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Abstract

We introduce a technique based on Gaussian maps to study
whether a surface can lie on a threefold as a very ample divisor
with given normal bundle. We give applications, among which
one to surfaces of general type and another to Enriques surfaces.
In particular, we prove the genus bound g ≤ 17 for Enriques-
Fano threefolds. Moreover we find a new Enriques-Fano threefold
of genus 9 whose normalization has canonical but not terminal
singularities and does not admit Q-smoothings.

1. Introduction

One of the most important contributions in algebraic geometry is
the scheme of classification of higher dimensional varieties proposed by
Mori theory. The latter is particularly clear in dimension three: starting
with a threefold with terminal singularities and using contractions of
extremal rays, the Minimal Model Program predicts to arrive either
at a threefold X with KX nef or at a Mori fiber space. Arguably the
simplest case of such spaces is when X is a Fano threefold. As is well
known, smooth Fano threefolds have been classified [18, 19, 27], while,
in the singular case, a classification, or at least a search for the numerical
invariants, is still underway.

In [7, 8] a good part of the classification, in the smooth case, was
recovered, using the point of view of Gaussian maps. The starting step
of the latter method is Zak’s theorem [32], [24, Thm. 0.1]: If Y ⊂ Pr is a
smooth variety of codimension at least two with h0(NY/Pr(−1)) ≤ r+1,

then the only variety X ⊂ Pr+1 that has Y as hyperplane section is a
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cone over Y . When this happens Y ⊂ Pr is said to be nonextendable.
The key point in the application of this theorem is to calculate the
cohomology of the normal bundle. It is here that Gaussian maps enter
the picture by giving a big help in the case of curves [31, Prop. 1.10]: if
Y is a curve then

(1) h0(NY/Pr(−1)) = r + 1 + corkΦHY ,ωY

where ΦHY ,ωY is the Gaussian map associated to the canonical and
hyperplane bundle HY of Y . For example when X ⊂ Pr+1 is a smooth
anticanonically embedded Fano threefold and Y is a general hyperplane
section, h0(NY/Pr(−1)) was computed in [7] by considering the general
curve section C of Y . That proof was strongly based on the fact that C
is a general curve on a general K3 surface and that the Hilbert scheme
of K3 surfaces is essentially irreducible. As the latter fact is peculiar
to K3 surfaces, we immediately realized that if one imposes different
hyperplane sections to a threefold, for example Enriques surfaces, it gets
quite difficult to rely on the curve section. To study this and other cases
one therefore needs an analogue of the formula (1) in higher dimension.
We accomplish this in Section 2 by proving the following:

Theorem 1.1. Let Y ⊂ Pr be a smooth irreducible linearly normal
surface and let H be its hyperplane bundle. Assume there is a base-point
free and big line bundle D0 on Y with H1(H −D0) = 0 and such that
the general element D ∈ |D0| is not rational and satisfies

(i) the Gaussian map ΦHD,ωD(D0) is surjective;
(ii) the multiplication maps µVD,ωD and µVD ,ωD(D0) are surjective

where VD := Im{H0(Y,H −D0) → H0(D, (H −D0)|D)}. Then

h0(NY/Pr(−1)) ≤ r + 1 + corkΦHD,ωD .

The above theorem is a flexible instrument to study threefolds whose
hyperplane sections have large Picard group, since, if both D0 and H −
D0 are base-point free and the degree of D is large with respect to its
genus, the hypotheses are fulfilled unless D is hyperelliptic (note that
the case where Y is a K3 and H has no moving decomposition has been
considered by Mukai [26]).

As we will see in Section 3, Theorem 1.1 has several applications. A
sample of this is for pluricanonical embeddings of surfaces of general
type:

Corollary 1.2. Let Y ⊂ PVm be a minimal surface of general type
with base-point free and nonhyperelliptic canonical bundle and Vm ⊆
H0(OY (mKY +∆)), where ∆ ≥ 0 and either ∆ is nef or ∆ is reduced
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and KY is ample. Suppose that Y is regular or linearly normal and that

m ≥





9 if K2
Y = 2;

7 if K2
Y = 3;

6 if K2
Y = 4 and the general curve in |KY | is trigonal or if

K2
Y = 5 and the general curve in |KY | is a plane quintic;

5 if either the general curve in |KY | has Clifford index 2 or

5 ≤ K2
Y ≤ 9 and the general curve in |KY | is trigonal;

4 otherwise.

Then Y is nonextendable.

In general, the conditions on K2
Y and m are optimal (see Remark

3.4).
Besides the applications in Section 3, we will concentrate our atten-

tion on the following threefolds:

Definition 1.3. An Enriques-Fano threefold is an irreducible
three-dimensional variety X ⊂ PN having a hyperplane section S that
is a smooth Enriques surface, and such that X is not a cone over S. We
will say that X has genus g if g is the genus of its general curve section.

Fano [13] claimed a classification of such threefolds, but his proof
contains several gaps. Conte and Murre [9] remarked that an Enriques-
Fano threefold must have some isolated singularities and, under special
assumptions on the singularities, recovered some of the results of Fano,
but not enough to give a classification, nor to bound the numerical
invariants. Assuming that the Enriques-Fano threefold is a quotient of
a smooth Fano threefold by an involution (this corresponds to having
only cyclic quotient terminal singularities), a list was given by Bayle [2,
Thm.A] and Sano [29, Thm. 1.1]. Moreover, by [25, MainThm. 2], any
Enriques-Fano threefold with at most terminal singularities admits a
Q-smoothing, that is, it appears as central fiber of a small deformation
over the 1-parameter unit disk such that a general fiber has only cyclic
quotient terminal singularities. This, together with the results of Bayle
and Sano, gives the bound g ≤ 13 for Enriques-Fano threefolds with
at most terminal singularities. Bayle and Sano recovered all of the
known examples of Enriques-Fano threefolds. Therefore it has been
conjectured that this list is complete or, at least, that the genus is
bounded, in analogy with smooth Fano threefolds [18, 19]. In Section
13, we will show that the list of known Enriques-Fano threefolds is not
complete (not even after specialization), by finding a new Enriques-Fano
threefold enjoying several peculiar properties (for a more precise version,
see Proposition 13.1):
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Proposition 1.4. There exists an Enriques-Fano threefold X ⊂ P9

of genus 9 such that neither X nor its normalization belong to the list
of Fano-Conte-Murre-Bayle-Sano.

Moreover, X does not have a Q-smoothing and in particular X is not
in the closure of the component of the Hilbert scheme made of Fano-

Conte-Murre-Bayle-Sano’s examples. Its normalization X̃ has canoni-
cal but not terminal singularities and does not admit Q-smoothings.

Observe that X̃ is a Q-Fano threefold of Fano index 1 with canonical
singularities not having a Q-smoothing, showing that [25, MainThm. 2]
cannot be extended to the canonical case.

In the present article (and [20]) we apply Theorem 1.1 to get a genus
bound on Enriques-Fano threefolds, under no assumption on their sin-
gularities:

Theorem 1.5. Any Enriques-Fano threefold has genus g ≤ 17.

A more precise result for g = 15 and 17 is proved in Proposition 12.1.
We remark that simultaneously and independently, Prokhorov [28]

proved the same genus bound at the same time constructing an example
of a genus 17 Enriques-Fano threefold, thus showing that the bound
g ≤ 17 is optimal. His methods, relying on the MMP, are completely
different from ours.

Now a few words on our method of proof. In Section 4 we review
some basic results. In Section 5 we apply Theorem 1.1 to Enriques
surfaces and obtain the main results on nonextendability needed in the
rest of the article. In Section 6 we prove Theorem 1.5 for all Enriques-
Fano threefolds except for some concrete embedding line bundles on the
Enriques surface section. These are handled case by case in Sections
7-11 by finding divisors satisfying the conditions of Theorem 1.1, thus
allowing us to prove our theorem and a more precise statement for
g = 15 and 17 in Section 12. A part of the proof for a special class of
line bundles has been moved to the note [20]. This part involves no new
ideas compared to the parts treated in the present article.

To prove our results we use criteria for the surjectivity of Gaussian
maps on curves on Enriques surfaces from [22, 23] and of multiplication
maps of linear systems on such curves, which we obtain in Lemma 5.6
(which holds on any surface) in the present article.

2. Proof of Theorem 1.1

Let L and M be line bundles on a smooth projective variety. Given
V ⊆ H0(L) we denote by µV,M : V ⊗ H0(M) −→ H0(L ⊗ M) the
multiplication map of sections, µL,M when V = H0(L), and by ΦL,M :
KerµL,M −→ H0(Ω1

X ⊗ L⊗M) the Gaussian map [31, 1.1].
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Proof of Theorem 1.1. To prove the bound on h0(NY/Pr(−1)), we use
the short exact sequence

0 // NY/Pr(−D0 −H) // NY/Pr(−H) // NY/Pr(−H)|D // 0

and prove that

(2) h0(NY/Pr(−D0 −H)) = 0, and

(3) h0(NY/Pr(−H)|D) ≤ r + 1 + corkΦHD,ωD .

To prove (2), note that since dim |D0| ≥ 1, it is enough to have

(4) h0(NY/Pr(−D0 −H)|D) = 0 for a general D ∈ |D0|.

Now, setting D1 := D0 +H, (4) follows from the exact sequence
(5)

0 // ND/Y (−D1)
α

// ND/Pr(−D1) // NY/Pr(−D1)|D // 0

and the facts, proved below, that h0(ND/Pr(−D1)) = 0 and H1(α) is
injective.

To see that h0(ND/Pr(−D1)) = 0, we note that µHD,ωD(D0) is sur-

jective by the H0-lemma [15, Thm. 4.e.1], since |D0|D| is base-point

free, whence D2
0 ≥ 2, therefore h1(ωD(D0 − H)) = h0((H − D0)|D) ≤

h0(HD)− 2, as HD is very ample. Now let Pk ⊆ Pr be the linear span
of D. Then
(6)

0 // ND/Pk(−D1) // ND/Pr(−D1) // (−D0)
⊕(r−k)
|D

// 0

implies that h0(ND/Pr(−D1)) = h0(ND/Pk(−D1)), as D
2
0 > 0. Since Y

is linearly normal and H1(H −D0) = 0, also D is linearly normal. As
µHD,ωD(D0) is surjective, h0(ND/Pk(−D1)) = corkΦHD,ωD(D0) = 0 by

[31, Prop. 1.10] because of (i). Hence h0(ND/Pr(−D1)) = 0. As for the

injectivity of H1(α), we prove the surjectivity of H1(α)∗ with the help
of the commutative diagram

(7) H0(ID/Pr(H))⊗H0(ωD(D0)) //

f

��

H0(N∗
D/Pr ⊗ ωD(D1))

H1(α)∗

��

H0(ID/Y (H))⊗H0(ωD(D0))
h

// H0(N∗
D/Y ⊗ ωD(D1)).

Here f is surjective by linear normality of Y , while h is surjective by
(ii) since it factors as the composition of the (surjective) restriction map
H0(JD/Y (H))⊗H0(ωD(D0)) → VD ⊗H0(ωD(D0)) and the multiplica-

tion map µVD,ωD(D0) : VD ⊗H0(ωD(D0)) → H0(N∗
D/Y ⊗ ωD(D1)).

Finally, to prove (3), recall that µHD ,ωD is surjective by [1, Thm. 1.6]
since D is not rational, whence h0(ND/Pk(−H)) = k + 1 + corkΦHD,ωD
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by [31, Prop. 1.10]. Therefore, twisting (6) by (D0)|D, we find that

h0(ND/Pr(−H))≤ r+1+corkΦHD,ωD and (3) will follow by the sequence

(5) tensored by (D0)|D and injectivity ofH1(α⊗(D0)|D), which is proved

exactly as the injectivity of H1(α) above, using now the surjectivity of
µVD,ωD . q.e.d.

Remark 2.1. In the above proposition and also in Corollary 2.2
below, the surjectivity of µVD ,ωD(D0) can be replaced by either one of

the following conditions: (i) µωD(H−D0),D0|D
is surjective; (ii) h0((2D0−

H)|D) ≤ h0(D0|D)−2; (iii) H.D0 > 2D2
0. Indeed, condition (iii) implies

h0((2D0−H)|D) = 0, whence (ii), while (ii) implies (i) by the H0-lemma
[15, Thm. 4.e.1]. Finally, (i) is enough by surjectivity of µVD,ωD and the
commutative diagram

VD ⊗H0(ωD)⊗H0(D0|D)
µVD,ωD⊗Id

//

��

H0(ωD(H −D0))⊗H0(D0|D)

µωD(H−D0),D0|D

��

VD ⊗H0(ωD(D0))
µVD,ωD(D0)

// H0(ωD(H)).

Whereas the upper bound in Theorem 1.1 can be applied to control
how many times Y can be extended to higher dimensional varieties, we
will concentrate on the case of one simple extension.

Corollary 2.2. Let Y ⊂ Pr be a smooth irreducible surface which is
linearly normal or regular and let H be its hyperplane bundle. Assume
there is a base-point free and big line bundle D0 on Y with H1(H−D0) =
0 and such that the general element D ∈ |D0| is not rational and satisfies

(i) the Gaussian map ΦHD,ωD is surjective;
(ii) the multiplication maps µVD,ωD and µVD ,ωD(D0) are surjective,

where VD := Im{H0(Y,H −D0) → H0(D, (H −D0)|D)}.
Then Y is nonextendable.

