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SCALAR CURVATURE RIGIDITY OF GEODESIC
BALLS IN S™

SIMON BRENDLE & FERNANDO C. MARQUES

Abstract

In this paper, we prove a scalar curvature rigidity result for
geodesic balls in S™. This result contrasts sharply with the coun-
terexamples to Min-Oo’s conjecture constructed in [7].

1. Introduction

This paper is concerned with rigidity phenomena involving the scalar
curvature. These questions are motivated to a large extent by the pos-
itive mass theorem in general relativity, which was proved by Schoen
and Yau [18] and Witten [20]. An important corollary of this theorem
is that any Riemannian metric on R" which has nonnegative scalar cur-
vature and agrees with the Euclidean metric outside a compact set is
necessarily flat.

It was observed by Miao [16] that the positive mass theorem implies
the following rigidity result for metrics on the unit ball:

Theorem 1. Suppose that g is a Riemannian metric on the unit ball
B™ C R™ with the following properties:

e The scalar curvature of g is nonnegative.

e The induced metric on the boundary 0B"™ agrees with the standard
metric on 0B".

e The mean curvature of 0B™ with respect to g is at least n — 1.

Then g s isometric to the standard metric on B™.

An important generalization of Theorem 1 was proved by Shi and
Tam [19].

Motivated by the positive mass theorem, Min-Oo [17] posed the fol-
lowing question:

Min-Oo0’s Conjecture. Suppose that g is a Riemannian metric on
the hemisphere S with the following properties:
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e The scalar curvature of g is at least n(n — 1).

o The induced metric on the boundary 0ST agrees with the standard
metric on 0S” .

e The boundary 0SY is totally geodesic with respect to g.

Then g is isometric to the standard metric on ST.

Min-Oo’s conjecture has been verified in many special cases (see e.g.
[11], [13], [14]). A related rigidity result for real projective space RP3
was established in [3] (see also [4]). A survey of these and other related
results can be found in [6].

Very recently, counterexamples to Min-Oo’s conjecture were con-
structed in [7].

Theorem 2 (S. Brendle, F.C. Marques, A. Neves [7]). Given any
integer n > 3, there exists a smooth Riemannian metric g on the hemi-
sphere S™ with the following properties:

o The scalar curvature of § is at least n(n —1) at each point on S .

e The scalar curvature of g is strictly greater than n(n —1) at some
point on S

e The metric § agrees with the standard metric in a neighborhood of
o087

The proof of Theorem 2 relies on a perturbation analysis.

In this paper, we study the analogous rigidity question for geodesic
i

balls in S™ of radius less than 7. To fix notation, let g be the standard

metric on S™ and let f : S™ — R denotes the restriction of the coordinate
function z,4+1 to S™. We will consider a domain of the form Q = {f >
ct. Ife> \/%, we have the following rigidity result:

. , _ 2
Theorem 3. Consider the domain Q = {f > c}, where ¢ > Nt

Let g be a Riemannian metric on €0 with the following properties:

e Ry >n(n—1) at each point in Q.
e The metrics g and § induce the same metric on 0.
o H, > Hy at each point on 0N2.

If g — G is sufficiently small in the C*-norm, then ¢*(g) = g for some
diffeomorphism ¢ : Q — Q with ¢lgg = id.

We remark that the conclusion of Theorem 3 holds under the weaker
assumption that g is close to g in W2P-norm for p > n.

Note that Theorem 3 is false for the hemisphere {f > 0}: by Theorem
4 in [7], there exist Riemannian metrics on the hemisphere which satisfy
the assumptions of Theorem 3 and are arbitrary close to the standard
metric g in the C*°-topology, but which are not isometric to g.

The proof of Theorem 3 relies on a perturbation analysis which is
similar in spirit to Bartnik’s work on the positive mass theorem (cf.
[1], Section 5). Similar techniques have been employed in the study



SCALAR CURVATURE RIGIDITY OF GEODESIC BALLS IN S™ 381

of the total scalar curvature functional (see e.g. [2], Section 4G) and
the Yamabe flow (cf. [5]). Dai, Wang, and Wei [8],[9] have obtained
interesting stability results for manifolds with parallel spinors, as well
as for Kahler-Einstein manifolds.

