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FUNCTORIAL RELATIONSHIPS
BETWEEN QH∗(G/B) AND QH∗(G/P )

Naichung Conan Leung & Changzheng Li

Abstract

We give a natural filtration F on QH∗(G/B), which respects
the quantum product structure. Its associated graded algebra
GrF (QH∗(G/B)) is isomorphic to the tensor product ofQH∗(G/P )
and a corresponding graded algebra of QH∗(P/B) after localiza-
tion. When the quantum parameter goes to zero, this specializes
to the filtration on H∗(G/B) from the Leray spectral sequence
associated to the fibration P/B → G/B −→ G/P .

1. Introduction

Let G be a simply connected complex simple Lie group, B be a Borel
subgroup, and P ⊃ B be a parabolic subgroup of G. The natural
fibration P/B→G/B−→G/P of homogeneous varieties gives rise to a
Z2-filtration F on H∗(G/B) over Q (or C) such that GrF (H∗(G/B)) ∼=
H∗(P/B)⊗H∗(G/P ) as graded algebras by the Leray-Serre spectral se-
quence. Given another parabolic subgroup P ′ with B ⊂ P ′ ⊂ P , we ob-
tain the corresponding natural fibration P ′/B → P/B −→ P/P ′. Com-
bining it with the former one, we obtain a Z3-filtration on H∗(G/B).
We can continue this procedure to obtain a (maximal) Zr+1-filtration.

In the present paper, we study the small quantum cohomology rings
QH∗(G/P )’s of homogeneous varieties G/P ’s, which are deformations of
the ring structures on H∗(G/P )’s by incorporating genus zero 3-pointed
Gromov-Witten invariants of G/P ’s into the cup product. We show the
“functorial relationships” between QH∗(G/B) and QH∗(G/P ) in the
sense that the Zr+1-filtration on H∗(G/B) can be generalized to give a
Zr+1-filtration on QH∗(G/B) and there exist canonical maps between
quantum cohomologies, in analog with the classical ones. We begin with
a toy example to illustrate our results.

Example 1.1. WhenG = SL(3,C), G/B = {V1 6 V2 6 C3 | dimC Vi
= 1, i = 1, 2} =: Fℓ3 is a complete flag variety. Given a maximal para-
bolic subgroup P ⊃ B, we have P/B = P1 and G/P = P2 together with

a natural fibration P1 i
→֒ Fℓ3

π
−→ P2. The quantum cohomology ring
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QH∗(G/B) has a basis consisting of Schubert classes σw’s over Q[q1, q2],
indexed by the Weyl group W = S3 = {1, s1, s2, s1s2, s2s1, s1s2s1}. To
obtain the Z2-filtration F on QH∗(G/B), we need a deformation gr
of the classical grading map which satisfies gr(qa1q

b
2σ

w) = agr(q1) +
bgr(q2) + gr(σw). In this example, gr is given explicitly by Table 1.

Table 1. gr(qa1q
b
2σ

w) = (i, j) with − 2 ≤ i ≤ 4, 0 ≤ j ≤ 6

4 q 2
1 q 2

1 σ
s2 q 2

1 σ
s1s2 q 2

1 q2σ
s1 q 2

1 q2σ
s2s1 q 2

1 q2σ
s1s2s1 q 3

1 q
2
2

3 q1σ
s1 q1σ

s2s1 q1σ
s1s2s1 q 2

1 q2 q 2
1 q2σ

s2 q 2
1 q2σ

s1s2 q 2
1 q

2
2 σ

s1

2 q1 q1σ
s2 q1σ

s1s2 q1q2σ
s1 q1q2σ

s2s1 q1q2σ
s1s2s1 q 2

1 q
2
2

1 σs1 σs2s1 σs1s2s1 q1q2 q1q2σ
s2 q1q2σ

s1s2 q1q
2
2 σ

s1

0 1 σs2 σs1s2 q2σ
s1 q2σ

s2s1 q2σ
s1s2s1 q1q

2
2

−1 0 0 0 q2 q2σ
s2 q2σ

s1s2 q 2
2 σ

s1

−2 0 0 0 0 0 0 q 2
2

�
��
i
j

0 1 2 3 4 5 6

This determines a Z2-filtration F = {Fc}c∈Z2 on QH∗(G/B). The
main point is that this filtration respects the quantum multiplication,
i.e., FcFd ⊂ Fc+d. Indeed, this can be easily checked with the following
well known quantum products for Fℓ3:

σs1 ⋆ σs1=σs2s1 + q1, σs1 ⋆ σs1s2 = σs1s2s1 ,

σs1 ⋆ σs2s1 =q1σ
s2 , σs2 ⋆ σs2 =σs1s2 + q2,

σs2 ⋆ σs2s1 = σs1s2s1 , σs2 ⋆ σs1s2 =q2σ
s1 ,

σs1s2 ⋆ σs1s2s1 =q1q2σ
s2 , σs1s2 ⋆ σs1s2 = q2σ

s2s1 ,

σs1 ⋆ σs1s2s1=q1σ
s1s2 + q1q2, σs2s1 ⋆ σs1s2s1 =q1q2σ

s1 ,

σs2s1 ⋆ σs2s1 = q1σ
s1s2 , σs2 ⋆ σs1s2s1 =q2σ

s2s1 + q1q2,

σs1 ⋆ σs2 =σs1s2 + σs2s1 , σs1s2 ⋆ σs2s1 = q1q2,

σs1s2s1 ⋆ σs1s2s1=q1q2 σ
s1⋆ σs2.

This Z2-filtration of the algebra structure on QH∗(G/B) is a q-
deformation of the classical one on H∗(G/B), which comes from the
Leray spectral sequence. Due to the existence of such a filtration, we can
easily check that there are algebra isomorphisms ϕ̄ : QH∗(G/B)/I −→
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QH∗(P/B) and ψ̄ : QH∗(G/P ) −→ A/J , where A :=
⋃

j≥0 F(0,j) is

a subalgebra of QH∗(G/B), J := F(0,−1) is an ideal of A, and I is

the ideal in QH∗(G/B) spanned by those qa1q
b
2σ

w’s with their gradings
(d1, d2) satisfying d2 > 0. Here ϕ̄ sends qa1q

b
2σ

w + I to yj where qa1q
b
2σ

w

is the (unique) one among such expressions with its grading equal to
(j, 0), and ψ̄ sends xj to the (unique) qa1q

b
2σ

w ∈ QH∗(G/B) whose grad-
ing equals (0, j), in which we have taken the well known isomorphisms
QH∗(P/B) ∼= Q[y] and QH∗(G/P ) ∼= Q[x]. In particular, QH∗(G/P )
is the quotient of the subalgebra A generated by {q2σ

s1 , σs2 , q1q
2
2, q2}

by the ideal J = q2A. (We remark that in this case QH∗(G/B) itself
is generated by {σs1 , σs2 , q1, q2}.)

These algebra isomorphisms generalize the classical ones in an obvious
way, namely, A, J , and I are q-deformations of A := π∗(H∗(G/P )),
J = 0, and I = Q{σs2 , σs1s2 , σs2s1 , σs1s2s1}, respectively.

All the above descriptions for G = SL(3,C) will be generalized to ar-
bitrary complex semi-simple Lie groups. For simplicity, we assume P/B
is irreducible. (Note that any homogeneous variety splits into a direct
product of irreducible ones.) All the results can be easily generalized
for reducible P/B’s, and we will describe such generalizations in section
5. Note that P/B is again a complete flag variety, isomorphic to G′/B′

for some other complex simple Lie group G′. Then we denote by r the
rank of G′, which depends only on P/B. Since we exclude the trivial
cases, namely, P equals B or G, we always have r = 1 for G = SL(3,C).

In general, we consider a special iterated fibration {Pj−1/P0 → Pj/P0

−→ Pj/Pj−1}
r+1
j=2 in which Pj ’s are parabolic subgroups with B = P0 (

P1 ( · · · ( Pr = P ( G = Pr+1. Consequently, we obtain a canonical
Zr+1-filtration on H∗(G/B). Note that QH∗(G/B) also has a natural
basis of Schubert classes σw’s over Q[q]. As we will see in section 2.2,
there exists a grading map gr giving gradings gr(qλσ

w) ∈ Zr+1 for the
(Q-)basis qλσ

w’s. The Peterson-Woodward comparison formula in [32]
plays a key role in defining gr. It is the only known formula that charac-
terizes the relations of genus zero 3-pointed Gromov-Witten invariants
between G/B and a general G/P explicitly. gr defines a Zr+1-filtration
F = {Fa}a∈Zr+1 of subspaces in QH∗(G/B), generalizing Example 1.1.
The next theorem says that F respects the quantum product structure.

Theorem 1.2.QH∗(G/B) is a Zr+1-filtered algebra with filtration F .

We can obtain several important consequences as below.

Theorem 1.3. The vector subspace I, spanned by those qλσ
w’s

with their gradings (d1, · · · , dr+1) satisfying dr+1 > 0, is an ideal of
QH∗(G/B). Furthermore, there is a canonical algebra isomorphism

QH∗(G/B)/I
≃

−→ QH∗(P/B).
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Since QH∗(G/B) has a Zr+1-filtration F , we obtain an associated
Zr+1-graded algebra GrF (QH∗(G/B)) =

⊕

a∈Zr+1 GrFa , where Gr
F
a :=

Fa

/

∪b<a Fb. For each j, we denote GrF(j)(QH
∗(G/B)) :=

⊕

i∈ZGr
F
iej
.

Theorem 1.4. For each 1 ≤ j ≤ r, there exists a canonical algebra
isomorphism

Ψj : QH
∗(Pj/Pj−1)

≃
−→ GrF(j)(QH

∗(G/B)).