Proof. Note that g(D) ≥ 2, as ΦHD,ωD is surjective. Since µVD,ωD(D0)

is surjective, we have that VD (whence also |(H −D0)|D|) is base-point
free, as |ωD(H)| is such. Therefore 2g(D)−2+(H−D0).D > 0, whence
h1(ω2

D(H −D0)) = 0, and the H0-lemma [15, Thm. 4.e.1] implies that
µω2

D
(H),D0|D

is surjective. Now ΦHD,ωD(D0) is surjective by (i) and the

commutative diagram

KerµHD,ωD ⊗H0(D0|D)
ΦHD,ωD⊗Id

// //

��

H0(ω2
D(H))⊗H0(D0|D)

µ
ω2
D

(H),D0|D
��
��

KerµHD,ωD(D0)

ΦHD,ωD(D0)
// H0(ω2

D(H +D0)).
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If Y is linearly normal, we are done by Zak’s theorem [32] and Theorem
1.1.

Assume now that h1(OY ) = 0 and that Y ⊂ Pr is extendable, that
is, that Y is a hyperplane section of some nondegenerate threefold X ⊂
Pr+1 which is not a cone over Y . Let π : X̃ → X be a resolution
of singularities and let L = π∗OX(1) and Ỹ = π−1(Y ) ∼= Y , as Y is
smooth, so that Y ∩ SingX = ∅. Using H1(O

Ỹ
) = H1(OY ) = 0 and

Kawamata-Viehweg vanishing, one easily deduces the surjectivity of the

restriction map H0(X̃, L) → H0(Ỹ , L|Ỹ ). Consider the birational map

ϕL : X̃ → PN where N ≥ r+1. Then Y := ϕL(Ỹ ) ∼= Y is a hyperplane

section of ϕL(X̃) that is linearly normal and extendable and we reduce
to the linearly normal case above. q.e.d.

3. Absence of Veronese embeddings on threefolds

It was known to Scorza [30] that the Veronese varieties vm(P
n) are

nonextendable for m,n > 1. For an arbitrary Veronese embedding we
can use Zak’s theorem [32], [24, Thm. 0.1] as follows:

Remark 3.1. Let X ⊂ Pr be a smooth irreducible nondegenerate
n-dimensional variety, n ≥ 2, L = OX(1) and let ϕmL(X) ⊂ PN be the
m-th Veronese embedding of X.

If H1(TX(−mL)) = 0 then ϕmL(X) is nonextendable. In particular

the latter holds if m > max
{
2, n + 2 + KX .L

n−1−2r+2n+2
Ln

}
.

Proof. Set Y = ϕmL(X). From standard sequences and Kodaira
vanishing one gets h0(NY/PN (−1)) ≤ h0(TPN (−1)|Y ) + h1(TY (−1)) =

N +1+ h1(TX(−mL)) = N +1, and we just apply Zak’s theorem [32].
To see the last assertion, observe that since n ≥ 2 and m ≥ 3 we

have, as is well-known, h1(TX(−mL)) = h0(NX/Pr(−mL)). If the latter
were not zero, the same would hold for a general curve section C ⊂
Pr−n+1. Taking r − n− 1 general points xj ∈ C, we get from the exact
sequence [4, (2.7)] that h0(NC/Pr−n+1(−m)) = 0 for reasons of degree,
a contradiction. q.e.d.

In the case of surfaces, Corollary 2.2 yields an extension of this re-
mark:

Definition 3.2. Let Y be a smooth surface and let L be an effective
line bundle on Y such that the general divisor D ∈ |L| is smooth and
irreducible. We say that L is hyperelliptic, trigonal, etc., if D is
such. We denote by Cliff(L) the Clifford index of D. Moreover, when
L2 > 0, we set

ε(L) = 3 if L is trigonal; ε(L) = 5 if Cliff(L) ≥ 3;

ε(L) = 0 if Cliff(L) = 2;



490 A. L. KNUTSEN, A.F. LOPEZ & R. MUÑOZ

m(L) =





16
L2 if L.(L+KY ) = 4;
25
L2 if L.(L+KY ) = 10 and the general

divisor in |L| is a plane quintic;
3L.KY +18

2L2 + 3
2 if 6 ≤ L.(L+KY ) ≤ 22 and L is trigonal;

2L.KY −ε(L)
L2 + 2 otherwise.

Corollary 3.3. Let Y ⊂ PV be a smooth surface with V ⊆ H0(L⊗m⊗
OY (∆)), where L is a base-point free, big, nonhyperelliptic line bundle
on Y with L.(L + KY ) ≥ 4 and ∆ ≥ 0 is a divisor. Suppose that Y

is regular or linearly normal and that m is such that H1(L⊗(m−2) ⊗
OY (∆)) = 0 and m > max{m(L)− L.∆

L2 , ⌈
L.KY +2−L.∆

L2 ⌉+1}. Then Y is
nonextendable.

Proof. We apply Corollary 2.2 with D0 = L and H = L⊗m⊗OY (∆).
By hypothesis the general D ∈ |L| is smooth and irreducible of genus
g(D) = 1

2L.(L+KY )+1. SinceH1(H−2L) = 0, we have VD = H0((H−
L)|D). Also (H−L).D = (m−1)L2+L.∆ ≥ L.(L+KY )+2 = 2g(D) by
hypothesis, whence |(H − L)|D| is base-point free and birational (as D
is not hyperelliptic) and µVD,ωD is surjective by [1, Thm. 1.6]. Moreover
H1((H − L)|D) = 0, whence also H1(H − L) = 0.

The surjectivity of µVD,ωD(L) follows by [15, Cor. 4.e.4], as degωD(L)

≥ 2g(D)+1 because L2 ≥ 3. Indeed, if L2 ≤ 2 we have that h0(L|D) ≤ 1

as D is not hyperelliptic, whence h0(L) ≤ 2, contradicting the hy-
potheses on L. The surjectivity of ΦHD,ωD follows by the inequality

m > m(L)− L.∆
L2 and well-known results about Gaussian maps (see e.g.

[31, Prop. 1.10], [23, Prop. 2.9, Prop. 2.11 and Cor. 2.10], [4, Thm. 2]).
q.e.d.

We can be a little bit more precise in the case of pluricanonical em-
beddings:

Proof of Corollary 1.2. We apply Corollary 3.3 with L = OY (KY )
and H = OY (mKY +∆) and prove that H1(OY ((m− 2)KY +∆)) = 0.
If ∆ is nef this follows by Kawamata-Viehweg vanishing. Now suppose
that ∆ is reduced and KY is ample. Again H1(OY ((m − 2)KY )) = 0,
whence H1(OY ((m−2)KY +∆)) = 0, since h1(O∆((m−2)KY +∆)) =
h0(O∆(−(m− 3)KY )) = 0. q.e.d.

Remark 3.4. Consider the 5-uple embedding X of P3 into P55 (re-
spectively, the 4-uple embedding of a smooth quadric hypersurface in
P4 into P54). A general hyperplane section Y of X is embedded with
5KY (resp. 4KY ) and K

2
Y = 5 (resp. K2

Y = 8). Thus, in Corollary 1.2,
the conditions on K2

Y and m cannot, in general, be weakened.

We can be even more precise in the case of adjoint embeddings.
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Corollary 3.5. Let Y ⊂ PV be a minimal surface of general type with
base-point free and nonhyperelliptic canonical bundle and V ⊆ H0(L⊗
OY (KY + ∆)), where L is a line bundle on Y and ∆ ≥ 0 is a divisor.
Suppose that Y is regular or linearly normal, that H1(L ⊗ OY (∆ −
KY )) = 0 and that

L.KY +KY .∆ >





14 if K2
Y = 2;

20 if K2
Y = 5 and the general divisor

in |KY | is a plane quintic;

2K2
Y + 9 if 3 ≤ K2

Y ≤ 11 and KY is trigonal;

3K2
Y − ε(KY ) otherwise.

Then Y is nonextendable.

Proof. Similar to the proof of Corollary 3.3 with D0 = OY (KY ) and
H = L⊗OY (KY +∆). q.e.d.

To state the pluriadjoint case, given a big line bundle L on a smooth
surface Y , we define

ν(L) =





12
L2 + 1 if L.(L+KY ) = 4;
15
L2 + 1 if L.(L+KY ) = 10 and the general divisor

in |L| is a plane quintic;
L.KY +18

2L2 + 3
2 if 6 ≤ L.(L+KY ) ≤ 22 and L is trigonal;

L.KY −ε(L)
L2 + 2 otherwise.

Corollary 3.6. Let Y ⊂ PV be a smooth surface with V ⊆ H0(L⊗m⊗
OY (KY + ∆)) where L is a base-point free, big and nonhyperelliptic
line bundle on Y with L.(L + KY ) ≥ 4 and ∆ ≥ 0 is a divisor such

that H1(L⊗(m−2) ⊗ OY (KY + ∆)) = 0. Suppose that Y is regular or
linearly normal and that m > max{2 + 1

L2 , ν(L)} − L.∆
L2 . Then Y is

nonextendable.

Proof. Similar to the proof of Corollary 3.3 with D0 = L and H =
L⊗m ⊗OY (KY +∆). q.e.d.

4. Basic results on line bundles on Enriques surfaces

Definition 4.1. Let S be an Enriques surface. If D is a divisor on
S we will denote by H i(D) the cohomology H i(OS(D)). We denote
by ∼ (respectively ≡) the linear (respectively numerical) equivalence of
divisors (or line bundles) on S. A line bundle L is primitive if L ≡ hL′

for some line bundle L′ and some integer h, implies h = ±1. An effective
line bundle L is quasi-nef [21] if L2 ≥ 0 and L.∆ ≥ −1 for every ∆
such that ∆ > 0 and ∆2 = −2.

A nodal curve is a smooth rational curve. A nodal cycle is a divisor
R > 0 such that (R′)2 ≤ −2 for any 0 < R′ ≤ R. An isotropic divisor
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F is a divisor such that F 2 = 0 and F 6≡ 0. An isotropic k-sequence
is a set {f1, . . . , fk} of isotropic divisors such that fi.fj = 1 for i 6= j.

We will often use the fact that if R is a nodal cycle, then h0(OS(R)) =
1 and h0(OS(R+KS)) = 0.

Let L be a line bundle on S with L2 > 0. Following [11] we define
φ(L) = inf{|F.L| : F ∈ PicS,F 2 = 0, F 6≡ 0}. One has φ(L)2 ≤ L2

[11, Cor. 2.7.1] and, if L is nef, then there exists a genus one pencil |2E|
such that E.L = φ(L) [10, 2.11]. Moreover we will extensively use the
fact that if L is nef, then it is base-point free if and only if φ(L) ≥ 2
[11, Prop. 3.1.6, 3.1.4 and Thm. 4.4.1].

A line bundle L > 0 with L2 ≥ 0 on S has a (nonunique) decomposi-
tion L ≡ a1E1 + . . .+ anEn, where ai are positive integers, and each Ei
is primitive, effective and isotropic, cf. e.g. [22, Lemma2.12]. We will
call such a decomposition an arithmetic genus 1 decomposition.

Definition 4.2. An effective line bundle L with L2 ≥ 0 is said to
be of small type if either L = 0 or if in every arithmetic genus 1
decomposition of L as above, all ai = 1.

The next result is an easy (computational) consequence of
[21, Lemma 2.1] and [22, Lemma2.4].

Lemma 4.3. Let L be an effective line bundle on an Enriques surface
with L2 ≥ 0. Then L is of small type if and only if it is of one of the
following types (where Ei > 0, E2

i = 0 and Ei primitive): (a) L = 0;
(b) L2 = 0, L ∼ E1; (c) L2 = 2, L ∼ E1 + E2, E1.E2 = 1; (d)
L2 = 4, φ(L) = 2, L ∼ E1 + E2, E1.E2 = 2; (e) L2 = 6, φ(L) = 2,
L ∼ E1+E2+E3, E1.E2 = E1.E3 = E2.E3 = 1; (f) L2 = 10, φ(L) = 3,
L ∼ E1 + E2 + E3, E1.E2 = 1, E1.E3 = E2.E3 = 2.

Among all arithmetic genus 1 decompositions of an effective line bun-
dle L with L2 > 0, we want to choose the most convenient for our pur-
poses. For any line bundle L > 0 which is not of small type with L2 > 0
and φ(L) = F.L for some F > 0 with F 2 = 0, define

(8) αF (L) = min{k ≥ 2 | (L− kF )2 ≥ 0 and if (L− kF )2 > 0, then

there exists F ′ > 0 with (F ′)2 = 0, F ′.F > 0 and F ′.(L− kF ) ≤ φ(L)}.

By [22, Lemma2.4], it is easy to see that αF (L) exists and that one ob-
tains an equivalent definition by replacing the last inequality by F ′.(L−
kF ) = φ(L− kF ).

If L2 = 0 and L is not of small type, then we define αF (L) to be the
maximal integer k ≥ 2 such that there exists an isotropic F such that
L ≡ kF . The next result is an easy computation.

Lemma 4.4. Let L be an effective line bundle not of small type with
L2 > 0 and (L2, φ(L)) 6= (16, 4), (12, 3), (8, 2), (4, 1). Then (L −
αF (L)F )

2 > 0.
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We will also use the following consequence of [11, Prop. 3.1.4], [21,
Cor. 2.5] and [22, Lemma2.3]:

Lemma 4.5. Let L be a nef and big line bundle on an Enriques
surface and let F be a divisor satisfying F.L < 2φ(L) (respectively F.L =
φ(L) and L is ample). Then h0(F ) ≤ 1 and if F > 0 and F 2 ≥ 0 we
have F 2 = 0, h0(F ) = 1, h1(F ) = 0 and F is primitive and quasi-nef
(resp. nef).

5. Main results on extendability of Enriques surfaces

It is well-known that abelian and hyperelliptic surfaces are nonex-
tendable [14, Rmk. 3.12]. The extendability problem is open for K3’s,
but answers are known for general K3’s [7, 8, 3]. Let us deal now with
Enriques surfaces.

We start with a simplification of Corollary 2.2 that will be central to
us.