2. The scalar curvature and boundary mean curvature of a
perturbed metric

In this section, we consider a smooth manifold 2 with boundary 0f2.
Let g be a fixed Riemannian metric on 2. Moreover, we consider another
Riemannian metric g = g + h, where |hlg < 3 at each point in Q. For
abbreviation, we write (h?);;, = g’ hij hig.

Proposition 4. The scalar curvature of g satisfies the pointwise es-
timate

R, — Ry + (Ricg, h) — (Ricg, h?)
1 .. _ _ 1 .. _ _
+ 597 7" 9" Dihiy Dihig — 5 579" 5" Dihp Dihjq
1 _ i Lo _
5 7 Dy (tr5(h)) Dy (tr5(R) + Di (9" ¢ (Dyhyt — Dilyi)) |
< C'|h||Dh* 4+ C|h)3.

Here, D denotes the Levi-Civita connection with respect to g, and C is
a positive constant which depends only on n.

Proof. The Levi-Civita connection with respect to g is given by
DxY = DxY +T(X,Y),

where I' is defined by

Q(F(Xv Y),Z) = ((EXh)(K Z) + (ﬁYh)(X’ Z) - (EZh)(X’Y))

N =

In local coordinates, the tensor I' can be written in the form
m 1 Im 1y D) D)
ik = 59" (Djhia + Dihji — Dihjy).

With this understood, the scalar curvature of ¢ is given by

Ry = g™ (Ricg)ik + 9" 9" 9pq I P?k — 9" 9" gpq F;I‘l Iy
b il 2 —=2
- glk gﬂ (Di,khjl - Di,lhjk)
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(cf. [7], Proposition 16). This implies
R, — Rj + (Ricg, h) — (Ricg, h?)

3 1
— 2 g9 g" gP" Dihgy Dy + 59" G g* Dihgy Dihjg

—

+1 777 0, (trg(h)) Oy (trg(h)) — g7 g% Dihjp Oy(trg(h))
—ii —kl —pg 5 — i 1 ==2 =2
+77 g" g" Dihjp Dihig + g™ ¢ (Dj yhji — D jhji,)
< C|h||Dh* + C|h.
Hence, we obtain
R, — Ry + (Ricg, h) — (Ricg, h?)
1 .. _ _ 1 .. _ _
+ 597" 7" Dihp Djhig — 5" 5" 7 Dihy Dihjq
1 o _
+3 g7 Op(trg(h)) 9y (trg(h)) + D; (g”f 9" (Dihji — Dzhjk)) ‘
< C|h||Dh* + C[n)?,

as claimed. q.e.d.

In the next step, we estimate the mean curvature of the boundary
0 with respect to the metric g. To that end, we assume that g and g
induce the same metric on the boundary 0€2; in other words, we assume
that h(X,Y) = 0 whenever X and Y are tangent vectors to 0f.

Proposition 5. Assume that g and g induce the same metric on the
boundary 0. Then the mean curvature of O with respect to g satisfies

n—1
‘2 (H, ~ Hg) — (h(7,7) - ih(v, 7?2+ > hlew7)?) Hy
a=1
n—1
. %h(v, 7)) 3 2(Desh) (€0, ) (Egh)(ea,ea))‘
a=1

< C|hf? Dh| + C |h[.

Here, {e, : 1 < a <n—1} is a local orthonormal frame on 092, and C
18 a positive constant that depends only on n.

Proof. Using the identity

n—1 n—1

Hyv— Hgv = — Z(Deaea — D, e,) = — Zf(ea,ea),

a=1 a=1
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we obtain

n—1 n—1
=2 g(T(ea;€a),7) ==Y (2(De,h)(ea,7) — (Dh)(eq; €a)).
a=1 a=1

Clearly, g(7,7) = 1+ h(7,7). Moreover, it is easy to see that the vector
v— 22;11 h(eq,7) eq is orthogonal to 92 with respect to g. From this,
we deduce that

n—1 n—1 1
2
7> hlea,7)eq = <1+h(v,v) - h(ea,v)2> v,
a=1 a=1

hence

g(v,7) = (1 + h(7,7) — S h(ea,v)2> %.

a=1

Substituting these identities into the previous formula for Hy, the as-
sertion follows. q.e.d.

