundle on Y with $L .\left(L+K_{Y}\right) \geq 4$ and $\Delta \geq 0$ is a divisor. Suppose that Y is regular or linearly normal and that m is such that $H^{1}\left(L^{\otimes(m-2)} \otimes\right.$ $\left.\mathcal{O}_{Y}(\Delta)\right)=0$ and $m>\max \left\{m(L)-\frac{L \cdot \Delta}{L^{2}},\left\lceil\frac{L \cdot K_{Y}+2-L . \Delta}{L^{2}}\right\rceil+1\right\}$. Then Y is nonextendable.

Proof. We apply Corollary 2.2 with $D_{0}=L$ and $H=L^{\otimes m} \otimes \mathcal{O}_{Y}(\Delta)$. By hypothesis the general $D \in|L|$ is smooth and irreducible of genus $g(D)=\frac{1}{2} L .\left(L+K_{Y}\right)+1$. Since $H^{1}(H-2 L)=0$, we have $V_{D}=H^{0}((H-$ $\left.L)_{\mid D}\right)$. Also $(H-L) \cdot D=(m-1) L^{2}+L . \Delta \geq L .\left(L+K_{Y}\right)+2=2 g(D)$ by hypothesis, whence $\left|(H-L)_{\mid D}\right|$ is base-point free and birational (as D is not hyperelliptic) and $\mu_{V_{D}, \omega_{D}}$ is surjective by [1, Thm. 1.6]. Moreover $H^{1}\left((H-L)_{\mid D}\right)=0$, whence also $H^{1}(H-L)=0$.

The surjectivity of $\mu_{V_{D}, \omega_{D}(L)}$ follows by [15, Cor.4.e.4], as $\operatorname{deg} \omega_{D}(L)$ $\geq 2 g(D)+1$ because $L^{2} \geq 3$. Indeed, if $L^{2} \leq 2$ we have that $h^{0}\left(L_{\mid D}\right) \leq 1$ as D is not hyperelliptic, whence $h^{0}(L) \leq 2$, contradicting the hypotheses on L. The surjectivity of $\Phi_{H_{D}, \omega_{D}}$ follows by the inequality $m>m(L)-\frac{L . \Delta}{L^{2}}$ and well-known results about Gaussian maps (see e.g. [31, Prop. 1.10], [23, Prop. 2.9, Prop. 2.11 and Cor. 2.10], [4, Thm. 2]).
q.e.d.

We can be a little bit more precise in the case of pluricanonical embeddings:

Proof of Corollary 1.2. We apply Corollary 3.3 with $L=\mathcal{O}_{Y}\left(K_{Y}\right)$ and $H=\mathcal{O}_{Y}\left(m K_{Y}+\Delta\right)$ and prove that $H^{1}\left(\mathcal{O}_{Y}\left((m-2) K_{Y}+\Delta\right)\right)=0$. If Δ is nef this follows by Kawamata-Viehweg vanishing. Now suppose that Δ is reduced and K_{Y} is ample. Again $H^{1}\left(\mathcal{O}_{Y}\left((m-2) K_{Y}\right)\right)=0$, whence $H^{1}\left(\mathcal{O}_{Y}\left((m-2) K_{Y}+\Delta\right)\right)=0$, since $h^{1}\left(\mathcal{O}_{\Delta}\left((m-2) K_{Y}+\Delta\right)\right)=$ $h^{0}\left(\mathcal{O}_{\Delta}\left(-(m-3) K_{Y}\right)\right)=0 . \quad$ q.e.d.

Remark 3.4. Consider the 5 -uple embedding X of \mathbb{P}^{3} into \mathbb{P}^{55} (respectively, the 4 -uple embedding of a smooth quadric hypersurface in \mathbb{P}^{4} into \mathbb{P}^{54}). A general hyperplane section Y of X is embedded with $5 K_{Y}\left(\right.$ resp. $\left.4 K_{Y}\right)$ and $K_{Y}^{2}=5$ (resp. $K_{Y}^{2}=8$). Thus, in Corollary 1.2, the conditions on K_{Y}^{2} and m cannot, in general, be weakened.

We can be even more precise in the case of adjoint embeddings.

Corollary 3.5. Let $Y \subset \mathbb{P} V$ be a minimal surface of general type with base-point free and nonhyperelliptic canonical bundle and $V \subseteq H^{0}(L \otimes$ $\mathcal{O}_{Y}\left(K_{Y}+\Delta\right)$), where L is a line bundle on Y and $\Delta \geq 0$ is a divisor. Suppose that Y is regular or linearly normal, that $H^{1}\left(L \otimes \mathcal{O}_{Y}(\Delta-\right.$ $\left.\left.K_{Y}\right)\right)=0$ and that

$$
L . K_{Y}+K_{Y} . \Delta> \begin{cases}14 & \text { if } K_{Y}^{2}=2 \\ 20 & \text { if } K_{Y}^{2}=5 \text { and the general divisor } \\ & \text { in }\left|K_{Y}\right| \text { is a plane quintic; } \\ 2 K_{Y}^{2}+9 & \text { if } 3 \leq K_{Y}^{2} \leq 11 \text { and } K_{Y} \text { is trigonal; } \\ 3 K_{Y}^{2}-\varepsilon\left(K_{Y}\right) & \text { otherwise. }\end{cases}
$$

Then Y is nonextendable.
Proof. Similar to the proof of Corollary 3.3 with $D_{0}=\mathcal{O}_{Y}\left(K_{Y}\right)$ and $H=L \otimes \mathcal{O}_{Y}\left(K_{Y}+\Delta\right)$. q.e.d.

To state the pluriadjoint case, given a big line bundle L on a smooth surface Y, we define

$$
\nu(L)= \begin{cases}\frac{12}{L^{2}}+1 & \text { if } L \cdot\left(L+K_{Y}\right)=4 ; \\ \frac{15}{L^{2}}+1 & \text { if } L \cdot\left(L+K_{Y}\right)=10 \text { and the general divisor } \\ \frac{\text { in }|L| \text { is a plane quintic; }}{} \\ \frac{L \cdot K_{Y}+18}{2 L^{2}}+\frac{3}{2} & \text { if } 6 \leq L \cdot\left(L+K_{Y}\right) \leq 22 \text { and } L \text { is trigonal; } \\ \frac{L \cdot K^{2}(L)}{L^{2}}+2 & \text { otherwise. }\end{cases}
$$

Corollary 3.6. Let $Y \subset \mathbb{P} V$ be a smooth surface with $V \subseteq H^{0}\left(L^{\otimes m} \otimes\right.$ $\mathcal{O}_{Y}\left(K_{Y}+\Delta\right)$) where L is a base-point free, big and nonhyperelliptic line bundle on Y with $L .\left(L+K_{Y}\right) \geq 4$ and $\Delta \geq 0$ is a divisor such that $H^{1}\left(L^{\otimes(m-2)} \otimes \mathcal{O}_{Y}\left(K_{Y}+\Delta\right)\right)=0$. Suppose that Y is regular or linearly normal and that $m>\max \left\{2+\frac{1}{L^{2}}, \nu(L)\right\}-\frac{L . \Delta}{L^{2}}$. Then Y is nonextendable.

Proof. Similar to the proof of Corollary 3.3 with $D_{0}=L$ and $H=$ $L^{\otimes m} \otimes \mathcal{O}_{Y}\left(K_{Y}+\Delta\right)$. q.e.d.

4. Basic results on line bundles on Enriques surfaces

Definition 4.1. Let S be an Enriques surface. If D is a divisor on S we will denote by $H^{i}(D)$ the cohomology $H^{i}\left(\mathcal{O}_{S}(D)\right.$). We denote by \sim (respectively \equiv) the linear (respectively numerical) equivalence of divisors (or line bundles) on S. A line bundle L is primitive if $L \equiv h L^{\prime}$ for some line bundle L^{\prime} and some integer h, implies $h= \pm 1$. An effective line bundle L is quasi-nef [21] if $L^{2} \geq 0$ and $L . \Delta \geq-1$ for every Δ such that $\Delta>0$ and $\Delta^{2}=-2$.

A nodal curve is a smooth rational curve. A nodal cycle is a divisor $R>0$ such that $\left(R^{\prime}\right)^{2} \leq-2$ for any $0<R^{\prime} \leq R$. An isotropic divisor
F is a divisor such that $F^{2}=0$ and $F \not \equiv 0$. An isotropic k-sequence is a set $\left\{f_{1}, \ldots, f_{k}\right\}$ of isotropic divisors such that $f_{i} . f_{j}=1$ for $i \neq j$.

We will often use the fact that if R is a nodal cycle, then $h^{0}\left(\mathcal{O}_{S}(R)\right)=$ 1 and $h^{0}\left(\mathcal{O}_{S}\left(R+K_{S}\right)\right)=0$.

Let L be a line bundle on S with $L^{2}>0$. Following [11] we define $\phi(L)=\inf \left\{|F . L|: F \in \operatorname{Pic} S, F^{2}=0, F \not \equiv 0\right\}$. One has $\phi(L)^{2} \leq L^{2}$ [11, Cor.2.7.1] and, if L is nef, then there exists a genus one pencil $|2 E|$ such that $E . L=\phi(L)[\mathbf{1 0}, 2.11]$. Moreover we will extensively use the fact that if L is nef, then it is base-point free if and only if $\phi(L) \geq 2$ [11, Prop.3.1.6, 3.1.4 and Thm.4.4.1].

A line bundle $L>0$ with $L^{2} \geq 0$ on S has a (nonunique) decomposition $L \equiv a_{1} E_{1}+\ldots+a_{n} E_{n}$, where a_{i} are positive integers, and each E_{i} is primitive, effective and isotropic, cf. e.g. [22, Lemma 2.12]. We will call such a decomposition an arithmetic genus 1 decomposition.

Definition 4.2. An effective line bundle L with $L^{2} \geq 0$ is said to be of small type if either $L=0$ or if in every arithmetic genus 1 decomposition of L as above, all $a_{i}=1$.

The next result is an easy (computational) consequence of [21, Lemma 2.1] and [22, Lemma 2.4].

Lemma 4.3. Let L be an effective line bundle on an Enriques surface with $L^{2} \geq 0$. Then L is of small type if and only if it is of one of the following types (where $E_{i}>0, E_{i}^{2}=0$ and E_{i} primitive): (a) $L=0$; (b) $L^{2}=0, L \sim E_{1}$; (c) $L^{2}=2, L \sim E_{1}+E_{2}, E_{1} \cdot E_{2}=1$; (d) $L^{2}=4, \phi(L)=2, L \sim E_{1}+E_{2}, E_{1} \cdot E_{2}=2$; (e) $L^{2}=6, \phi(L)=2$, $L \sim E_{1}+E_{2}+E_{3}, E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=1$; (f) $L^{2}=10, \phi(L)=3$, $L \sim E_{1}+E_{2}+E_{3}, E_{1} \cdot E_{2}=1, E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=2$.

Among all arithmetic genus 1 decompositions of an effective line bundle L with $L^{2}>0$, we want to choose the most convenient for our purposes. For any line bundle $L>0$ which is not of small type with $L^{2}>0$ and $\phi(L)=F . L$ for some $F>0$ with $F^{2}=0$, define

$$
\begin{equation*}
\alpha_{F}(L)=\min \left\{k \geq 2 \mid(L-k F)^{2} \geq 0 \text { and if }(L-k F)^{2}>0,\right. \text { then } \tag{8}
\end{equation*}
$$

there exists $F^{\prime}>0$ with $\left(F^{\prime}\right)^{2}=0, F^{\prime} . F>0$ and $\left.F^{\prime} .(L-k F) \leq \phi(L)\right\}$. By [22, Lemma 2.4], it is easy to see that $\alpha_{F}(L)$ exists and that one obtains an equivalent definition by replacing the last inequality by F^{\prime}. $(L-$ $k F)=\phi(L-k F)$.

If $L^{2}=0$ and L is not of small type, then we define $\alpha_{F}(L)$ to be the maximal integer $k \geq 2$ such that there exists an isotropic F such that $L \equiv k F$. The next result is an easy computation.

Lemma 4.4. Let L be an effective line bundle not of small type with $L^{2}>0$ and $\left(L^{2}, \phi(L)\right) \neq(16,4),(12,3),(8,2),(4,1)$. Then $(L-$ $\left.\alpha_{F}(L) F\right)^{2}>0$.

We will also use the following consequence of [11, Prop.3.1.4], [21, Cor. 2.5] and [22, Lemma 2.3]:

Lemma 4.5. Let L be a nef and big line bundle on an Enriques surface and let F be a divisor satisfying $F . L<2 \phi(L)$ (respectively $F . L=$ $\phi(L)$ and L is ample). Then $h^{0}(F) \leq 1$ and if $F>0$ and $F^{2} \geq 0$ we have $F^{2}=0, h^{0}(F)=1, h^{1}(F)=0$ and F is primitive and quasi-nef (resp. nef).

5. Main results on extendability of Enriques surfaces

It is well-known that abelian and hyperelliptic surfaces are nonextendable [14, Rmk. 3.12]. The extendability problem is open for $K 3$'s, but answers are known for general $K 3$'s $[\mathbf{7}, \mathbf{8}, \mathbf{3}]$. Let us deal now with Enriques surfaces.

We start with a simplification of Corollary 2.2 that will be central to us.

Proposition 5.1. Let $S \subset \mathbb{P}^{r}$ be an Enriques surface and H its hyperplane bundle. Suppose there is a nef and big (whence effective) line bundle D_{0} on S with $\phi\left(D_{0}\right) \geq 2, H^{1}\left(H-D_{0}\right)=0$ and such that the following conditions are satisfied by the general element $D \in\left|D_{0}\right|$:
(i) the Gaussian map $\Phi_{H_{D}, \omega_{D}}$ is surjective;
(ii) the multiplication map $\mu_{V_{D}, \omega_{D}}$ is surjective, where

$$
V_{D}:=\operatorname{Im}\left\{H^{0}\left(S, H-D_{0}\right) \rightarrow H^{0}\left(D,\left(H-D_{0}\right)_{\mid D}\right)\right\}
$$

(iii) $h^{0}\left(\left(2 D_{0}-H\right)_{\mid D}\right) \leq \frac{1}{2} D_{0}^{2}-2$.

Then S is nonextendable.
Proof. Apply Corollary 2.2 and Remark 2.1, using that D_{0} is basepoint free since $\phi\left(D_{0}\right) \geq 2$. q.e.d.

Our first observation will be that, for many line bundles H, a line bundle D_{0} satisfying the conditions of Proposition 5.1 can be found with the help of Ramanujam's vanishing theorem.

Proposition 5.2. Let $S \subset \mathbb{P}^{r}$ be an Enriques surface such that its hyperplane section H is not 2-divisible in Num S. Suppose there exists an effective divisor B on S satisfying:
(i) $B^{2} \geq 4$ and $\phi(B) \geq 2$,
(ii) $(H-2 B)^{2} \geq 0$ and $H-2 B \geq 0$,
(iii) $H^{2} \geq 64$ if $B^{2}=4$ and $H^{2} \geq 54$ if $B^{2}=6$.

Then S is nonextendable.
Proof. We first claim that there is a nef divisor $D^{\prime}>0$ satisfying (i)-(iii) and with $D^{\prime} \leq B,\left(D^{\prime}\right)^{2}=B^{2}, \phi\left(D^{\prime}\right)=\phi(B)$. Indeed, if Γ is a nodal curve, define the Picard-Lefschetz reflection on $\operatorname{Pic} S$ as $\pi_{\Gamma}(L):=L+(L . \Gamma) \Gamma$. Then π_{Γ} preserves intersections, effectiveness
[5, Prop. VIII.16.3] and the function ϕ. Now if B is not nef, there is a nodal Γ such that $\Gamma . B<0$. Since $0<\pi_{\Gamma}(B)<B$, we see that $\pi_{\Gamma}(B)$ satisfies (i)-(iii). If $\pi_{\Gamma}(B)$ is not nef, we repeat the process, which must end, as $\pi_{\Gamma}(B)<B$, and we get the desired nef D^{\prime}. Since $H-D^{\prime} \geq H-B>H-2 B \geq 0$ and $\left(D^{\prime}\right)^{2}>0$, we have $D^{\prime} .\left(H-D^{\prime}\right)>0$. Now define the following set, which is nonempty, by what we just saw,

$$
\begin{aligned}
\Omega\left(D^{\prime}\right)= & \left\{M \in \operatorname{Pic} S: M \geq D^{\prime}, M\right. \text { is nef, satisfies (i)-(ii) and } \\
& \left.M .(H-M) \leq D^{\prime} .\left(H-D^{\prime}\right)\right\} .
\end{aligned}
$$

For any $M \in \Omega\left(D^{\prime}\right)$ we have $H-2 M>0$, whence $H . M$ is bounded. Let then D_{0} be a maximal divisor in $\Omega\left(D^{\prime}\right)$, that is, such that H. D_{0} is maximal. We want to show that $h^{1}\left(H-2 D_{0}\right)=0$.