Proposition 5.1. Let S ⊂ Pr be an Enriques surface and H its
hyperplane bundle. Suppose there is a nef and big (whence effective)
line bundle D0 on S with φ(D0) ≥ 2,H1(H−D0) = 0 and such that the
following conditions are satisfied by the general element D ∈ |D0|:

(i) the Gaussian map ΦHD,ωD is surjective;
(ii) the multiplication map µVD,ωD is surjective, where

VD := Im{H0(S,H −D0) → H0(D, (H −D0)|D)};

(iii) h0((2D0 −H)|D) ≤
1
2D

2
0 − 2.

Then S is nonextendable.

Proof. Apply Corollary 2.2 and Remark 2.1, using that D0 is base-
point free since φ(D0) ≥ 2. q.e.d.

Our first observation will be that, for many line bundles H, a line
bundle D0 satisfying the conditions of Proposition 5.1 can be found
with the help of Ramanujam’s vanishing theorem.

Proposition 5.2. Let S ⊂ Pr be an Enriques surface such that its
hyperplane section H is not 2-divisible in NumS. Suppose there exists
an effective divisor B on S satisfying:

(i) B2 ≥ 4 and φ(B) ≥ 2,
(ii) (H − 2B)2 ≥ 0 and H − 2B ≥ 0,
(iii) H2 ≥ 64 if B2 = 4 and H2 ≥ 54 if B2 = 6.

Then S is nonextendable.

Proof. We first claim that there is a nef divisor D′ > 0 satisfying
(i)-(iii) and with D′ ≤ B, (D′)2 = B2, φ(D′) = φ(B). Indeed, if
Γ is a nodal curve, define the Picard-Lefschetz reflection on PicS as
πΓ(L) := L + (L.Γ)Γ. Then πΓ preserves intersections, effectiveness
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[5, Prop.VIII.16.3] and the function φ. Now if B is not nef, there is
a nodal Γ such that Γ.B < 0. Since 0 < πΓ(B) < B, we see that
πΓ(B) satisfies (i)-(iii). If πΓ(B) is not nef, we repeat the process,
which must end, as πΓ(B) < B, and we get the desired nef D′. Since
H−D′ ≥ H−B > H−2B ≥ 0 and (D′)2 > 0, we have D′.(H−D′) > 0.
Now define the following set, which is nonempty, by what we just saw,

Ω(D′) = {M ∈ PicS :M ≥ D′,M is nef, satisfies (i)-(ii) and

M.(H −M) ≤ D′.(H −D′)}.

For any M ∈ Ω(D′) we have H − 2M > 0, whence H.M is bounded.
Let then D0 be a maximal divisor in Ω(D′), that is, such that H.D0 is
maximal. We want to show that h1(H − 2D0) = 0.

Set R := H − 2D0. If h1(R) > 0, then by Ramanujam vanishing
[5, Cor. II.12.3] we could write R + KS ∼ R1 + R2, for R1 > 0 and
R2 > 0 with R1.R2 ≤ 0. We can assume that R1.H ≤ R2.H. If
D1 := D0 +R1 is nef, then φ(D1) is calculated by a nef divisor, whence
φ(D1) ≥ φ(D′) ≥ 2 and D2

1 ≥ D2
0 ≥ (D′)2 ≥ 4 (since D1 ≥ D0 ≥ D′).

Moreover (H − 2D1)
2 = R2 − 4R1.R2 ≥ R2 ≥ 0, and since (H −

2D1).H = (R2 − R1).H ≥ 0, we get by Riemann-Roch and the fact
that H is not 2-divisible in NumS, that H − 2D1 > 0. Furthermore,
D1.(H−D1) = D0.(H−D0)+R1.R2 ≤ D0.(H−D0), whenceD1 ∈ Ω(D′)
with H.D1 > H.D0, contradicting the maximality of D0.

Hence D1 cannot be nef and there exists a nodal curve Γ with Γ.D1 <

0 (whence Γ.R1 < 0). Since H is ample, we have Γ.(H−D1) ≥ −Γ.D1+
1 ≥ 2. Since Γ.R1 < 0, we have D2 := D1 − Γ ≥ D0, whence, if D2

is nef, we have as above that φ(D2) ≥ φ(D′) ≥ 2 and D2
2 ≥ D2

0 ≥
(D′)2 ≥ 4. Moreover H − 2D2 > H − 2D1 > 0 and (H − 2D2)

2 =
(H − 2D1)

2 − 8 + 4(H − 2D1).Γ ≥ (H − 2D1)
2 + 4 > 0. Furthermore

D2.(H −D2) < D1.(H −D1) ≤ D0.(H −D0), whence D2 6= D0. If D2

is nef, then D2 ∈ Ω(D′) with H.D2 > H.D0, a contradiction. Hence D2

is not nef, and we repeat the process, with a nodal Γ1 ≤ R1−Γ. As the
process must end, we get h1(H − 2D0) = 0.

Note that since D2
0 ≥ (D′)2 = B2, then D0 also satisfies (iii) above.

FurthermoreD0 is base-point free since it is nef with φ(D0) ≥ φ(D′) ≥ 2.
Let D ∈ |D0| be a general smooth curve. We have deg(H − D0)|D =

D2
0 + (H − 2D0).D0 ≥ D2

0 + φ(D0) ≥ 2g(D). As D is not hyperelliptic,
(H − D0)|D is base-point free and birational, whence µ(H−D0)|D,ωD is

surjective by [1, Thm. 1.6].
Since h1(H − 2D0) = 0 and h1(OD(H − D0)) = 0 for reasons of

degree, we find h1(H−D0) = 0. To prove the proposition, we only have
left to show, by Proposition 5.1, that ΦHD,ωD is surjective.

From (H − 2D0).D0 ≥ 2 again, we get degHD ≥ 4g(D) − 2, whence
ΦHD,ωD is surjective if Cliff(D) ≥ 2 by [4, Thm. 2]. This is satisfied if
D2

0 ≥ 8 by [22, Cor. 1.5 and Prop. 4.13].
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If D2
0 = 6, then g(D) = 4, whence ΦHD ,ωD is surjective if we have

h0(OD(3D0 + KS − H)) = 0 by [31, Prop. 1.10]. Since H2 ≥ 54, we
get by Hodge index that H.D ≥ 18 with equality if and only if H ≡
3D0. If H.D0 > 18, we get degOD(3D0 + KS − H) < 0. If H ≡
3D0, then we may assume H ∼ 3D0, possibly after exchanging D0 with
D0 + KS , so that h0(OD(3D0 + KS − H)) = h0(OD(KS)) = 0. If
D2

0 = 4, then g(D) = 3, whence ΦHD,ωD is surjective by [31, Prop. 1.10]
as h0(OD(4D0 − H)) = 0. Indeed, since H2 ≥ 64, we get by Hodge
index that H.D ≥ 17, whence degOD(4D0 −H) < 0. q.e.d.

We now improve Proposition 5.2 in the cases B2 = 4 and 6, using
[23].

Proposition 5.3. Let S ⊂ Pr be an Enriques surface such that its
hyperplane section H is not 2-divisible in NumS. Suppose there exists
an effective divisor B on S satisfying: (i) B2 = 6 and φ(B) = 2, (ii)
(H − 2B)2 ≥ 0 and H − 2B ≥ 0, (iii) h0(3B−H) = 0 or h0(3B+KS−
H) = 0. Then S is nonextendable.

Proof. Argue exactly as in the proof of Proposition 5.2 and let D′,
D0 and D be as in that proof, so that, in particular, D2

0 ≥ (D′)2 = 6.
If D2

0 ≥ 8, we are done by Proposition 5.2. If D2
0 = 6 write D0 =

D′ + M with M ≥ 0. Since both D0 and D′ are nef we find 6 =
D2

0 = (D′)2 +D′.M +D0.M ≥ 6, whence D′.M = D0.M = 0, so that
M2 = 0. ThereforeM = 0 and D0 = D′, whence 3D0−H ∼ 3D′−H ≤
3B−H. It follows that either h0(3D0−H) = 0 or h0(3D0+KS−H) =
0. Possibly after exchanging D0 with D0 + KS , we can assume that
h0(3D0 +KS −H) = 0. As h1(2D0 +KS −H) = h1(H − 2D0) = 0, we
get h0(OD(3D0 + KS −H)) = 0, whence ΦHD,ωD is surjective by [23,
Thm(ii)]. The map µVD,ωD is surjective as in the previous proof. q.e.d.

Proposition 5.4. Let S ⊂ Pr be an Enriques surface such that its
hyperplane section H is not 2-divisible in NumS. Suppose there exists
an effective divisor B on S satisfying: (i) B is nef, B2 = 4 and φ(B) =
2, (ii) (H − 2B)2 ≥ 0 and H − 2B ≥ 0, (iii) H.B > 16. Then S is
nonextendable.

Proof. Argue as in the proof of Proposition 5.2 and let D′, D0 and
D be as in that proof. By (i) we have D′ = B, and since D0 ≥ D′, we
get H.D0 > 16. If D2

0 ≥ 8, we are done by Proposition 5.2. If D2
0 = 6,

then D0 > D′ = B, so that H.D0 ≥ 18 whence (3D0 − H).D0 ≤ 0.
If 3D0 − H > 0, it is a nodal cycle, whence either h0(3D0 − H) = 0
or h0(3D0 + KS − H) = 0 and we are done by Proposition 5.3. If
D2

0 = 4, then D0 = D′ = B and degOD(4D0 −H) < 0 as in the proof
of Proposition 5.3, whence ΦHD,ωD is surjective by [23, Thm(i)] and so
is µVD ,ωD , as in the proof of Proposition 5.2. q.e.d.

In several cases the following will be very useful:



496 A. L. KNUTSEN, A.F. LOPEZ & R. MUÑOZ

Lemma 5.5. Let S ⊂ Pr be an Enriques surface with hyperplane
section H ∼ 2B + A, for B nef, B2 ≥ 2, A2 = 0, A > 0 primitive,
H2 ≥ 28 and satisfying one of the following conditions:

(i) A is quasi-nef and (B2, A.B) 6∈ {(4, 3), (6, 2)};
(ii) φ(B) ≥ 2 and (B2, A.B) 6∈ {(4, 3), (6, 2)};
(iii) φ(B) = 1, B2 = 2l, B ∼ lF1 + F2, l ≥ 1, Fi > 0, F 2

i = 0, i = 1, 2,
F1.F2 = 1, and either
(a) l ≥ 2, Fi.A ≤ 3 for i = 1, 2 and (l, F1.A, F2.A) 6= (2, 1, 1); or
(b) l = 1, 5 ≤ B.A ≤ 8, Fi.A ≥ 2 for i = 1, 2 and

(φ(H), F1.A, F2.A) 6= (6, 4, 4).

Then S is nonextendable.

Proof. Possibly after replacing B with B + KS if B2 = 2 we can,
without loss of generality, assume that B is base-component free.

We first prove the lemma under hypothesis (i).
One easily sees that D0 := B+A is nef, since A is quasi-nef and H is

ample. Moreover, D2
0 = B2 + 2B.A ≥ 6, as 2A.B = A.H ≥ φ(H) ≥ 3,

since H is very ample. If φ(D0) = 1 = F.D0 for some F > 0 with
F 2 = 0, we get F.B = 1, F.A = 0 and the contradiction F.H = 2.
Hence φ(D0) ≥ 2.

One easily checks that (i) implies D2
0 ≥ 12. Since h0(2D0 − H) =

h0(A) = 1 by [21, Cor. 2.5], we have that ΦHD,ωD is surjective by [23,
Thm(iv)]. Also h1(H − 2D0) = h1(−A) = 0, again by [21, Cor. 2.5],
so that VD = H0(OD(H − D0)). As H − D0 = B is base-component
free and |D0| is base-point free and birational by [11, Lemma4.6.2,
Thm. 4.6.3 and Prop. 4.7.1], also VD is base-point free and is either a
complete pencil or birational. Hence µVD,ωD is surjective by the base-
point free pencil trick [1, §1] and [1, Thm. 1.6]. Then S is nonextendable
by Proposition 5.1.

Therefore the lemma is proved under the assumption (i) and, in par-
ticular, the whole lemma is proved with the additional assumption that
A is quasi-nef.

Now assume that A is not quasi-nef. Then there is a ∆ > 0 with
∆2 = −2 and ∆.A ≤ −2. We have ∆.B ≥ 2 by the ampleness of H.
Furthermore, among all such ∆’s we will choose a minimal one, that is,
such that no 0 < ∆′ < ∆ satisfies (∆′)2 = −2 and ∆′.A ≤ −2. Then
one easily proves that B0 := B + ∆ is nef. Moreover, B2

0 ≥ 2 + B2,
and φ(B0) ≥ φ(B). We also note that H − 2B0 ∼ A − 2∆ > 0 and is
primitive by [22, Lemma2.3] with (H − 2B0)

2 ≥ 0.
Under the assumptions (ii), we have φ(B0) ≥ 2. Then S is nonex-

tendable by Proposition 5.2 if B2
0 ≥ 8. If B2

0 = 6, we have B2 = 4
and ∆.B = 2, so that ∆.A = −2 or −3 by the ampleness of H. Hence
H ∼ 2B0 + A′, with B2

0 = 6 and A′ ∼ A − 2∆ satisfies (A′)2 = 0 or
4. In the first case we are done by conditions (i) if A′ is quasi-nef, and
if not we can just repeat the process and find that S is nonextendable
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by Proposition 5.2. In the case (A′)2 = 4 we have A′.B0 ≥ 5 by Hodge
index. Therefore (3B0 −H).B0 = (B0 −A′).B0 ≤ 1 < φ(B0), so that if
3B0 −H > 0, then it is a nodal cycle. Hence either h0(3B0 −H) = 0 or
h0(3B0 +KS −H) = 0 and S is nonextendable by Proposition 5.3. We
have therefore shown that S is nonextendable under conditions (ii).