3. Perturbations of the standard metric on S™

We now consider perturbations of the standard metric g on S™. To
fix notation, let f : S — R denote the restriction of the coordinate
function z,11 to S™, and let Q = {f > c} be a geodesic ball centered at
the north pole. Here, c¢ is a positive real number which will be specified
later.

Let g be a Riemannian metric on ). We will assume throughout that
g and § induce the same metric on the boundary 92. Moreover, we
assume that g = g + h, where |h|z < % at each point in €.

Our goal in this section is to estimate the integral

/(Rg —n(n—1)) f dvolg
Q

(see also [12]).
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Proposition 6. We have

‘/ s —n(n—1)— (n—l)]h\)fdvol— —/]Dh\ f dvolg
+3 / IV (trg(h))? f dvolg — o / 77 g* g7 Dihyy Dihjg f dvoly

+/9 7’ glqh (thjl—ﬁlhjk)aifdvolg

+ / glp gkq g] hpq (thﬂ — Dlh]k)(‘) deOl—
Q

+/ ]l thﬂ Dlhjk)fkfddg
o0

yﬂf” thq Dk‘hjl — Dlhjk)y de'g

\

o0

/ g4 ] hpq th]l Elhjk)ﬁpfdag

gc/ |h| thy2dvol—+C/ |h|? dvoly +C/ |h|? |Dh| dog,

where C' is a positive constant that depends only on n and c.

Proof. Using Proposition 4 and the divergence theorem, we obtain

/Q(Rg “n(n— 1)+ (n— 1) trg(h) — (n— 1) [B[2) f dvoly

1 [ — 1
+ 1/ |Dh|? f dvoly — 3 / 7 g gP1 Dy, Dihyg f dvoly
Q
1 [ — _ _
+ 1 /Q \V(trg(h))]2 f dvolg — /Qg’ g]l (Drhji — Dihjy) 0; f dvolg

+/ g @' (Dihji — Dihjk) Gi 7™ f dog
20

< C/ |h| |Eh|2dvolg+0/ |h|? dvoly.
Q Q

Here, 7 denotes the outward-pointing unit normal vector to 02 with
respect to the metric g. Using the identity D. i k f=—19;,, we obtain

/Q (n — 1) try(h) f dvoly — /Q %G (Dihyt — Dihyy) & f dvol,

— [ (trs(W) 3t ~ b, T ) doy =0,
oN
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Thus, we conclude that
‘ /Q(Rg —n(n—1) = (n—1)|h|2) f dvolg + i /Q |Dh)? f dvolg
+7 [ W) favoly =5 [ 9755 Dity Dits f volg
- /Q(g““ ¢' — g% 3 (Dihji — Dihyy) 0i f dvolg

+ / 9" ¢! (Dihji — Dihjx) Gin ™ f dog
20

< 0/ |h| |ﬁh|2dvolg+0/ |h|? dvoly.
Q Q
From this, the assertion follows easily. q.e.d.

In the remainder of this section, we will assume that % is divergence-
free in the sense that g% D;hy; = 0.

Proposition 7. Assume that h is divergence-free. Then
1 _
‘ /(Rg —n(n —1)) f dvolg + —/ |Dh|? f dvolg
/ IV (trg(h))[* f dvolg + / |h|Z f dvolg
1 1 —
+ = / trg(h)? f dvoly + —/ (|h|§ +3h(7,0)%) 0y f dog
2 Ja 4 Jaa
o 1 — .
+ / §' Dxhj 7" f dog — = / G" G" hyp Dihjq 7 f dog
o9 2 Joa
— /59 §j” glq hpq (Ekhﬂ — Elhjk) 7k f dO’g

- /m GG hyy Dyhji 7P f dog

< c/ \h| (D dvoly + C/ Ihf? dvoly + C/ \h[2 (D] doy,
Q Q a0
where C' is a positive constant that depends only on n and c.
Proof. Since g has constant sectional curvature 1, we have
=2 —2 _ _ _ _
D5 ihiq = Dy ihjq + g Gi; — hig G + hj1 Gig — hij Gig-
Since h is divergence-free, it follows that

—Z

g“ D; lhyq = nhyg — trg(h) giq-
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This implies
_ / gij gkl gpq hkp Elhjq 8,f dVOlg — / Eij Ekl ﬁpq Ezhkp Elhjq f dVOIE
Q Q