Furthermore, if P/B ∼= Fℓr+1, then there exists a canonical algebra
isomorphism

Ψr+1 : QH
∗(G/P )

≃
−→ GrF(r+1)(QH

∗(G/B)).

As a consequence, we have the following results for any G.

Theorem 1.5. Suppose P/B ∼= Fℓr+1. Then there exists a subalge-
bra A of QH∗(G/B) together with an ideal J of A, such that QH∗(G/P )
is canonically isomorphic to A/J as algebras.

Theorem 1.6. Suppose P/B ∼= Fℓr+1. Then as graded algebras
GrF (QH∗(G/B)) is isomorphic to QH∗(P1)⊗· · ·⊗QH∗(Pr)⊗QH∗(G/P )
after localization.

We should point out that the requirement “P/B ∼= Fℓr+1” in Theo-
rem 1.5 and Theorem 1.6 is not a strong assumption, because both of
theorems can be easily generalized to the case “P/B is isomorphic to
a product of Fℓk’s” (see section 5). As a consequence, all G/P ’s for
G being of A-type or G2-type satisfy this assumption. Furthermore,
for each remaining type, more than half of the homogeneous varieties
G/P ’s also satisfy this. (We could also show Theorem 1.5 holds for any
G/P with G = Sp(2n,C).)

As we saw in Example 1.1, the gradings of elements in QH∗(Fℓ3) only
form a proper sub-semigroup S of Z2, which looks like stairs, so that the
Z2-filtration comes from an S-filtration. In general, the Zr+1-filtration
comes from a similar filtration. For this reason, we need localization to
obtain the analog of graded-algebra isomorphism (in Theorem 1.6). In
section 4, we will restate theorems 1.4, 1.5, and 1.6 more concretely. As
we will see later, all the relevant maps generalize the classical ones in
an obvious way, as in Example 1.1.

Our results relate the quantum cohomologies of the total space and
the base space of the fibration P/B → G/B −→ G/P . Similar struc-
tures occur when one studies the relationships of J-functions between an
abelian quotient and a nonabelian quotient. Such relations were studied
by Bertram, Ciocan-Fontanine, and Kim in [3] and [4]. (See also [33].)
There were also relevant studies by Liu-Liu-Yau [23] and Paksoy [27]
by using mirror principle [22] .

Let us mention two more important problems on the study of
QH∗(G/P ), for which our theorems may also be helpful. One can see
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the excellent survey [9] and references therein for more details on the
developments. As mentioned before, the (small) quantum cohomology
ring QH∗(G/P ) has a basis of Schubert classes σw’s over Q[q]. In order
to understand QH∗(G/P ), one would like to have (i) a (good) presen-
tation of the ring structure on QH∗(G/P ) and (ii) a (nice) formula (or

algorithm) for the quantum Schubert structure constants Nw,λP
u,v ’s in

the quantum product σu ⋆ σv =
∑

w,λP
Nw,λP

u,v qλP
σw. For classical co-

homology H∗(G/P ), these natural and important problems have been
solved in [5] for (i) and in [17] and [7] for (ii). However, for quan-
tum cohomology QH∗(G/P ), the answer to (i) is only known in certain
cases—for instance, when G is of A-type (see [15], [1]) or P = B is
a Borel subgroup [16]. For problem (ii), there were early studies for
a few cases, including complex Grassmannians (see the survey [9]) and
complete flag varieties of A-type [8], besides the quantum Chevalley for-
mula [11], which works for all cases. Recently, Mihalcea [26] has given
an algorithm, and the authors ([20], [21]) have given a combinatorial
formula for these structure constants.

All these problems were discussed in the unpublished work [28] by
Dale Peterson. In [32], Woodward proves a comparison formula of Pe-
terson. The Peterson-Woodward comparison formula explicitly charac-
terizes the relations of the quantum Schubert structure constants be-
tween QH∗(G/P ) and QH∗(G/B). However, it does not tell us the
relations of the algebra structures between them. Along Peterson’s ap-
proach, Lam and Shimozono [18] show that the torus-equivariant exten-
sion of QH∗(G/P ) is isomorphic to a quotient of the torus-equivariant
homology of a based loop group after localization. In [29], K. Rietsch
discusses the relationships between Peterson’s work and mirror symme-
try. In [28], Peterson had also claimed there was an analogous isomor-
phism for the (un-iterated) fibration P/B → G/B −→ G/P in terms of
torus-equivariant homology of based loop groups after localization. We
were motivated by his claim and the results by Woodward and Lam-
Shimozono. We succeeded in obtaining natural generalizations of the
classical isomorphisms. It is interesting to compare our results with
Peterson’s claim. It is also interesting to compare our Theorem 1.5
with Theorem 10.16 of [18] by Lam and Shimozono. As commented by
Thomas Lam, our results should be related to the discussions in section
10.4 of [18].

We hope our results could be used to solve problem (i) by combining
with Kim’s early work [16], where a nice presentation of the ring struc-
ture on the complexified quantum cohomology QH∗(G/B) was given.

This paper is organized as follows. In section 2, we define a grading
map and prove our main result, Theorem 1.2, assuming the Key Lemma.
Then we devote the whole section 3 to the proof of the Key Lemma.
In section 4, we prove the remaining theorems discussed as above. In
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section 5, we show how to generalize our results to the general case when
P/B is reducible. Finally in section 6, we give an appendix which deals
with exceptional cases in the proof of the Key Lemma. Our proofs are
combinatorial in nature. We hope to find nice geometrical explanations
of them later.

Acknowledgements. The authors thank Baohua Fu, Bumsig Kim,
Thomas Lam, Augustin-Liviu Mare, and Leonardo Constantin Mihalcea
for useful discussions. We also thank the referee for valuable suggestions.
The first author is supported in part by a RGC research grant from the
Hong Kong government. The second author is supported in part by
KRF-2007-341-C00006.

2. A filtration on QH∗(G/B)

2.1. Preliminaries. We recall some basic notions and fix the notation.
See, for example, [12, 13] for more details on Lie theory.

Let G be a simply-connected complex simple Lie group of rank n,
B ⊂ G be a Borel subgroup and P ⊃ B be a proper parabolic sub-
group of G. Fix a basis of simple roots ∆ = {α1, · · · , αn} (with respect
to (G,B)). Then P corresponds canonically to a proper subset ∆P of
∆. (In particular, B corresponds to the empty subset ∅.) Let h de-
note the corresponding Cartan subalgebra; then h∗ =

⊕n
i=1Cαi. Let

{α∨
1 , · · · , α

∨
n} ⊂ h be the fundamental coroots and {χ1, · · · , χn} ⊂ h∗ be

the fundamental weights. For any 1 ≤ i, j ≤ n, we have 〈χi, α
∨
j 〉 = δi,j

with respect to the natural pairing 〈·, ·〉 : h∗ × h → C. Furthermore,
we have ρ := 1

2

∑

γ∈R+ γ =
∑n

i=1 χi. For each 1 ≤ i ≤ n, the simple
reflection si := sαi

acts on h and h∗ by

si(λ) = λ− 〈αi, λ〉α
∨
i , for λ ∈ h; si(β) = β − 〈β, α∨

i 〉αi, for β ∈ h∗.

The Weyl group W , which is generated by {s1, · · · , sn}, acts on h and
h∗ and preserves the natural pairing. The root system is given by R =
W ·∆ = R+⊔ (−R+), where R+ = R∩

⊕n
i=1 Z≥0αi is the set of positive

roots. Thus each root γ ∈ R is given by γ = w(αi) for some w ∈W and
1 ≤ i ≤ n. Then we define γ∨ = w(α∨

i ) and sγ = wsiw
−1 ∈ W , which

is independent of the expressions of γ.
The length ℓ(w) of w ∈ W (with respect to ∆) is defined by ℓ(1) ,

0 and ℓ(w) , min{k | w = si1 · · · sik} for w 6= 1. An expression

w = si1 · · · siℓ is called reduced if ℓ = ℓ(w). Let P̃ = P∆̃ denote

the (standard) parabolic subgroup corresponding to a subset ∆̃ ⊂ ∆,

WP̃ denote the subgroup generated by {sj | αj ∈ ∆̃}, and ωP̃ denote

the longest element in WP̃ . For ∆̄ ⊂ ∆̃ with P̄ := P∆̄, we denote

W P̄
P̃

:= {w ∈ WP̃ |ℓ(w) ≤ ℓ(v), ∀v ∈ wWP̄ }. Each coset in WP̃ /WP̄ has
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a unique (minimal length) representative in W P̄
P̃

⊂ WP̃ ⊂ W . In par-

ticular, we have P∆ = G and WG =W , and simply denote W P̄ :=W P̄
G

and ω := ωG.
The (co)homology of a homogeneous variety X = G/P has an addi-

tive basis of Schubert (co)homology classes indexed byWP : H∗(X,Z) =
⊕

v∈WP Zσv, H∗(X,Z) =
⊕

u∈WP Zσu with 〈σu, σv〉 = δu,v for any

u, v ∈ WP [2]. In particular, H2(X,Z) =
⊕

αi∈∆\∆P
Zσsi. Set Q∨ =

⊕n
i=1 Zα

∨
i andQ∨

P =
⊕

αi∈∆P
Zα∨

i . Then we can identifyH2(X,Z) with

Q∨/Q∨
P canonically, by mapping

∑

αj∈∆\∆P

ajσsj to λP =
∑

αj∈∆\∆P

ajα
∨
j +

Q∨
P . For each αj ∈ ∆ \∆P , we introduce a formal variable qα∨

j +Q∨

P
. For

such λP , we denote qλP
=

∏

αj∈∆\∆P
q
aj
α∨

j +Q∨

P
.