Now assume (iii). Set k := −A.∆. By [22, Lemma2.3] we have
that A0 := A − k∆ is primitive, effective and isotropic. In case (iii-
a) we deduce k = 2 and F1.∆ = F1.A0 = 1. Then H ∼ 2B0 + A0

satisfies conditions (ii) and S is nonextendable. Now consider case (iii-
b), so that Fi.A ≤ 6 for i = 1, 2. If ∆.F1 ≤ 0, then F2.∆ ≥ 2. As
6 ≥ F2.A = F2.A0+ kF2.∆, we get k = F2.∆ = 2, so that ∆.F1 = 0 and
F2.A ≥ 4. Then F1.B0 = 1, so that B0 ∼ 2F1 + F ′

2, where F
′
2 ∼ F2 +

∆−F1 > 0 and (F ′
2)

2 = 0. Also F1.A0 = F1.A ≤ 4, and equality implies
F2.A = 4, F2 ≡ A0 and the contradiction F1.A0 = F1.F2 = 1. Hence
F1.A0 ≤ 3. Moreover F ′

2.A0 = (F2 +∆− F1).A0 = (F2 − F1).A− 2 ≤ 2
and it cannot be that (F1.A0, F

′
2.A0) = (1, 1), for then F1.A = 1. Then

H ∼ 2B0 +A0 satisfies the conditions in (iii-a) and S is nonextendable.
We can therefore assume ∆.F1 > 0, and by symmetry, also ∆.F2 > 0.
Hence φ(B0) ≥ 2. If k ≥ 3, then Fi.A = Fi.A0 + kFi.∆ ≥ 4 for i = 1, 2,
and we get k = 3, Fi.A = 4 and Fi.∆ = Fi.A0 = 1. Then B.A = 8
and H2 = 40, so that φ(H) ≤ 5 by hypothesis. Let F be isotropic with
F.H = φ(H). Now (A′)2 = 4 and 5 ≥ F.H = 2F.B0 +F.A′ ≥ 5, so that
F.H = 5, F.A′ = 1, (A′ − 2F )2 = 0, A′ − 2F > 0 and (A′ − 2F ).H =
(A − 2∆ − 2F ).H = 4, a contradiction. Hence k = 2, A2

0 = 0 and
B0.A0 = (B +∆).A0 ≥ 3. Then the conditions (ii) are satisfied and S
is nonextendable, unless possibly if B2

0 = 4 and B.A0 = 1. But then
B.∆ = 2 and A0 ≡ Fi, for i = 1 or 2. Hence ∆.B = ∆.(F1 + F2) = 3, a
contradiction. q.e.d.

We also have the following helpful tools to check surjectivity of µVD,ωD
when h1(H − 2D0) 6= 0. The first lemma holds on any smooth surface.

Lemma 5.6. Let S be a smooth surface, L a line bundle on S and
D1 > 0 and D2 > 0 divisors on S not intersecting the base locus of |L|,
such that h0(OD1) = 1 and h0(OD1(−L)) = h0(OD2(−D1)) = 0. For
any divisor B > 0 on S set VB := Im{H0(S,L) → H0(B,L|B)}. If
µVD1

,ωD1
and µVD2

,ωD2
(D1) are surjective, then µVD ,ωD is surjective for

general D ∈ |D1 +D2|.

Proof. Let D′ = D1 +D2. We have two surjective maps πi : VD′ →
VDi , for i = 1, 2, and an exact sequence

0 // H0(ωD1)
// H0(ωD′)

ψ
// H0(ωD2(D1)) // 0,
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whence a commutative diagram

0 // W //

ϕ

��

VD′ ⊗H0(ωD′)
π2⊗ψ //

µV
D′ ,ωD′

��

VD2 ⊗H0(ωD2(D1)) //

µVD2
,ωD2

(D1)

��

0

0 // H0(ωD1(L))
χ

// H0(ωD′(L)) // H0(ωD2(D1 + L)) // 0

where W := Kerπ2 ⊗ H0(ωD′) + VD′ ⊗ Kerψ and ϕ is the restriction
of µVD′ ,ωD′ . The surjectivity of µVD1

,ωD1
and the injectivity of χ show

that H0(ωD1(L)) = ImµVD1
,ωD1

= Imϕ|V
D′⊗Kerψ

. Hence ϕ is surjective

and so is µVD′ ,ωD′ . By semicontinuity, µVD,ωD is surjective for general
D ∈ |D1 +D2|. q.e.d.

Lemma 5.7. Let S be an Enriques surface, L a very ample divisor
on S and D0 a nef and big divisor on S such that φ(D0) ≥ 2. Let E > 0
be such that E2 = 0 and E.L = φ(L).

If |L−D0−2E| is base-component free, h1(D0+KS−2E) = h2(D0+
KS − 4E) = 0 and

(9) h0(L− 2D0− 2E)+h0(OD(L−D0− 4E)) ≤
1

2
(L−D0− 2E)2− 1,

then µVD,ωD surjects for general D ∈ |D0|, where VD = Im{H0(OS(L−
D0)) → H0(OD(L−D0))}.

Proof. Set N = L−D0 − 2E. We have a commutative diagram

H0(2E)⊗H0(N) ⊗H0(D0 +KS)
Id⊗µ

//

µ′⊗Id

��

H0(N) ⊗H0(2E +D0 +KS)

rD⊗r′D

��

H0(L−D0)⊗H0(D0 +KS)

pD⊗p′D

��

WD ⊗H0(ωD(2E))

µWD,ωD(2E)

��

VD ⊗H0(ωD)
µVD,ωD

// H0(OD(L+KS)),

where pD, p
′
D, rD, r

′
D are restriction maps,WD := Im rD, µ = µ2E,D0+KS

and µ′ = µ2E,N . Since H1(D0 +KS − 2E) = H2(D0 +KS − 4E) = 0,
the map µ is surjective by Castelnuovo-Mumford’s lemma, and so is
r′D since h1(2E + KS) = 0. To conclude we need the surjectivity of
µWD,ωD(2E). As D is general, by [15, Thm. 4.e.1] we need h1(ωD(2E −

N)) ≤ h0(N) − h0(L − 2D0 − 2E) − 2, which is equivalent to (9) by
Riemann-Roch and Serre duality. q.e.d.

6. Strategy of the proof of Theorem 1.5

In this section we prove Theorem 1.5 except for some concrete cases,
and then we give the main strategy of the proof in these remaining cases,
which will be carried out in Sections 7-11.
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Let S ⊂ Pr be an Enriques surface of sectional genus g and let H
be its hyperplane divisor. As we will prove a result also for g = 15
and 17 (Proposition 12.1) we will henceforth assume g ≥ 17 or g = 15,
so that H2 = 2g − 2 ≥ 32 or H2 = 28, and, as H is very ample,
φ(H) ≥ 3. We choose a genus one pencil |2E| such that E.H = φ(H)
and, as H is not of small type by Lemma 4.3, we define α := αE(H)
as in (8) and L1 := H − αE. By [22, Lemma2.4] and Lemma 4.4
we have that L1 > 0 and L2

1 > 0. Now suppose that L1 is not of
small type. Starting with L0 := H and E0 := E we continue the
process inductively until we reach a line bundle of small type, as follows.
Suppose given, for i ≥ 1, Li > 0 not of small type with L2

i > 0. We
choose Ei > 0 such that E2

i = 0, Ei.Ei−1 > 0, Ei.Li = φ(Li) and define
αi = αEi(Li) and Li+1 = Li − αiEi. Again Li+1 > 0. If L2

i+1 = 0 we
write Li+1 ≡ αi+1Ei+1 and define Li+2 = 0. We also have Ei+1.Ei > 0
because L2

i > 0. If L2
i+1 > 0 then either Li+1 is of small type or we

carry on. We then get

(10) H = αE+α1E1+. . .+αn−1En−1+Ln, for some positive integer n

with α ≥ 2, αi ≥ 2 for 1 ≤ i ≤ n− 1 and Ln is of small type. Moreover
E.E1 ≥ 1, Ei.Ei+1 ≥ 1, E and Ei are primitive for all i, L2

i > 0 and
Ei.Li = φ(Li) for 0 ≤ i ≤ n− 2 and L2

n−1 ≥ 0.
We record for later the following fact, which follows immediately from

the definitions:
(11)
E1.(H−αE) ≤ φ(H) and if α ≥ 3, then E1.(H−αE) ≥ φ(H)+1−E.E1.

We now claim that αi = 2 for 1 ≤ i ≤ n − 1. If (L1 − 2E1)
2 = 0 then

α1 = 2 by definition. If (L1−2E1)
2 > 0 we need E0.(L1−2E1) ≤ φ(L1),

that is φ(L0) ≤ E1.L0+(2−α0)E1.E0. The latter holds if α0 = 2 and, by
(11), if α0 ≥ 3. By induction and the proof for i = 1 we get that αi = 2
for 1 ≤ i ≤ n−2 and also for i = n−1 if L2

n−1 > 0. If L2
n−1 = 0 we have

Ln−2 ≡ 2En−2 + αn−1En−1, whence (αn−1En−2.En−1)
2 = φ(Ln−2)

2 ≤
L2
n−2 = 4αn−1En−2.En−1. Now if αn−1 ≥ 3 we get En−2.En−1 = 1,

giving the contradiction αn−1 = φ(Ln−2) ≤ En−1.Ln−2 = 2 and the
claim is proved.

We now search for a divisor B as in Proposition 5.2 to show that
S ⊂ Pr is nonextendable. Assume first that H is not 2-divisible in
NumS and that n ≥ 2 (that is L1 is not of small type). If n ≥ 4, then
B := E + E1 + E2 + E3 satisfies the conditions in Proposition 5.2 and
S is nonextendable. If n = 3, then H = αE + 2E1 + 2E2 + L3. In this
case B := ⌊α2 ⌋E + E1 + E2 satisfies the conditions in Proposition 5.2,
whence S is nonextendable, unless

(I-A) n = 3, E2 ≡ E, E.E1 = 1.
(II) n = 3, E.E1 = E.E2 = E1.E2 = 1, α ∈ {2, 3}, H2 ≤ 52.
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If n = 2, then H = αE + 2E1 + L2. Set B = ⌊α2 ⌋E + E1. Then B
satisfies the conditions in Proposition 5.2, whence S is nonextendable,
unless

(I-B) n = 2, E.E1 = 1.
(III) n = 2, E.E1 = 2, α ∈ {2, 3}, H2 ≤ 62,

or E.E1 = 3, α ∈ {2, 3} andH2 ≤ 52. But the latter case does not occur.
Indeed, then E.H = φ(H) = 6 by [22, Prop. 1.4], whence E.L2 = 0, so
that L2 = 0 or L2 ≡ E. Since we can write E+E1 ∼ A1+A2+A3 with
Ai > 0, A2

i = 0 by [22, Lemma2.4], we get 18 = 3φ(H) ≤ (E+E1).H =
6 + 3α + E1.L2, whence α = E1.L2 = 3 and E1.(H − 2E) = 6 = φ(H),
contradicting α = 3.

Now Ln ≥ 0 and L2
n ≥ 0 so that, if Ln > 0, it has (several) arithmetic

genus 1 decompositions. We want to extract from them any divisors
numerically equivalent to E or to E1, if possible. If, for example, we
give priority to E, we will write Ln ≡ E + L′

n and then, if L′
n has

an arithmetic genus 1 decomposition with E1 present, we write L′
n ≡

E1 +Mn. If the priority is given to E1 we do it first with E1 and then
with E. Moreover, to unify notation in the two cases (I-A) and (I-B),
we will set M2 = M3 in the case (I-A), where only M3 is defined. To
avoid treating the same cases more times, we make the following choice
of “removing conventions”:

(I-A) Remove E and E1 from L3, the one with lowest intersection num-
ber with L3 first, giving priority to E1 in case E.L3 = E1.L3.

(I-B) Remove E and E1 from L2, the one with lowest intersection num-
ber with L2 first, giving priority to E in case E.L2 = E1.L2.

(II) Remove E, E1 and E2 from L3, the one with lowest intersection
number with L3 first, giving priority to E first and then to E2.

(III) Remove E and E1 from L2, the one with lowest intersection num-
ber with L2 first, giving priority to E in case E.L2 = E1.L2.

Then the extendability of S remains to be checked only in the following
cases, where γ, δ ∈ {2, 3}:

(I) H ≡ βE + γE1 +M2, E.E1 = 1, H2 ≥ 32 or H2 = 28,
(II) H ≡ βE + γE1 + δE2 + M3, E.E1 = E.E2 = E1.E2 = 1, β ∈

{2, 3}, 32 ≤ H2 ≤ 52 or H2 = 28,
(III) H ≡ βE + γE1 +M2, E.E1 = 2, β ∈ {2, 3}, 32 ≤ H2 ≤ 62 or

H2 = 28,

(where the limitations on β are obtained using the same B’s as above),
in addition to:

(D) H ≡ 2H1 for some H1 > 0, H2
1 ≥ 8,

(S) L1 is of small type and H2 ≥ 32 or H2 = 28.

We call such decompositions as in (I)-(III), obtained by the inductive
process and removing conventions above, a ladder decomposition of
H.
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Note that Mn ≥ 0, M2
n ≥ 0 and Mn is of small type, for n = 2, 3.

Moreover, when Mn > 0, we will replace Mn with Mn + KS that has
the same properties, to avoid to study the two different numerically
equivalent cases for H. Also note that β ≥ α ≥ 2 and β ≥ α + 2 in
(I-A).

We will treat all these cases separately in the next sections.
The next three lemmas will be useful.

Lemma 6.1. If E.E1 ≤ 2, then E + E1 is nef.