Set $R:=H-2 D_{0}$. If $h^{1}(R)>0$, then by Ramanujam vanishing [5, Cor.II.12.3] we could write $R+K_{S} \sim R_{1}+R_{2}$, for $R_{1}>0$ and $R_{2}>0$ with $R_{1} \cdot R_{2} \leq 0$. We can assume that $R_{1} \cdot H \leq R_{2} . H$. If $D_{1}:=D_{0}+R_{1}$ is nef, then $\phi\left(D_{1}\right)$ is calculated by a nef divisor, whence $\phi\left(D_{1}\right) \geq \phi\left(D^{\prime}\right) \geq 2$ and $D_{1}^{2} \geq D_{0}^{2} \geq\left(D^{\prime}\right)^{2} \geq 4$ (since $D_{1} \geq D_{0} \geq D^{\prime}$). Moreover $\left(H-2 D_{1}\right)^{2}=R^{2}-4 R_{1} \cdot R_{2} \geq R^{2} \geq 0$, and since $(H-$ $\left.2 D_{1}\right) \cdot H=\left(R_{2}-R_{1}\right) \cdot H \geq 0$, we get by Riemann-Roch and the fact that H is not 2-divisible in $\operatorname{Num} S$, that $H-2 D_{1}>0$. Furthermore, $D_{1} \cdot\left(H-D_{1}\right)=D_{0} \cdot\left(H-D_{0}\right)+R_{1} \cdot R_{2} \leq D_{0} \cdot\left(H-D_{0}\right)$, whence $D_{1} \in \Omega\left(D^{\prime}\right)$ with $H . D_{1}>H . D_{0}$, contradicting the maximality of D_{0}.

Hence D_{1} cannot be nef and there exists a nodal curve Γ with $\Gamma . D_{1}<$ 0 (whence $\Gamma . R_{1}<0$). Since H is ample, we have $\Gamma .\left(H-D_{1}\right) \geq-\Gamma . D_{1}+$ $1 \geq 2$. Since $\Gamma . R_{1}<0$, we have $D_{2}:=D_{1}-\Gamma \geq D_{0}$, whence, if D_{2} is nef, we have as above that $\phi\left(D_{2}\right) \geq \phi\left(D^{\prime}\right) \geq 2$ and $D_{2}^{2} \geq D_{0}^{2} \geq$ $\left(D^{\prime}\right)^{2} \geq 4$. Moreover $H-2 D_{2}>H-2 D_{1}>0$ and $\left(H-2 D_{2}\right)^{2}=$ $\left(H-2 D_{1}\right)^{2}-8+4\left(H-2 D_{1}\right) \cdot \Gamma \geq\left(H-2 D_{1}\right)^{2}+4>0$. Furthermore $D_{2} .\left(H-D_{2}\right)<D_{1} .\left(H-D_{1}\right) \leq D_{0} .\left(H-D_{0}\right)$, whence $D_{2} \neq D_{0}$. If D_{2} is nef, then $D_{2} \in \Omega\left(D^{\prime}\right)$ with $H . D_{2}>H . D_{0}$, a contradiction. Hence D_{2} is not nef, and we repeat the process, with a nodal $\Gamma_{1} \leq R_{1}-\Gamma$. As the process must end, we get $h^{1}\left(H-2 D_{0}\right)=0$.

Note that since $D_{0}^{2} \geq\left(D^{\prime}\right)^{2}=B^{2}$, then D_{0} also satisfies (iii) above. Furthermore D_{0} is base-point free since it is nef with $\phi\left(D_{0}\right) \geq \phi\left(D^{\prime}\right) \geq 2$. Let $D \in\left|D_{0}\right|$ be a general smooth curve. We have $\operatorname{deg}\left(H-D_{0}\right)_{\mid D}=$ $D_{0}^{2}+\left(H-2 D_{0}\right) \cdot D_{0} \geq D_{0}^{2}+\phi\left(D_{0}\right) \geq 2 g(D)$. As D is not hyperelliptic, $\left(H-D_{0}\right)_{\mid D}$ is base-point free and birational, whence $\mu_{\left(H-D_{0}\right)_{\mid D, \omega_{D}}}$ is surjective by [1, Thm. 1.6].

Since $h^{1}\left(H-2 D_{0}\right)=0$ and $h^{1}\left(\mathcal{O}_{D}\left(H-D_{0}\right)\right)=0$ for reasons of degree, we find $h^{1}\left(H-D_{0}\right)=0$. To prove the proposition, we only have left to show, by Proposition 5.1, that $\Phi_{H_{D}, \omega_{D}}$ is surjective.

From $\left(H-2 D_{0}\right) \cdot D_{0} \geq 2$ again, we get $\operatorname{deg} H_{D} \geq 4 g(D)-2$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective if $\operatorname{Cliff}(D) \geq 2$ by [4, Thm. 2]. This is satisfied if $D_{0}^{2} \geq 8$ by [22, Cor. 1.5 and Prop. 4.13].

If $D_{0}^{2}=6$, then $g(D)=4$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective if we have $h^{0}\left(\mathcal{O}_{D}\left(3 D_{0}+K_{S}-H\right)\right)=0$ by [31, Prop. 1.10]. Since $H^{2} \geq 54$, we get by Hodge index that $H . D \geq 18$ with equality if and only if $H \equiv$ $3 D_{0}$. If $H . D_{0}>18$, we get $\operatorname{deg} \mathcal{O}_{D}\left(3 D_{0}+K_{S}-H\right)<0$. If $H \equiv$ $3 D_{0}$, then we may assume $H \sim 3 D_{0}$, possibly after exchanging D_{0} with $D_{0}+K_{S}$, so that $h^{0}\left(\mathcal{O}_{D}\left(3 D_{0}+K_{S}-H\right)\right)=h^{0}\left(\mathcal{O}_{D}\left(K_{S}\right)\right)=0$. If $D_{0}^{2}=4$, then $g(D)=3$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [31, Prop. 1.10] as $h^{0}\left(\mathcal{O}_{D}\left(4 D_{0}-H\right)\right)=0$. Indeed, since $H^{2} \geq 64$, we get by Hodge index that $H . D \geq 17$, whence $\operatorname{deg} \mathcal{O}_{D}\left(4 D_{0}-H\right)<0$. q.e.d.

We now improve Proposition 5.2 in the cases $B^{2}=4$ and 6 , using [23].

Proposition 5.3. Let $S \subset \mathbb{P}^{r}$ be an Enriques surface such that its hyperplane section H is not 2-divisible in Num S. Suppose there exists an effective divisor B on S satisfying: (i) $B^{2}=6$ and $\phi(B)=2$, (ii) $(H-2 B)^{2} \geq 0$ and $H-2 B \geq 0$, (iii) $h^{0}(3 B-H)=0$ or $h^{0}\left(3 B+K_{S}-\right.$ $H)=0$. Then S is nonextendable.

Proof. Argue exactly as in the proof of Proposition 5.2 and let D^{\prime}, D_{0} and D be as in that proof, so that, in particular, $D_{0}^{2} \geq\left(D^{\prime}\right)^{2}=6$. If $D_{0}^{2} \geq 8$, we are done by Proposition 5.2. If $D_{0}^{2}=6$ write $D_{0}=$ $D^{\prime}+M$ with $M \geq 0$. Since both D_{0} and D^{\prime} are nef we find $6=$ $D_{0}^{2}=\left(D^{\prime}\right)^{2}+D^{\prime} \cdot M+D_{0} \cdot M \geq 6$, whence $D^{\prime} \cdot M=D_{0} \cdot M=0$, so that $M^{2}=0$. Therefore $M=0$ and $D_{0}=D^{\prime}$, whence $3 D_{0}-H \sim 3 D^{\prime}-H \leq$ $3 B-H$. It follows that either $h^{0}\left(3 D_{0}-H\right)=0$ or $h^{0}\left(3 D_{0}+K_{S}-H\right)=$ 0 . Possibly after exchanging D_{0} with $D_{0}+K_{S}$, we can assume that $h^{0}\left(3 D_{0}+K_{S}-H\right)=0$. As $h^{1}\left(2 D_{0}+K_{S}-H\right)=h^{1}\left(H-2 D_{0}\right)=0$, we get $h^{0}\left(\mathcal{O}_{D}\left(3 D_{0}+K_{S}-H\right)\right)=0$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(ii)]. The map $\mu_{V_{D}, \omega_{D}}$ is surjective as in the previous proof. q.e.d.

Proposition 5.4. Let $S \subset \mathbb{P}^{r}$ be an Enriques surface such that its hyperplane section H is not 2-divisible in Num S. Suppose there exists an effective divisor B on S satisfying: (i) B is nef, $B^{2}=4$ and $\phi(B)=$ 2, (ii) $(H-2 B)^{2} \geq 0$ and $H-2 B \geq 0$, (iii) $H . B>16$. Then S is nonextendable.

Proof. Argue as in the proof of Proposition 5.2 and let D^{\prime}, D_{0} and D be as in that proof. By (i) we have $D^{\prime}=B$, and since $D_{0} \geq D^{\prime}$, we get $H . D_{0}>16$. If $D_{0}^{2} \geq 8$, we are done by Proposition 5.2. If $D_{0}^{2}=6$, then $D_{0}>D^{\prime}=B$, so that $H . D_{0} \geq 18$ whence $\left(3 D_{0}-H\right) . D_{0} \leq 0$. If $3 D_{0}-H>0$, it is a nodal cycle, whence either $h^{0}\left(3 D_{0}-H\right)=0$ or $h^{0}\left(3 D_{0}+K_{S}-H\right)=0$ and we are done by Proposition 5.3. If $D_{0}^{2}=4$, then $D_{0}=D^{\prime}=B$ and $\operatorname{deg} \mathcal{O}_{D}\left(4 D_{0}-H\right)<0$ as in the proof of Proposition 5.3, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(i)] and so is $\mu_{V_{D}, \omega_{D}}$, as in the proof of Proposition 5.2.
q.e.d.

In several cases the following will be very useful:

Lemma 5.5. Let $S \subset \mathbb{P}^{r}$ be an Enriques surface with hyperplane section $H \sim 2 B+A$, for B nef, $B^{2} \geq 2, A^{2}=0, A>0$ primitive, $H^{2} \geq 28$ and satisfying one of the following conditions:
(i) A is quasi-nef and $\left(B^{2}, A . B\right) \notin\{(4,3),(6,2)\}$;
(ii) $\phi(B) \geq 2$ and $\left(B^{2}, A . B\right) \notin\{(4,3),(6,2)\}$;
(iii) $\phi(B)=1, B^{2}=2 l, B \sim l F_{1}+F_{2}, l \geq 1, F_{i}>0, F_{i}^{2}=0, i=1,2$, $F_{1} \cdot F_{2}=1$, and either
(a) $l \geq 2, F_{i} . A \leq 3$ for $i=1,2$ and $\left(l, F_{1} . A, F_{2} . A\right) \neq(2,1,1)$; or
(b) $l=1,5 \leq B . A \leq 8, F_{i} . A \geq 2$ for $i=1,2$ and $\left(\phi(H), F_{1} . A, F_{2} . A\right) \neq(6,4,4)$.
Then S is nonextendable.
Proof. Possibly after replacing B with $B+K_{S}$ if $B^{2}=2$ we can, without loss of generality, assume that B is base-component free.

We first prove the lemma under hypothesis (i).
One easily sees that $D_{0}:=B+A$ is nef, since A is quasi-nef and H is ample. Moreover, $D_{0}^{2}=B^{2}+2 B . A \geq 6$, as $2 A . B=A . H \geq \phi(H) \geq 3$, since H is very ample. If $\phi\left(D_{0}\right)=1=F$. D_{0} for some $F>0$ with $F^{2}=0$, we get $F . B=1, F . A=0$ and the contradiction $F . H=2$. Hence $\phi\left(D_{0}\right) \geq 2$.

One easily checks that (i) implies $D_{0}^{2} \geq 12$. Since $h^{0}\left(2 D_{0}-H\right)=$ $h^{0}(A)=1$ by $\left[\mathbf{2 1}\right.$, Cor. 2.5], we have that $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iv)]. Also $h^{1}\left(H-2 D_{0}\right)=h^{1}(-A)=0$, again by [21, Cor. 2.5], so that $V_{D}=H^{0}\left(\mathcal{O}_{D}\left(H-D_{0}\right)\right)$. As $H-D_{0}=B$ is base-component free and $\left|D_{0}\right|$ is base-point free and birational by [11, Lemma 4.6.2, Thm.4.6.3 and Prop. 4.7.1], also V_{D} is base-point free and is either a complete pencil or birational. Hence $\mu_{V_{D}, \omega_{D}}$ is surjective by the basepoint free pencil trick $[\mathbf{1}, \S 1]$ and $[\mathbf{1}$, Thm. 1.6]. Then S is nonextendable by Proposition 5.1.

Therefore the lemma is proved under the assumption (i) and, in particular, the whole lemma is proved with the additional assumption that A is quasi-nef.

Now assume that A is not quasi-nef. Then there is a $\Delta>0$ with $\Delta^{2}=-2$ and $\Delta . A \leq-2$. We have $\Delta . B \geq 2$ by the ampleness of H. Furthermore, among all such Δ 's we will choose a minimal one, that is, such that no $0<\Delta^{\prime}<\Delta$ satisfies $\left(\Delta^{\prime}\right)^{2}=-2$ and $\Delta^{\prime} . A \leq-2$. Then one easily proves that $B_{0}:=B+\Delta$ is nef. Moreover, $B_{0}^{2} \geq 2+B^{2}$, and $\phi\left(B_{0}\right) \geq \phi(B)$. We also note that $H-2 B_{0} \sim A-2 \Delta>0$ and is primitive by $\left[\mathbf{2 2}\right.$, Lemma 2.3] with $\left(H-2 B_{0}\right)^{2} \geq 0$.

Under the assumptions (ii), we have $\phi\left(B_{0}\right) \geq 2$. Then S is nonextendable by Proposition 5.2 if $B_{0}^{2} \geq 8$. If $B_{0}^{2}=6$, we have $B^{2}=4$ and $\Delta . B=2$, so that $\Delta . A=-2$ or -3 by the ampleness of H. Hence $H \sim 2 B_{0}+A^{\prime}$, with $B_{0}^{2}=6$ and $A^{\prime} \sim A-2 \Delta$ satisfies $\left(A^{\prime}\right)^{2}=0$ or 4. In the first case we are done by conditions (i) if A^{\prime} is quasi-nef, and if not we can just repeat the process and find that S is nonextendable
by Proposition 5.2. In the case $\left(A^{\prime}\right)^{2}=4$ we have $A^{\prime} . B_{0} \geq 5$ by Hodge index. Therefore $\left(3 B_{0}-H\right) \cdot B_{0}=\left(B_{0}-A^{\prime}\right) \cdot B_{0} \leq 1<\phi\left(B_{0}\right)$, so that if $3 B_{0}-H>0$, then it is a nodal cycle. Hence either $h^{0}\left(3 B_{0}-H\right)=0$ or $h^{0}\left(3 B_{0}+K_{S}-H\right)=0$ and S is nonextendable by Proposition 5.3. We have therefore shown that S is nonextendable under conditions (ii).