Let M0,m(X,λP ) be the moduli space of stable maps of degree λP ∈
H2(X,Z) ofm-pointed genus zero curves into X [10], and evi denote the
ith canonical evaluation map evi : M0,m(X,λP ) → X given by evi([f :
C → X; p1, · · · , pm]) = f(pi). The genus zero Gromov-Witten invariant
for γ1, · · · , γm ∈ H∗(X) = H∗(X,Q) is defined as I0,m,λP

(γ1, · · · , γm) =
∫

M0,m(X,λP ) ev
∗
1(γ1) ∪ · · · ∪ ev∗m(γm). The (small) quantum product for

a, b ∈ H∗(X) is a deformation of the cup product, defined by

a ⋆ b ,
∑

u∈WP ,λP∈H2(X,Z)

I0,3,λP
(a, b, (σu)♯)σuqλP

,

where {(σu)♯ | u ∈WP} are the elements in H∗(X) satisfying
∫

X(σu)♯∪

σv = δu,v for any u, v ∈ WP . The quantum product ⋆ is associative,
making (H∗(X)⊗Q[q], ⋆) a commutative ring. This ring is denoted as
QH∗(X) and called the (small) quantum cohomology ring of X.
The same Schubert classes σu = σu ⊗ 1 form a basis for QH∗(X) over
Q[q], and we write

σu ⋆ σv =
∑

w∈WP ,λP∈Q∨/Q∨

P

Nw,λP
u,v qλP

σw.

The coefficients Nw,λP
u,v ’s are called the quantum Schubert structure con-

stants. They generalize the well known Littlewood-Richardson coeffi-
cients when X = Gr(k, n + 1) is a complex Grassmannian. It is also
well known that the quantum Schubert structure constants are non-
negative.

When P = B, we have Q∨
P = 0, WP = {1} and WP = W . In

this case, we simply denote λ = λP and qj = qα∨

j
. A combinatorial

formula for Nw,λ
u,v ’s has been given by the authors recently [20]. As a

consequence, we can obtain the combinatorial formula for Nw,λP
u,v ’s for

general G/P , due to the following comparison formula.
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Proposition 2.1 (Peterson-Woodward comparison formula [32]; see
also [18]).

1) Let λP ∈ Q∨/Q∨
P . Then there is a unique λB ∈ Q∨ such that

λP = λB + Q∨
P and 〈α, λB〉 ∈ {0,−1} for all α ∈ R+

P (= R+ ∩
⊕

αj∈∆P
Zαj).

2) For every u, v, w ∈WP , we have

Nw,λP
u,v = NwωPω′,λB

u,v ,

where ω′ = ωP ′ with ∆P ′ = {αi ∈ ∆P | 〈αi, λB〉 = 0}.

Thanks to Proposition 2.1, we have canonical representatives ofW/WP

×Q∨/Q∨
P in W ×Q∨ with respect to the pair (∆,∆P ), which is a gen-

eralization of the case W/WP
≃
→ WP ⊂ W . We will discuss them in

more details in the next subsection.
When v is a simple reflection si, we have the following (Peterson’s)

quantum Chevalley formula for σu ⋆ σsi , which has been proved earlier
in [11].

Proposition 2.2 (Quantum Chevalley Formula for G/B). For u ∈
W, 1 ≤ i ≤ n,

σu ⋆ σsi =
∑

γ

〈χi, γ
∨〉σusγ +

∑

γ

〈χi, γ
∨〉qγ∨σusγ ,

where the first sum is over roots γ in R+ for which ℓ(usγ) = ℓ(u) + 1,
and the second sum is over roots γ in R+ for which ℓ(usγ) = ℓ(u)+ 1−
〈2ρ, γ∨〉.

Note that we have fixed a base ∆ = {α1, · · · , αn}. As a subset of
∆, we can write ∆P = {αi1 , · · · , αir}. Then giving an order on ∆P is
equivalent to giving a permutation of ∆P . Once such a permutation
Υ is given, we denote α′

j = Υ(αij) for each 1 ≤ j ≤ r and then nat-

urally rewrite the remaining simple roots so that ∆ = {α′
1, · · · , α

′
n}.

In the present paper, we always keep the information on the order,
whenever referring to (∆P ,Υ) or (an ordered set) ∆P = (α′

1, · · · , α
′
r).

Furthermore for convenience, we simply denote α′
j’s by αj’s. (In other

words, we take Υ = id∆P
under the assumption in the beginning that

∆P = {α1, · · · , αr} satisfies certain properties on its associated Dynkin
diagram.)

Notation 2.3. Let (∆P ,Υ) be given with ∆P = (α1, · · · , αr).

For any integers k,m with 1 ≤ k ≤ m ≤ r, we denote u
∆P ,(r)
[k,m] :=

sαk
sαk+1

· · · sαm . If k > m, then we just denote u
∆P ,(r)
[k,m] := 1. Further-

more, we define u
∆P ,(m)
[k,m] = u

∆P ,(r)
[k,m] and denote u

∆P ,(m)
i := u

∆P ,(m)
[m−i+1,m] for

i = 0, 1, · · · ,m. Whenever there is no confusion, we simply denote

sj := sαj
, u

(r)
[k,m] := u

∆P ,(r)
[k,m] , and u

(m)
i := u

∆P ,(m)
i .
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Let ∆j := {α1, · · · , αj} and Pj := P∆j
for each 1 ≤ j ≤ r. Denote

P0 = B and Pr+1 = G. A decomposition of w ∈ W associated to

(∆P ,Υ) is an expression w = vr+1 · · · v1 with vi ∈ W
Pi−1

Pi
for each 1 ≤

i ≤ r + 1, where WP0
P1

= WP1 . By the iterated fibration associated

to (∆P ,Υ), we mean the family of fibrations of homogeneous varieties,
given by {Pj−1/P0 → Pj/P0 −→ Pj/Pj−1}

r+1
j=2.

We denote by Dyn(∆′) the Dynkin diagram associated to a base ∆′.

Example 2.4. Suppose Dyn(∆P ) is given by ◦−−◦ · · · ◦−−◦
α1 α2 αr . Con-

sider the iterated fibration {Pj−1/P0 → Pj/P0 −→ Pj/Pj−1}
r+1
j=2 as-

sociated to ∆P = (α1, · · · , αr). Then we have Pr+1/Pr = G/P and
Pj/Pj−1 = Pj for each 1 ≤ j ≤ r. Furthermore, the natural inclu-
sion {α1, · · · , αr−1} →֒ ∆P (or SL(r,C) →֒ SL(r + 1,C)) induces a
canonical embedding Pr−1/B = Fℓr−1 →֒ Fℓr = P/B of complete
flag varieties, which maps a flag V1 6 · · · 6 Vr−1 in Cr to the flag
V1 6 · · · 6 Vr−1 6 Cr in Cr+1.

Due to the following well known lemma (see e.g., [14]), we obtain
Corollary 2.6.

Lemma 2.5. Let γ ∈ R+ and w = si1 · · · siℓ be a reduced expression
of w ∈W .

1) w ∈WP if and only if w(α) ∈ R+ for any α ∈ ∆P .
2) If ℓ(wsγ) < ℓ(w), then w(γ)∈−R+ and there is a unique 1≤k≤ ℓ

such that

sik · · · siℓsγ = sik+1
· · · siℓ and γ = siℓsiℓ−1

· · · sik+1
(αik).

Furthermore for 1 ≤ j ≤ n, ℓ(wsj) = ℓ(w) − 1 if and only if
w(αj) ∈ −R+.

Corollary 2.6. For each w ∈ W , there exists a unique decompo-
sition w = vr+1 · · · v1 associated to ∆P = (α1, · · · , αr). Furthermore,

we assume that Dyn({α1, · · · , αm}) is given by ◦−−◦ · · · ◦−−◦
α1 α2 αm , where

m ≤ r. Then for each 1 ≤ j ≤ m, ℓ(vj) = ij if and only if vj = u
(j)
ij

.

(In particular, the expression u
(j)
ij

itself is reduced.)

Proof. The former is also well known (see e.g., [14]). The latter

statement is a direct consequence of Lemma 2.5, by noting |W
Pj−1

Pj
| =

j + 1 and u
(j)
0 , · · · , u

(j)
j are distinct elements of WPj

for which (1) of
Lemma 2.5 can be applied. q.e.d.

The following lemma should also be well known.
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Lemma 2.7. Let ∆̄ ⊂ ∆̃ ⊂ ∆, P̃ = P∆̃ and P̄ = P∆̄. Let w = vu

with u ∈ WP̄ and v = si1 · · · sim being a reduced expression of v ∈ W P̄
P̃
.

For any 1 ≤ j ≤ m, we have v′ := sij+1 · · · sim ∈W P̄
P̃

and (v′u)−1(αij ) ∈

R+
P̃
\RP̄ .

Proof. Assume that the set {a | sia+1sia+2 · · · sim /∈W P̄
P̃
, 1 ≤ a ≤ m} is

non-empty. Then we can take the minimum k of this set. Consequently,

w′ := sik+1
· · · sim /∈ W P̄

P̃
and sikw

′ ∈ W P̄
P̃
. Hence, there exists α ∈

∆̄ such that w′(α) ∈ −R+ and sikw
′(α) ∈ R+. Since sik preserves

−R+ \ {−αik}, we have w
′(α) = −αik . Thus w

′sαw
′−1 = s−αik

= sik so

that ℓ(w′sα) = ℓ(sikw
′) = ℓ(w′)+1. This implies w′(α) ∈ R+ by Lemma

2.5 and therefore deduces a contradiction. Hence, for any 1 ≤ j ≤ m,

we have v′ := sij+1 · · · sim ∈W P̄
P̃
.