Proof. Let Γ be a nodal curve with Γ.(E + E1) < 0. As E is nef,
we must have k := −Γ.E1 ≥ 1 and A := E1 − kΓ is primitive, effective
and isotropic by [22, Lemma 2.3]. Since A.L1 ≥ φ(L1) = E1.L1, we get
kΓ.L1 = (E1 − A).L1 ≤ 0, whence Γ.E > 0, because H is ample. This
yields k ≥ Γ.E + 1 ≥ 2. Hence E.E1 = E.A + kΓ.E ≥ 2Γ.E, and we
get k = 2, Γ.E = 1 and E.A = 0. Then A ≡ E by [21, Lemma2.1],
contradicting Γ.A = −Γ.E1 = 2. q.e.d.

From [11, Prop. 3.1.6, 3.1.4 and Thm. 4.4.1] and the lemma, E + E1

is base-point free when E.E1 = 2, and E + E1 is base-component free
when E.E1 = 1, unless E1 ∼ E + R, for a nodal curve R such that
E.R = 1. But since we are free to choose between E1 and E1 + KS ,
we adopt the convention of choosing E1 such that E + E1 is
base-component free. Thus we have

Lemma 6.2. If E.E1 = 2, then E + E1 is base-point free.
If E.E1 = 1, then E + E1 is base-component free. Furthermore if

there exists ∆ > 0 such that ∆2 = −2 and ∆.E1 < 0, then ∆ is a nodal
curve and E1 ∼ E +∆+KS.

Moreover in both cases we have H1(E1) = H1(E1 +KS) = 0.

Proof. We need to prove the last two assertions. If ∆ > 0 satis-
fies ∆2 = −2 and ∆.E1 < 0, then similarly to the previous proof one
obtains ∆.E1 = −1, so that E1 is quasi-nef and primitive and the de-
sired vanishings follow by [21, Cor. 2.5]. Now if E.E1 = 1 we obtain
that E1 ≡ E + ∆ by [21, Lemma2.1]. Since E1 is not nef, by [11,
Prop. 3.1.4, Prop. 3.6.1 and Cor. 3.1.4] there is a nodal curve R such
that E1 ∼ E +R+KS , whence ∆ = R. q.e.d.

Lemma 6.3. Let H ∼ βE + γE1 +M2 be of type (I) or (III), with
M2 > 0 and M2

2 ≤ 4. Let i = 2 and M2 ∼ E2 or i = 2, 3 and M2 ∼
E2 + E3 be genus 1 decompositions of M2 (note that, by construction,
E.Ej ≥ 1 for j = 1, 2). Assume that Ei is quasi-nef. Then:

(a) |2E + E1 + Ei| is base-point free.
(b) |E + E1 + Ei| is base-point free if β = 2 or if E.E1 = 1 and

E1.Ei 6= E.Ei − 1.
(c) Assume γ = 2 and E.E1 = E1.Ei = 1. Then E + Ei is nef if

either E.Ei ≥ 2 or if M2
2 ≥ 2 and E1.M2 ≥ 4.
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(d) Assume γ = 2, M2
2 = 2, E.E1 = E1.E2 = E1.E3 = 1 and that

both E2 and E3 are quasi-nef. Then either E + E2 or E + E3 is
nef.

(e) If E.E1 = E.Ei = 1 and E1.Ei 6= 1 then E1 +Ei is nef.

Proof. Assume R is a nodal curve with R.(E+E1+Ei) < 0. Arguing
as above, using Lemma 6.1, [22, Lemma2.3] and [21, Lemma 2.1], we
find that R.E1 = R.Ei = −1 and R.E = 1, so that 2E + E1 + Ei
is nef, whence base-point free, as φ(2E + E1 + Ei) ≥ 2, and (a) is
proved. Similarly, if E.E1 = 1, then E1 ≡ E+R by Lemma 6.2, whence
E1.Ei = E.Ei − 1, and (b) is proved.

The remaining assertions are proved similarly. q.e.d.

The general strategy to prove the nonextendability of S in the
remaining cases (I), (II), (III), (D) and (S), will be as follows: We will
first use the ladder decomposition and Propositions 5.2-5.4 to reduce to
genus one decompositions of M2 or M3 where we know all the intersec-
tions involved. Then we will find a big and nef divisor D0 on S such
that φ(D0) ≥ 2 and H−D0 is base-component free with (H−D0)

2 > 0.
Then H1(H−D0) = H1(D0−H) = 0. In some cases this D0 will satisfy
the conditions of B in Lemma 5.5, so that S will be nonextendable. In
the remaining cases we will apply Proposition 5.1, mostly without ref-
erence, in the following way: We denote by D a general smooth curve
in |D0|; we will do this without further mentioning. The surjectivity of
ΦHD,ωD will be proved using [23, Thm], and in all cases therein, with
the exception of (v), we will have that h0(OD(2D0 −H)) ≤ 1 if D2

0 ≥ 6
and h0(OD(2D0 − H)) = 0 if D2

0 = 4. Therefore the hypothesis (iii)
of Proposition 5.1 will always be satisfied and we will skip its verifi-
cation. To study the surjectivity of µVD,ωD we will use several tools,
outlined below. In several cases we will find an effective decomposition
D ∼ D1 +D2 and use Lemma 5.6. We remark that except possibly
for the one case in (15) below where D1 is primitive of canoni-
cal type, both D1 and D2 will always be smooth curves by [11,
Prop. 3.1.4 and Thm. 4.10.2]. Furthermore the spaces VD, VD1 and VD2

will always be base-point free. This is immediately clear for VD, as |D0|
is base-point free. As for VD1 and VD2 , one only has to make sure that,
when |H−D0| has base points (that is, φ(H−D0) = 1), in which case it
has precisely two distinct base points [11, Prop. 3.1.4 and Thm. 4.4.1],
they do not intersect the possible base points of |D1| and |D2|. This
will always be satisfied and we will not repeatedly mention this.

Here are the criteria we will use to verify that the desired multiplica-
tion maps are surjective:

The map µVD,ωD is surjective in any of the following cases:
(12)
H1(H − 2D0) = 0 and |D0| or |H −D0| is birational (see Rem. 6.4).
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(13) H1(H − 2D0) = 0 and |H −D0| is a pencil.

If VD1 is base-point free, µVD1
,ωD1

is surjective in any of the following
cases:

(14) H1(H−D0−D1) = 0, D1 is smooth and (H−D0).D1 ≥ D2
1 +3;

(15) H1(H −D0 −D1) = 0 and D1 is nef and isotropic.

If D2 is smooth and VD2 is base-point free, then µVD2
,ωD2

(D1) is sur-

jective if

h0(H −D0 −D2) + h0(OD2(H −D0 −D1)) ≤(16)
1
2(H −D0)

2 − 1 (see Rem. 6.5 below).

To see (12)-(13) note that VD = H0(OD(H −D0)) if H
1(H − 2D0) = 0,

whence (13) is the base-point free pencil trick, while (12) follows using
[1, Thm. 1.6] in addition, since OD(H − D0) is base-point free and is
either a pencil or birational. The same proves (14). As for (15) the
hypotheses imply VD1 = H0(OD1(H − D0)) and ωD1

∼= OD1 by [11,
III, §1], and surjectivity is immediate. For (16), the H0-lemma [15,
Thm. 4.e.1] gives surjectivity if dimVD2 − 2 = h0(H − D0) − h0(H −
D0 − D2) − 2 ≥ h1(ωD2(D1 − (H − D0))) = h0(OD2(H − D0 − D1)).
This is equivalent to (16) by Riemann-Roch.

Remark 6.4. A complete linear system |B| is birational if it de-
fines a birational map. By [11, Prop. 3.1.4, Lemma4.6.2, Thm. 4.6.3,
Prop. 4.7.1 and Thm. 4.7.1] a nef divisor B with B2 ≥ 8 defines a bi-
rational morphism if φ(B) ≥ 2 and B is not 2-divisible in PicS when
B2 = 8.

Remark 6.5. The inequality in (16) will be verified by giving an
upper bound on h0(H−D0−D2) and using Riemann-Roch and Clifford’s
theorem on D2 to bound h0(OD2(H −D0 −D1)).

7. Case (D)

We have H ≡ 2H1 whence H1 is ample with H2
1 ≥ 8 and φ(H) =

2φ(H1) ≥ 3 gives φ(H1) ≥ 2.
If H ∼ 2H1 +KS , we set D0 := H1 and apply Proposition 5.1. Note

that ΦHD,ωD is surjective by [23, Thm(iii)] and, as H1(H − 2D0) =
0, the map µVD,ωD is just µωD,ωD , which is surjective since D is not
hyperelliptic.

If H ∼ 2H1 we divide the treatment in various cases:

7.1. φ(H1) = 2 and H2
1 = 8. Using [22, Lemma2.4], we obtain the

cases (a1) and (a2) in the proof of Proposition 12.1.
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7.2. φ(H1) = 2 and H2
1 = 10. By [22, Lemma 2.4] we can write H ∼

4E + 2E1 + 2E2 and one easily sees, by Lemma 6.2, that either E1 or
E2 is nef. We can assume that E1 is nef and, possibly adding KS to E2,
that E + E2 is base-component free. We set D0 := E + 2E1 + E2 and
apply Proposition 5.1. Now ΦHD,ωD is surjective by [23, Thm(iii)]. As
for µVD ,ωD , consider the commutative diagram, with N := E + 2E1 +
E2 +KS ,

H0(2E)⊗H0(E + E2)⊗H0(N)

µ2E,E+E2

��

rD
// WD ⊗H0(OD(E +E2))⊗H0(ωD)

Id⊗µOD(E+E2),ωD

��

H0(H −D0)⊗H0(D0 +KS)

pD

��

WD ⊗H0(ωD(E + E2))

µWD,ωD(E+E2)

��

VD ⊗H0(ωD)
µVD,ωD

// H0(OD(H +KS)),

where pD and rD are the natural restriction maps, which are easily
seen to be surjective, and WD := Im{H0(2E) → H0(OD(2E))}. The
map µOD(E+E2),ωD is surjective by the base-point free pencil trick. To
prove that µVD,ωD is surjective it suffices to show that µWD,ωD(E+E2)

is surjective. The latter follows by the H0-lemma [15, Thm. 4.e.1], as
dimWD = 2 and WD is base-point free, and one computes h1(ωD(E2 −
E)) = h0(OD(E − E2)) = 0.

7.3. φ(H1) = 2 and H2
1 ≥ 12. We set D0 := H1 and apply Proposition

5.1. The map ΦHD,ωD is onto by [23, Thm(iv)] and µVD,ωD is onto by
(12).

7.4. φ(H1) ≥ 3. As S is regular, if it is extendable, it can be reem-
bedded so that it is linearly normal and extendable, as in the proof of
Corollary 2.2. Hence we can assume that S ⊂ PH0(2H1). Now H1 is
very ample [11, Cor. 2, Appendix Ch.IV], whence S is nonextendable
by [14, Thm. 1.2].

8. Case (I)

If M2 = 0, then H ≡ βE + γE1, E.E1 = 1, β ≥ 2, γ ∈ {2, 3} and
H2 ≥ 32 or H2 = 28. Now γ = E.H = φ(H) ≥ 3 so that γ = 3 and

β ≥ 6. We set D0 := H−⌊β+1
2 ⌋E−E1, which is nef by Lemma 6.1, and

use Proposition 5.1. By Lemma 6.2, we have h0(2D0 −H) ≤ 1, whence
ΦHD,ωD is surjective by [23, Thm(iii)-(iv)]. To see the surjectivity of
µVD,ωD we apply Lemma 5.7. By Lemma 6.2 we get H1(D0+KS−2E) =

0 andH−D0−2E = ⌊β−3
2 ⌋E+E1 is base-component free. AlsoH2(D0+

KS − 4E) = 0 and h0(H − 2D0 − 2E) = 0 by the nefness of E. Since
H1(H−2D0−4E) = 0, we get h0(OD(H−D0−4E)) ≤ h0(H−D0−4E).

Now H −D0 − 4E = ⌊β−7
2 ⌋E + E1, whence h

0(H −D0 − 4E) = ⌊β−5
2 ⌋

by Lemma 6.2 and (9) is satisfied.
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Hence S is nonextendable if M2 = 0.
Assume next that M2 > 0 and γ = 3. We also have β ≥ 3. Indeed,

if β = 2 we have L2 ∼ E1 +M2 and E.L2 = 1 + E.M2 = φ(H) − 2 ≤
E1.H − 2 = E1.M2 = E1.L2, contradicting the removing conventions of
Section 6 (because then (L2−E)2 ≥ (L2−E1)

2 ≥ 0, therefore we could
find E in a genus 1 decomposition of L2, but then β ≥ 3).

Lemma 8.1. If |H−2(E+E1)| has base points or h
1(H−3(E+E1)) 6=

0, then S is nonextendable.

Proof. Set N = E +E1. We have that H − 2N is not base-point free
if and only if it is not nef, in which case H − 3N is not quasi-nef by
ampleness of H, whence h1(H − 3N) 6= 0 by [21, Cor. 2.5]. Hence it
suffices to show that S is nonextendable if H − 3N is not quasi-nef.

Let ∆ > 0 be such that ∆2 = −2 and ∆.(H − 3N) ≤ −2. We
have ∆.N > 0 since H is ample. Also note that ∆.E1 ≥ 0, for if
not, we would have ∆.E ≥ 2, whence the contradiction (E + ∆)2 ≥ 2
and E1.(E + ∆) ≤ 0. Hence M2.∆ ≤ −2 and by [22, Lemma 2.4]
we can write M2 ∼ A + k∆, with A > 0, primitive, A2 = M2

2 and
k := −∆.M2 = ∆.A ≥ 2. Now if E.∆ > 0 we find that E.M2 ≥ k

and if equality holds, then E.A = 0 and E.∆ = 1, whence E ≡ A

by [21, Lemma2.1], a contradiction. We get the same contradiction if
E1.∆ > 0. Therefore

E.M2 ≥ −∆.M2 + 1 ≥ 3 if E.∆ > 0 and(17)

E1.M2 ≥ −∆.M2 + 1 ≥ 3 if E1.∆ > 0.