_ / g gklgpqhkpﬁilhjq f dvolg — / " G4 hyy Dihj, 7 f dog
Q o0

=n / |h|2 f dvolg — / trg(h)? f dvoly — / g™ g4 by, Dihj, 7 f dog.
Q Q oN

From this, we deduce that
/Q % 3P G hyy (Dihji — Dihjy,) 0; f dvolg

1 g — _
-5 /Q G g" gP1 Dy Dihjg f dvolg

1 [ Lo B
=3 /Q g" Ok(|hl7) 0:f dvolg — - /Q 7% G G hyg Dihjx 0i f dvolg
n 2 1 9
5 |h|§de01§ — = [ trg(h)® fdvolg
2 Ja 2 Jo
L[ g, D, 7 f dog
9 8Qg g kp Hlltjq g

Integration by parts gives

/lek gjp glq hpq (Ekhﬂ — Elhjk) 82f dVOlg
1 y _ _
_ 5 /Qg“ gkl gpq Dzhkp Dlhjq f dVOlg
1 I —2
=73 /Q [h[2 Agf dvoly + 5 /Qg F GG hyg b D1 f dvolg

1 1 o
+—/ |h|%85fdag——/ TEGP hyy hyr, 0 71 dog
2 Jon 2 Jon

1
+ ﬁ/ |h|%fdvol§ - = / trg(h)? f dvoly
2 Jo 2 Ja

1

— 5/ TGP hyy Dihj, 7 f dog
o0

on — 1 1
5 /Q |h|2 f dvolg — 5 /Q trg(h)? f dvolgy
1

1 o
+—/ |h|385fdag——/ TEGP hyy hyr, 0 71 dog
2 Joq ¢ 2 Jon
1

-3 / " g% by, Dihj, 7 f dog.
o0
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Moreover, we have

/ gip gkq gjl hpq (Ekhjl - Elhjlg) 82f dVOly

Q

= /Qgip g" hipq Ok (trg(h)) O; f dvolg

- /Qgip " hpq trg(h) Eikf dvolg + /89 GP hyg trg(h) 0; f 71 dog

= / trg(h)? f dvoly + / G hpq trg(h) 0; f 77 do.
Q o0
Putting these facts together, we obtain

/ gPgriglt hpq (Dihji — Dihjy) 0, f dvolg
Q

+ / 7 PG g (Dihji — Dihyy,) 9 f dvolg
Q

1 . — —
-3 /Q 7 g* gP1 Dy, Db, f dvoly
2n — 1 1
= Tl2 /‘h’%de01§+§/ trg(h)2fdvolg
Q Q

1 1 . .
+—/ |h|§abfdag——/ G GP hpy hji 0: f 71 dog
2 Joa 2 Joa

. 1 _ .
+ / G hpg trg(h) 0; f 7 dog — = / G" G4 hyp Dihj 7 f dog
o9 2 Joq

2n — 1 1
5 /Q |h|2 f dvolg + 3 /Q trg(h)? f dvoly

1 _ .
1 [ 2+ 30005 doy 5 [ 55 by Dity 7 f o
4 Jogo 2 Jaq

Hence, the assertion follows from Proposition 6. q.e.d.

4. Analysis of the boundary terms

In this section, we analyze the boundary terms in Proposition 7. As
in the previous section, we assume that g is the standard metric on S™,
and Q = {f > ¢} centered at the north pole. Moreover, we consider a
Riemannian metric on 2 of the form g =g+ h, where |hlz < % at each
point in €.
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Proposition 8. Assume that h is divergence-free. Then

P 1
/ 7! Dyhji " dog — 3 / gl g" hip Dihjg 77 dag
oN 0N
— /aQ gjp glq hpq (Ekhﬂ — Elhjk) 7k dO’g
- / G°1G" hpy Dihji 7P dog
[2)9)

n—1

= — /aQ Z )(ea, V) — (Dyh)(eq, q)) dog

Q
—

+/ (1——h( 7)) h(7,7) Hy dog
(oY)

3n —2
n_l/aQZhea, 2 Hy dog.

Here, {eq : 1 < a <n—1} is a local orthonormal frame on 092, and C
18 a positive constant that depends only on n and c.