Note that (v′u)−1(αij ) ∈ R+
P̃
and γ := v′−1(αij ) ∈ R+

P̃
. We claim γ /∈

RP̄ ; otherwise we would conclude v′sγ(γ) = −v′(γ) ∈ −R+
P̄
, contrary

to v′sγ(γ) = sijv
′(γ) ∈ R+. Since u ∈ WP̄ , we have (v′u)−1(αij ) =

u−1(γ) /∈ RP̄ . q.e.d.

2.2. Definition of gradings. In this subsection, we define a grading
map gr with respect to an ordered set (∆P ,Υ), which is used for con-
structing a filtration on QH∗(G/B). In order to obtain gr, we first
define “PW-lifting” (Peterson-Woodward lifting) as follows.

Definition 2.8. Given (∆P ,Υ) with ∆P = (α1, · · · , αr), we de-

note ∆j = {α1, · · · , αj}, Pj = P∆j
, and Q∨

j =
⊕j

i=1 Zα
∨
i for each

j ≤ r. By the PW-lifting associated to (∆P ,Υ), we mean the fam-
ily {ψ∆j+1,∆j

}rj=1 of injective maps defined as follows. (We denote

Q∨
r+1 = Q∨,∆r+1 = ∆ and Pr+1 = G.) For each 1 ≤ j ≤ r, the

map

ψ∆j+1,∆j
:W

Pj

Pj+1
×Q∨

j+1/Q
∨
j −→ W ×Q∨

is defined by sending (v, λ̄) to its associated elements (vωPj
ωP ′

j
, λ′) as

described by the Peterson-Woodward comparison formula (see Proposi-
tion 2.1) with respect to (∆j+1,∆j). That is, λ′ is the unique element
in Q∨

j+1 ⊂ Q∨ satisfying λ̄ = λ′ + Q∨
j and 〈α, λ′〉 ∈ {0,−1} for all

α ∈ R+ ∩
⊕j

i=1 Zαi; ∆P ′

j
= {α ∈ ∆j | 〈α, λ′〉 = 0}.

Remark 2.9. Each ψ∆j+1,∆j
also defines an injective map in the

canonical way:

QH∗(Pj+1/Pj) −→ QH∗(Pj+1/B); qλ̄σ
v 7→ qλ′σ

vωPj
ωP ′

j .

Recall that a natural basis of QH∗(G/B)[q−1
1 , · · · , q−1

n ] is given by
qλσ

w’s labeled by (w, λ) ∈W ×Q∨. We simply denote both of them as
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qλw (or wqλ) by abuse of notation. Note that qλw ∈ QH∗(G/B) if and
only if qλ ∈ Q[q] is a polynomial.

Definition 2.8 (continued). Let {e1, · · · , er+1} be the standard basis
of Zr+1. We define a grading map gr : W ×Q∨ −→ Zr+1 associated
to (∆P ,Υ) as follows.

1) For w ∈W , we take its (unique) decomposition w = vr+1 · · · v1 as-

sociated to (∆P ,Υ). Then we define gr(w) :=gr(w, 0)=
r+1
∑

j=1
ℓ(vj)ej .

2) For all α ∈ ∆, we simply denote gr(qα∨) := gr(1, qα∨). Using
the PW-lifing associated to (∆P ,Υ), we can define all gr(qj)’s
recursively in the following way. Define gr(q1) = 2e1; for any
α ∈ ∆j+1 \∆j, we define

gr(qα∨) =
(

ℓ(ωPj
ωP ′

j
)+2+

∑j

i=1
2ai

)

ej+1−gr(ωPj
ωP ′

j
)−

∑j

i=1
aigr(qi),

where ωPj
ωP ′

j
and ai’s satisfy (ωPj

ωP ′

j
, α∨+

j
∑

i=1
aiα

∨
i )= ψ∆j+1,∆j

(1,

α∨ +Q∨
j ).

3) In general, x = w
∏n

k=1 q
bk
k ; then we define gr(x) = gr(w) +

∑n
k=1 bkgr(qk).

Furthermore for 1 ≤ k ≤ m ≤ |∆P |, we define

grm := gr[1,m], with gr[k,m] :W ×Q∨ → Zm−k+1

being the composition of the natural projection map and the grading map
gr. Precisely, write gr(qλw) =

∑r+1
i=1 diei; then we define gr[k,m](qλw) =

∑m
i=k diei.
Recall that the inversion set of w ∈W is defined to be

Inv(w) = {γ ∈ R+ | w(γ) ∈ −R+}.

It is well known that ℓ(w) = |Inv(w)| (see e.g., [14]). Take the de-
composition w = vr+1 · · · v1 of w associated to (∆P ,Υ). For each
k, we note vr+1 · · · vk+1 ∈ WPk and vk · · · v1 ∈ WPk

. Thus for γ ∈
RPk

, vk · · · v1(γ) ∈ −R+ if and only if w(γ) ∈ −R+. Consequently,
ℓ(vk · · · v1) = |{γ ∈ R+

Pk
| w(γ) ∈ −R+}| = |Inv(w) ∩ R+

Pk
|. Note that

ℓ(vk · · · v1) =
∑k

i=1 ℓ(vk). Hence, we have

gr(w) =
r+1
∑

k=1

|Inv(w) ∩ (R+
Pk

\R+
Pk−1

)|ek.

Remark 2.10. We would like to thank the referee for reminding
us of the above expression of gr(w). Following the suggestions of the
referee, the proof of Proposition 3.1 has been simplified substantially
in the present version. In type A, the vector gr(w) is essentially what
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is known as an “inversion table” (see e.g., [31]). The referee has also
made the following conjecture:

gr(qγ∨) =
r+1
∑

k=1

〈
∑

β∈R+
Pk

\R+
Pk−1

β, γ∨〉ek.

If it is true, the proofs of our main results might also be simplified
substantially.

In Proposition 3.10, Proposition 3.12, Lemma 3.26, and (the proof
of) Lemma 3.27, we will explicitly describe all the gradings gr(qj)’s
with respect to a fixed (∆P ,Υ). In particular, we will see that gr(qj) =
(1 − j)ej−1 + (1 + j)ej for 2 ≤ j ≤ r − 1 (which also holds for j = r if
∆P is of A-type).

2.3. Proof of Theorem 1.2. Assuming Dyn(∆P ) is connected, we
always consider (∆P ,Υ) with the fixed order ∆P = (α1, · · · , αr) in a
special way that will be explained in section 2.4. In this subsection, we
construct a filtration on QH∗(G/B) with respect to a totally ordered
sub-semigroup S of Zr+1 and prove Theorem 1.2, which is the most
essential part of our main results.

Unless otherwise stated, we will always use the lexicographical or-
der whenever referring to a partial order on (a sub-semigroup of) Zm

in the present paper. (Recall that a < b, where a = (a1, · · · , am) and
b = (b1, · · · , bm), if and only if there is 1 ≤ j ≤ m such that aj < bj
and ak = bk for each 1 ≤ k < j.)

Definition 2.11. We define a subset S of Zr+1 and a family F =
{Fa}a∈S of subspaces of QH∗(G/B) as follows:

S , {gr(qλw) | qλw ∈ QH∗(G/B)}; Fa ,
⊕

gr(qλw)≤a

Qqλw ⊂ QH∗(G/B).

As will be shown in section 4, we have:

Lemma 2.12. S is a totally-ordered sub-semigroup of Zr+1.

Now we can state Theorem 1.2 more explicitly as follows.

Theorem 1.2. QH∗(G/B) is an S-filtered algebra with filtration F .
Furthermore, this S-filtered algebra structure is naturally extended to a
Zr+1-filtered algebra structure on QH∗(G/B).

That is, we need to show FaFb ⊂ Fa+b for any a,b ∈ S. In order to
prove it, we need to assume the following Key Lemma first.

Key Lemma. Let u ∈W and γ ∈ R+.

a) If ℓ(usγ) = ℓ(u)+ 1, then we have gr(usγ) ≤ gr(u)+ gr(si) when-
ever the fundamental weight χi satisfies 〈χi, γ

∨〉 6= 0.



FUNCTORIAL RELATIONSHIPS BETWEEN QH∗(G/B) AND QH∗(G/P ) 315

b) If ℓ(usγ) = ℓ(u)+1−〈2ρ, γ∨〉, then we have gr(qγ∨usγ) ≤ gr(u)+
gr(si) whenever 〈χi, γ

∨〉 6= 0.

Lemma 2.13. For any 1 6= w ∈W , there exist w′ ∈W and 1 ≤ j ≤
n such that gr(w) = gr(w′)+gr(sj) and the quantum structure constant

Nw,0
sj ,w′ is positive.

Proof. Take the decomposition w = vr+1 · · · v1 of w associated to
(∆P ,Υ). Since w 6= 1, the set {i | ℓ(vi) > 0} is non-empty, so that we
can take the minimum k of this set. Thus we have v1 = · · · = vk−1 = 1
and vk = spv̄ with ℓ(spv̄) = 1 + ℓ(v̄). Note that γ := v̄−1(αp) ∈ R+

Pk

and v̄sγ = vk. Consequently, for w
′ := vr+1 · · · vk+1v̄, we have w = w′sγ

and ℓ(w′sγ) = ℓ(w) + 1. By Lemma 2.7, we have v̄ ∈ W
Pk−1

Pk
and

γ 6∈ R+
Pk−1

. Hence, there exists 1 ≤ j ≤ n with αj ∈ ∆k \ ∆k−1

such that 〈χj , γ
∨〉 > 0. For any one such j, by Proposition 2.2 we

have Nw,0
sj ,w′ = N

w′sγ ,0
sj ,w′ = 〈χj , γ

∨〉 > 0. Furthermore, we have gr(w) =
∑r+1

i=k ℓ(vi)ei = (ℓ(v̄)ek +
∑r+1

i=k+1 ℓ(vi)ei) + ek = gr(w′) + gr(sj). q.e.d.