We first consider the case E.∆ > 0. If β = 3 then H is of type (I-B)
in Section 6 and L2 ∼ (3 − α)E + E1 +M2 is of small type, whence
E1.M2 ≤ 5 by Lemma 4.3, so that E1.(H−2E) = E1.(E+3E1+M2) ≤
6. Since φ(H) = E.H = 3 + E.M2 ≥ 6 by (17), we get α = 2 and
E1.H = 3 + E1.M2 ≥ 6, so that E1.M2 ≥ 3. Hence L2 ∼ E + E1 +M2

and L2
2 ≥ 14, a contradiction.

Therefore β ≥ 4, whence ∆.M2 ≤ −2 − (β − 3)∆.E ≤ −3, so that
E.M2 ≥ 4 by (17) and φ(H) ≥ 7, whence H2 ≥ 54 by [22, Prop. 1.4].
Now one easily verifies that B := 2E + E1 +∆ satisfies the conditions
in Proposition 5.2, so that S is nonextendable.

Now consider the case ∆.E = 0, where E1.∆ > 0, so that E1.M2 ≥ 3
by (17). Then L2 ∼ (β−α)E+E1+M2 if H is of type (I-B) in Section
6 and L3 ∼ (β − α − 2)E + E1 +M2 if H is of type (I-A). We claim
that the removing conventions of Section 6 now imply that E1.M2 ≤
E.M2 + 1 and, if β = 3, that E1.M2 ≤ E.M2. In fact if the latter
inequalities do not hold we have that E.L2 ≤ E1.L2, E.L3 < E1.L3 and
(E1 +M2 −E)2 ≥ 0, contradicting the fact that L2 and L3 are of small
type. Therefore E.M2 ≥ 2, and E.M2 ≥ 3 if β = 3, so that H2 ≥ 54.
Now one easily verifies that B := E + 2E1 +∆ satisfies the conditions
in Proposition 5.2. q.e.d.
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Now set D0 := 2(E+E1), which is nef by Lemma 6.1. By Lemma 8.1
we can assume that H−D0 is base-point free. Note that H.D0 = 2(β+
3 + (E + E1).M2) ≥ 16 with equality only if β = 3 and E.M2 = 1. But
in the latter case, since M2 does not contain E in its arithmetic genus
1 decompositions, we have that M2

2 = 0 and H2 = 30, a contradiction.
Hence (2D0−H).D0 < 0, so that ΦHD,ωD is surjective by [23, Thm(iii)].
The map µVD ,ωD is surjective by Lemma 5.6, using generalD1,D2 ∈ |E+
E1|. Indeed, by Lemma 8.1 we can assume h1(H−D0−Di) = 0, whence
µVD1

,ωD1
is surjective by (14), and µVD2

,ωD2
(D1) = µOD2

(H−D0),ωD2
(D1)

is surjective by [15, Cor. 4.e.4]. Therefore, in the case with M2 > 0 and
γ = 3, we have that S is nonextendable by Proposition 5.1.

Now we deal with the case γ = 2 and M2 > 0. We have E1.M2 ≤
E1.M2 + β − α = E1.L1 = φ(L1) ≤ φ(H) = 2 + E.M2 ≤ E1.H =
β+E1.M2. Moreover, since by construction M2 neither contains E nor
E1 in its arithmetic genus 1 decompositions, we have (M2 − E)2 < 0
and (M2 − E1)

2 < 0. Hence

1

2
M2

2 + 1 ≤ E.M2 ≤ E1.M2 + β − 2, and(18)

1

2
M2

2 + 1 ≤ E1.M2 ≤ E.M2 + 2− β + α ≤ E.M2 + 2.(19)

Proposition 8.2. Let H be of type (I) with γ = 2 and M2 > 0. Then
S is nonextendable if β ≥ 5.

Proof. We first prove that S is nonextendable ifM2 or E1+M2 is not
quasi-nef. The removing conventions in Section 6 imply E1.M2 ≥ E.M2.
Assume first there is a ∆ > 0 such that ∆2 = −2 and ∆.M2 ≤ −2. By
[22, Lemma 2.3], [21, Lemma2.1] and Lemma 6.2 we must have ∆.E > 0

and ∆.E1 ≥ 0. Then B := ⌊β2 ⌋E + E1 + ∆ satisfies the conditions in
Proposition 5.2 and we are done (some work is required to check that
H2 ≥ 54 if B2 = 6).

Assume similarly that there is a ∆ > 0 such that ∆2 = −2 and
∆.(E1 +M2) ≤ −2. By what we have just proved and Lemma 6.2, we
can assume that ∆.E1 = ∆.M2 = −1, but then we get E1 ≡ E + ∆,
whence E1.M2 = (E +∆).M2 < E.M2, a contradiction.

We next prove that S is nonextendable if M2
2 ≥ 4.

Indeed, if M2
2 ≥ 4, we write M2 ∼ E2 + . . . + Ek+1 as in Lemma

4.3 with k = 2 or 3. Moreover we can assume that 1 ≤ E.E2 ≤ . . . ≤
E.Ek+1, whence that E.M2 ≥ kE.E2. Set B := E + E1 + E2. Us-
ing (18) and (19), one easily verifies that B satisfies the conditions in
Propositions 5.2 or 5.3, and S is nonextendable, except when M2

2 = 4
and E.E2 = E.E3. In this case we can assume 1 ≤ E1.E2 ≤ E1.E3. By
(18), (19), Lemma 6.3(c) and Lemma 4.5, one verifies that B := E+E2

satisfies the conditions in Propositions 5.2 or 5.4.
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We can henceforth assume that E1+M2 andM2 are quasi-nef, whence
that E+E1+M2 is nef, and thatM2

2 ≤ 2. Set D0 := ⌊β−1
2 ⌋E+E1+M2.

Then H −D0 and H −D0− 2E are base-component free by Lemma 6.1
and µVD ,ωD surjects by Lemma 5.7, using [21, Cor. 2.5] and Lemma 6.1
to verify (9).

To end the proof we deal with ΦHD,ωD . By [21, Cor. 2.5] one gets
h0(M2−E) ≤ 1. Then ΦHD,ωD is onto by [23, Thm(iii)-(iv)] (whence S
is nonextendable by Proposition 5.1) unless possibly if β = 5, E.M2 =
E1.M2 = 1,M2

2 = 0 and h0(M2 − E) > 0. We now treat this case,
setting E2 =M2. We first need two auxiliary results.

Claim 8.3. Set E0 = E. Let F > 0 be a divisor such that F 2 = 0
and F.E = F.E1 = F.E2 = 1. If F is not nef there exists a nodal curve
R such that F ≡ Ei +R and Ei.R = 1 for some i ∈ {0, 1, 2}.

Proof. Let R be a nodal curve such that R.F < 0. Now A := F +
(R.F )R is primitive, effective and isotropic by [22, Lemma 2.3]. SinceH
is ample, there is an i ∈ {0, 1, 2} such that Ei.R ≥ 1. As 1 = Ei.F , the
only possibility is Ei.R = −R.F = 1, and A ≡ Ei by [21, Lemma2.1].

q.e.d.

Claim 8.4. There is an isotropic effective 10-sequence {F1, . . . , F10}
such that F1 = E, F2 = E1, F3 = E2. For 4 ≤ i ≤ 10 set F ′

i =
E + E1 + E2 − Fi. Then F ′

i > 0, (F ′
i )

2 = 0 and F ′
i .E = F ′

i .E1 =
F ′
i .E2 = 1. Moreover the following conditions are satisfied: (i) Fi is nef

for 7 ≤ i ≤ 10; (ii) E + F ′
i is nef for 9 ≤ i ≤ 10; (iii) if E2 > E then

h0(2F10 + E − E2 +KS) = 0.

Proof. The 10-sequence exists by completing the isotropic 3-sequence
{E,E1, E2}, cf. [11, Cor. 2.5.6].

To see (i), suppose that F4, . . . , F7 are not nef. By Claim 8.3 there
is an i ∈ {0, 1, 2} and j, k ∈ {4, . . . , 7}, j 6= k, such that Fj ≡ Ei + Rj
and Fk ≡ Ei + Rk. Therefore Rj .Rk = (Fj − Ei).(Fk − Ei) = −1,
a contradiction. Upon renumbering we can assume that Fi is nef for
7 ≤ i ≤ 10.

Now (F ′
i )

2 = 0 and F ′
i .E = F ′

i .E1 = F ′
i .E2 = 1, whence F ′

i > 0 by
Riemann-Roch. To see (ii) suppose that E + F ′

7, E + F ′
8 and E + F ′

9

are not nef. By Claim 8.3 there is an i ∈ {1, 2} and j, k ∈ {7, 8, 9},
j 6= k, such that F ′

j ≡ Ei+Rj and F
′
k ≡ Ei+Rk, giving a contradiction

as above. Upon renumbering we can assume that E + F ′
i is nef for

9 ≤ i ≤ 10.
To see (iii), let F be either F9 or F10 and suppose that 2F + E −

E2+KS ≥ 0. Let Γ be a nodal component of E2−E. Since 2F +KS ≥
E2 − E ≥ Γ and h0(2F + KS) = 1, we get that Γ must be either a
component of F or of F +KS. Therefore Γ is, for example, a component
of both F9 and F10. This is not possible since F9.F10 = 1 and F9 and
F10 are nef and primitive. q.e.d.



508 A. L. KNUTSEN, A.F. LOPEZ & R. MUÑOZ

Conclusion of the proof of Proposition 8.2. By Claim 8.4(ii) we know
that E + F ′

10 is nef, whence, using [11, Prop. 3.1.6 and Cor. 3.1.4], we
can choose F ≡ F10 so that, setting F ′ = E+E1+E2−F , we have that
E + F ′ is a base-component free pencil. Let D0 := 3E +E1 + F . Then
D0 is nef by Lemma 6.1 and Claim 8.4(i) and H−D0 = E+F ′ is a base-
component free pencil. Moreover, one can check that h0(2D0 −H) ≤ 1,
so ΦHD,ωD is surjective by [23, Thm(iii)-(iv)].

We have h0(H − 2D0) = 0 as E.(H − 2D0) = −1. By Riemann-Roch
and Claim 8.4(iii), we have h1(H−2D0) = h0(2F10+E−E2+KS) = 0.
Therefore µVD,ωD is surjective by (13). q.e.d.

The cases left to treat of Case (I) are therefore the ones with β ≤ 4
(and γ = 2 and M2 > 0). This involves a detailed case-by-case study,
in particular of the various intersection properties of the components in
the genus one decompositions of M2. The proof of the following result
involves no new ideas and is therefore left to the note [20]:

Proposition 8.5. Let H be of type (I) with β ≤ 4, γ = 2 and M2 > 0
and such that H2 ≥ 32 or H2 = 28. Then S is nonextendable, except
possibly for the following two cases, where H2 = 28 and E2 > 0, E2

2 = 0:

(i) H ∼ 3E + 2E1 + E2, E.E1 = E1.E2 = 1, E.E2 = 2,
(ii) H ∼ 4E + 2E1 + E2, E.E1 = E.E2 = E1.E2 = 1.

9. Case (II)

As M3 does not contain E, E1 or E2 in its genus 1 decompositions,
we have:

(20) If M3 > 0, then E.M3 ≥
1

2
M2

3 + 1, Ei.M3 ≥
1

2
M2

3 + 1, i = 1, 2.

Using Lemma 6.2 and [22, Lemma 2.3], it is easy to check that B :=
E +E1 + E2 is nef. If

(21) 2(β + γ + δ) + (E + E1 + E2).M3 ≥ 17,

then (3B−H).B ≤ 1, whence if 3B−H > 0, the nefness of B gives that
it is a nodal cycle. Thus either h0(3B−H) = 0 or h0(3B+KS−H) = 0
and S is nonextendable by Proposition 5.3.

We now deal with (21). Assume first that M3 > 0. Then, in view of
(20), the condition (21) is satisfied unless M2

3 = 0, in which case S is
nonextendable by Lemma 5.5(ii).

Assume now thatM3 = 0. Then (21) is satisfied unless 6 ≤ β+γ+δ ≤
8. Since E.H = γ + δ and E1.H = β + δ, we get γ ≤ β, and since
E1.L1 = β −α+ δ and E2.L1 = β−α+ γ, we get γ ≥ δ. As we assume
that H is not 2-divisible in NumS, we end up with (β, γ, δ) = (3, 2, 2)
or (3, 3, 2).

The first case is case (a3) in the proof of Proposition 12.1. In the
second case, set D0 := 2E + E1 + E2 = E + B. Now E1 is nef by
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Lemma 4.5, so that H − D0 ≡ B + E1 is nef, whence base-point free.
We have (H − 2D0)

2 = −2 and (H − 2D0).H = 0. Thus hi(H − 2D0) =
hi(H − 2D0 +KS) = 0 for all i = 0, 1, 2. Then ΦHD,ωD is onto by [23,
Thm(iii)] and µVD,ωD is onto by (12).

10. Case (III)

Since H2 ≤ 62 and L2 is of small type, we have

(22) φ(H) = E.H = 2γ +E.M2 ≤ 7 and either M2 > 0 or β = γ = 3.

AsM2 contains neither E nor E1 in its genus 1 decompositions, we have:

(23) If M2 > 0, then E.M2 ≥
1

2
M2

2 + 1 and E1.M2 ≥
1

2
M2

2 + 1.