Proof. Let {e, : 1 <a <n—1} be a local orthonormal frame on 0f2.
Since h is divergence-free, we have

o 1 _ .
g Dihj 7" — 55" G hiy Dihjo 7

— GG hyy (Dhji — Dihyy) 7% — G0 G7" hypy Dihjy o7

n—1
=—(1-h(7,9) Y _ (2(De,h)(€q,7) — (Drh)(€a €a))
1 Z_i 1 n—1 .
+ (1= 5h@9) Y (De,h)(ea,?) = 5 > (De,h) (#.7) hlea, )
a=1 a=1
+ = Z h(ea,7) (De,h)(€q, ep) Z h(eq,v Jh)(ep, ep).
ab 1 a,b=1

At this point, we define a one-form w on 99 by w(e,) = (1 — & h(7,7))

2
h(eq,7). Since 9N is umbilic with respect to g, we have

— 1
Dea? = n—1 H§6a7

where Hy denotes the mean curvature of J€) with respect to the metric
g. Using this relation, we obtain the following formula for the divergence
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of w:
1 n—1 o 1 n—1 o
divao(w) = (1 - 3 h(v,7)) ;(Deah)(ea,ﬁ) -5 ;(Deah)(v, V) h(eq, V)
1 n—1
- (-3 h(7 v)) h(v,v) Hg — - h(eq,7)* Hy
/”L —
a=1
Moreover, we have the pointwise identities
n—1 . n
Z(Debh)(eaa eb) = 1 h(ea, ﬁ) Hg
b=1
and
n—1 . 9
Z(Deah)(eb, ep) = e h(eq,7) Hy.
b=1

Putting these facts together, we obtain
1
] thﬂ V — §g gpq hk Dlh]qy
— G779 hyq (Dihji — Dihji) 7" — G g hypg Dyhji 7P

n—1

=—(1-h(7,v)) (2(De,h)(€q,7) — (Dyh)(€a, €a))

a=1
1
+ (L= 5 h(7,9)) h(m,9) Hy + 5 — Zh (ea,7)? Hg + divag(w).
Therefore, the assertion follows from the dlvergence theorem. q.e.d.

Combining Proposition 8 and Proposition 5, we can draw the follow-
ing conclusion:

Corollary 9. If h is divergence-free, then we have
| @~ b)) (H, - ) do
o0

o 1 _ .
- /8 Qgﬂ Dyhj 7* da§+§ /8 Qg’”gm hip Dihj 7 dog

+ /ag Ejp glq hpq (Ekhﬂ — Elhjk) ﬁk dO’g

+ / 3"’ hyy Dyhj 7P dog
o0

h(w,7)? H; dog + / h(eq,7)? Hydog
/m()ggn—lmz oy

<C |h|2|ﬁh|dag+0/ |h|? doyg,
o0 o0

+
-
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where C' is a positive constant that depends only on n and c.

Proof. 1t follows from Proposition 5 that

n—1

— U, U 3 7, 7)? e o
/8Q<h(7 4h(7)+;h(aa)>Hdg
n—1 .
+/ 171D S QD)) = (Poeasca)) dog

gc/ yh\2@hydag+c/ | dog.
o0 o0

Moreover, we have

o 1 _ .
/ 7' Dyhjv* dog — 5 / 9" 9" hip Dihjg 7 dog
o0 o0
— /a gjp §lq hpq (Ekhﬂ — Elhjk)?k dO‘g
Q

—/ §"1G%" hyy Dyhji 7P dog
80

by Proposition 8. Putting these facts together, the assertion follows.
q.e.d.
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Theorem 10. Assume that h is divergence-free. Then

‘/Q(Rg—n(n—l))fdvolg+/ (2 - h(7,7)) (H, — Hy) f do

o0

1 [ — 1 [ —
+—/ ]Dh\2fdvolg+—/ |V (trg(h))|* f dvoly
4 Jo 4 Jo

1 1
+ - / ’h‘%f dVOlg + = / tl'g(h)2 f dVOly
2 g Y 2 Jo

n—1
+/ h(v,v)z%fdaﬁl/ > hlea,)* Oy dog
Ely) 2 Joa a=1

n—1
1/ 7,7)? z / 7)?