Proof of Theorem 1.2. For the first half of the statements, it suffices to
show σw ⋆ qλσ

u ∈ Fa+b, for any σ
w, qλσ

u ∈ QH∗(G/B) with a = gr(w)
and b = gr(qλu). We use induction on ℓ(w).

If ℓ(w) = 0, then σw is the unit and it is done. If ℓ(w) = 1, then
w = sj and consequently we have σsj ⋆σu ∈ Fgr(sj)+gr(u) = Fa+b−gr(qλ),
by using Proposition 2.2 and the Key Lemma. Thus we have σw⋆qλσ

u ∈
Fa+b in this case. Assume ℓ(w) > 1. By Lemma 2.13, there ex-
ist w′ ∈ W and 1 ≤ j ≤ n such that gr(w) = gr(w′) + gr(sj) and

σw
′

⋆ σsj = cσw +
∑

v,µ cv,µqµσ
v, where c = Nw,0

w′,sj
> 0 and the sum-

mation is only over finitely many non-zero terms for which cv,µ > 0. In
particular, we have ℓ(w′) = ℓ(w) − 1. Using the induction hypothesis,

we have σw
′

⋆ qλu ∈ Fgr(w′)+b. Thus (cσw +
∑

v,µ cv,µqµσ
v) ⋆ qλσ

u =

σsj ⋆(σw
′

⋆qλσ
u) ∈ Fgr(sj)+gr(w′)+b = Fa+b. Since all the quantum Schu-

bert structure constants are non-negative, there is no cancellation in the
summation on the left-hand side of the equality. Hence, we conclude
σw ⋆ qλσ

u ∈ Fa+b, by noting c > 0.
The second half is a direct consequence of the first half. Indeed,

QH∗(G/B) has a Zr+1-filtration {Fa}a∈Zr+1 , which is a natural ex-
tension of F . Here we just need to set Fa :=

⋃

b≤a,b∈S Fa for any

a ∈ Zr+1 \ S (note S is sub-semigroup of Zr+1). q.e.d.

The next proposition follows directly from Definition 2.8.

Proposition 2.14. The evaluation of q at 0 reduces the Zr+1-filtration
on QH∗(G/B) to the classical Zr+1-filtration on H∗(G/B), which comes
from the iterated fibration {Pj−1/P0 → Pj/P0 −→ Pj/Pj−1}

r+1
j=2. (Recall

that P0 = B and Pr+1 = G.)
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2.4. A canonical order (∆P ,Υ). When referring to (∆P ,Υ), we have
already given an order on ∆P via the permutation Υ. It is done if r = 1,
since Υ = id∆P

is the only permutation map. In this subsection, we
introduce the special choice of the orders for r ≥ 2 as mentioned at the
beginning of section 2.3. We will use this special order throughout the
present paper, which is in fact obtained in a canonical way. We introduce
it first for a subbase of A-type and then for others by reducing them to
the case for A-type.

Suppose ∆P is of Ar-type. We rewrite the simple roots so that ∆ =
{β1, · · · , βn} and Dyn(∆) is given by one of the cases in Table 2. In
terms of the order (β1, · · · , βn), we obtain a canonical order (∆P ,Υ),
in the sense that Dyn(∆P ) is inside Dyn(∆ \ {marked points}) in a
natural way. That is, we require the condition (∗) to be satisfied.

(∗) : there exists o ≥ 0 such that αj = βo+j for each 1 ≤ j ≤ r.

Furthermore, the additional conditions in Table 2 tell us the information
on the starting point α1(= βo+1) and the ending point αr(= βκ =
βo+r). For instance, any one case of C8),C9), and C10) implies that
o = 0 and ∆P = (α1, α2) = (β1, β2). That is, the order of ∆P =
{α1, α2} is expressed in terms of the order of {β1, β2} with respect to
the corresponding case.

Remark 2.15. In Table 2, we have treated bases of type E6 and E7

as subsets of a base of type E8 canonically. Because of our assumption
2 ≤ r < n = |∆|, a base of G2-type does not occur there.

Remark 2.16. Intrinsically, we obtain the canonical order (∆P ,Υ)
as follows. ∆P admits canonical orders in the sense that Dyn(∆P ) is

given by ◦−−◦ · · · ◦−−◦
α1 α2 αr . There are two ways to denote an ending point

(by α1 or αr). We fix one in the following way. There is at most
one root in ∆P , say, α, such that the Dynkin diagram of ∆P ∪ {αk ∈
∆ \ ∆P | 〈αk, α

∨〉 6= 0} is not of A-type. We denote an ending point
by α1 such that both the ending point and the connected component of
∆ \∆P adjacent to it are as far away from α as possible.

Comparing it with Table 2, we can easily see that ∆P must occur in
at least one case of Table 2 (together with condition (∗) being satisfied).
If it occurs in more than one case, then we just choose any one of these
cases. The choice does not affect all the results, since all the relevant
statements hold with respect to all cases in Table 2, as we will see later.

Remark 2.17. If (∆,∆P ) occurs in more than one case in Table
2 (for instance, in case C2) and C3) with respect to the condition
κ = r = n−1 = 3), then the corresponding orders (∆P ,Υ) and (∆P ,Υ

′)
are isomorphic. That is, there exists an isometry of φ : ∆ → ∆ such
that φ(∆P ) = ∆P and Υ ◦ φ = Υ′.
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Table 2. (∆P ,Υ) when r ≥ 2

Additional conditions
Dynkin diagram of ∆ (κ := o+ r)

C1) ◦−−◦ · · · ◦−−◦
β1 β2 βn−1

, βn is adjacent to βn−1
κ ≤ n− 1;

∆ is of type An, Bn or Cn

C2)

•βn∣

∣

◦−−◦ · · · ◦−−◦−−◦
β1 β2 βn−2 βn−1

κ ≤ n− 2 or
{ r ≥ 3
κ = n− 1

C3)

◦β3∣

∣

•−−• · · · •−−◦−−◦
βn βn−1 β4 β2 β1

κ = r ≤ 3

C4)

•β8
∣

∣

◦−−◦−−◦−−◦−−◦−−◦−−◦
β1 β2 β3 β4 β5 β6 β7

κ ≤ 5 or
{ r ≥ 3
κ = 6

or
{ r ≥ 5
κ = 7

C5)

◦β4
∣

∣

•−−•−−•−−•−−◦−−◦−−◦
β8 β7 β6 β5 β3 β2 β1

κ ≤ 3 or
{ r ≥ 3
κ = 4

C6)

•β8
∣

∣

•−−•−−•−−◦−−◦−−◦−−◦
β7 β6 β5 β4 β3 β2 β1

κ = r = 4

C7)

◦β6
∣

∣

◦−−◦−−◦−−◦−−◦−−•−−•
β1 β2 β3 β4 β5 β7 β8

κ = 6, r ≥ 3

C8)

◦β1
∣

∣

•−−•−−•−−•−−◦−−•−−•
β6 β5 β4 β3 β2 β7 β8

κ = 2

C9) ◦−−◦⇒=•−−•
β1 β2 β3 β4

κ = 2

C10) ◦−−◦=⇐•−−•
β1 β2 β3 β4

κ = 2

Now we assume ∆P is not of A-type and denote ς := r − 1. Note
that there always exists α ∈ ∆P such that Dyn(∆P \{α}) is of Aς -type.
Thus when r > 2, we obtain a canonical order (∆P ,Υ) by requiring:

a) the restriction of ∆P to ∆ς = (α1, · · · , ας) is the canonical order
obtained by directly replacing r with ς in Table 2;

b) αr = βo+r (note that αr−1 = βo+r−1 once a) holds).

Precisely, ∆P fulfills one and only one of the followings (note that
κ = o+ ς and condition (∗) is satisfied):

1) ∆P is not ofD-type. It occurs in a unique case (among C1),C4) for
κ = 7,C9) and C10)) in Table 2.

2) ∆P and ∆ are both of D-type. It occurs in case C2).
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3) ∆P is of D-type and ∆ is of E-type. It occurs in either of cases
C5), C7).

As a consequence, the canonical order (∆P ,Υ) is determined by the
corresponding case in which ∆P occurs. For convenience, if ∆P occurs
in both C5) and C7), then we always choose case C7) for use.

When r = 2, we can still give an order on ∆P so that it is compatible
with our arrangements for r > 2. Indeed, we do this as follows. Since
∆P is a proper subset of ∆P , the case of G2-type does not occur. Since
∆P is not of A-type, ∆ must be of type B,C, or F . We take (α1, α2) to
be (βn−1, βn) for the former two cases, or (β2, β3) in C10) for the last
case.

Remark 2.18. ∆P occurs in case C5) other than in case C7) only if
r = 5 and ∆ is of E7-type or E8-type.

3. Proof of the Key Lemma

This whole section is devoted to the proof of the Key Lemma. Readers
who wish to see more concrete statements of our theorems as well as
their proofs can skip this section by assuming the Key Lemma and two
consequences (Proposition 3.23 and Proposition 3.24) of a special case
of it first. For emphasis, we restate the Key Lemma as follows.
Key Lemma. Let u ∈W and γ ∈ R+.

a) If ℓ(usγ) = ℓ(u)+ 1, then we have gr(usγ) ≤ gr(u)+ gr(si) when-
ever the fundamental weight χi satisfies 〈χi, γ

∨〉 6= 0.
b) If ℓ(usγ) = ℓ(u)+1−〈2ρ, γ∨〉, then we have gr(qγ∨usγ) ≤ gr(u)+

gr(si) whenever the fundamental weight χi satisfies 〈χi, γ
∨〉 6= 0.