Now assume (iii). Set $k:=-A . \Delta$. By [22, Lemma 2.3] we have that $A_{0}:=A-k \Delta$ is primitive, effective and isotropic. In case (iiia) we deduce $k=2$ and $F_{1} \cdot \Delta=F_{1} \cdot A_{0}=1$. Then $H \sim 2 B_{0}+A_{0}$ satisfies conditions (ii) and S is nonextendable. Now consider case (iiib), so that $F_{i} . A \leq 6$ for $i=1,2$. If Δ. $F_{1} \leq 0$, then $F_{2} . \Delta \geq 2$. As $6 \geq F_{2} \cdot A=F_{2} \cdot A_{0}+k F_{2} \cdot \Delta$, we get $k=F_{2} \cdot \Delta=2$, so that $\Delta \cdot F_{1}=0$ and $F_{2} . A \geq 4$. Then $F_{1} \cdot B_{0}=1$, so that $B_{0} \sim 2 F_{1}+F_{2}^{\prime}$, where $F_{2}^{\prime} \sim F_{2}+$ $\Delta-F_{1}>0$ and $\left(F_{2}^{\prime}\right)^{2}=0$. Also $F_{1} \cdot A_{0}=F_{1} \cdot A \leq 4$, and equality implies $F_{2} \cdot A=4, F_{2} \equiv A_{0}$ and the contradiction $F_{1} \cdot A_{0}=F_{1} \cdot F_{2}=1$. Hence $F_{1} \cdot A_{0} \leq 3$. Moreover $F_{2}^{\prime} \cdot A_{0}=\left(F_{2}+\Delta-F_{1}\right) \cdot A_{0}=\left(F_{2}-F_{1}\right) \cdot A-2 \leq 2$ and it cannot be that $\left(F_{1} \cdot A_{0}, F_{2}^{\prime} \cdot A_{0}\right)=(1,1)$, for then $F_{1} \cdot A=1$. Then $H \sim 2 B_{0}+A_{0}$ satisfies the conditions in (iii-a) and S is nonextendable. We can therefore assume $\Delta . F_{1}>0$, and by symmetry, also $\Delta . F_{2}>0$. Hence $\phi\left(B_{0}\right) \geq 2$. If $k \geq 3$, then $F_{i} \cdot A=F_{i} \cdot A_{0}+k F_{i} \cdot \Delta \geq 4$ for $i=1,2$, and we get $k=3, F_{i} . A=4$ and $F_{i} \cdot \Delta=F_{i} \cdot A_{0}=1$. Then $B . A=8$ and $H^{2}=40$, so that $\phi(H) \leq 5$ by hypothesis. Let F be isotropic with $F . H=\phi(H)$. Now $\left(A^{\prime}\right)^{2}=4$ and $5 \geq F . H=2 F . B_{0}+F . A^{\prime} \geq 5$, so that $F . H=5, F . A^{\prime}=1,\left(A^{\prime}-2 F\right)^{2}=0, A^{\prime}-2 F>0$ and $\left(A^{\prime}-2 F\right) . H=$ $(A-2 \Delta-2 F) \cdot H=4$, a contradiction. Hence $k=2, A_{0}^{2}=0$ and $B_{0} \cdot A_{0}=(B+\Delta) \cdot A_{0} \geq 3$. Then the conditions (ii) are satisfied and S is nonextendable, unless possibly if $B_{0}^{2}=4$ and $B \cdot A_{0}=1$. But then $B . \Delta=2$ and $A_{0} \equiv F_{i}$, for $i=1$ or 2 . Hence $\Delta . B=\Delta .\left(F_{1}+F_{2}\right)=3$, a contradiction.
q.e.d.

We also have the following helpful tools to check surjectivity of $\mu_{V_{D}, \omega_{D}}$ when $h^{1}\left(H-2 D_{0}\right) \neq 0$. The first lemma holds on any smooth surface.

Lemma 5.6. Let S be a smooth surface, L a line bundle on S and $D_{1}>0$ and $D_{2}>0$ divisors on S not intersecting the base locus of $|L|$, such that $h^{0}\left(\mathcal{O}_{D_{1}}\right)=1$ and $h^{0}\left(\mathcal{O}_{D_{1}}(-L)\right)=h^{0}\left(\mathcal{O}_{D_{2}}\left(-D_{1}\right)\right)=0$. For any divisor $B>0$ on S set $V_{B}:=\operatorname{Im}\left\{H^{0}(S, L) \rightarrow H^{0}\left(B, L_{\mid B}\right)\right\}$. If $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ and $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ are surjective, then $\mu_{V_{D}, \omega_{D}}$ is surjective for general $D \in\left|D_{1}+D_{2}\right|$.

Proof. Let $D^{\prime}=D_{1}+D_{2}$. We have two surjective maps $\pi_{i}: V_{D^{\prime}} \rightarrow$ $V_{D_{i}}$, for $i=1,2$, and an exact sequence

$$
0 \longrightarrow H^{0}\left(\omega_{D_{1}}\right) \longrightarrow H^{0}\left(\omega_{D^{\prime}}\right) \xrightarrow{\psi} H^{0}\left(\omega_{D_{2}}\left(D_{1}\right)\right) \longrightarrow 0
$$

whence a commutative diagram

where $W:=\operatorname{Ker} \pi_{2} \otimes H^{0}\left(\omega_{D^{\prime}}\right)+V_{D^{\prime}} \otimes \operatorname{Ker} \psi$ and φ is the restriction of $\mu_{V_{D^{\prime}}, \omega_{D^{\prime}}}$. The surjectivity of $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ and the injectivity of χ show that $H^{0}\left(\omega_{D_{1}}(L)\right)=\operatorname{Im} \mu_{V_{D_{1}, \omega_{D_{1}}}}=\operatorname{Im} \varphi_{V_{D^{\prime} \otimes \operatorname{Ker} \psi}}$. Hence φ is surjective and so is $\mu_{V_{D^{\prime}, \omega_{D^{\prime}}}}$. By semicontinuity, $\mu_{V_{D}, \omega_{D}}$ is surjective for general $D \in\left|D_{1}+D_{2}\right|$.
q.e.d.

Lemma 5.7. Let S be an Enriques surface, L a very ample divisor on S and D_{0} a nef and big divisor on S such that $\phi\left(D_{0}\right) \geq 2$. Let $E>0$ be such that $E^{2}=0$ and $E . L=\phi(L)$.

If $\left|L-D_{0}-2 E\right|$ is base-component free, $h^{1}\left(D_{0}+K_{S}-2 E\right)=h^{2}\left(D_{0}+\right.$ $\left.K_{S}-4 E\right)=0$ and
$h^{0}\left(L-2 D_{0}-2 E\right)+h^{0}\left(\mathcal{O}_{D}\left(L-D_{0}-4 E\right)\right) \leq \frac{1}{2}\left(L-D_{0}-2 E\right)^{2}-1$
then $\mu_{V_{D}, \omega_{D}}$ surjects for general $D \in\left|D_{0}\right|$, where $V_{D}=\operatorname{Im}\left\{H^{0}\left(\mathcal{O}_{S}(L-\right.\right.$ $\left.\left.\left.D_{0}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{D}\left(L-D_{0}\right)\right)\right\}$.

Proof. Set $N=L-D_{0}-2 E$. We have a commutative diagram

where $p_{D}, p_{D}^{\prime}, r_{D}, r_{D}^{\prime}$ are restriction maps, $W_{D}:=\operatorname{Im} r_{D}, \mu=\mu_{2 E, D_{0}+K_{S}}$ and $\mu^{\prime}=\mu_{2 E, N}$. Since $H^{1}\left(D_{0}+K_{S}-2 E\right)=H^{2}\left(D_{0}+K_{S}-4 E\right)=0$, the map μ is surjective by Castelnuovo-Mumford's lemma, and so is r_{D}^{\prime} since $h^{1}\left(2 E+K_{S}\right)=0$. To conclude we need the surjectivity of $\mu_{W_{D}, \omega_{D}(2 E)}$. As D is general, by [15, Thm.4.e.1] we need $h^{1}\left(\omega_{D}(2 E-\right.$ $N)) \leq h^{0}(N)-h^{0}\left(L-2 D_{0}-2 E\right)-2$, which is equivalent to (9) by Riemann-Roch and Serre duality. q.e.d.

6. Strategy of the proof of Theorem 1.5

In this section we prove Theorem 1.5 except for some concrete cases, and then we give the main strategy of the proof in these remaining cases, which will be carried out in Sections 7-11.

Let $S \subset \mathbb{P}^{r}$ be an Enriques surface of sectional genus g and let H be its hyperplane divisor. As we will prove a result also for $g=15$ and 17 (Proposition 12.1) we will henceforth assume $g \geq 17$ or $g=15$, so that $H^{2}=2 g-2 \geq 32$ or $H^{2}=28$, and, as H is very ample, $\phi(H) \geq 3$. We choose a genus one pencil $|2 E|$ such that $E . H=\phi(H)$ and, as H is not of small type by Lemma 4.3, we define $\alpha:=\alpha_{E}(H)$ as in (8) and $L_{1}:=H-\alpha E$. By [22, Lemma 2.4] and Lemma 4.4 we have that $L_{1}>0$ and $L_{1}^{2}>0$. Now suppose that L_{1} is not of small type. Starting with $L_{0}:=H$ and $E_{0}:=E$ we continue the process inductively until we reach a line bundle of small type, as follows. Suppose given, for $i \geq 1, L_{i}>0$ not of small type with $L_{i}^{2}>0$. We choose $E_{i}>0$ such that $E_{i}^{2}=0, E_{i} \cdot E_{i-1}>0, E_{i} \cdot L_{i}=\phi\left(L_{i}\right)$ and define $\alpha_{i}=\alpha_{E_{i}}\left(L_{i}\right)$ and $L_{i+1}=L_{i}-\alpha_{i} E_{i}$. Again $L_{i+1}>0$. If $L_{i+1}^{2}=0$ we write $L_{i+1} \equiv \alpha_{i+1} E_{i+1}$ and define $L_{i+2}=0$. We also have $E_{i+1} \cdot E_{i}>0$ because $L_{i}^{2}>0$. If $L_{i+1}^{2}>0$ then either L_{i+1} is of small type or we carry on. We then get
(10) $H=\alpha E+\alpha_{1} E_{1}+\ldots+\alpha_{n-1} E_{n-1}+L_{n}$, for some positive integer n
with $\alpha \geq 2, \alpha_{i} \geq 2$ for $1 \leq i \leq n-1$ and L_{n} is of small type. Moreover $E . E_{1} \geq 1, E_{i} \cdot E_{i+1} \geq 1, E$ and E_{i} are primitive for all $i, L_{i}^{2}>0$ and $E_{i} . L_{i}=\phi\left(L_{i}\right)$ for $0 \leq i \leq n-2$ and $L_{n-1}^{2} \geq 0$.

We record for later the following fact, which follows immediately from the definitions:
(11)
$E_{1} \cdot(H-\alpha E) \leq \phi(H)$ and if $\alpha \geq 3$, then $E_{1} \cdot(H-\alpha E) \geq \phi(H)+1-E . E_{1}$.
We now claim that $\alpha_{i}=2$ for $1 \leq i \leq n-1$. If $\left(L_{1}-2 E_{1}\right)^{2}=0$ then $\alpha_{1}=2$ by definition. If $\left(L_{1}-2 E_{1}\right)^{2}>0$ we need $E_{0} .\left(L_{1}-2 E_{1}\right) \leq \phi\left(L_{1}\right)$, that is $\phi\left(L_{0}\right) \leq E_{1} \cdot L_{0}+\left(2-\alpha_{0}\right) E_{1} \cdot E_{0}$. The latter holds if $\alpha_{0}=2$ and, by (11), if $\alpha_{0} \geq 3$. By induction and the proof for $i=1$ we get that $\alpha_{i}=2$ for $1 \leq i \leq n-2$ and also for $i=n-1$ if $L_{n-1}^{2}>0$. If $L_{n-1}^{2}=0$ we have $L_{n-2} \equiv 2 E_{n-2}+\alpha_{n-1} E_{n-1}$, whence $\left(\alpha_{n-1} E_{n-2} \cdot E_{n-1}\right)^{2}=\phi\left(L_{n-2}\right)^{2} \leq$ $L_{n-2}^{2}=4 \alpha_{n-1} E_{n-2} \cdot E_{n-1}$. Now if $\alpha_{n-1} \geq 3$ we get $E_{n-2} \cdot E_{n-1}=1$, giving the contradiction $\alpha_{n-1}=\phi\left(L_{n-2}\right) \leq E_{n-1} \cdot L_{n-2}=2$ and the claim is proved.

We now search for a divisor B as in Proposition 5.2 to show that $S \subset \mathbb{P}^{r}$ is nonextendable. Assume first that H is not 2-divisible in Num S and that $n \geq 2$ (that is L_{1} is not of small type). If $n \geq 4$, then $B:=E+E_{1}+E_{2}+E_{3}$ satisfies the conditions in Proposition 5.2 and S is nonextendable. If $n=3$, then $H=\alpha E+2 E_{1}+2 E_{2}+L_{3}$. In this case $B:=\left\lfloor\frac{\alpha}{2}\right\rfloor E+E_{1}+E_{2}$ satisfies the conditions in Proposition 5.2, whence S is nonextendable, unless
(I-A) $n=3, E_{2} \equiv E, E . E_{1}=1$.
(II) $n=3, E \cdot E_{1}=E \cdot E_{2}=E_{1} \cdot E_{2}=1, \alpha \in\{2,3\}, H^{2} \leq 52$.

If $n=2$, then $H=\alpha E+2 E_{1}+L_{2}$. Set $B=\left\lfloor\frac{\alpha}{2}\right\rfloor E+E_{1}$. Then B satisfies the conditions in Proposition 5.2 , whence S is nonextendable, unless
(I-B) $n=2, E . E_{1}=1$.
(III) $n=2, E . E_{1}=2, \alpha \in\{2,3\}, H^{2} \leq 62$,
or $E . E_{1}=3, \alpha \in\{2,3\}$ and $H^{2} \leq 52$. But the latter case does not occur. Indeed, then $E . H=\phi(H)=6$ by [22, Prop. 1.4], whence $E . L_{2}=0$, so that $L_{2}=0$ or $L_{2} \equiv E$. Since we can write $E+E_{1} \sim A_{1}+A_{2}+A_{3}$ with $A_{i}>0, A_{i}^{2}=0$ by [22, Lemma 2.4], we get $18=3 \phi(H) \leq\left(E+E_{1}\right) \cdot H=$ $6+3 \alpha+E_{1} . L_{2}$, whence $\alpha=E_{1} \cdot L_{2}=3$ and $E_{1} \cdot(H-2 E)=6=\phi(H)$, contradicting $\alpha=3$.

Now $L_{n} \geq 0$ and $L_{n}^{2} \geq 0$ so that, if $L_{n}>0$, it has (several) arithmetic genus 1 decompositions. We want to extract from them any divisors numerically equivalent to E or to E_{1}, if possible. If, for example, we give priority to E, we will write $L_{n} \equiv E+L_{n}^{\prime}$ and then, if L_{n}^{\prime} has an arithmetic genus 1 decomposition with E_{1} present, we write $L_{n}^{\prime} \equiv$ $E_{1}+M_{n}$. If the priority is given to E_{1} we do it first with E_{1} and then with E. Moreover, to unify notation in the two cases (I-A) and (I-B), we will set $M_{2}=M_{3}$ in the case (I-A), where only M_{3} is defined. To avoid treating the same cases more times, we make the following choice of "removing conventions":
(I-A) Remove E and E_{1} from L_{3}, the one with lowest intersection number with L_{3} first, giving priority to E_{1} in case E. $L_{3}=E_{1} \cdot L_{3}$.
(I-B) Remove E and E_{1} from L_{2}, the one with lowest intersection number with L_{2} first, giving priority to E in case $E \cdot L_{2}=E_{1} \cdot L_{2}$.
(II) Remove E, E_{1} and E_{2} from L_{3}, the one with lowest intersection number with L_{3} first, giving priority to E first and then to E_{2}.
(III) Remove E and E_{1} from L_{2}, the one with lowest intersection number with L_{2} first, giving priority to E in case $E \cdot L_{2}=E_{1} \cdot L_{2}$.
Then the extendability of S remains to be checked only in the following cases, where $\gamma, \delta \in\{2,3\}$:
(I) $H \equiv \beta E+\gamma E_{1}+M_{2}, E . E_{1}=1, H^{2} \geq 32$ or $H^{2}=28$,
(II) $H \equiv \beta E+\gamma E_{1}+\delta E_{2}+M_{3}, E \cdot E_{1}=E \cdot E_{2}=E_{1} \cdot E_{2}=1, \beta \in$ $\{2,3\}, 32 \leq H^{2} \leq 52$ or $H^{2}=28$,
(III) $H \equiv \beta E+\gamma E_{1}+M_{2}, E . E_{1}=2, \beta \in\{2,3\}, 32 \leq H^{2} \leq 62$ or $H^{2}=28$
(where the limitations on β are obtained using the same B 's as above), in addition to:
(D) $H \equiv 2 H_{1}$ for some $H_{1}>0, H_{1}^{2} \geq 8$,
(S) L_{1} is of small type and $H^{2} \geq 32$ or $H^{2}=28$.

We call such decompositions as in (I)-(III), obtained by the inductive process and removing conventions above, a ladder decomposition of H.

Note that $M_{n} \geq 0, M_{n}^{2} \geq 0$ and M_{n} is of small type, for $n=2,3$. Moreover, when $M_{n}>0$, we will replace M_{n} with $M_{n}+K_{S}$ that has the same properties, to avoid to study the two different numerically equivalent cases for H. Also note that $\beta \geq \alpha \geq 2$ and $\beta \geq \alpha+2$ in (I-A).