By Proposition 5.4 and Lemma 6.1 we can assume

(24) (E + E1).H = 2(β + γ) + (E + E1).M2 ≤ 16.

10.1. The case β = 2. We have M2 > 0 by (22) and E.M2 ≥ 1 by
(23).

If γ = 3, then E.M2 = 1 and φ(H) = 7 by (22), so that M2
2 = 0

by (23). As L2 ≡ E1 + M2, the removing conventions of Section 6
require that E1.L2 < E.L2. Hence E1.M2 ≤ 2, giving the contradiction
49 = φ(H)2 ≤ H2 ≤ 40. Therefore γ = 2, so that E.M2 ≤ 3 by (22),
whence M2

2 ≤ 4 by (23). Moreover (E + E1).M2 ≤ 8 by (24), whence

(25) φ(H)2 = (4+E.M2)
2 ≤ H2 = 16+M2

2+4(E+E1).M2 ≤ 48+M2
2 .

Combining with [22, Prop. 1.4], we get E.M2 ≤ 2, whence M2
2 ≤ 2 by

(23).
If M2

2 = 2, then E.M2 = 2 by (23) and since (E1.M2)
2 = φ(L1)

2 ≤
L2
1 = 4E1.M2+2, we get E1.M2 ≤ 4. WritingM2 ∼ E2+E3 for isotropic

E2 > 0 and E3 > 0 with E2.E3 = 1, we have E.E2 = E.E3 = 1. As
Ei.H ≥ φ(H) = E.H = 6 for i = 2, 3, we find E1.E2 = E1.E3 = 2. By
Lemma 4.5, both E2 and E3 are quasi-nef, whence E+E1+Ei is nef for
i = 1, 2 by Lemma 6.3(b). SetD0 := E+E1+E2. Now (H−2D0)

2 = −2
with (H − 2D0).H = 0, whence hi(2D0 −H) = hi(2D0 −H +KS) = 0
for i = 0, 1, 2. Then ΦHD,ωD is surjective by [23, Thm(iii)] and µVD,ωD
is surjective by (12).

Finally, ifM2
2 = 0, then S is nonextendable by Lemmas 6.1 and 5.5(ii)

unless (E + E1).M2 ≤ 3. In the latter case, by (25), we get E.M2 = 1
and E1.M2 = 2. Set E2 :=M2.

Claim 10.1. There is an isotropic effective 10-sequence {f1, . . . , f10},
with f1 = E, f10 = E2, all fi nef for i ≤ 9, and, for each i = 1, . . . , 9,
there is an effective decomposition H ∼ 2fi+2gi+hi, where gi > 0 and
hi > 0 are primitive and isotropic with fi.gi = gi.hi = 2 and fi.hi = 1.
Furthermore, gi + hi is not nef for at most one i ∈ {1, . . . , 9}.
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Proof. Let Q = E +E1 +E2, so that Q2 = 10, φ(Q) = 3 and, by [11,
Cor. 2.5.5], there is an isotropic effective 10-sequence {f1, . . . , f10} such
that 3Q ∼ f1 + . . . + f10. Since E.Q = E2.Q = 3 we can assume that
f1 = E, f10 = E2 and then fi.E1 = 1 for i ∈ {2, . . . , 9}. Suppose i ≤ 9.
By Lemma 4.5, fi is nef and if φ(H −2fi) = 1, then H−2fi = 4F1+F2

for Fk > 0, F 2
k = 0 and F1.F2 = 1, yielding fi.F1 = 1, whence F1.H = 3,

a contradiction. Therefore φ(H − 2fi) = 2, so that H − 2fi = 2gi + hi
for isotropic gi > 0 and hi > 0 with gi.hi = 2. One easily sees that gi
and hi are primitive, fi.gi = 2, fi.hi = 1 and gi and hi are quasi-nef by
Lemma 4.5. By the ampleness of H and [22, Lemma 2.3], it follows that
if gi + hi is not nef for some i ≤ 9, then there is a nodal curve Ri with
Ri.gi = 0, Ri.fi = 1 and hi ≡ fi+Ri. Now if gi+hi and gj +hj are not
nef for two distinct i, j ≤ 9, then H ≡ 3fi + 2gi +Ri ≡ 3fj + 2gj +Rj .
Since fj.H = 5 and fj is nef, we obtain gi.fj = 1 and Ri.fj = 0. As
(Ri + Rj).H = 2 < φ(H), we get Ri.Rj ≤ 1. Hence Ri.H = 1 implies
Ri.gj = 0 and Ri.Rj = 1. Similarly Rj.gi = 0, whence we get the
absurdity 6 = gi.H = 3gi.fj + 2gi.gj + gi.Rj = 3 + 2gi.gj . q.e.d.

By the claim we can assume that H ∼ 2E + 2E1 + E2 with E1 + E2

nef. We have (E1 + E2 − E)2 = −2. Since 1 = (E1 + E2).(E1 + E2 −
E) < φ(E1 + E2) = 2, we have that E1 + E2 − E is a nodal cycle, if
effective. Hence, replacing E with E +KS if necessary, we can assume
that h0(E1+E2−E) = 0. As h2(E1+E2−E) = h0(E−E1−E2+KS) = 0
by nefness of E, we get h1(E1 +E2 − E) = 0.

Set D0 := 2E + E1, so that D0 is nef by Lemma 6.1 and H −D0 =
E1 +E2 is nef by assumption, whence base-point free. We have (2D0 −
H).E = −1, whence h0(2D0 − H) = 0, and by [23, Thm(iii)] we get
that ΦHD,ωD is surjective. The map µVD ,ωD is surjective by Lemma
5.6, with D1 = E and D2 ∈ |E + E1| a general smooth curve. Indeed,
since h1(H − D0 − D1) = h1(E1 + E2 − E) = 0, the map µVD1

,ωD1
is

surjective by (15). Now h0(H −D0 −D2) = h0(E2 − E) = 0, whence
h0(E2−2E) = 0, so that h1(E2−2E) = 1 by Riemann-Roch. Therefore
h0(OD2(H −D0 −D1)) = h0(OD2(E1 +E2 −E)) ≤ 1 and µVD2

,ωD2
(D1)

is surjective by (16).

10.2. The case β = 3. We can assume that H ∼ 3E + γE1 + M2,
possibly after replacing E with E +KS . Moreover let us see that

(26) (γ − 1− ε)E1 +M2 is quasi-nef for ε = 0, 1.

Let ∆ > 0 be such that ∆2 = −2 and ∆.((γ − 1− ε)E1 +M2) ≤ −2. If
∆.E1 < 0, then ∆.E ≥ 2 by the ampleness of H. By [22, Lemma 2.3]
the divisor A := E1 + (E1.∆)∆ is primitive, effective and isotropic
and E.E1 = 2 yields the contradiction E1.∆ = −1, E.∆ = 2 and
E ≡ A. Hence ∆.E1 ≥ 0, so that M2 > 0 and l := −∆.M2 ≥ 2. Again
we can write M2 ∼ A2 + l∆ with A2 > 0 primitive, A2

2 = M2
2 and



EXTENDABILITY OF PROJECTIVE SURFACES 511

∆.A2 = l. If ∆.E = 0, then ∆.E1 ≥ 2 by ampleness of H, whence
E1.M2 ≥ 4, so that γ = 2 by (24), which moreover implies E1.M2 ≤ 5,
so that l = E1.∆ = 2. As (E1 + ∆)2 = 2, we must have 2φ(L1) ≤
(E1 + ∆).L1 = φ(L1) + ∆.((3 − α)E + 2E1 + M2) = φ(L1) + 2, and
we get the contradiction 4 ≤ E1.M2 ≤ E1.L1 = φ(L1) ≤ 2. Therefore
∆.E > 0, so that E.M2 ≥ 3. Thus E.M2 = 3, γ = 2 and φ(H) = 7
by (22), whence M2

2 ≤ 4 by (23). By (24) we must have E1.M2 ≤ 3,
but as H2 = 42 + 4E1.M2 +M2

2 ≥ 54 by [22, Prop. 1.4], using (23), we
get E1.M2 = 3. Since E1.(H − 2E) = 5 ≤ φ(H) = 7 we have α = 2,
L1 ∼ E +2E1 +M2 and L2 ∼ E +M2. Since the latter is of small type
and M2

2 ≤ 4, we must have M2
2 = 0 or M2

2 = 4. In the latter case we
get L2

2 = 10 and φ(L2) = 3. Now (E +∆)2 ≥ 0 and (E +∆).M2 ≤ 1,
whence φ(M2) = 1 and we can writeM2 ∼ 2F1+F2 for some Fi > 0 with
F 2
i = 0 and F1.F2 = 1. Therefore 3 = φ(L2) ≤ F1.L2 = F1.E + 1, so

that F1.E ≥ 2, giving the contradiction 3 = E.M2 = 2F1.E+F2.E ≥ 4.
Hence M2

2 = 0, L2
1 = 26 and φ(L1) = E1.L1 = 5, contradicting [22,

Prop. 1.4]. Therefore (26) is proved.
Now set D0 := 2E + E1, which is nef by Lemma 6.1. Moreover

H − D0 is easily seen to be nef by (26), whence base-point free. We
have h0(2D0 − H) = 0 by nefness of E and (22), whence ΦHD ,ωD is
surjective by [23, Thm(iii)].

If M2 > 0 and (γ,E.M2, E1.M2) = (2, 1, 1), then M2
2 = 0 by (23),

(H − 2D0)
2 = −2 and (H − 2D0).H = 0, whence h1(H − 2D0) = 0, so

that µVD,ωD is surjective by (12).
In the remaining cases, to show the surjectivity of µVD ,ωD we apply

Lemma 5.6 with D1 = E + KS and D2 general in |E + E1 + KS|.
Since h1(H − D0 −D1) = h1((γ − 1)E1 +M2 +KS) = 0 by (26) and
[21, Cor. 2.5], we have that µVD1

,ωD1
is surjective by (15). Similarly,

h1(H−D0−D2) = h1((γ−2)E1+M2+KS) = 0, whence µVD2
,ωD2

(D1) =

µOD2
(H−D0),ωD2

(D1), which is surjective by [15, Cor. 4.e.4] if M2 > 0,

since we assume (γ,E.M2, E1.M2) 6= (2, 1, 1). If M2 = 0, then γ = 3
by (22), whence E1 is nef by Lemma 4.5. In particular, h1(H − 2D0) =
h1(E1 − E) = 1 by Riemann-Roch. It is then easily checked that (16)
is satisfied, so that µVD2

,ωD2
(D1) is surjective.

11. Case (S)

We haveH ∼ αE+L1 with L
2
1 > 0 by Lemma 4.4 and L1 of small type

by hypothesis. We also assume that H is not numerically 2-divisible in
NumS and H2 ≥ 32 or H2 = 28.

If α = 2 we get H2 = 4E.L1 + L2
1 = 4φ(H) + L2

1, whence (φ(H))2 ≤
4φ(H) + L2

1 and Lemma 4.3 yields φ(H) ≤ 5, incompatible with the
hypotheses on H2. Hence α ≥ 3. Write L1 ∼ F1 + . . . + Fk as in
Lemma 4.3 with k = 2 or 3 and E.F1 ≥ . . . ≥ E.Fk. If E.Fk > 0
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then φ(H) + 1 ≤ Fk.(L1 + E) ≤ Fk.L1 +
1
kE.L1 = Fk.L1 +

1
kφ(H) by

definition of α, yielding Fk.L1 ≥ 3. As this also holds if E.Fk = 0, we
get L2

1 = 10, k = 3 and φ(H) = E.L1 ≤ 4. Thus we can decompose
L1 ∼ E + E1 + E2 to obtain the following cases

(27) H ∼ βE+E1+E2, β := α+1 ≥ 4, E.E1 = 1, E.E2 = E1.E2 = 2,

(28) H ∼ βE+E1+E2, β := α+1 ≥ 4, E.E1 = E.E2 = 2, E1.E2 = 1.

Claim 11.1. (i) In the cases (27) and (28) we have that E + E2 is
nef and E2 is quasi-nef.

(ii) In case (27) both nE + E2 − E1 and nE + E2 − E1 + KS are
effective and quasi-nef if n ≥ 2, and moreover they are primitive and
isotropic if n = 2.

Proof. The proof of (i) is similar to many proofs above. As for (ii),
note that h0(2E + E2 − E1) = h0(2E + E2 − E1 +KS) = 1 by Lemma
4.5, whence also h1(2E + E2 − E1) = h1(2E + E2 − E1 +KS) = 0 by
Riemann-Roch. Since E.(2E + E2 − E1) = 1, the statement follows for
n = 2 by [21, Cor. 2.5], and consequently for all n ≥ 2 again by the
same result. q.e.d.

Lemma 11.2. Let H be as in (27) or (28). Then S is nonextendable.

Proof. We first treat case (27) with β = 4. Set D0 := 3E + E2,
which is nef by Claim 11.1(i). Then H −D0 is a base-component free
pencil by Lemma 6.2. By Claim 11.1(ii) we have h0(2D0 −H) = 1 and
h1(H−2D0) = 0, so that ΦHD ,ωD surjects by [23, Thm(iv)] and so does
µVD,ωD by (12).

In the general case, set D0 := ⌊β2 ⌋E + E2, which is nef by Claim
11.1(i), and H−D0 is base-component free by Lemma 6.2. Since 2D0−
H ≤ E2 − E1 we have h0(2D0 −H) = 0 as (E + E2).(E2 − E1) = −1
in case (27) and H.(E2 − E1) = 0 in (28). Hence ΦHD,ωD is surjective
by [23, Thm(iii)]. Now if β is even and we are in case (28) we have
h0(H−2D0) = h2(H−2D0) = 0 as H.(H−2D0) = H.(E2−E1) = 0. It
follows that h1(H − 2D0) = 0 and consequently µVD ,ωD is surjective by
(12). We can therefore assume that β is odd in case (28). In particular,
β ≥ 5, and we just need to prove the surjectivity of µVD ,ωD , for which
we will use Lemma 5.7.