We first do some preparations in section 3.1 and section 3.2. Then
we prove the Key Lemma for the special case when ∆P is of A-type in
section 3.3, and we obtain two consequences in section 3.4. Finally in
section 3.5, we prove the Key Lemma for general cases. In addition,
we also give the explicit descriptions of all gr(qj)’s in section 3.2 and
section 3.5.

We would like to remind our readers of the notation gr(w) =
∑r+1

j=1 ijej
= (i1, · · · , ir+1) for w ∈ W and the notions “grm”, “gr[k,m]” in Defi-
nition 2.8. Furthermore, we assume ∆P to be of A-type throughout
this section except subsection 3.5. As a consequence, we have w =

u
(r)
ir

· · · u
(1)
i1

∈WP by Corollary 2.6, once assuming ir+1 = 0. Unless oth-

erwise stated, by w = vu
(r)
ir

· · · u
(1)
i1

we always mean the decomposition
of w associated (∆P ,Υ) when ∆P is of A-type; equivalently, we have
v ∈WP .

3.1. Some properties on W . The main results of this subsection are
Proposition 3.1 and Proposition 3.4, which compare the gradings of
certain elements in W .
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Proposition 3.1. Let γ ∈ R+ satisfy 〈α, γ∨〉 = 0 for all α ∈ ∆P̃ =
∆P \ {αa}, where 1 ≤ a ≤ r. For any w ∈W , we have

gra−1(wsγ) = gra−1(w) and grr(wsγ) ≤ grr(w) +
∑r

k=a
aek.

Lemma 3.2. Let γ ∈ R,∆P̃ ⊂ ∆ and w = vu with v ∈W P̃ and u ∈

WP̃ . If 〈αj , γ
∨〉 = 0 for all αj ∈ ∆P̃ , then wsγ = ṽu with ṽ ∈ W P̃ . In

particular, if ∆P̃ = {α1, · · · , αa} where a ≤ r, then gra(wsγ) = gra(w).

Proof. Let wsγ = ṽũ where ṽ ∈ W P̃ and ũ ∈ WP̃ . By the assump-
tion, we conclude sγ(αj) = αj and sjsγ = sγsj for any αj ∈ ∆P̃ .

Hence, usγ = sγu and consequently we have ṽũu−1 = wsγu
−1 =

wu−1sγ = vsγ . If ũ 6= u, then there exists β ∈ R+
P̃

such that β̃ :=

ũu−1(β) ∈ −R+
P̃
. Hence, we conclude vsγ(β) = v(β) ∈ R+, contrary

to vsγ(β) = ṽũu−1(β) = ṽ(β̃) ∈ −R+. The latter statement becomes a
direct consequence. q.e.d.

Proof of Proposition 3.1. Write gr(w) =
r+1
∑

k=1

ikek and gr(wsγ) =
r+1
∑

k=1

ĩkek.

By Lemma 3.2, we conclude gra−1(wsγ) = gra−1(w). That is, ĩk = ik
for 1 ≤ k ≤ a− 1.

Clearly, ĩa ≤ a ≤ ia+a. For a+1 ≤ k ≤ r, we note that R+
Pk

\R+
Pk−1

=

{
∑k

t=j αt | 1 ≤ j ≤ k}. In addition, we have ik = |Inv(w)∩(R+
Pk

\R+
Pk−1

)|

and ĩk = |Inv(wsγ)∩ (R+
Pk

\R+
Pk−1

)|. Since 〈αt, γ
∨〉 = 0 for any a+ 1 ≤

t ≤ r, we have wsγ(
∑k

t=j αt) = w(
∑k

t=j αt) whenever j ≥ a+1. Hence,

ĩk − ik ≤ |{
∑k

t=j αt | 1 ≤ j ≤ a}| = a.

Hence, we have grr(wsγ) ≤ grr(w) +
∑r

k=a aek. q.e.d.

Lemma 3.3. For any 1 ≤ i ≤ j ≤ m ≤ r and 1 ≤ k ≤ m, we have

u
(m)
[i,j]u

(m)
[k,m] =



























u
(m)
[k,m]u

(m)
[i,j], if k ≥ j + 2

u
(m)
[i,m], if k = j + 1

u
(m)
[k+1,m]u

(m)
[i,j−1], if i ≤ k ≤ j

u
(m)
[k,m]u

(m)
[i−1,j−1], if k < i

.

For the above lemma, we recall that u
(m)
[i,j] = sisi+1 · · · sj. As a direct

consequence, we obtain the following grading comparisons.

Proposition 3.4. Let w = u
(r)
ir

· · · u
(1)
i1

. Suppose j ≤ m ≤ r.

a) If ℓ(u
(m)
j w)= j + ℓ(w), then gr(u

(m)
j w)= gr(w) + jek for a unique

1 ≤k≤ r.
b) If ℓ(sjw) = ℓ(w) − 1, then gr(sjw) = gr(w) − ek for a unique

1 ≤ k ≤ r.
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c) ℓ(wsj) = ℓ(w) − 1 if and only if ij ≥ ij−1 + 1 (where i0 := 0).

When this happens, we have gr(wsj) =
∑j−2

k=1 ikek+(ij−1)ej−1+
ij−1ej +

∑r
k=j+1 ikek.

Furthermore, if w′∈WP satisfies ℓ(w′w)=ℓ(w)± ℓ(w′), then there exist
non-negative integers pk’s such that

∑r
k=1 pk = ℓ(w′) and gr(w′w) =

gr(w) ±
∑r

k=1 pkek.

Proof. Note that u
(m)
j u

(r)
ir

= u
(m)
[m−j+1,m]u

(r)
[r−ir+1,r] = u

(r)
[m−j+1,m] ·

u
(r)
[r−ir+1,r]. By Lemma 3.3, there are exactly four possibilities for this

product. Since ℓ(u
(m)
j w) = j + ℓ(w), the (third) case m − j + 1 ≤

r − ir + 1 ≤ m cannot occur. If m = r − ir (i.e., the second case
occurs), then it is done by taking ek = er. If r − ir + 1 ≥ m + 2,

we have m ≤ r − 1 and u
(m)
j u

(r)
ir

= u
(r)
[r−ir+1,r]u

(r)
[m−j+1,m] = u

(r)
ir
u
(m)
j ;

if r − ir + 1 < m − j + 1, we have u
(m)
j u

(r)
ir

= u
(r)
[r−ir+1,r]u

(r)
[m−j,m−1] =

u
(r)
[r−ir+1,r]u

(m−1)
[m−j,m−1] = u

(r)
ir
u
(m−1)
j . That is, in either of the remaining

two cases, we always have u
(m)
j w = u

(r)
ir
u
(m′)
j w′ in which ℓ(u

(m′)
j w′) =

j + ℓ(w′) with m′ ≤ r − 1 and w′ = u
(r−1)
ir−1

· · · u
(1)
i1

. Hence, a) follows by

induction.
The arguments for the remaining parts of the statement are also easy

and similar, which we leave to the readers. q.e.d.

Proof of Lemma 3.3. Note that sjsk = sksj if |j − k| ≥ 2, and sksjsk =
sjsksj if |j − k| = 1. The first two cases are trivial. For 1 ≤ k < b ≤ m,
we have

sb · u
(m)
[k,m] = sb · (sk · · · sm) = sk · · · sb−2sbsb−1sbsb+1 · · · sm

= sk · · · sb−2sb−1sbsb−1sb+1 · · · sm

= (sk · · · sm) · sb−1 = u
(m)
[k,m]

sb−1.

Thus if k < i, then u
(m)
[i,j]u

(m)
[k,m] = u

(m)
[k,m]u

(m)
[i−1,j−1]. If i ≤ k ≤ j, then

u
(m)
[i,j]u

(m)
[k,m] = (si · · · sk)(sk+1 · · · sj) · (sk · · · sm)

= (si · · · sk) · (sk · · · sm)(sk · · · sj−1)

= (si · · · sk−1)(sk+1 · · · sm)(sk · · · sj−1)

= (sk+1 · · · sm)(si · · · sj−1) = u
(m)
[k+1,m]u

(m)
[i,j−1]. q.e.d.

Let us recall the following well known fact, which holds in general.

Lemma 3.5. Let P̄ ⊂ P̃ be parabolic subgroups of G. If w ∈ W P̄
P̃
,

then ℓ(w) ≤ ℓ(ωP̃ωP̄ ). Furthermore, the equality holds if and only if
w = ωP̃ωP̄ .
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Proof. Note that ωP̄ sends positive roots R+
P̄
to negative roots −R+

P̄
⊂

−R+
P̃

and ωP̃ sends −R+
P̃

to R+
P̃
. Hence ωP̃ωP̄ (R

+
P̄
) ⊂ R+, implying

ωP̃ωP̄ ∈ W P̄
P̃
. Hence the statement follows, by noting ωP̃ is the unique

longest element in WP̃ and ℓ(ωP̃ v) = ℓ(ωP̃ ) − ℓ(v) for any v ∈ WP̄ .
q.e.d.

Lemma 3.6. For ∆P̃ = ∆P \ {αk} where 1 ≤ k ≤ r, both of the

following hold. a) gr(ωPωP̃ ) =
∑r

p=k kep; b) for any v ∈ W P̃
P , gr(v) =

∑r
p=k jpep with jr ≤ · · · ≤ jk ≤ k.

Proof. Write gr(v) =
∑r

p=1 jpep and set j0 = 0. For each αp ∈ ∆P̃ ,

we have ℓ(vsp) = ℓ(v) + 1 by Lemma 2.5. This implies jp ≤ jp−1 by
Proposition 3.4. That is, jr ≤ · · · ≤ jk+1 ≤ jk ≤ k and 0 ≤ jk−1 ≤
· · · ≤ j1 ≤ j0 = 0. Thus b) follows.