We will treat all these cases separately in the next sections.
The next three lemmas will be useful.
Lemma 6.1. If $E . E_{1} \leq 2$, then $E+E_{1}$ is nef.
Proof. Let Γ be a nodal curve with $\Gamma .\left(E+E_{1}\right)<0$. As E is nef, we must have $k:=-\Gamma . E_{1} \geq 1$ and $A:=E_{1}-k \Gamma$ is primitive, effective and isotropic by [22, Lemma 2.3]. Since $A . L_{1} \geq \phi\left(L_{1}\right)=E_{1} . L_{1}$, we get $k \Gamma \cdot L_{1}=\left(E_{1}-A\right) \cdot L_{1} \leq 0$, whence $\Gamma \cdot E>0$, because H is ample. This yields $k \geq \Gamma . E+1 \geq 2$. Hence $E . E_{1}=E . A+k \Gamma . E \geq 2 \Gamma . E$, and we get $k=2, \Gamma . E=1$ and $E . A=0$. Then $A \equiv E$ by [21, Lemma 2.1], contradicting $\Gamma . A=-\Gamma \cdot E_{1}=2$.
q.e.d.

From [11, Prop.3.1.6, 3.1.4 and Thm.4.4.1] and the lemma, $E+E_{1}$ is base-point free when $E . E_{1}=2$, and $E+E_{1}$ is base-component free when $E . E_{1}=1$, unless $E_{1} \sim E+R$, for a nodal curve R such that $E . R=1$. But since we are free to choose between E_{1} and $E_{1}+K_{S}$, we adopt the convention of choosing E_{1} such that $E+E_{1}$ is base-component free. Thus we have

Lemma 6.2. If $E . E_{1}=2$, then $E+E_{1}$ is base-point free.
If $E . E_{1}=1$, then $E+E_{1}$ is base-component free. Furthermore if there exists $\Delta>0$ such that $\Delta^{2}=-2$ and $\Delta . E_{1}<0$, then Δ is a nodal curve and $E_{1} \sim E+\Delta+K_{S}$.

Moreover in both cases we have $H^{1}\left(E_{1}\right)=H^{1}\left(E_{1}+K_{S}\right)=0$.
Proof. We need to prove the last two assertions. If $\Delta>0$ satisfies $\Delta^{2}=-2$ and $\Delta . E_{1}<0$, then similarly to the previous proof one obtains $\Delta . E_{1}=-1$, so that E_{1} is quasi-nef and primitive and the desired vanishings follow by [21, Cor.2.5]. Now if $E . E_{1}=1$ we obtain that $E_{1} \equiv E+\Delta$ by $\left[\mathbf{2 1}\right.$, Lemma 2.1]. Since E_{1} is not nef, by [11, Prop.3.1.4, Prop.3.6.1 and Cor.3.1.4] there is a nodal curve R such that $E_{1} \sim E+R+K_{S}$, whence $\Delta=R$. q.e.d.

Lemma 6.3. Let $H \sim \beta E+\gamma E_{1}+M_{2}$ be of type (I) or (III), with $M_{2}>0$ and $M_{2}^{2} \leq 4$. Let $i=2$ and $M_{2} \sim E_{2}$ or $i=2,3$ and $M_{2} \sim$ $E_{2}+E_{3}$ be genus 1 decompositions of M_{2} (note that, by construction, $E . E_{j} \geq 1$ for $\left.j=1,2\right)$. Assume that E_{i} is quasi-nef. Then:
(a) $\left|2 E+E_{1}+E_{i}\right|$ is base-point free.
(b) $\left|E+E_{1}+E_{i}\right|$ is base-point free if $\beta=2$ or if $E . E_{1}=1$ and $E_{1} . E_{i} \neq E . E_{i}-1$.
(c) Assume $\gamma=2$ and $E . E_{1}=E_{1} \cdot E_{i}=1$. Then $E+E_{i}$ is nef if either $E . E_{i} \geq 2$ or if $M_{2}^{2} \geq 2$ and $E_{1} \cdot M_{2} \geq 4$.
(d) Assume $\gamma=2, M_{2}^{2}=2, E \cdot E_{1}=E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=1$ and that both E_{2} and E_{3} are quasi-nef. Then either $E+E_{2}$ or $E+E_{3}$ is nef.
(e) If $E \cdot E_{1}=E \cdot E_{i}=1$ and $E_{1} \cdot E_{i} \neq 1$ then $E_{1}+E_{i}$ is nef.

Proof. Assume R is a nodal curve with $R .\left(E+E_{1}+E_{i}\right)<0$. Arguing as above, using Lemma 6.1, [22, Lemma 2.3] and [21, Lemma 2.1], we find that $R . E_{1}=R . E_{i}=-1$ and $R . E=1$, so that $2 E+E_{1}+E_{i}$ is nef, whence base-point free, as $\phi\left(2 E+E_{1}+E_{i}\right) \geq 2$, and (a) is proved. Similarly, if $E . E_{1}=1$, then $E_{1} \equiv E+R$ by Lemma 6.2 , whence $E_{1} \cdot E_{i}=E . E_{i}-1$, and (b) is proved.

The remaining assertions are proved similarly. q.e.d.
The general strategy to prove the nonextendability of S in the remaining cases (I), (II), (III), (D) and (S), will be as follows: We will first use the ladder decomposition and Propositions 5.2-5.4 to reduce to genus one decompositions of M_{2} or M_{3} where we know all the intersections involved. Then we will find a big and nef divisor D_{0} on S such that $\phi\left(D_{0}\right) \geq 2$ and $H-D_{0}$ is base-component free with $\left(H-D_{0}\right)^{2}>0$. Then $H^{1}\left(H-D_{0}\right)=H^{1}\left(D_{0}-H\right)=0$. In some cases this D_{0} will satisfy the conditions of B in Lemma 5.5 , so that S will be nonextendable. In the remaining cases we will apply Proposition 5.1, mostly without reference, in the following way: We denote by D a general smooth curve in $\left|D_{0}\right|$; we will do this without further mentioning. The surjectivity of $\Phi_{H_{D}, \omega_{D}}$ will be proved using [23, Thm], and in all cases therein, with the exception of (v), we will have that $h^{0}\left(\mathcal{O}_{D}\left(2 D_{0}-H\right)\right) \leq 1$ if $D_{0}^{2} \geq 6$ and $h^{0}\left(\mathcal{O}_{D}\left(2 D_{0}-H\right)\right)=0$ if $D_{0}^{2}=4$. Therefore the hypothesis (iii) of Proposition 5.1 will always be satisfied and we will skip its verification. To study the surjectivity of $\mu_{V_{D}, \omega_{D}}$ we will use several tools, outlined below. In several cases we will find an effective decomposition $D \sim D_{1}+D_{2}$ and use Lemma 5.6. We remark that except possibly for the one case in (15) below where D_{1} is primitive of canonical type, both D_{1} and D_{2} will always be smooth curves by [11, Prop.3.1.4 and Thm. 4.10.2]. Furthermore the spaces $V_{D}, V_{D_{1}}$ and $V_{D_{2}}$ will always be base-point free. This is immediately clear for V_{D}, as $\left|D_{0}\right|$ is base-point free. As for $V_{D_{1}}$ and $V_{D_{2}}$, one only has to make sure that, when $\left|H-D_{0}\right|$ has base points (that is, $\phi\left(H-D_{0}\right)=1$), in which case it has precisely two distinct base points [11, Prop.3.1.4 and Thm. 4.4.1], they do not intersect the possible base points of $\left|D_{1}\right|$ and $\left|D_{2}\right|$. This will always be satisfied and we will not repeatedly mention this.

Here are the criteria we will use to verify that the desired multiplication maps are surjective:

The map $\mu_{V_{D}, \omega_{D}}$ is surjective in any of the following cases:
$H^{1}\left(H-2 D_{0}\right)=0$ and $\left|D_{0}\right|$ or $\left|H-D_{0}\right|$ is birational (see Rem. 6.4).

$$
\begin{equation*}
H^{1}\left(H-2 D_{0}\right)=0 \text { and }\left|H-D_{0}\right| \text { is a pencil. } \tag{13}
\end{equation*}
$$

If $V_{D_{1}}$ is base-point free, $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective in any of the following cases:

$$
\begin{equation*}
H^{1}\left(H-D_{0}-D_{1}\right)=0 \text { and } D_{1} \text { is nef and isotropic. } \tag{14}
\end{equation*}
$$

If D_{2} is smooth and $V_{D_{2}}$ is base-point free, then $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective if

$$
\begin{array}{r}
h^{0}\left(H-D_{0}-D_{2}\right)+h^{0}\left(\mathcal{O}_{D_{2}}\left(H-D_{0}-D_{1}\right)\right) \leq \tag{16}\\
\frac{1}{2}\left(H-D_{0}\right)^{2}-1(\text { see Rem. } 6.5 \text { below }) .
\end{array}
$$

To see (12)-(13) note that $V_{D}=H^{0}\left(\mathcal{O}_{D}\left(H-D_{0}\right)\right)$ if $H^{1}\left(H-2 D_{0}\right)=0$, whence (13) is the base-point free pencil trick, while (12) follows using [1, Thm. 1.6] in addition, since $\mathcal{O}_{D}\left(H-D_{0}\right)$ is base-point free and is either a pencil or birational. The same proves (14). As for (15) the hypotheses imply $V_{D_{1}}=H^{0}\left(\mathcal{O}_{D_{1}}\left(H-D_{0}\right)\right)$ and $\omega_{D_{1}} \cong \mathcal{O}_{D_{1}}$ by [11, III, §1], and surjectivity is immediate. For (16), the H^{0}-lemma [15, Thm.4.e.1] gives surjectivity if $\operatorname{dim} V_{D_{2}}-2=h^{0}\left(H-D_{0}\right)-h^{0}(H-$ $\left.D_{0}-D_{2}\right)-2 \geq h^{1}\left(\omega_{D_{2}}\left(D_{1}-\left(H-D_{0}\right)\right)\right)=h^{0}\left(\mathcal{O}_{D_{2}}\left(H-D_{0}-D_{1}\right)\right)$. This is equivalent to (16) by Riemann-Roch.

Remark 6.4. A complete linear system $|B|$ is birational if it defines a birational map. By [11, Prop.3.1.4, Lemma 4.6.2, Thm.4.6.3, Prop.4.7.1 and Thm.4.7.1] a nef divisor B with $B^{2} \geq 8$ defines a birational morphism if $\phi(B) \geq 2$ and B is not 2-divisible in $\operatorname{Pic} S$ when $B^{2}=8$.

Remark 6.5. The inequality in (16) will be verified by giving an upper bound on $h^{0}\left(H-D_{0}-D_{2}\right)$ and using Riemann-Roch and Clifford's theorem on D_{2} to bound $h^{0}\left(\mathcal{O}_{D_{2}}\left(H-D_{0}-D_{1}\right)\right)$.

7. Case (D)

We have $H \equiv 2 H_{1}$ whence H_{1} is ample with $H_{1}^{2} \geq 8$ and $\phi(H)=$ $2 \phi\left(H_{1}\right) \geq 3$ gives $\phi\left(H_{1}\right) \geq 2$.

If $H \sim 2 H_{1}+K_{S}$, we set $D_{0}:=H_{1}$ and apply Proposition 5.1. Note that $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)] and, as $H^{1}\left(H-2 D_{0}\right)=$ 0 , the map $\mu_{V_{D}, \omega_{D}}$ is just $\mu_{\omega_{D}, \omega_{D}}$, which is surjective since D is not hyperelliptic.

If $H \sim 2 H_{1}$ we divide the treatment in various cases:
7.1. $\phi\left(H_{1}\right)=2$ and $H_{1}^{2}=8$. Using [22, Lemma 2.4], we obtain the cases (a1) and (a2) in the proof of Proposition 12.1.
7.2. $\phi\left(H_{1}\right)=2$ and $H_{1}^{2}=10$. By [22, Lemma 2.4] we can write $H \sim$ $4 E+2 E_{1}+2 E_{2}$ and one easily sees, by Lemma 6.2 , that either E_{1} or E_{2} is nef. We can assume that E_{1} is nef and, possibly adding K_{S} to E_{2}, that $E+E_{2}$ is base-component free. We set $D_{0}:=E+2 E_{1}+E_{2}$ and apply Proposition 5.1. Now $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)]. As for $\mu_{V_{D}, \omega_{D}}$, consider the commutative diagram, with $N:=E+2 E_{1}+$ $E_{2}+K_{S}$,

where p_{D} and r_{D} are the natural restriction maps, which are easily seen to be surjective, and $W_{D}:=\operatorname{Im}\left\{H^{0}(2 E) \rightarrow H^{0}\left(\mathcal{O}_{D}(2 E)\right)\right\}$. The map $\mu_{\mathcal{O}_{D}\left(E+E_{2}\right), \omega_{D}}$ is surjective by the base-point free pencil trick. To prove that $\mu_{V_{D}, \omega_{D}}$ is surjective it suffices to show that $\mu_{W_{D}, \omega_{D}\left(E+E_{2}\right)}$ is surjective. The latter follows by the H^{0}-lemma [15, Thm.4.e.1], as $\operatorname{dim} W_{D}=2$ and W_{D} is base-point free, and one computes $h^{1}\left(\omega_{D}\left(E_{2}-\right.\right.$ $E))=h^{0}\left(\mathcal{O}_{D}\left(E-E_{2}\right)\right)=0$.
7.3. $\phi\left(H_{1}\right)=2$ and $H_{1}^{2} \geq 12$. We set $D_{0}:=H_{1}$ and apply Proposition 5.1. The map $\Phi_{H_{D}, \omega_{D}}$ is onto by [23, Thm(iv)] and $\mu_{V_{D}, \omega_{D}}$ is onto by (12).
7.4. $\phi\left(H_{1}\right) \geq 3$. As S is regular, if it is extendable, it can be reembedded so that it is linearly normal and extendable, as in the proof of Corollary 2.2. Hence we can assume that $S \subset \mathbb{P} H^{0}\left(2 H_{1}\right)$. Now H_{1} is very ample [11, Cor.2, Appendix Ch.IV], whence S is nonextendable by [14, Thm. 1.2].

8. Case (I)

If $M_{2}=0$, then $H \equiv \beta E+\gamma E_{1}, E \cdot E_{1}=1, \beta \geq 2, \gamma \in\{2,3\}$ and $H^{2} \geq 32$ or $H^{2}=28$. Now $\gamma=E . H=\phi(H) \geq 3$ so that $\gamma=3$ and $\beta \geq 6$. We set $D_{0}:=H-\left\lfloor\frac{\beta+1}{2}\right\rfloor E-E_{1}$, which is nef by Lemma 6.1, and use Proposition 5.1. By Lemma 6.2, we have $h^{0}\left(2 D_{0}-H\right) \leq 1$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)-(iv)]. To see the surjectivity of $\mu_{V_{D}, \omega_{D}}$ we apply Lemma 5.7. By Lemma 6.2 we get $H^{1}\left(D_{0}+K_{S}-2 E\right)=$ 0 and $H-D_{0}-2 E=\left\lfloor\frac{\beta-3}{2}\right\rfloor E+E_{1}$ is base-component free. Also $H^{2}\left(D_{0}+\right.$ $\left.K_{S}-4 E\right)=0$ and $h^{0}\left(H-2 D_{0}-2 E\right)=0$ by the nefness of E. Since $H^{1}\left(H-2 D_{0}-4 E\right)=0$, we get $h^{0}\left(\mathcal{O}_{D}\left(H-D_{0}-4 E\right)\right) \leq h^{0}\left(H-D_{0}-4 E\right)$. Now $H-D_{0}-4 E=\left\lfloor\frac{\beta-7}{2}\right\rfloor E+E_{1}$, whence $h^{0}\left(H-D_{0}-4 E\right)=\left\lfloor\frac{\beta-5}{2}\right\rfloor$ by Lemma 6.2 and (9) is satisfied.

Hence S is nonextendable if $M_{2}=0$.
Assume next that $M_{2}>0$ and $\gamma=3$. We also have $\beta \geq 3$. Indeed, if $\beta=2$ we have $L_{2} \sim E_{1}+M_{2}$ and $E \cdot L_{2}=1+E \cdot M_{2}=\phi(H)-2 \leq$ $E_{1} \cdot H-2=E_{1} \cdot M_{2}=E_{1} \cdot L_{2}$, contradicting the removing conventions of Section 6 (because then $\left(L_{2}-E\right)^{2} \geq\left(L_{2}-E_{1}\right)^{2} \geq 0$, therefore we could find E in a genus 1 decomposition of L_{2}, but then $\beta \geq 3$).