+= | W@ Hgfdog+ s | > h(eq,7)? Hy f dog
4 20 ( ) g g 2(77/—1) aQa:1 ( ) g g

< 0/ A |Eh|2dvolg+0/ |h|? dvoly
Q Q

+C/ \hy2@hyda§+c/ Ihf? dory.
o0 o0
Here, C is a positive constant that depends only on n and c.

Proof. Recall that f is constant along the boundary 0f2. Hence, the
assertion is a consequence of Proposition 7 and Corollary 9. q.e.d.

5. Proof of Theorem 3

To prove Theorem 3, we need an analogue of Ebin’s slice theorem for
manifolds with boundary [10] (see also [12]). The proof is standard,
and works on any compact manifold with boundary.

Proposition 11. Fir a real number p > n. If ||g — gllw2ryg) s
sufficiently small, we can find o diffeomorphism ¢ : Q — Q such that
vloa =id and h = ¢*(g) — g is divergence-free. Moreover,

Ihllw2r g < Nllg —dllw2rg),

where N is a positive constant that depends only on €.

Proof. Let . denote the space of symmetric two-tensors on €2 of class
W?2P_ and let .# denote the space of Riemannian metrics on  of class
W2P. Moreover, let 2~ denote the space of vector fields of class W3P
that vanish along the boundary 0f2, and let 2 denote the space of all
diffeomorphisms ¢ : © — Q of class W?3P satisfying ¢|sq = id. Clearly,
the tangent space to .# at g can be identified with .#; similarly, the
tangent space to & at the identity can be identified with 2 .

There is a natural action

A:Dx M — M, (0, 9) = ¢"(9)-
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Let us consider the linearization of A around the point (id,g). This
gives a map L : Ti.qZ — Tg.#. The map L sends a vector field £ € 2
to the Lie derivative Z¢(g) € .. Standard elliptic regularity theory
implies that

S ={%(G) £ € L} d{h €S his divergence-free}

(compare [12], p. 523). Hence, the assertion follows from the implicit
function theorem. g.e.d.

We now complete the proof of Theorem 3. Let g be a Riemannian
metric on the domain 2 = {f > ¢} with the following properties:

e R, > n(n— 1) at each point in Q.
e The metrics g and § induce the same metric on 0f).
e H, > Hy at each point on 0f.

If [|g — Gllw2»ag) is sufficiently small, Proposition 11 implies the ex-
istence of a diffeomorphism ¢ : Q@ — Q such that ¢|spg = id and
h = ¢*(g) — 7 is divergence-free.

Note that R -4 > n(n — 1) at each point in Q and H.,) > Hy at
each point on 9. Applying Theorem 10 to the metric ¢*(g) =g+ h,
we obtain

1 — 1 —
—/ |Dh|2fdvolg—|——/ [V (trg(h))|* f dvoly
4 Jo 4 Jo
1 1
+5/9‘}1’3de01§+E/Qtrg(h)2fdvolg
n—1
1
+/ h(v,?)zagfdag+§/ > h(ea,7)* 0, f dog
oQ o0

n—1
1/ — 9 n / 9
+ = h(v,v)* Hg fdog + ——— h(eq,V)” Hg f dog

< 0/ |h| |ﬁh|2dvolg+0/ |h|? dvolg
Q Q

+0/ |h|? |Eh|dag+c/ |h|? dog.
o0 o0

If we choose ¢ > —2— . then




SCALAR CURVATURE RIGIDITY OF GEODESIC BALLS IN S™ 393

at each point on 9€). This implies

! / |Dh|? fdvolﬂ1 / |V (trg(h))[? f dvolg
4 Ja 4 Ja
+1/ |h|§fdvolg+1/trg(h)2fdvolg
2 Ja 2 Ja
< 0/ |h| |ﬁh|2dvolg+0/ |h|? dvolg
Q Q

+C/ |h|? ]Eh\dag—i—(j/ |h|? dog.
o0 o0

By the trace theorem, the error terms on the right hand side are bounded
from above by C ||h[[c1 (0,9 ||h||%,v1’2(9@. Hence, if [|h]|c1(qg) is suffi-

ciently small, then h vanishes identically, and therefore ¢*(g) = g. This
completes the proof of Theorem 3.