Let w = u
(r)
k · · · u

(k)
k . Note that w ∈ W P̃

P and ℓ(w) = k(r − k + 1) =

|R+
P | − |R+

P̃
| = ℓ(ωPωP̃ ). By Lemma 3.5, we have w = ωPωP̃ . That is,

a) follows. q.e.d.

In addition, we introduce the next three useful lemmas.

Lemma 3.7 (see e.g., [24]). Let γ ∈ R+. Then ℓ(sγ) ≤ 〈2ρ, γ∨〉 − 1.

Lemma 3.8. Let γ ∈ R+ \∆ satisfy ℓ(sγ) = 〈2ρ, γ∨〉 − 1. For any
1 ≤ j ≤ n with 〈αj , γ

∨〉 > 0, we have 〈αj , γ
∨〉 = 1. Furthermore, for

β := sj(γ), we have β∨ = γ∨ −α∨
j and ℓ(sβ) = ℓ(sγ)− 2 = 〈2ρ, β∨〉− 1.

Lemma 3.9. Let γ ∈ R+ \∆. If ℓ(usγ) = ℓ(u) + 1− 〈2ρ, γ∨〉 where
u ∈W , then ℓ(sγ) = 〈2ρ, γ∨〉 − 1. Furthermore, we take any 1 ≤ j ≤ n
with 〈αj , γ

∨〉 > 0 and set β := sj(γ). Then all the following hold:

ℓ(usj) = ℓ(u)− 1, ℓ(usjsβ)

= ℓ(usj)− ℓ(sβ), ℓ(usγ) = ℓ(usjsβsj) = ℓ(usjsβ)− 1.

Proof. We prove all these three statements together, including the
proof of Lemma 3.7 from [24] by induction on ℓ(sγ).

If ℓ(sγ) = 1, then γ ∈ ∆ and consequently ℓ(sγ) = 1 = 2〈ρ, γ∨〉 − 1.
Now we assume γ ∈ R+ \∆. Take any 1 ≤ j ≤ n such that 〈γ, α∨

j 〉 > 0

(such j does exist; otherwise, we would conclude 2 = 〈γ, γ∨〉 ≤ 0). Con-
sequently, 〈αj , γ

∨〉 > 0. Thus sγ(αj) = αj − 〈αj , γ
∨〉γ ∈ −R+. Also,

sjsγ(αj) = (〈γ, α∨
j 〉〈αj , γ

∨〉 − 1)αj − 〈αj , γ
∨〉γ is a negative root. By

Lemma 2.5, we have ℓ(sjsγsj) = ℓ(sγ)− 2. Because sj(γ)
∨ = sj(γ

∨) =
γ∨−〈αj , γ

∨〉α∨
j , we have 〈ρ, sj(γ)

∨〉 = 〈ρ, γ∨〉− 〈αj , γ
∨〉. By the induc-

tion hypothesis, we conclude the following:

ℓ(sγ) = ℓ(sjsγsj) + 2 ≤ 2〈ρ, sj(γ)
∨〉 − 1 + 2(3.1)

= 2〈ρ, γ∨〉 − 1 + 2(1 − 〈αj , γ
∨〉)(3.2)

≤ 〈2ρ, γ∨〉 − 1.(3.3)
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If ℓ(sγ) = 〈2ρ, γ∨〉 − 1, then both (2.1) and (2.3) must be equalities.
In particular, we conclude 〈αj , γ

∨〉 = 1, β∨ = γ∨ − α∨
j and ℓ(sβ) =

ℓ(sγ)− 2 = 〈2ρ, β∨〉 − 1.
It remains to show Lemma 3.9. Indeed, we have

ℓ(u)− ℓ(sγ) ≤ ℓ(usγ) = ℓ(u)− (〈2ρ, γ∨〉 − 1) ≤ ℓ(u)− ℓ(sγ).

Hence, both inequalities become equalities. Thus ℓ(sγ) = 〈2ρ, γ∨〉 − 1.
Furthermore, we note ℓ(usjsβsj) = ℓ(usγ) = ℓ(u)− ℓ(sγ) and

ℓ(usjsβsj) ≥ ℓ(usjsβ)− 1

≥ ℓ(usj)− ℓ(sβ)− 1 ≥ ℓ(u)− 1− ℓ(sβ)− 1 = ℓ(u)− ℓ(sγ).

Hence, the statements in Lemma 3.9 also follow. q.e.d.

3.2. Explicit gradings of qj’s. The main results of this subsection
are Proposition 3.10 and Proposition 3.12, giving explicit formulas for
gradings gr(qj)’s.

Proposition 3.10. Let 2 ≤ j ≤ r. Following the notation in Defi-

nition 2.8, we have ψ∆j ,∆j−1(1, α
∨
j +Q∨

j−1) = (u
(j−1)
j−1 , α∨

j ) and gr(qj) =

(1− j)ej−1 + (1 + j)ej .

Proof. Note that ∆j−1 ⊂ ∆j with ∆j \ ∆j−1 = {αj}. Clearly,

〈α,α∨
j 〉 ∈ {0,−1} for all α ∈ R+ ∩

⊕j−1
i=1 Zαi. Hence, we have ∆P ′

j−1
=

{α ∈ ∆j−1 | 〈α,α∨
j 〉 = 0} = ∆j−1 \ {αj−1}. Therefore we conclude

gr(ωPj−1ωP ′

j−1
) = (j − 1)ej−1 by using Lemma 3.6 (with respect to

∆j−1). Thus the former equality holds. Consequently, the latter equal-
ity follows by Definition 2.8. q.e.d.

The next lemma works in general, namely, we do not need to assume
∆P to be of A-type.

Lemma 3.11. Let u ∈W and λ ∈ Q∨.

1) Write gr(qλu) = (j1, · · · , jr+1). Then
∑r+1

k=1 jk = ℓ(u) + 〈2ρ, λ〉.
2) Let γ ∈ R+ satisfy ℓ(usγ) = ℓ(u)+1−〈2ρ, γ∨〉. For any 1 ≤ p ≤ n,

gr(qγ∨usγ) ≤ gr(u)+ gr(sp) if and only if grr(qγ∨usγ) ≤ grr(u)+
grr(sp).

Proof. Denote |(a1, · · · , ar+1)| =
∑r+1

k=1 ak. Note that ℓ(u) = |gr(u)|.
Furthermore, we conclude |gr(qα∨)| = 2 for all α ∈ ∆ by induction.
Thus (1) follows.

Write gr(u)+gr(sp) = (i1, · · · , ir+1) and gr(qγ∨usγ) = (̃i1, · · · , ĩr+1).

Assume (̃i1, · · · , ĩr+1) ≤ (i1, · · · , ir+1); then we have (̃i1, · · · , ĩr) ≤
(i1, · · · , ir) by definition. Assume (̃i1, · · · , ĩr) ≤ (i1, · · · , ir). If “<”
holds, then it is already done by the definition of the lexicographi-
cal order. If “=” holds, then we conclude ĩr+1 = ir+1, by noting
∑r+1

k=1 ĩk = |gr(qγ∨usγ)| = ℓ(usγ) + 〈2ρ, γ∨〉 = ℓ(u) + 1 =
∑r+1

k=1 ik.
Thus (2) follows. q.e.d.
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Proposition 3.12. For any α ∈ ∆ \ ∆P , one and only one of the
cases in Table 3 occurs, where we require r ≥ 2 (resp. 3 and 5) for case
b) (resp. e) and f)).

Table 3. Explicit grading gr(qα∨) for α ∈ ∆ \∆P

Dyn(∆P ∪ {α}) ψ∆,∆P
(1, α∨ +Q∨

P ) gr(qα∨ )

a) ◦−−◦ · · · ◦−−◦−−•
α1 α2 αr α qα∨u

(r)
r (r + 2)er+1 − rer

b) •−−◦−−◦ · · · ◦−−◦
α α1 α2 αr

qα∨u
(r)
1 · · ·u

(1)
1 (r + 2)er+1 −

∑r

j=1 ej

c) ◦−−◦ · · · ◦−−◦⇒=•
α1 α2 αr α qα∨qru

(r)
r−1u

(r−1)
r−1 (2r + 2)er+1 − 2rer

d) ◦−−◦ · · · ◦−−◦=⇐•
α1 α2 αr α qα∨u

(r)
r (r + 2)er+1 − rer

e)
•α∣
∣

◦−−◦ · · · ◦−−◦−−◦
α1 α2 αr

qα∨u
(r)
r−1u

(r−1)
r−1 2rer+1 + (1− r)(er + er−1)

f)

•α∣
∣

◦ · · · ◦−−◦−−◦−−◦
α1 αr−1 αr

qα∨u
(r)
r−2u

(r−1)
r−2 u

(r−2)
r−2 (3r − 4)er+1 + (2− r)

r
∑

j=r−2

ej

g) ◦=⇐•−−
α1 α

qα∨s1 (−1, 3)

h) ◦⇒=•−−
α1 α

qα∨q1s1 (−3, 5)

i) ◦−−◦ · · ·◦−−◦ •
α1 αr α qα∨ 2er+1

Proof. Clearly, Dyn(∆P ∪ {α}) is given by a unique case in Table 3.
Let λP = α∨ + Q∨

P and ψ∆,∆P
(1, λP ) = qλB

ωPωP ′ . Here λB ∈ Q∨

is the (unique) element satisfying 〈β, λB〉 ∈ {0,−1} for all β ∈ R+
P .

Since ∆P is of A-type, this is equivalent to requiring 〈αj , λB〉 = 0 for all
αj ∈ ∆P but at most 1, and if such unique αj exists, then 〈αj , λB〉 = −1.
For each case in Table 3, it is easy to see that the element λB as provided
does satisfy this property. Consequently, ∆P ′ = {αi ∈ ∆P | 〈αi, λB〉 =
0} = ∆P \{αk} for a certain 1 ≤ k ≤ r+1. Hence, we can directly write
down ωPωP ′ by using Lemma 3.6. Finally, we obtain gr(qα∨) as is listed
in Table 3, by direct calculations (with Definition 2.8 and Proposition
3.10). q.e.d.