Lemma 8.1. If $\left|H-2\left(E+E_{1}\right)\right|$ has base points or $h^{1}\left(H-3\left(E+E_{1}\right)\right) \neq$ 0 , then S is nonextendable.

Proof. Set $N=E+E_{1}$. We have that $H-2 N$ is not base-point free if and only if it is not nef, in which case $H-3 N$ is not quasi-nef by ampleness of H, whence $h^{1}(H-3 N) \neq 0$ by [21, Cor.2.5]. Hence it suffices to show that S is nonextendable if $H-3 N$ is not quasi-nef.

Let $\Delta>0$ be such that $\Delta^{2}=-2$ and $\Delta .(H-3 N) \leq-2$. We have $\Delta . N>0$ since H is ample. Also note that $\Delta . E_{1} \geq 0$, for if not, we would have $\Delta . E \geq 2$, whence the contradiction $(E+\Delta)^{2} \geq 2$ and $E_{1} \cdot(E+\Delta) \leq 0$. Hence $M_{2} . \Delta \leq-2$ and by [22, Lemma 2.4] we can write $M_{2} \sim A+k \Delta$, with $A>0$, primitive, $A^{2}=M_{2}^{2}$ and $k:=-\Delta . M_{2}=\Delta . A \geq 2$. Now if $E . \Delta>0$ we find that $E . M_{2} \geq k$ and if equality holds, then $E \cdot A=0$ and $E . \Delta=1$, whence $E \equiv A$ by [21, Lemma 2.1], a contradiction. We get the same contradiction if $E_{1} . \Delta>0$. Therefore

$$
\begin{align*}
E \cdot M_{2} & \geq-\Delta \cdot M_{2}+1 \geq 3 \text { if } E \cdot \Delta>0 \text { and } \tag{17}\\
E_{1} \cdot M_{2} & \geq-\Delta \cdot M_{2}+1 \geq 3 \text { if } E_{1} \cdot \Delta>0 .
\end{align*}
$$

We first consider the case $E . \Delta>0$. If $\beta=3$ then H is of type (I-B) in Section 6 and $L_{2} \sim(3-\alpha) E+E_{1}+M_{2}$ is of small type, whence $E_{1} \cdot M_{2} \leq 5$ by Lemma 4.3 , so that $E_{1} \cdot(H-2 E)=E_{1} \cdot\left(E+3 E_{1}+M_{2}\right) \leq$ 6. Since $\phi(H)=E . H=3+E \cdot M_{2} \geq 6$ by (17), we get $\alpha=2$ and $E_{1} \cdot H=3+E_{1} \cdot M_{2} \geq 6$, so that $E_{1} \cdot M_{2} \geq 3$. Hence $L_{2} \sim E+E_{1}+M_{2}$ and $L_{2}^{2} \geq 14$, a contradiction.

Therefore $\beta \geq 4$, whence $\Delta . M_{2} \leq-2-(\beta-3) \Delta . E \leq-3$, so that $E . M_{2} \geq 4$ by (17) and $\phi(H) \geq 7$, whence $H^{2} \geq 54$ by [22, Prop. 1.4]. Now one easily verifies that $B:=2 E+E_{1}+\Delta$ satisfies the conditions in Proposition 5.2, so that S is nonextendable.

Now consider the case $\Delta \cdot E=0$, where $E_{1} \cdot \Delta>0$, so that $E_{1} \cdot M_{2} \geq 3$ by (17). Then $L_{2} \sim(\beta-\alpha) E+E_{1}+M_{2}$ if H is of type (I-B) in Section 6 and $L_{3} \sim(\beta-\alpha-2) E+E_{1}+M_{2}$ if H is of type (I-A). We claim that the removing conventions of Section 6 now imply that $E_{1} \cdot M_{2} \leq$ $E . M_{2}+1$ and, if $\beta=3$, that $E_{1} \cdot M_{2} \leq E \cdot M_{2}$. In fact if the latter inequalities do not hold we have that $E . L_{2} \leq E_{1} \cdot L_{2}, E . L_{3}<E_{1} . L_{3}$ and $\left(E_{1}+M_{2}-E\right)^{2} \geq 0$, contradicting the fact that L_{2} and L_{3} are of small type. Therefore $E . M_{2} \geq 2$, and $E . M_{2} \geq 3$ if $\beta=3$, so that $H^{2} \geq 54$. Now one easily verifies that $B:=E+2 E_{1}+\Delta$ satisfies the conditions in Proposition 5.2.
q.e.d.

Now set $D_{0}:=2\left(E+E_{1}\right)$, which is nef by Lemma 6.1. By Lemma 8.1 we can assume that $H-D_{0}$ is base-point free. Note that $H . D_{0}=2(\beta+$ $\left.3+\left(E+E_{1}\right) \cdot M_{2}\right) \geq 16$ with equality only if $\beta=3$ and $E \cdot M_{2}=1$. But in the latter case, since M_{2} does not contain E in its arithmetic genus 1 decompositions, we have that $M_{2}^{2}=0$ and $H^{2}=30$, a contradiction. Hence $\left(2 D_{0}-H\right) . D_{0}<0$, so that $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)]. The map $\mu_{V_{D}, \omega_{D}}$ is surjective by Lemma 5.6, using general $D_{1}, D_{2} \in \mid E+$ $E_{1} \mid$. Indeed, by Lemma 8.1 we can assume $h^{1}\left(H-D_{0}-D_{i}\right)=0$, whence $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by (14), and $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}=\mu_{\mathcal{O}_{D_{2}}\left(H-D_{0}\right), \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [15, Cor. 4.e.4]. Therefore, in the case with $M_{2}>0$ and $\gamma=3$, we have that S is nonextendable by Proposition 5.1.

Now we deal with the case $\gamma=2$ and $M_{2}>0$. We have $E_{1} \cdot M_{2} \leq$ $E_{1} \cdot M_{2}+\beta-\alpha=E_{1} \cdot L_{1}=\phi\left(L_{1}\right) \leq \phi(H)=2+E \cdot M_{2} \leq E_{1} \cdot H=$ $\beta+E_{1} \cdot M_{2}$. Moreover, since by construction M_{2} neither contains E nor E_{1} in its arithmetic genus 1 decompositions, we have $\left(M_{2}-E\right)^{2}<0$ and $\left(M_{2}-E_{1}\right)^{2}<0$. Hence

$$
\begin{align*}
& \frac{1}{2} M_{2}^{2}+1 \leq E \cdot M_{2} \leq E_{1} \cdot M_{2}+\beta-2, \text { and } \tag{18}\\
& \frac{1}{2} M_{2}^{2}+1 \leq E_{1} \cdot M_{2} \leq E \cdot M_{2}+2-\beta+\alpha \leq E \cdot M_{2}+2 \tag{19}
\end{align*}
$$

Proposition 8.2. Let H be of type (I) with $\gamma=2$ and $M_{2}>0$. Then S is nonextendable if $\beta \geq 5$.

Proof. We first prove that S is nonextendable if M_{2} or $E_{1}+M_{2}$ is not quasi-nef. The removing conventions in Section 6 imply $E_{1} \cdot M_{2} \geq E . M_{2}$. Assume first there is a $\Delta>0$ such that $\Delta^{2}=-2$ and $\Delta . M_{2} \leq-2$. By [22, Lemma 2.3], [21, Lemma 2.1] and Lemma 6.2 we must have $\Delta . E>0$ and $\Delta . E_{1} \geq 0$. Then $B:=\left\lfloor\frac{\beta}{2}\right\rfloor E+E_{1}+\Delta$ satisfies the conditions in Proposition 5.2 and we are done (some work is required to check that $H^{2} \geq 54$ if $B^{2}=6$).

Assume similarly that there is a $\Delta>0$ such that $\Delta^{2}=-2$ and $\Delta .\left(E_{1}+M_{2}\right) \leq-2$. By what we have just proved and Lemma 6.2, we can assume that $\Delta . E_{1}=\Delta . M_{2}=-1$, but then we get $E_{1} \equiv E+\Delta$, whence $E_{1} \cdot M_{2}=(E+\Delta) \cdot M_{2}<E . M_{2}$, a contradiction.

We next prove that S is nonextendable if $M_{2}^{2} \geq 4$.
Indeed, if $M_{2}^{2} \geq 4$, we write $M_{2} \sim E_{2}+\ldots+E_{k+1}$ as in Lemma 4.3 with $k=2$ or 3 . Moreover we can assume that $1 \leq E . E_{2} \leq \ldots \leq$ $E . E_{k+1}$, whence that $E . M_{2} \geq k E . E_{2}$. Set $B:=E+E_{1}+E_{2}$. Using (18) and (19), one easily verifies that B satisfies the conditions in Propositions 5.2 or 5.3 , and S is nonextendable, except when $M_{2}^{2}=4$ and $E . E_{2}=E . E_{3}$. In this case we can assume $1 \leq E_{1} . E_{2} \leq E_{1} . E_{3}$. By (18), (19), Lemma 6.3(c) and Lemma 4.5, one verifies that $B:=E+E_{2}$ satisfies the conditions in Propositions 5.2 or 5.4.

We can henceforth assume that $E_{1}+M_{2}$ and M_{2} are quasi-nef, whence that $E+E_{1}+M_{2}$ is nef, and that $M_{2}^{2} \leq 2$. Set $D_{0}:=\left\lfloor\frac{\beta-1}{2}\right\rfloor E+E_{1}+M_{2}$. Then $H-D_{0}$ and $H-D_{0}-2 E$ are base-component free by Lemma 6.1 and $\mu_{V_{D}, \omega_{D}}$ surjects by Lemma 5.7, using [21, Cor. 2.5] and Lemma 6.1 to verify (9).

To end the proof we deal with $\Phi_{H_{D}, \omega_{D}}$. By [21, Cor. 2.5] one gets $h^{0}\left(M_{2}-E\right) \leq 1$. Then $\Phi_{H_{D}, \omega_{D}}$ is onto by [23, Thm(iii)-(iv)] (whence S is nonextendable by Proposition 5.1) unless possibly if $\beta=5, E . M_{2}=$ $E_{1} \cdot M_{2}=1, M_{2}^{2}=0$ and $h^{0}\left(M_{2}-E\right)>0$. We now treat this case, setting $E_{2}=M_{2}$. We first need two auxiliary results.

Claim 8.3. Set $E_{0}=E$. Let $F>0$ be a divisor such that $F^{2}=0$ and $F . E=F . E_{1}=F . E_{2}=1$. If F is not nef there exists a nodal curve R such that $F \equiv E_{i}+R$ and $E_{i} . R=1$ for some $i \in\{0,1,2\}$.

Proof. Let R be a nodal curve such that $R . F<0$. Now $A:=F+$ $(R . F) R$ is primitive, effective and isotropic by [22, Lemma 2.3]. Since H is ample, there is an $i \in\{0,1,2\}$ such that $E_{i} \cdot R \geq 1$. As $1=E_{i} . F$, the only possibility is $E_{i} \cdot R=-R \cdot F=1$, and $A \equiv E_{i}$ by [21, Lemma 2.1]. q.e.d.

Claim 8.4. There is an isotropic effective 10 -sequence $\left\{F_{1}, \ldots, F_{10}\right\}$ such that $F_{1}=E, F_{2}=E_{1}, F_{3}=E_{2}$. For $4 \leq i \leq 10$ set $F_{i}^{\prime}=$ $E+E_{1}+E_{2}-F_{i}$. Then $F_{i}^{\prime}>0,\left(F_{i}^{\prime}\right)^{2}=0$ and $F_{i}^{\prime} \cdot E=F_{i}^{\prime} \cdot E_{1}=$ $F_{i}^{\prime} \cdot E_{2}=1$. Moreover the following conditions are satisfied: (i) F_{i} is nef for $7 \leq i \leq 10$; (ii) $E+F_{i}^{\prime}$ is nef for $9 \leq i \leq 10$; (iii) if $E_{2}>E$ then $h^{0}\left(2 F_{10}+E-E_{2}+K_{S}\right)=0$.

Proof. The 10-sequence exists by completing the isotropic 3 -sequence $\left\{E, E_{1}, E_{2}\right\}$, cf. [11, Cor. 2.5.6].

To see (i), suppose that F_{4}, \ldots, F_{7} are not nef. By Claim 8.3 there is an $i \in\{0,1,2\}$ and $j, k \in\{4, \ldots, 7\}, j \neq k$, such that $F_{j} \equiv E_{i}+R_{j}$ and $F_{k} \equiv E_{i}+R_{k}$. Therefore $R_{j} . R_{k}=\left(F_{j}-E_{i}\right) .\left(F_{k}-E_{i}\right)=-1$, a contradiction. Upon renumbering we can assume that F_{i} is nef for $7 \leq i \leq 10$.

Now $\left(F_{i}^{\prime}\right)^{2}=0$ and $F_{i}^{\prime} \cdot E=F_{i}^{\prime} \cdot E_{1}=F_{i}^{\prime} \cdot E_{2}=1$, whence $F_{i}^{\prime}>0$ by Riemann-Roch. To see (ii) suppose that $E+F_{7}^{\prime}, E+F_{8}^{\prime}$ and $E+F_{9}^{\prime}$ are not nef. By Claim 8.3 there is an $i \in\{1,2\}$ and $j, k \in\{7,8,9\}$, $j \neq k$, such that $F_{j}^{\prime} \equiv E_{i}+R_{j}$ and $F_{k}^{\prime} \equiv E_{i}+R_{k}$, giving a contradiction as above. Upon renumbering we can assume that $E+F_{i}^{\prime}$ is nef for $9 \leq i \leq 10$.

To see (iii), let F be either F_{9} or F_{10} and suppose that $2 F+E-$ $E_{2}+K_{S} \geq 0$. Let Γ be a nodal component of $E_{2}-E$. Since $2 F+K_{S} \geq$ $E_{2}-E \geq \Gamma$ and $h^{0}\left(2 F+K_{S}\right)=1$, we get that Γ must be either a component of F or of $F+K_{S}$. Therefore Γ is, for example, a component of both F_{9} and F_{10}. This is not possible since $F_{9} \cdot F_{10}=1$ and F_{9} and F_{10} are nef and primitive.
q.e.d.

Conclusion of the proof of Proposition 8.2. By Claim 8.4(ii) we know that $E+F_{10}^{\prime}$ is nef, whence, using [11, Prop.3.1.6 and Cor.3.1.4], we can choose $F \equiv F_{10}$ so that, setting $F^{\prime}=E+E_{1}+E_{2}-F$, we have that $E+F^{\prime}$ is a base-component free pencil. Let $D_{0}:=3 E+E_{1}+F$. Then D_{0} is nef by Lemma 6.1 and Claim 8.4(i) and $H-D_{0}=E+F^{\prime}$ is a basecomponent free pencil. Moreover, one can check that $h^{0}\left(2 D_{0}-H\right) \leq 1$, so $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)-(iv)].

We have $h^{0}\left(H-2 D_{0}\right)=0$ as $E .\left(H-2 D_{0}\right)=-1$. By Riemann-Roch and Claim 8.4(iii), we have $h^{1}\left(H-2 D_{0}\right)=h^{0}\left(2 F_{10}+E-E_{2}+K_{S}\right)=0$. Therefore $\mu_{V_{D}, \omega_{D}}$ is surjective by (13). q.e.d.

The cases left to treat of Case (I) are therefore the ones with $\beta \leq 4$ (and $\gamma=2$ and $M_{2}>0$). This involves a detailed case-by-case study, in particular of the various intersection properties of the components in the genus one decompositions of M_{2}. The proof of the following result involves no new ideas and is therefore left to the note [20]:

Proposition 8.5. Let H be of type (I) with $\beta \leq 4, \gamma=2$ and $M_{2}>0$ and such that $H^{2} \geq 32$ or $H^{2}=28$. Then S is nonextendable, except possibly for the following two cases, where $H^{2}=28$ and $E_{2}>0, E_{2}^{2}=0$:
(i) $H \sim 3 E+2 E_{1}+E_{2}, E \cdot E_{1}=E_{1} \cdot E_{2}=1, E \cdot E_{2}=2$,
(ii) $H \sim 4 E+2 E_{1}+E_{2}, E \cdot E_{1}=E \cdot E_{2}=E_{1} \cdot E_{2}=1$.