(1]

References

R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl.
Math. 39 (1986), 661-693, MR 0849427, Zbl 0598.53045.

A. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin,
2008, MR 2371700, Zbl 1147.53001.

H. Bray, S. Brendle, M. Eichmair, & A. Neves, Area-minimizing projective
planes in three-manifolds, Comm. Pure Appl. Math. 63 (2010), 1237-1247,
MR 2675487, Zbl 1200.53053.

H. Bray, S. Brendle, & A. Neves, Rigidity of area-minimizing two-spheres in
three-manifolds, Comm. Anal. Geom. 18 (2010), 821-830

S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent.
Math. 170 (2007), 541-576, MR 2357502, Zbl 1130.53044.

S. Brendle, Rigidity phenomena involving scalar curvature, Surveys in Differen-
tial Geometry (to appear).

S. Brendle, F.C. Marques, & A. Neves, Deformations of the hemisphere that
increase scalar curvature, Invent. Math. 185 (2011), 175-197.

X. Dai, X. Wang, & G. Wei, On the stability of Riemannian manifolds with par-
allel spinors, Invent. Math. 161 (2005), 151-176, MR 2178660, Zbl 1075.53042.

X. Dai, X. Wang, & G. Wei, On the variational stability of Kdhler-FEinstein
metrics, Comm. Anal. Geom. 15 (2007), 669-693, MR 2395253, Zbl 1149.53027.

D. Ebin, The manifold of Riemannian metrics, Proc. Sympos. Pure Math., vol.
XV (Berkeley, Calif., 1968), 11-40, Amer. Math. Soc., Providence RI, 1970,
MR 0267604, Zbl 0205.53702.

M. Eichmair, The size of isoperimetric surfaces in 3-manifolds and a rigidity
result for the upper hemisphere, Proc. Amer. Math. Soc. 137 (2009), 2733-2740,
MR 2497486, Zbl 1187.53038.

A.E. Fischer & J.E. Marsden, Deformations of the scalar curvature, Duke Math.
J. 42 (1975), 519-547, MR 0380907, Zbl 0336.53032.

F. Hang & X. Wang, Rigidity and non-rigidity results on the sphere, Comm.
Anal. Geom. 14 (2006), 91-106, MR 2230571, Zbl 1119.53029.



394

(14]

(15]
(16]

(17]

(18]

(19]

S. BRENDLE & F.C. MARQUES

F. Hang & X. Wang, Rigidity theorems for compact manifolds with boundary
and positive Ricci curvature, J. Geom. Anal. 19 (2009), 628-642, MR 2496569,
Zbl 1175.53056.

L. Huang & D. Wu, Rigidity theorems on hemispheres in mon-positive space
forms, Comm. Anal. Geom. 18 (2010), 339-363, MR 2672236, Zbl pre05853040.

P. Miao, Positive mass theorem on manifolds admitting corners along a hyper-
surface, Adv. Theor. Math. Phys. 6 (2002), 1163-1182, MR 1982695.

M. Min-Oo, Scalar curvature rigidity of certain symmetric spaces, Geometry,
topology, and dynamics (Montreal, 1995), 127-137, CRM Proc. Lecture Notes
vol. 15, Amer. Math. Soc., Providence RI, 1998, MR 1619128, Zbl 0911.53032.

R. Schoen & S.T. Yau, On the proof of the positive mass conjecture in general
relativity, Comm. Math. Phys. 65 (1979), 45-76, MR 0526976, Zbl 0405.53045.

Y. Shi & L.F. Tam, Positive mass theorem and the boundary behaviors of compact
manifolds with nonnegative scalar curvature, J. Diff. Geom. 62 (2002), 79-125,
MR 1987378, Zbl 1071.53018.

E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80
(1981), 381-402, MR 0626707, Zbl 1051.83532.

DEPARTMENT OF MATHEMATICS
STANFORD UNIVERSITY

450 SERRA MALL, BLDG 380
STANFORD, CA 94305

E-mail address: brendle@math.stanford.edu

INSTITUTO DE MATEMATICA PURA E APLICADA (IMPA)
EsTRADA DONA CASTORINA 110
22460-320 R10 DE JANEIRO, BRAZIL

E-mail address: coda@impa.br