We have h1(D0 +KS − 2E) = 0 by Claim 11.1(i) and [21, Cor. 2.5].
Moreover h2(D0 + KS − 4E) = 0 by the nefness of E. As β ≥ 5, we
have that |H −D0 − 2E| is base-component free by Lemma 6.2. Since
(E + E2).(−E + E1 − E2) < 0, we have that h0(H − 2D0 − 2E) =

h0((β − 2⌊β2 ⌋− 2)E +E1 −E2) ≤ h0(−E +E1 −E2) = 0, whence (9) is
equivalent to

(29) h0(OD(H −D0 − 4E)) ≤

(
β − ⌊

β

2
⌋ − 2

)
E.E1 − 1.
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In the case (28) with β = 5 we have degOD(H − D0 − 4E) = (−E +
E1).(2E + E2) = 3 and D is nontrigonal by [22, Cor. 1], therefore
h0(OD(H −D0 − 4E)) ≤ 1 and (29) is satisfied.

Hence we can assume, for the rest of the proof, that β ≥ 5 in case (27)

and β ≥ 7 (and odd) in case (28). This implies β−⌊β2 ⌋−4 ≥ −1 in case

(27) and ≥ 0 in case (28), so that we have h0((β − ⌊β2 ⌋ − 4)E + E1) =

(β − ⌊β2 ⌋ − 4)E.E1 + 1 by Lemma 6.2 and Riemann-Roch. Hence

h0(OD(H −D0 − 4E)) ≤ h0(H −D0 − 4E) + h1(H − 2D0 − 4E))

≤
(
β − ⌊β2 ⌋ − 4

)
E.E1 + 1 + h1

(
KS +

(
2⌊β2 ⌋+ 4− β

)
E + E2 − E1

)
,

and to prove (29) it remains to show

(30) h1
(
KS +

(
2⌊
β

2
⌋+ 4− β

)
E + E2 −E1

)
≤ 2E.E1 − 2.

In case (27) the inequality (30) follows from Claim 11.1(ii). In case
(28), as h2(KS + 3E + E2 − E1) = h0(E1 − 3E − E2) = 0 and β is
odd, (30) is equivalent to h0(N) ≤ 2, where N := KS + 3E − E1 + E2.
If, by contradiction, h0(N) ≥ 3, then we can write |N | = |M | + ∆ for
∆ fixed and h0(M) ≥ 3. Since E.N = 0 and E is nef, we must have
E.M = E.∆ = 0, whence M ∼ 2lE for an integer l ≥ 2 and E2.∆ ≥ 0
by the nefness of E + E2. Now 5 = E2.N ≥ 4l ≥ 8, a contradiction.
Hence (30) is proved. q.e.d.

12. Proof of Theorem 1.5 and surfaces of genus 15 and 17

We have shown in Sections 5-11 that every Enriques surface S ⊂ Pr

of genus g ≥ 18 is nonextendable, thus proving Theorem 1.5. Moreover
we have a more precise version if g = 15 or g = 17:

Proposition 12.1. Let S ⊂ Pr be a smooth Enriques surface with
hyperplane divisor H such that H2 = 32 or H2 = 28 and E > 0 such
that E.H = φ(H). Then S is nonextendable if H satisfies:

(a) H2 = 32 and either φ(H) 6= 4 or φ(H) = 4 and neither H nor
H − E are 2-divisible in PicS.

(b) H2 = 28 and either φ(H) = 5 or (φ(H), φ(H − 3E)) = (4, 2) or
(φ(H), φ(H − 4E)) = (3, 2).

Proof. We have shown that S is nonextendable except for the follow-
ing ladder decompositions:

(a1) H ∼ 4E + 4E1, E.E1 = 1 (see 7.1);
(a2) H ∼ 4E + 2E1, E.E1 = 2 (see 7.2);
(a3) H ∼ 3E + 2E1 + 2E2, E.E1 = E.E2 = E1.E2 = 1 (see §9);
(b1) H ∼ 3E + 2E1 + E2, E.E1 = E1.E2 = 1, E.E2 = 2 (see Prop.

8.5(i));
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(b2) H ∼ 4E + 2E1 + E2, E.E1 = E.E2 = E1.E2 = 1 (see Prop.
8.5(ii)).

One easily sees that cases (a1)-(a3) do not satisfy (a) and (b1)-(b2)
do not satisfy (b). Moreover, H2 = 32 in (a1)-(a3) and H2 = 28 in
(b1)-(b2). q.e.d.

13. A new Enriques-Fano threefold

We now prove a more precise version of Proposition 1.4.

Proposition 13.1. There exists an Enriques-Fano threefold X ⊆ P9

of genus 9 satisfying:

(a) X does not have a Q-smoothing. In particular, it does not lie in
the closure of the component of the Hilbert scheme made of the
examples of Fano-Conte-Murre-Bayle-Sano.

(b) Let µ : X̃ → X be the normalization. Then X̃ has canonical
but not terminal singularities, it does not have a Q-smoothing and

(X̃, µ∗OX(1)) does not belong to the list of Fano-Conte-Murre-
Bayle-Sano.

(c) On the general smooth Enriques surface S ∈ |OX(1)|, we have
OS(1) ∼= OS(2E1 + 2E2 + E3), where E1, E2 and E3 are smooth
irreducible elliptic curves with E1.E2 = E1.E3 = E2.E3 = 1.

Proof. Let Y ⊂ P13 be the well-known Enriques-Fano threefold of
genus 13. By [13, 9] we have that Y is the image of the blow-up of
P3 along the edges of a tetrahedron, via the linear system of sextics
double along the edges. This description of Y allows to identify the
linear system embedding its general hyperplane section T ⊂ P12. Let
P1, . . . , P4 be four independent points in P3, let lij be the line joining

Pi and Pj and denote by P̃3 the blow-up of P3 along the lij ’s with

exceptional divisors Eij and by H̃ the pull-back of a plane in P3. Let

L̃ = 6H̃ − 2
∑
Eij . Therefore T is just a general element S̃ ∈ |L̃|,

embedded with L̃|S̃. Now let l̃ij be the inverse image of lij on S̃. Then

by [16, Ch.4, §6], for each pair of disjoint lines lij , lkl on S̃ there is a

genus one pencil |2H̃
|S̃

− l̃ik − l̃il − l̃jk − l̃jl| = |2l̃ij |. Therefore L̃
|S̃

∼

2l̃12 + 2l̃13 + 2l̃14 and the hyperplane bundle of T is as in (c) with

Ei := l̃1,i+1.
Consider the linear spanM ∼= P3 of E3, the projection πM : P13−− →

P9 and set X = πM (Y ) ⊂ P9. Let ψ : Ỹ → Y be the blow up of Y along

E3 with exceptional divisor F , set H = (ψ∗OY (1))(−F ) and let T̃ ∈
|H| ∼= |IE3/Y (1)| be the smooth Enriques surface isomorphic to T . Then
one can easily check that |H| is base-point free and defines a morphism

ϕH such that X = ϕH(Ỹ ) ⊆ P9. Also H3 = (2E1 + 2E2 + E3)
2 = 16,

whence X is a threefold.
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To see that X is not a cone over its general hyperplane section S :=

ψ(T̃ ), consider the four planesH1, ...,H4 in P3 defined by the faces of the
tetrahedron. As any sextic hypersurface in P3 that is double on the edges
of the tetrahedron and goes through another point of Hi must contain
Hi, we see that these four planes are contracted to four singular points
Q1, . . . , Q4 ∈ Y . Moreover their linear span 〈Q1, . . . , Q4〉 in P13 has
dimension 3, since the hyperplanes containing Q1, . . . , Q4 correspond to
sextics in P3 containing H1, . . . ,H4. Now suppose that X is a cone with
vertex V . Then Q1, . . . , Q4 project to V , whence dim〈M,Q1, . . . , Q4〉 ≤
4 and dimM ∩ 〈Q1, . . . , Q4〉 ≥ 2. On the other hand we know that
M = 〈E3〉 ⊂ H, where H is a general hyperplane. Therefore we have
that Qi 6∈ H, 1 ≤ i ≤ 4, whence dimH ∩ 〈Q1, . . . , Q4〉 = dimM ∩
〈Q1, . . . , Q4〉 = 2, so that H ∩ 〈Q1, . . . , Q4〉 = M ∩ 〈Q1, . . . , Q4〉. Now
choose the projection from M ′ = 〈E2〉 ⊂ H. If also πM ′(Y ) is a cone
then, aguing as above, we get H ∩ 〈Q1, . . . , Q4〉 = M ′ ∩ 〈Q1, . . . , Q4〉,
whence dimM ∩ M ′ ≥ 2. But this is absurd since dimM ∩ M ′ =
6 − dim〈E2 ∪ E3〉 = −6 + h0(OT (2E1 + E2 + E3)) = 0. Hence X is an
Enriques-Fano threefold satisfying (c).

Now let X ′ be the only threefold in P9 appearing in Bayle-Sano’s list,
namely an embedding, by a line bundle L′, of a quotient by an involution
of a smooth complete intersection Z of two quadrics in P5. Let S′ be a
general hyperplane section of X ′. We claim that the hyperplane bundle
L′
|S′ is 2-divisible in NumS′. As 2E1 + 2E2 + E3 is not 2-divisible in

NumS, this shows in particular that X does not belong to the list of
Bayle-Sano.

By [2, §3, p. 11], if we let π : Z → X ′ be the quotient map, we have
that −KZ = π∗(L′) and the K3 cover π|S′′ : S′′ → S′ is an anticanonical

surface in Z, that is a smooth complete intersection S′′ of three quadrics
in P5. Therefore, if HZ is the line bundle giving the embedding of Z in
P5, we have −KZ = 2HZ . Hence, setting p = π|S′′ and HS′′ = (HZ)|S′′ ,

we deduce that p∗(L′
|S′) ∼= (π∗L′)|S′′ = 2HS′′ . Suppose now that L′

|S′ is

not 2-divisible in NumS′. Then (L′
|S′)2 = 16 and by [22, Prop. 1.4] we

have that φ(L′
|S′) = 3 and it is easily seen that there are three isotropic

effective divisors E1, E2, E3 such that either (i) L′
|S′ ∼ 2E1 + 2E2 + E3

with E1.E2 = E1.E3 = E2.E3 = 1 or (ii) L′
|S′ ∼ 2E1 + E2 + E3 with

E1.E2 = 1, E1.E3 = E2.E3 = 2. In case (i) we get that p∗(E3) ∼ 2D,
for some D ∈ PicS′′. Since (p∗(E3))

2 = 0, we have D2 = 0 and, as
we are on a K3 surface, either D or −D is effective. As 4HS′′ .D =
p∗(L′

|S′).p
∗(E3) = 8, we have HS′′.D = 2 and D is a conic of arithmetic

genus 1, a contradiction. In case (ii) we get that p∗(E2+E3) ∼ 2D′, for
someD′ ∈ PicS′′ with (D′)2 = 2 andHS′′ .D′ = 5. But now |D′| cuts out
a g25 on the general element C ∈ |HS′′ | and this is a contradiction since
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C is a smooth complete intersection of three quadrics in P4. Therefore
L′
|S′ is 2-divisible in NumS′.

Now assume that X has a Q-smoothing, that is a small deformation
X −→ ∆ over the 1-parameter unit disk, such that, if we denote a fiber
by Xt, we have that X0 = X and Xt has only cyclic quotient terminal
singularities. Let L = OX(1). We have thatH1(NS/X0

) = H1(OS(1)) =
0, whence the Enriques surface S deforms with any deformation of X0.
Therefore we can assume, after restricting ∆ if necessary, that there
is an L ∈ PicX such that h0(L) > 0 and L|X = L (this also follows

from the proof of [17, Thm. 5], since H1(TP9
|X
) = 0). Taking a general

element of |L| we therefore obtain a family S −→ ∆ of surfaces whose
fibers St belong to |Lt|, where Lt := L|Xt and S0 = S ∈ |L| is general,
whence a smooth Enriques surface with hyperplane bundleH0 := L|S0

∼
2E1 + 2E2 + E3 of type (i) above. Therefore, after restricting ∆ if
necessary, we can also assume that the general fiber St is a smooth
Enriques surface ample in Xt, so that (Xt, St) belongs to the list of
Bayle [2, Thm.B] and is therefore a threefold like X ′ ⊂ P9.

Let Ht = (Lt)|St . As above Ht ≡ 2At, for some At ∈ PicSt. Taking
the limit, we get H0 ∼ 2E1 + 2E2 + E3 ≡ 2A0 for some A0 ∈ PicS0,
yielding that E3 is 2-divisible in NumS0, a contradiction.

We have therefore shown that X does not have a Q-smoothing. In
particular it does not lie in the closure of the component of the Hilbert
scheme consisting of Enriques-Fano threefolds with only cyclic quotient
terminal singularities. Hence (a) is proved.

To see (b) note that Ỹ is terminal (because Y is), whence the mor-

phism ϕH factorizes through X̃ . Since X̃ is Q-Gorenstein by [6], an

easy calculation, using a common resolution of singularities of Ỹ and X̃

and the facts that −K
X̃

≡ µ∗OX(1) and −KY ≡ OY (1), shows that X̃
is canonical.

Finally, the same proof as above shows that (X̃, µ∗OX(1)) does not

belong to the list of Fano-Conte-Murre-Bayle-Sano and that X̃ has no
Q-smoothing, whence is nonterminal by [25, MainThm. 2]. This proves
(b). q.e.d.
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