9. Case (II)

As M_{3} does not contain E, E_{1} or E_{2} in its genus 1 decompositions, we have:

$$
\begin{equation*}
\text { If } M_{3}>0, \text { then } E \cdot M_{3} \geq \frac{1}{2} M_{3}^{2}+1, E_{i} \cdot M_{3} \geq \frac{1}{2} M_{3}^{2}+1, i=1,2 . \tag{20}
\end{equation*}
$$

Using Lemma 6.2 and [22, Lemma 2.3], it is easy to check that $B:=$ $E+E_{1}+E_{2}$ is nef. If

$$
\begin{equation*}
2(\beta+\gamma+\delta)+\left(E+E_{1}+E_{2}\right) \cdot M_{3} \geq 17 \tag{21}
\end{equation*}
$$

then $(3 B-H) . B \leq 1$, whence if $3 B-H>0$, the nefness of B gives that it is a nodal cycle. Thus either $h^{0}(3 B-H)=0$ or $h^{0}\left(3 B+K_{S}-H\right)=0$ and S is nonextendable by Proposition 5.3.

We now deal with (21). Assume first that $M_{3}>0$. Then, in view of (20), the condition (21) is satisfied unless $M_{3}^{2}=0$, in which case S is nonextendable by Lemma 5.5(ii).

Assume now that $M_{3}=0$. Then (21) is satisfied unless $6 \leq \beta+\gamma+\delta \leq$ 8. Since $E . H=\gamma+\delta$ and $E_{1} \cdot H=\beta+\delta$, we get $\gamma \leq \beta$, and since $E_{1} \cdot L_{1}=\beta-\alpha+\delta$ and $E_{2} \cdot L_{1}=\beta-\alpha+\gamma$, we get $\gamma \geq \delta$. As we assume that H is not 2-divisible in $\operatorname{Num} S$, we end up with $(\beta, \gamma, \delta)=(3,2,2)$ or ($3,3,2$).

The first case is case (a3) in the proof of Proposition 12.1. In the second case, set $D_{0}:=2 E+E_{1}+E_{2}=E+B$. Now E_{1} is nef by

Lemma 4.5, so that $H-D_{0} \equiv B+E_{1}$ is nef, whence base-point free. We have $\left(H-2 D_{0}\right)^{2}=-2$ and $\left(H-2 D_{0}\right) \cdot H=0$. Thus $h^{i}\left(H-2 D_{0}\right)=$ $h^{i}\left(H-2 D_{0}+K_{S}\right)=0$ for all $i=0,1,2$. Then $\Phi_{H_{D}, \omega_{D}}$ is onto by [23, Thm(iii)] and $\mu_{V_{D}, \omega_{D}}$ is onto by (12).

10. Case (III)

Since $H^{2} \leq 62$ and L_{2} is of small type, we have
(22) $\phi(H)=E \cdot H=2 \gamma+E . M_{2} \leq 7$ and either $M_{2}>0$ or $\beta=\gamma=3$.

As M_{2} contains neither E nor E_{1} in its genus 1 decompositions, we have:

$$
\begin{equation*}
\text { If } M_{2}>0 \text {, then } E \cdot M_{2} \geq \frac{1}{2} M_{2}^{2}+1 \text { and } E_{1} \cdot M_{2} \geq \frac{1}{2} M_{2}^{2}+1 \text {. } \tag{23}
\end{equation*}
$$

By Proposition 5.4 and Lemma 6.1 we can assume

$$
\begin{equation*}
\left(E+E_{1}\right) \cdot H=2(\beta+\gamma)+\left(E+E_{1}\right) \cdot M_{2} \leq 16 . \tag{24}
\end{equation*}
$$

10.1. The case $\beta=2$. We have $M_{2}>0$ by (22) and E. $M_{2} \geq 1$ by (23).

If $\gamma=3$, then $E . M_{2}=1$ and $\phi(H)=7$ by (22), so that $M_{2}^{2}=0$ by (23). As $L_{2} \equiv E_{1}+M_{2}$, the removing conventions of Section 6 require that $E_{1} \cdot L_{2}<E . L_{2}$. Hence $E_{1} \cdot M_{2} \leq 2$, giving the contradiction $49=\phi(H)^{2} \leq H^{2} \leq 40$. Therefore $\gamma=2$, so that $E . M_{2} \leq 3$ by (22), whence $M_{2}^{2} \leq 4$ by (23). Moreover $\left(E+E_{1}\right) \cdot M_{2} \leq 8$ by (24), whence
(25) $\phi(H)^{2}=\left(4+E \cdot M_{2}\right)^{2} \leq H^{2}=16+M_{2}^{2}+4\left(E+E_{1}\right) \cdot M_{2} \leq 48+M_{2}^{2}$.

Combining with [22, Prop.1.4], we get $E . M_{2} \leq 2$, whence $M_{2}^{2} \leq 2$ by (23).

If $M_{2}^{2}=2$, then $E \cdot M_{2}=2$ by (23) and since $\left(E_{1} \cdot M_{2}\right)^{2}=\phi\left(L_{1}\right)^{2} \leq$ $L_{1}^{2}=4 E_{1} \cdot M_{2}+2$, we get $E_{1} \cdot M_{2} \leq 4$. Writing $M_{2} \sim E_{2}+E_{3}$ for isotropic $E_{2}>0$ and $E_{3}>0$ with $E_{2} \cdot E_{3}=1$, we have $E \cdot E_{2}=E \cdot E_{3}=1$. As $E_{i} \cdot H \geq \phi(H)=E \cdot H=6$ for $i=2,3$, we find $E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=2$. By Lemma 4.5, both E_{2} and E_{3} are quasi-nef, whence $E+E_{1}+E_{i}$ is nef for $i=1,2$ by Lemma 6.3(b). Set $D_{0}:=E+E_{1}+E_{2}$. Now $\left(H-2 D_{0}\right)^{2}=-2$ with $\left(H-2 D_{0}\right) \cdot H=0$, whence $h^{i}\left(2 D_{0}-H\right)=h^{i}\left(2 D_{0}-H+K_{S}\right)=0$ for $i=0,1,2$. Then $\Phi_{H_{D}, \omega_{D}}$ is surjective by $[\mathbf{2 3}, \operatorname{Thm}(i i i)]$ and $\mu_{V_{D}, \omega_{D}}$ is surjective by (12).

Finally, if $M_{2}^{2}=0$, then S is nonextendable by Lemmas 6.1 and 5.5 (ii) unless $\left(E+E_{1}\right) \cdot M_{2} \leq 3$. In the latter case, by (25), we get $E \cdot M_{2}=1$ and $E_{1} \cdot M_{2}=2$. Set $E_{2}:=M_{2}$.

Claim 10.1. There is an isotropic effective 10 -sequence $\left\{f_{1}, \ldots, f_{10}\right\}$, with $f_{1}=E, f_{10}=E_{2}$, all f_{i} nef for $i \leq 9$, and, for each $i=1, \ldots, 9$, there is an effective decomposition $H \sim 2 f_{i}+2 g_{i}+h_{i}$, where $g_{i}>0$ and $h_{i}>0$ are primitive and isotropic with $f_{i} \cdot g_{i}=g_{i} \cdot h_{i}=2$ and $f_{i} \cdot h_{i}=1$. Furthermore, $g_{i}+h_{i}$ is not nef for at most one $i \in\{1, \ldots, 9\}$.

Proof. Let $Q=E+E_{1}+E_{2}$, so that $Q^{2}=10, \phi(Q)=3$ and, by $[\mathbf{1 1}$, Cor.2.5.5], there is an isotropic effective 10 -sequence $\left\{f_{1}, \ldots, f_{10}\right\}$ such that $3 Q \sim f_{1}+\ldots+f_{10}$. Since $E . Q=E_{2} \cdot Q=3$ we can assume that $f_{1}=E, f_{10}=E_{2}$ and then $f_{i} . E_{1}=1$ for $i \in\{2, \ldots, 9\}$. Suppose $i \leq 9$. By Lemma $4.5, f_{i}$ is nef and if $\phi\left(H-2 f_{i}\right)=1$, then $H-2 f_{i}=4 F_{1}+F_{2}$ for $F_{k}>0, F_{k}^{2}=0$ and $F_{1} \cdot F_{2}=1$, yielding $f_{i} \cdot F_{1}=1$, whence $F_{1} \cdot H=3$, a contradiction. Therefore $\phi\left(H-2 f_{i}\right)=2$, so that $H-2 f_{i}=2 g_{i}+h_{i}$ for isotropic $g_{i}>0$ and $h_{i}>0$ with $g_{i} . h_{i}=2$. One easily sees that g_{i} and h_{i} are primitive, $f_{i} . g_{i}=2, f_{i} \cdot h_{i}=1$ and g_{i} and h_{i} are quasi-nef by Lemma 4.5. By the ampleness of H and [22, Lemma 2.3], it follows that if $g_{i}+h_{i}$ is not nef for some $i \leq 9$, then there is a nodal curve R_{i} with $R_{i} . g_{i}=0, R_{i} . f_{i}=1$ and $h_{i} \equiv f_{i}+R_{i}$. Now if $g_{i}+h_{i}$ and $g_{j}+h_{j}$ are not nef for two distinct $i, j \leq 9$, then $H \equiv 3 f_{i}+2 g_{i}+R_{i} \equiv 3 f_{j}+2 g_{j}+R_{j}$. Since $f_{j} \cdot H=5$ and f_{j} is nef, we obtain $g_{i} \cdot f_{j}=1$ and $R_{i} \cdot f_{j}=0$. As $\left(R_{i}+R_{j}\right) \cdot H=2<\phi(H)$, we get $R_{i} \cdot R_{j} \leq 1$. Hence $R_{i} . H=1$ implies $R_{i} \cdot g_{j}=0$ and $R_{i} \cdot R_{j}=1$. Similarly $R_{j} . g_{i}=0$, whence we get the absurdity $6=g_{i} . H=3 g_{i} . f_{j}+2 g_{i} . g_{j}+g_{i} . R_{j}=3+2 g_{i} . g_{j} . \quad$ q.e.d.

By the claim we can assume that $H \sim 2 E+2 E_{1}+E_{2}$ with $E_{1}+E_{2}$ nef. We have $\left(E_{1}+E_{2}-E\right)^{2}=-2$. Since $1=\left(E_{1}+E_{2}\right) \cdot\left(E_{1}+E_{2}-\right.$ $E)<\phi\left(E_{1}+E_{2}\right)=2$, we have that $E_{1}+E_{2}-E$ is a nodal cycle, if effective. Hence, replacing E with $E+K_{S}$ if necessary, we can assume that $h^{0}\left(E_{1}+E_{2}-E\right)=0$. As $h^{2}\left(E_{1}+E_{2}-E\right)=h^{0}\left(E-E_{1}-E_{2}+K_{S}\right)=0$ by nefness of E, we get $h^{1}\left(E_{1}+E_{2}-E\right)=0$.

Set $D_{0}:=2 E+E_{1}$, so that D_{0} is nef by Lemma 6.1 and $H-D_{0}=$ $E_{1}+E_{2}$ is nef by assumption, whence base-point free. We have $\left(2 D_{0}-\right.$ $H) . E=-1$, whence $h^{0}\left(2 D_{0}-H\right)=0$, and by [23, Thm(iii)] we get that $\Phi_{H_{D}, \omega_{D}}$ is surjective. The map $\mu_{V_{D}, \omega_{D}}$ is surjective by Lemma 5.6, with $D_{1}=E$ and $D_{2} \in\left|E+E_{1}\right|$ a general smooth curve. Indeed, since $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left(E_{1}+E_{2}-E\right)=0$, the map $\mu_{V_{D_{1}, \omega_{D_{1}}}}$ is surjective by (15). Now $h^{0}\left(H-D_{0}-D_{2}\right)=h^{0}\left(E_{2}-E\right)=0$, whence $h^{0}\left(E_{2}-2 E\right)=0$, so that $h^{1}\left(E_{2}-2 E\right)=1$ by Riemann-Roch. Therefore $h^{0}\left(\mathcal{O}_{D_{2}}\left(H-D_{0}-D_{1}\right)\right)=h^{0}\left(\mathcal{O}_{D_{2}}\left(E_{1}+E_{2}-E\right)\right) \leq 1$ and $\mu_{V_{D_{2}, \omega_{D_{2}}}\left(D_{1}\right)}$ is surjective by (16).
10.2. The case $\beta=3$. We can assume that $H \sim 3 E+\gamma E_{1}+M_{2}$, possibly after replacing E with $E+K_{S}$. Moreover let us see that

$$
\begin{equation*}
(\gamma-1-\varepsilon) E_{1}+M_{2} \text { is quasi-nef for } \varepsilon=0,1 \tag{26}
\end{equation*}
$$

Let $\Delta>0$ be such that $\Delta^{2}=-2$ and $\Delta .\left((\gamma-1-\varepsilon) E_{1}+M_{2}\right) \leq-2$. If $\Delta . E_{1}<0$, then $\Delta . E \geq 2$ by the ampleness of H. By [22, Lemma 2.3] the divisor $A:=E_{1}+\left(E_{1} \cdot \Delta\right) \Delta$ is primitive, effective and isotropic and $E . E_{1}=2$ yields the contradiction $E_{1} . \Delta=-1, E . \Delta=2$ and $E \equiv A$. Hence $\Delta . E_{1} \geq 0$, so that $M_{2}>0$ and $l:=-\Delta . M_{2} \geq 2$. Again we can write $M_{2} \sim A_{2}+l \Delta$ with $A_{2}>0$ primitive, $A_{2}^{2}=M_{2}^{2}$ and
$\Delta . A_{2}=l$. If $\Delta . E=0$, then $\Delta . E_{1} \geq 2$ by ampleness of H, whence $E_{1} \cdot M_{2} \geq 4$, so that $\gamma=2$ by (24), which moreover implies $E_{1} \cdot M_{2} \leq 5$, so that $l=E_{1} \cdot \Delta=2$. As $\left(E_{1}+\Delta\right)^{2}=2$, we must have $2 \phi\left(L_{1}\right) \leq$ $\left(E_{1}+\Delta\right) \cdot L_{1}=\phi\left(L_{1}\right)+\Delta \cdot\left((3-\alpha) E+2 E_{1}+M_{2}\right)=\phi\left(L_{1}\right)+2$, and we get the contradiction $4 \leq E_{1} \cdot M_{2} \leq E_{1} \cdot L_{1}=\phi\left(L_{1}\right) \leq 2$. Therefore $\Delta . E>0$, so that $E . M_{2} \geq 3$. Thus $E . M_{2}=3, \gamma=2$ and $\phi(H)=7$ by (22), whence $M_{2}^{2} \leq 4$ by (23). By (24) we must have $E_{1} \cdot M_{2} \leq 3$, but as $H^{2}=42+4 E_{1} \cdot M_{2}+M_{2}^{2} \geq 54$ by [22, Prop. 1.4], using (23), we get $E_{1} \cdot M_{2}=3$. Since $E_{1} \cdot(H-2 E)=5 \leq \phi(H)=7$ we have $\alpha=2$, $L_{1} \sim E+2 E_{1}+M_{2}$ and $L_{2} \sim E+M_{2}$. Since the latter is of small type and $M_{2}^{2} \leq 4$, we must have $M_{2}^{2}=0$ or $M_{2}^{2}=4$. In the latter case we get $L_{2}^{2}=10$ and $\phi\left(L_{2}\right)=3$. Now $(E+\Delta)^{2} \geq 0$ and $(E+\Delta) . M_{2} \leq 1$, whence $\phi\left(M_{2}\right)=1$ and we can write $M_{2} \sim 2 F_{1}+F_{2}$ for some $F_{i}>0$ with $F_{i}^{2}=0$ and $F_{1} \cdot F_{2}=1$. Therefore $3=\phi\left(L_{2}\right) \leq F_{1} \cdot L_{2}=F_{1} \cdot E+1$, so that $F_{1} \cdot E \geq 2$, giving the contradiction $3=E \cdot M_{2}=2 F_{1} \cdot E+F_{2} \cdot E \geq 4$. Hence $M_{2}^{2}=0, L_{1}^{2}=26$ and $\phi\left(L_{1}\right)=E_{1} \cdot L_{1}=5$, contradicting [22, Prop. 1.4]. Therefore (26) is proved.

Now set $D_{0}:=2 E+E_{1}$, which is nef by Lemma 6.1. Moreover $H-D_{0}$ is easily seen to be nef by (26), whence base-point free. We have $h^{0}\left(2 D_{0}-H\right)=0$ by nefness of E and (22), whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [23, Thm(iii)].

If $M_{2}>0$ and $\left(\gamma, E \cdot M_{2}, E_{1} \cdot M_{2}\right)=(2,1,1)$, then $M_{2}^{2}=0$ by (23), $\left(H-2 D_{0}\right)^{2}=-2$ and $\left(H-2 D_{0}\right) \cdot H=0$, whence $h^{1}\left(H-2 D_{0}\right)=0$, so that $\mu_{V_{D}, \omega_{D}}$ is surjective by (12).

In the remaining cases, to show the surjectivity of $\mu_{V_{D}, \omega_{D}}$ we apply Lemma 5.6 with $D_{1}=E+K_{S}$ and D_{2} general in $\left|E+E_{1}+K_{S}\right|$. Since $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left((\gamma-1) E_{1}+M_{2}+K_{S}\right)=0$ by (26) and [21, Cor. 2.5], we have that $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by (15). Similarly, $h^{1}\left(H-D_{0}-D_{2}\right)=h^{1}\left((\gamma-2) E_{1}+M_{2}+K_{S}\right)=0$, whence $\mu_{V_{D_{2}, \omega_{D_{2}}}\left(D_{1}\right)}=$ $\mu_{\mathcal{O}_{D_{2}}\left(H-D_{0}\right), \omega_{D_{2}}\left(D_{1}\right)}$, which is surjective by [15, Cor.4.e.4] if $M_{2}>0$, since we assume $\left(\gamma, E . M_{2}, E_{1} \cdot M_{2}\right) \neq(2,1,1)$. If $M_{2}=0$, then $\gamma=3$ by (22), whence E_{1} is nef by Lemma 4.5. In particular, $h^{1}\left(H-2 D_{0}\right)=$ $h^{1}\left(E_{1}-E\right)=1$ by Riemann-Roch. It is then easily checked that (16) is satisfied, so that $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective.

11. Case (S)

We have $H \sim \alpha E+L_{1}$ with $L_{1}^{2}>0$ by Lemma 4.4 and L_{1} of small type by hypothesis. We also assume that H is not numerically 2-divisible in Num S and $H^{2} \geq 32$ or $H^{2}=28$.

If $\alpha=2$ we get $H^{2}=4 E . L_{1}+L_{1}^{2}=4 \phi(H)+L_{1}^{2}$, whence $(\phi(H))^{2} \leq$ $4 \phi(H)+L_{1}^{2}$ and Lemma 4.3 yields $\phi(H) \leq 5$, incompatible with the hypotheses on H^{2}. Hence $\alpha \geq 3$. Write $L_{1} \sim F_{1}+\ldots+F_{k}$ as in Lemma 4.3 with $k=2$ or 3 and $E . F_{1} \geq \ldots \geq E . F_{k}$. If E. $F_{k}>0$
then $\phi(H)+1 \leq F_{k} \cdot\left(L_{1}+E\right) \leq F_{k} \cdot L_{1}+\frac{1}{k} E \cdot L_{1}=F_{k} \cdot L_{1}+\frac{1}{k} \phi(H)$ by definition of α, yielding $F_{k} \cdot L_{1} \geq 3$. As this also holds if $E . F_{k}=0$, we get $L_{1}^{2}=10, k=3$ and $\phi(H)=E . L_{1} \leq 4$. Thus we can decompose $L_{1} \sim E+E_{1}+E_{2}$ to obtain the following cases

$$
\begin{equation*}
H \sim \beta E+E_{1}+E_{2}, \beta:=\alpha+1 \geq 4, E \cdot E_{1}=1, E \cdot E_{2}=E_{1} \cdot E_{2}=2 \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
H \sim \beta E+E_{1}+E_{2}, \beta:=\alpha+1 \geq 4, E \cdot E_{1}=E \cdot E_{2}=2, E_{1} \cdot E_{2}=1 \tag{28}
\end{equation*}
$$

Claim 11.1. (i) In the cases (27) and (28) we have that $E+E_{2}$ is nef and E_{2} is quasi-nef.
(ii) In case (27) both $n E+E_{2}-E_{1}$ and $n E+E_{2}-E_{1}+K_{S}$ are effective and quasi-nef if $n \geq 2$, and moreover they are primitive and isotropic if $n=2$.

Proof. The proof of (i) is similar to many proofs above. As for (ii), note that $h^{0}\left(2 E+E_{2}-E_{1}\right)=h^{0}\left(2 E+E_{2}-E_{1}+K_{S}\right)=1$ by Lemma 4.5 , whence also $h^{1}\left(2 E+E_{2}-E_{1}\right)=h^{1}\left(2 E+E_{2}-E_{1}+K_{S}\right)=0$ by Riemann-Roch. Since $E .\left(2 E+E_{2}-E_{1}\right)=1$, the statement follows for $n=2$ by [21, Cor.2.5], and consequently for all $n \geq 2$ again by the same result. q.e.d.

Lemma 11.2. Let H be as in (27) or (28). Then S is nonextendable.
Proof. We first treat case (27) with $\beta=4$. Set $D_{0}:=3 E+E_{2}$, which is nef by Claim $11.1(\mathrm{i})$. Then $H-D_{0}$ is a base-component free pencil by Lemma 6.2. By Claim 11.1(ii) we have $h^{0}\left(2 D_{0}-H\right)=1$ and $h^{1}\left(H-2 D_{0}\right)=0$, so that $\Phi_{H_{D}, \omega_{D}}$ surjects by $[\mathbf{2 3}$, Thm(iv) $]$ and so does $\mu_{V_{D}, \omega_{D}}$ by (12).

In the general case, set $D_{0}:=\left\lfloor\frac{\beta}{2}\right\rfloor E+E_{2}$, which is nef by Claim 11.1(i), and $H-D_{0}$ is base-component free by Lemma 6.2. Since $2 D_{0}-$ $H \leq E_{2}-E_{1}$ we have $h^{0}\left(2 D_{0}-H\right)=0$ as $\left(E+E_{2}\right) \cdot\left(E_{2}-E_{1}\right)=-1$ in case (27) and $H .\left(E_{2}-E_{1}\right)=0$ in (28). Hence $\Phi_{H_{D}, \omega_{D}}$ is surjective by $[\mathbf{2 3}, \operatorname{Thm}(\mathrm{iii})]$. Now if β is even and we are in case (28) we have $h^{0}\left(H-2 D_{0}\right)=h^{2}\left(H-2 D_{0}\right)=0$ as $H .\left(H-2 D_{0}\right)=H .\left(E_{2}-E_{1}\right)=0$. It follows that $h^{1}\left(H-2 D_{0}\right)=0$ and consequently $\mu_{V_{D}, \omega_{D}}$ is surjective by (12). We can therefore assume that β is odd in case (28). In particular, $\beta \geq 5$, and we just need to prove the surjectivity of $\mu_{V_{D}, \omega_{D}}$, for which we will use Lemma 5.7.

We have $h^{1}\left(D_{0}+K_{S}-2 E\right)=0$ by Claim 11.1(i) and [21, Cor. 2.5]. Moreover $h^{2}\left(D_{0}+K_{S}-4 E\right)=0$ by the nefness of E. As $\beta \geq 5$, we have that $\left|H-D_{0}-2 E\right|$ is base-component free by Lemma 6.2. Since $\left(E+E_{2}\right) \cdot\left(-E+E_{1}-E_{2}\right)<0$, we have that $h^{0}\left(H-2 D_{0}-2 E\right)=$ $h^{0}\left(\left(\beta-2\left\lfloor\frac{\beta}{2}\right\rfloor-2\right) E+E_{1}-E_{2}\right) \leq h^{0}\left(-E+E_{1}-E_{2}\right)=0$, whence (9) is equivalent to

$$
\begin{equation*}
h^{0}\left(\mathcal{O}_{D}\left(H-D_{0}-4 E\right)\right) \leq\left(\beta-\left\lfloor\frac{\beta}{2}\right\rfloor-2\right) E . E_{1}-1 \tag{29}
\end{equation*}
$$

In the case (28) with $\beta=5$ we have $\operatorname{deg} \mathcal{O}_{D}\left(H-D_{0}-4 E\right)=(-E+$ $\left.E_{1}\right) \cdot\left(2 E+E_{2}\right)=3$ and D is nontrigonal by [22, Cor. 1], therefore $h^{0}\left(\mathcal{O}_{D}\left(H-D_{0}-4 E\right)\right) \leq 1$ and (29) is satisfied.

Hence we can assume, for the rest of the proof, that $\beta \geq 5$ in case (27) and $\beta \geq 7$ (and odd) in case (28). This implies $\beta-\left\lfloor\frac{\beta}{2}\right\rfloor-4 \geq-1$ in case (27) and ≥ 0 in case (28), so that we have $h^{0}\left(\left(\beta-\left\lfloor\frac{\beta}{2}\right\rfloor-4\right) E+E_{1}\right)=$ $\left(\beta-\left\lfloor\frac{\beta}{2}\right\rfloor-4\right) E . E_{1}+1$ by Lemma 6.2 and Riemann-Roch. Hence

$$
\begin{aligned}
& \left.h^{0}\left(\mathcal{O}_{D}\left(H-D_{0}-4 E\right)\right) \leq h^{0}\left(H-D_{0}-4 E\right)+h^{1}\left(H-2 D_{0}-4 E\right)\right) \\
\leq & \left(\beta-\left\lfloor\frac{\beta}{2}\right\rfloor-4\right) E . E_{1}+1+h^{1}\left(K_{S}+\left(2\left\lfloor\frac{\beta}{2}\right\rfloor+4-\beta\right) E+E_{2}-E_{1}\right),
\end{aligned}
$$

and to prove (29) it remains to show

$$
\begin{equation*}
h^{1}\left(K_{S}+\left(2\left\lfloor\frac{\beta}{2}\right\rfloor+4-\beta\right) E+E_{2}-E_{1}\right) \leq 2 E . E_{1}-2 . \tag{30}
\end{equation*}
$$

In case (27) the inequality (30) follows from Claim 11.1(ii). In case (28), as $h^{2}\left(K_{S}+3 E+E_{2}-E_{1}\right)=h^{0}\left(E_{1}-3 E-E_{2}\right)=0$ and β is odd, (30) is equivalent to $h^{0}(N) \leq 2$, where $N:=K_{S}+3 E-E_{1}+E_{2}$. If, by contradiction, $h^{0}(N) \geq 3$, then we can write $|N|=|M|+\Delta$ for Δ fixed and $h^{0}(M) \geq 3$. Since $E . N=0$ and E is nef, we must have $E . M=E . \Delta=0$, whence $M \sim 2 l E$ for an integer $l \geq 2$ and $E_{2} . \Delta \geq 0$ by the nefness of $E+E_{2}$. Now $5=E_{2} \cdot N \geq 4 l \geq 8$, a contradiction. Hence (30) is proved.
q.e.d.

12. Proof of Theorem 1.5 and surfaces of genus 15 and 17

We have shown in Sections 5-11 that every Enriques surface $S \subset \mathbb{P}^{r}$ of genus $g \geq 18$ is nonextendable, thus proving Theorem 1.5. Moreover we have a more precise version if $g=15$ or $g=17$:

Proposition 12.1. Let $S \subset \mathbb{P}^{r}$ be a smooth Enriques surface with hyperplane divisor H such that $H^{2}=32$ or $H^{2}=28$ and $E>0$ such that $E . H=\phi(H)$. Then S is nonextendable if H satisfies:
(a) $H^{2}=32$ and either $\phi(H) \neq 4$ or $\phi(H)=4$ and neither H nor $H-E$ are 2-divisible in $\operatorname{Pic} S$.
(b) $H^{2}=28$ and either $\phi(H)=5$ or $(\phi(H), \phi(H-3 E))=(4,2)$ or $(\phi(H), \phi(H-4 E))=(3,2)$.

Proof. We have shown that S is nonextendable except for the following ladder decompositions:
(a1) $H \sim 4 E+4 E_{1}, E . E_{1}=1$ (see 7.1);
(a2) $H \sim 4 E+2 E_{1}, E . E_{1}=2$ (see 7.2);
(a3) $H \sim 3 E+2 E_{1}+2 E_{2}, E \cdot E_{1}=E \cdot E_{2}=E_{1} \cdot E_{2}=1$ (see $\S 9$);
(b1) $H \sim 3 E+2 E_{1}+E_{2}, E \cdot E_{1}=E_{1} \cdot E_{2}=1, E \cdot E_{2}=2$ (see Prop. 8.5(i));
(b2) $H \sim 4 E+2 E_{1}+E_{2}, E . E_{1}=E \cdot E_{2}=E_{1} \cdot E_{2}=1$ (see Prop. 8.5(ii)).

One easily sees that cases (a1)-(a3) do not satisfy (a) and (b1)-(b2) do not satisfy (b). Moreover, $H^{2}=32$ in (a1)-(a3) and $H^{2}=28$ in (b1)-(b2).
q.e.d.

13. A new Enriques-Fano threefold

We now prove a more precise version of Proposition 1.4.
Proposition 13.1. There exists an Enriques-Fano threefold $X \subseteq \mathbb{P}^{9}$ of genus 9 satisfying:
(a) X does not have $a \mathbb{Q}$-smoothing. In particular, it does not lie in the closure of the component of the Hilbert scheme made of the examples of Fano-Conte-Murre-Bayle-Sano.
(b) Let $\mu: \widetilde{X} \rightarrow X$ be the normalization. Then \widetilde{X} has canonical but not terminal singularities, it does not have a \mathbb{Q}-smoothing and ($\left.\widetilde{X}, \mu^{*} \mathcal{O}_{X}(1)\right)$ does not belong to the list of Fano-Conte-Murre-Bayle-Sano.
(c) On the general smooth Enriques surface $S \in\left|\mathcal{O}_{X}(1)\right|$, we have $\mathcal{O}_{S}(1) \cong \mathcal{O}_{S}\left(2 E_{1}+2 E_{2}+E_{3}\right)$, where E_{1}, E_{2} and E_{3} are smooth irreducible elliptic curves with $E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=1$.
Proof. Let $Y \subset \mathbb{P}^{13}$ be the well-known Enriques-Fano threefold of genus 13. By $[\mathbf{1 3}, \mathbf{9}]$ we have that Y is the image of the blow-up of \mathbb{P}^{3} along the edges of a tetrahedron, via the linear system of sextics double along the edges. This description of Y allows to identify the linear system embedding its general hyperplane section $T \subset \mathbb{P}^{12}$. Let P_{1}, \ldots, P_{4} be four independent points in \mathbb{P}^{3}, let $l_{i j}$ be the line joining P_{i} and P_{j} and denote by $\widetilde{\mathbb{P}}^{3}$ the blow-up of \mathbb{P}^{3} along the $l_{i j}$'s with exceptional divisors $E_{i j}$ and by \widetilde{H} the pull-back of a plane in \mathbb{P}^{3}. Let $\widetilde{L}=6 \widetilde{H}-2 \sum E_{i j}$. Therefore T is just a general element $\widetilde{S} \in|\widetilde{L}|$, embedded with $\widetilde{L}_{\mid \widetilde{S}}$. Now let $\widetilde{l}_{i j}$ be the inverse image of $l_{i j}$ on \widetilde{S}. Then by [16, Ch.4, $\S 6]$, for each pair of disjoint lines $l_{i j}, l_{k l}$ on \widetilde{S} there is a genus one pencil $\left|2 \widetilde{H}_{\mid \widetilde{S}}-\widetilde{l}_{i k}-\widetilde{l}_{i l}-\widetilde{l}_{j k}-\widetilde{l}_{j l}\right|=\left|2 \widetilde{l}_{i j}\right|$. Therefore $\widetilde{L}_{\mid \widetilde{S}} \sim$ $2 \widetilde{l}_{12}+2 \widetilde{l}_{13}+2 \widetilde{l}_{14}$ and the hyperplane bundle of T is as in (c) with $E_{i}:=\widetilde{l}_{1, i+1}$.

Consider the linear span $M \cong \mathbb{P}^{3}$ of E_{3}, the projection $\pi_{M}: \mathbb{P}^{13}--\rightarrow$ \mathbb{P}^{9} and set $X=\pi_{M}(Y) \subset \mathbb{P}^{9}$. Let $\psi: \widetilde{Y} \rightarrow Y$ be the blow up of Y along E_{3} with exceptional divisor F, set $\mathcal{H}=\left(\psi^{*} \mathcal{O}_{Y}(1)\right)(-F)$ and let $\widetilde{T} \in$ $|\mathcal{H}| \cong\left|\mathcal{J}_{E_{3} / Y}(1)\right|$ be the smooth Enriques surface isomorphic to T. Then one can easily check that $|\mathcal{H}|$ is base-point free and defines a morphism $\varphi_{\mathcal{H}}$ such that $X=\varphi_{\mathcal{H}}(\widetilde{Y}) \subseteq \mathbb{P}^{9}$. Also $\mathcal{H}^{3}=\left(2 E_{1}+2 E_{2}+E_{3}\right)^{2}=16$, whence X is a threefold.

To see that X is not a cone over its general hyperplane section $S:=$ $\psi(\widetilde{T})$, consider the four planes H_{1}, \ldots, H_{4} in \mathbb{P}^{3} defined by the faces of the tetrahedron. As any sextic hypersurface in \mathbb{P}^{3} that is double on the edges of the tetrahedron and goes through another point of H_{i} must contain H_{i}, we see that these four planes are contracted to four singular points $Q_{1}, \ldots, Q_{4} \in Y$. Moreover their linear span $\left\langle Q_{1}, \ldots, Q_{4}\right\rangle$ in \mathbb{P}^{13} has dimension 3 , since the hyperplanes containing Q_{1}, \ldots, Q_{4} correspond to sextics in \mathbb{P}^{3} containing H_{1}, \ldots, H_{4}. Now suppose that X is a cone with vertex V. Then Q_{1}, \ldots, Q_{4} project to V, whence $\operatorname{dim}\left\langle M, Q_{1}, \ldots, Q_{4}\right\rangle \leq$ 4 and $\operatorname{dim} M \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle \geq 2$. On the other hand we know that $M=\left\langle E_{3}\right\rangle \subset \bar{H}$, where \bar{H} is a general hyperplane. Therefore we have that $Q_{i} \notin \bar{H}, 1 \leq i \leq 4$, whence $\operatorname{dim} \bar{H} \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle=\operatorname{dim} M \cap$ $\left\langle Q_{1}, \ldots, Q_{4}\right\rangle=2$, so that $\bar{H} \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle=M \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle$. Now choose the projection from $M^{\prime}=\left\langle E_{2}\right\rangle \subset \bar{H}$. If also $\pi_{M^{\prime}}(Y)$ is a cone then, aguing as above, we get $\bar{H} \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle=M^{\prime} \cap\left\langle Q_{1}, \ldots, Q_{4}\right\rangle$, whence $\operatorname{dim} M \cap M^{\prime} \geq 2$. But this is absurd since $\operatorname{dim} M \cap M^{\prime}=$ $6-\operatorname{dim}\left\langle E_{2} \cup E_{3}\right\rangle=-6+h^{0}\left(\mathcal{O}_{T}\left(2 E_{1}+E_{2}+E_{3}\right)\right)=0$. Hence X is an Enriques-Fano threefold satisfying (c).

Now let X^{\prime} be the only threefold in \mathbb{P}^{9} appearing in Bayle-Sano's list, namely an embedding, by a line bundle L^{\prime}, of a quotient by an involution of a smooth complete intersection Z of two quadrics in \mathbb{P}^{5}. Let S^{\prime} be a general hyperplane section of X^{\prime}. We claim that the hyperplane bundle $L_{\mid S^{\prime}}^{\prime}$ is 2-divisible in Num S^{\prime}. As $2 E_{1}+2 E_{2}+E_{3}$ is not 2-divisible in Num S, this shows in particular that X does not belong to the list of Bayle-Sano.

By $[\mathbf{2}, \S 3, \mathrm{p} .11]$, if we let $\pi: Z \rightarrow X^{\prime}$ be the quotient map, we have that $-K_{Z}=\pi^{*}\left(L^{\prime}\right)$ and the K3 cover $\pi_{\mid S^{\prime \prime}}: S^{\prime \prime} \rightarrow S^{\prime}$ is an anticanonical surface in Z, that is a smooth complete intersection $S^{\prime \prime}$ of three quadrics in \mathbb{P}^{5}. Therefore, if H_{Z} is the line bundle giving the embedding of Z in \mathbb{P}^{5}, we have $-K_{Z}=2 H_{Z}$. Hence, setting $p=\pi_{\mid S^{\prime \prime}}$ and $H_{S^{\prime \prime}}=\left(H_{Z}\right)_{\mid S^{\prime \prime}}$, we deduce that $p^{*}\left(L_{\mid S^{\prime}}^{\prime}\right) \cong\left(\pi^{*} L^{\prime}\right)_{\mid S^{\prime \prime}}=2 H_{S^{\prime \prime}}$. Suppose now that $L_{\mid S^{\prime}}^{\prime}$ is not 2-divisible in Num S^{\prime}. Then $\left(L_{\mid S^{\prime}}^{\prime}\right)^{2}=16$ and by [22, Prop. 1.4] we have that $\phi\left(L_{\mid S^{\prime}}^{\prime}\right)=3$ and it is easily seen that there are three isotropic effective divisors E_{1}, E_{2}, E_{3} such that either (i) $L_{\mid S^{\prime}}^{\prime} \sim 2 E_{1}+2 E_{2}+E_{3}$ with $E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=1$ or (ii) $L_{\mid S^{\prime}}^{\prime} \sim 2 E_{1}+E_{2}+E_{3}$ with $E_{1} \cdot E_{2}=1, E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=2$. In case (i) we get that $p^{*}\left(E_{3}\right) \sim 2 D$, for some $D \in \operatorname{Pic} S^{\prime \prime}$. Since $\left(p^{*}\left(E_{3}\right)\right)^{2}=0$, we have $D^{2}=0$ and, as we are on a K3 surface, either D or $-D$ is effective. As $4 H_{S^{\prime \prime}} \cdot D=$ $p^{*}\left(L_{\mid S^{\prime}}^{\prime}\right) \cdot p^{*}\left(E_{3}\right)=8$, we have $H_{S^{\prime \prime}} \cdot D=2$ and D is a conic of arithmetic genus 1 , a contradiction. In case (ii) we get that $p^{*}\left(E_{2}+E_{3}\right) \sim 2 D^{\prime}$, for some $D^{\prime} \in \operatorname{Pic} S^{\prime \prime}$ with $\left(D^{\prime}\right)^{2}=2$ and $H_{S^{\prime \prime}} . D^{\prime}=5$. But now $\left|D^{\prime}\right|$ cuts out a g_{5}^{2} on the general element $C \in\left|H_{S^{\prime \prime}}\right|$ and this is a contradiction since
C is a smooth complete intersection of three quadrics in \mathbb{P}^{4}. Therefore $L_{\mid S^{\prime}}^{\prime}$ is 2-divisible in Num S^{\prime}.
Now assume that X has a \mathbb{Q}-smoothing, that is a small deformation $\mathcal{X} \longrightarrow \Delta$ over the 1-parameter unit disk, such that, if we denote a fiber by X_{t}, we have that $X_{0}=X$ and X_{t} has only cyclic quotient terminal singularities. Let $L=\mathcal{O}_{X}(1)$. We have that $H^{1}\left(N_{S / X_{0}}\right)=H^{1}\left(\mathcal{O}_{S}(1)\right)=$ 0 , whence the Enriques surface S deforms with any deformation of X_{0}. Therefore we can assume, after restricting Δ if necessary, that there is an $\mathcal{L} \in \operatorname{Pic} \mathcal{X}$ such that $h^{0}(\mathcal{L})>0$ and $\mathcal{L}_{\mid X}=L$ (this also follows from the proof of $\left[\mathbf{1 7}\right.$, Thm. 5], since $\left.H^{1}\left(T_{\mathbb{P}^{9} \mid X}\right)=0\right)$. Taking a general element of $|\mathcal{L}|$ we therefore obtain a family $\mathcal{S} \longrightarrow \Delta$ of surfaces whose fibers S_{t} belong to $\left|L_{t}\right|$, where $L_{t}:=\mathcal{L}_{\mid X_{t}}$ and $S_{0}=S \in|L|$ is general, whence a smooth Enriques surface with hyperplane bundle $H_{0}:=L_{\mid S_{0}} \sim$ $2 E_{1}+2 E_{2}+E_{3}$ of type (i) above. Therefore, after restricting Δ if necessary, we can also assume that the general fiber S_{t} is a smooth Enriques surface ample in X_{t}, so that $\left(X_{t}, S_{t}\right)$ belongs to the list of Bayle $[\mathbf{2}, \mathrm{Thm} . \mathrm{B}]$ and is therefore a threefold like $X^{\prime} \subset \mathbb{P}^{9}$.

Let $H_{t}=\left(L_{t}\right)_{\mid S_{t}}$. As above $H_{t} \equiv 2 A_{t}$, for some $A_{t} \in$ Pic S_{t}. Taking the limit, we get $H_{0} \sim 2 E_{1}+2 E_{2}+E_{3} \equiv 2 A_{0}$ for some $A_{0} \in \operatorname{Pic} S_{0}$, yielding that E_{3} is 2-divisible in $\operatorname{Num} S_{0}$, a contradiction.

We have therefore shown that X does not have a \mathbb{Q}-smoothing. In particular it does not lie in the closure of the component of the Hilbert scheme consisting of Enriques-Fano threefolds with only cyclic quotient terminal singularities. Hence (a) is proved.

To see (b) note that \widetilde{Y} is terminal (because Y is), whence the morphism $\varphi_{\mathcal{H}}$ factorizes through \widetilde{X}. Since \widetilde{X} is \mathbb{Q}-Gorenstein by $[\mathbf{6}]$, an easy calculation, using a common resolution of singularities of \widetilde{Y} and \widetilde{X} and the facts that $-K_{\tilde{X}} \equiv \mu^{*} \mathcal{O}_{X}(1)$ and $-K_{Y} \equiv \mathcal{O}_{Y}(1)$, shows that \widetilde{X} is canonical.

Finally, the same proof as above shows that $\left(\widetilde{X}, \mu^{*} \mathcal{O}_{X}(1)\right)$ does not belong to the list of Fano-Conte-Murre-Bayle-Sano and that \widetilde{X} has no \mathbb{Q}-smoothing, whence is nonterminal by [25, MainThm. 2]. This proves (b).
q.e.d.

References

[1] E. Arbarello \& E. Sernesi. Petri's approach to the study of the ideal associated to a special divisor. Invent. Math. 49, (1978) 99-119, MR 0511185, Zbl 0399.14019.
[2] L. Bayle. Classification des variétés complexes projectives de dimension trois dont une section hyperplane générale est une surface d'Enriques. J. Reine Angew. Math. 449, (1994) 9-63, MR 1268578, Zbl 0808.14028.
[3] A. Beauville. Fano threefolds and K3 surfaces. Proceedings of the Fano Conference, Dipartimento di Matematica, Università di Torino, (2004) 175-184, MR 2112574, Zbl 1096.14034.
[4] A. Bertram, L. Ein \& R. Lazarsfeld. Surjectivity of Gaussian maps for line bundles of large degree on curves. Algebraic geometry (Chicago, IL, 1989), 15-25, Lecture Notes in Math. 1479. Springer, Berlin, 1991, MR 1181203, Zbl 0752.14036.
[5] W. Barth, C. Peters \& A. van de Ven. Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 4. Springer-Verlag, Berlin-New York, 1984, MR 0749574, Zbl 0718.14023.
[6] I. A. Cheltsov. Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero. Mat. Zametki 59, (1996) 618-626, 640; translation in Math. Notes 59, (1996) 445-450, MR 1445204, Zbl 0879.14016.
[7] C. Ciliberto, A. F. Lopez \& R. Miranda. Projective degenerations of K3 surfaces, Gaussian maps, and Fano threefolds. Invent. Math. 114, (1993) 641-667, MR 1244915, Zbl 0807.14028.
[8] C. Ciliberto, A. F. Lopez \& R. Miranda. Classification of varieties with canonical curve section via Gaussian maps on canonical curves. Amer. J. Math. 120, (1998) 1-21, MR 1600256, Zbl 0934.14028.
[9] A. Conte \& J. P. Murre. Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12, (1985) 43-80, MR 0818801, Zbl 0612.14041.
[10] F. Cossec. On the Picard group of Enriques surfaces. Math. Ann. 271, (1985) 577-600, MR 0790116, Zbl 0541.14031.
[11] F. R. Cossec \& I. V. Dolgachev. Enriques Surfaces I. Progress in Mathematics 76. Birkhäuser Boston, MA, 1989, MR 0986969, Zbl 0665.14017.
[12] D. Eisenbud, H. Lange, G. Martens \& F-O. Schreyer. The Clifford dimension of a projective curve. Compositio Math. 72, (1989) 173-204, MR 1030141, Zbl 0703.14020.
[13] G. Fano. Sulle varietà algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno. Memorie Soc. dei XL 24, (1938) 41-66, Zbl 0022.07702.
[14] L. Giraldo, A. F. Lopez \& R. Muñoz. On the existence of Enriques-Fano threefolds of index greater than one. J. Algebraic Geom. 13, (2004) 143-166, MR 2008718, Zbl 1059.14051.
[15] M. Green. Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19, (1984) 125-171, MR 0739785, Zbl 0559.14008.
[16] P. Griffiths \& J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1994, MR 1288523, Zbl 0836.14001.
[17] E. Horikawa. On deformations of rational maps. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23, (1976) 581-600, MR 0427689, Zbl 0338.32014.
[18] V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41, (1977) 516-562, 717, MR 0463151, Zbl 0382.14013.
[19] V. A. Iskovskih. Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat. 42, (1978) 506-549, MR 0503430, Zbl 0407.14016.
[20] A. L. Knutsen, A. F. Lopez \& R. Muñoz. On the proof of the genus bound for Enriques-Fano threefolds. To appear in J. Ramanujan Math. Soc.
[21] A. L. Knutsen \& A. F. Lopez. A sharp vanishing theorem for line bundles on K3 or Enriques surfaces. Proc. Amer. Math. Soc. 135, (2007) 3495-3498, MR 2336562, Zbl 1121.14033.
[22] A. L. Knutsen \& A. F. Lopez. Brill-Noether theory of curves on Enriques surfaces. I. The positive cone and gonality. Math. Z. 261, (2009) 659-690, MR 2471094, Zbl 1161.14022.
[23] A. L. Knutsen \& A. F. Lopez. Surjectivity of Gaussian maps for curves on Enriques surfaces. Adv. Geom. 7, (2007) 215-247, MR 2314819, Zbl 1124.14035.
[24] S. L'vovsky. Extensions of projective varieties and deformations. I. Michigan Math. J. 39, (1992) 41-51, MR 1137887, Zbl 0770.14005.
[25] T. Minagawa. Deformations of \mathbb{Q}-Calabi-Yau 3-folds and \mathbb{Q}-Fano 3-folds of Fano index 1. J. Math. Sci. Univ. Tokyo 6, (1999) 397-414, MR 1707207, Zbl 0973.14002.
[26] S. Mukai. New developments in the theory of Fano threefolds: vector bundle method and moduli problems. Sugaku Expositions 15, (2002) 125-150, MR 1944132, Zbl 0889.14020.
[27] S. Mori \& S. Mukai. Classification of Fano 3-folds with $B_{2} \geq 2$. Manuscripta Math. 36, (1981/82) 147-162, MR 0641971, Zbl 0478.14033. Erratum: "Classification of Fano 3-folds with $B_{2} \geq 2$ ". Manuscripta Math. 110, (2003) 407, MR 1969009.
[28] Yu. G. Prokhorov. On Fano-Enriques varieties. Mat. Sb. 198, (2007) 117-134, MR 2352363, Zbl 1174.14035.
[29] T. Sano. On classification of non-Gorenstein \mathbb{Q}-Fano 3-folds of Fano index 1. J. Math. Soc. Japan 47, (1995) 369-380, MR 1317287, Zbl 0837.14031.
[30] G. Scorza. Sopra una certa classe di varietà razionali. Rend. Circ. Mat. Palermo 28, (1909) 400-401, JFM 40.0719.01.
[31] J. Wahl. Introduction to Gaussian maps on an algebraic curve. Complex Projective Geometry, Trieste-Bergen 1989, London Math. Soc. Lecture Notes Ser. 179. Cambridge Univ. Press, Cambridge 1992, 304-323, MR 1201392, Zbl 0790.14014.
[32] F. L. Zak. Some properties of dual varieties and their applications in projective geometry. Algebraic geometry (Chicago, IL, 1989), 273-280. Lecture Notes in Math. 1479. Springer, Berlin, 1991, MR 1181218, Zbl 0793.14026.

Department of Mathematics University of Bergen Johannes Brunsgate 12 5008 Bergen, Norway
E-mail address: andreas.knutsen@math.uib.no
Dipartimento di Matematica Università di Roma Tre Largo San Leonardo Murialdo 1 00146, Roma, Italy
E-mail address: lopez@mat.uniroma3.it
ESCET
Departamento de Matemática Aplicada
Universidad Rey Juan Carlos 28933 Móstoles (Madrid), Spain
E-mail address: roberto.munoz@urjc.es

[^0]: Research of the first author partially supported by a Marie Curie Intra-European Fellowship. Research of the second author partially supported by the MIUR project "Geometria delle varietà algebriche" COFIN 2002-2004. Research of the third author partially supported by the MCYT project BFM2003-03971.

 Received 03/21/2007.