The next corollary follows directly from Table 3.

Corollary 3.13. If r = 1, then gr(qj) = (a,−a + 2) with a =
〈α1, α

∨
j 〉 for each j. Consequently, for any λ ∈ Q∨, we have gr(qλ) =

(〈α1, λ〉, 〈2ρ − α1, λ〉).

As we will see later, we use induction on ℓ(sγ) to prove the Key
Lemma. The next proposition shows the special case of the Key Lemma
when ℓ(sγ) = 1.
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Proposition 3.14. Let u ∈ W and 1 ≤ j ≤ n. If ℓ(usj) = ℓ(u)− 1,
then gr(qjusj) ≤ gr(u) + gr(sj).

Proof. Let gr(u) = (i1, · · · , ir+1) and gr(usj) = (̃i1, · · · , ĩr+1). When
αj ∈ ∆P , we have 1 ≤ j ≤ r. If j = 1, then we have i1 = 1 and
gr(us1) = (0, i2, · · · , ir+1). Hence, gr(q1us1) = gr(q1) + gr(us1) =
(2, 0, · · · , 0) + (0, i2, · · · , ir+1) = gr(u) + gr(s1). If 2 ≤ j ≤ r, then by
Proposition 3.4 and Proposition 3.10, we conclude

gr(qjusj)− gr(u)− gr(sj)

= ((1− j) + ij − 1− ij−1)ej−1 + ((1 + j) + ij−1 − ij − 1)ej .

Thus we have gr(qjusj) ≤ gr(u) + gr(sj), by noting 0 ≤ ij−1 < ij ≤ j.
When αj ∈ ∆ \∆P , we note that gr(sj) = er+1. By Lemma 3.11, it

suffices to show grr(qjusj) ≤ grr(u). Write gr(qjusj) = (̂i1, · · · , îr+1).
and ψ∆,∆P

(1, α∨
j + Q∨

P ) = λBωPω
′. We first assume λB = α∨

j . Then

∆P ′ = {α ∈ ∆P | 〈α,α∨
j 〉 = 0}. If ∆P ′ = ∆P (i.e., case i) of Table 3

occurs), then we have grr(qj) = 0 and grr(usj) = grr(u) (by Lemma
3.2). Thus it is done in this case. Otherwise, we conclude ∆P ′ =
∆P \ {αa} for a unique 1 ≤ a ≤ r (from Table 3). Consequently, we
have grr(qj) = −grr(ωPω

′) by definition, grr(usj) ≤ grr(u)+
∑r

k=a aek
by Proposition 3.1, and gr(ωPω

′) =
∑r

k=a aek by Lemma 3.6. Hence, we
do have grr(qjusj) ≤ grr(u) in this case. Now we assume λB 6= α∨

j . Due

to Table 3, it remains to consider case c) and h). If case h) occurs, then

n = 2, r = 1, gr(qj) = (−3, 5) and we do have î1 = −3+ ĩ1 ≤ −2 < i1. If
case c) occurs, then grr(qj) = −2rer and we have grr−1(usj) = grr−1(u)

by Lemma 3.2. Hence, grr(qjusj)−grr(u) = (−2r+ ĩr− ir)er ≤ (−2r+
r − 0)er < 0. Hence, the statement follows. q.e.d.

3.3. Proof of the Key Lemma when ∆P is of A-type. Recall that
we have assumed ∆P to be of A-type in this subsection.

Proposition 3.15. Part a) of the Key Lemma holds.

Proof. Write usγ = vr+1vr · · · v1, where vr+1 ∈W
P and vk = u

(k)
ik

for

1 ≤ k ≤ r. Thus gr(usγ) = (i1, · · · , ir, ℓ(vr+1)). Fix a reduced expres-
sion of vr+1. Since ℓ(u) = ℓ(usγsγ) < ℓ(usγ), by Lemma 2.5 we have
u = vr+1 · · · vm+1v̄mvm−1 · · · v1 for some 1 ≤ m ≤ r + 1, in which v̄m is
the element obtained by with deleting a (unique) simple reflection from
vm. Since ℓ(u) = ℓ(usγ)−1, the induced expression of u is also reduced.

Hence, ℓ(v̄m) = ℓ(vm) − 1, and if we write v̄m = v′w with v′ ∈ W
Pm−1

Pm

and w ∈WPm−1 , then ℓ(v̄m) = ℓ(v′)+ℓ(w) and ℓ(wvm−1 · · · v1) = ℓ(w)+
ℓ(vm−1 · · · v1). By Proposition 3.4, there exist non-negative integers pk’s
such that gr(u) = (i1 + p1, · · · , im−1 + pm−1, ℓ(v

′), im+1, · · · , ir, ℓ(vr+1))

with
∑m−1

k=1 pk = ℓ(w). On the other hand, by Lemma 2.7 we conclude
γ ∈ R+

Pm
\ RPm−1 , so that min{gr(si) | 〈χi, γ

∨〉 6= 0} = em. Hence, we
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have gr(usγ) = (i1, · · · , ir, ℓ(vr+1)) ≤ (i1+p1, · · · , im−1+pm−1, ℓ(v
′)+1,

im+1, · · · , ir, ℓ(vr+1)) = gr(u) + em, by noting ℓ(vr+1) +
∑r

k=1 ik =

ℓ(usγ) = ℓ(u) + 1 = ℓ(v′) +
∑r

k=1 ik +
∑m−1

k=1 pk + 1. q.e.d.

The remaining part of this subsection is devoted to a proof of the
following.

Proposition 3.16. Part b) of the Key Lemma holds. That is, for
any u ∈ W and γ ∈ R+, if (L1): ℓ(usγ) = ℓ(u) + 1 − 〈2ρ, γ∨〉, then
we have (L2): gr(qγ∨usγ) ≤ gr(u) + min{gr(si) | 〈χi, γ

∨〉 6= 0}.

Lemma 3.17. Part b) of the Key Lemma holds when ∆P = {α1}.

Proof. We use induction on ℓ(sγ). If ℓ(sγ) = 1, then γ ∈ ∆ and
consequently (L2) follows from Proposition 3.14. Now we assume γ ∈
R+\∆. Write gr(u) = (i1, i2), gr(usγ) = (j1, j2), and gr(qγ∨) = (k1, k2),
in which k1 = 〈α1, γ

∨〉 by Corollary 3.13. If k1 < 0, then j1 + k1 ≤
1 + k1 ≤ 0. If k1 = 0, then we have i1 = j1 by Lemma 3.2. In
either of the cases, we conclude j1 + k1 ≤ i1. Thus (L2) holds by
Lemma 3.11. Otherwise, 〈α1, γ

∨〉 = k1 > 0. Then by Lemma 3.8
and Lemma 3.9, we conclude that for β := s1(γ) the following holds:
β∨ = γ∨ −α∨

1 ; gr(q1) + gr(us1) ≤ gr(u) + gr(s1) (by Proposition 3.14);
gr(qβ∨)+gr(us1sβ) ≤ gr(us1)+ec (by the induction hypothesis), where
we denote ec := min{gr(si) | 〈χi, β

∨〉 6= 0}; gr(us1sβs1) = gr(us1sβ)−
gr(s1) (by Proposition 3.4). Hence, we conclude (L2) holds, by noting
ec = min{ec, gr(s1)} = min{gr(si) | 〈χi, γ

∨〉 6= 0}. q.e.d.

When ∆ is also of A-type, it is easy to obtain λB and gr(qλB
) asso-

ciated to a given λP ∈ Q∨/Q∨
P . For instance, by direct calculations we

conclude the following lemma. (Recall that αj = βo+j for 1 ≤ j ≤ r in
Table 2.)

Lemma 3.18. Let ∆ be of A-type and m ≤ r+1. Following the no-
tation in case C1), we set λ =

∑m
k=1 kβ

∨
o+r+1−m+k. Then the following

holds (where 0 · e0 := 0).

1) If m = r + 1, then 〈α, λ〉 = 0 for all α ∈ ∆P ; if m < r + 1,
then for any α ∈ ∆P , 〈α, λ〉 is equal to −1 if α = αr+1−m, or
equal to 0 otherwise. In particular, λ is the element associated to
mβ∨o+r+1 +Q∨

P via PW-lifing.
2) gr(qλ)=m(r + 2)er+1 − (r + 1−m)

∑r
k=r+1−m ek. In particular,

if m = r + 1, then grr(qλ) = 0.

Furthermore, we have grr(
∑o+r+1

k=o β∨k ) = 0, whenever o ≥ 1.

Since the case of A-type is relatively easy to handle, we would like
to compare all relevant information for ∆ being of general type with
those when ∆ is of A-type. Due to Lemma 3.11, we only need to care
about grr(qλw). For these purposes, we bring in a base ∆̇ of A-type
and introduce the notion of “virtual coroot” as below for r ≥ 2.
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Let ∆̇ = {β̇1, · · · , β̇n} be a base withDyn(∆̇) given by ◦−−◦ · · · ◦−−◦
β̇1 β̇2 β̇n

.

Denote α̇i = β̇o+i for each 1 ≤ i ≤ r (the notation “o” is the same one

as in Table 2). Set ∆̇P = {α̇1, · · · , α̇r}. Following Definition 2.8, we can

obtain a grading map with respect to (∆̇P , Id∆̇P
), which we also denote

as gr by abuse of notation. Clearly, β̇j 7→ βj extends to an isometry

∆̇ \ {β̇η} → ∆ \ {βη} of bases, where η is given in Table 4. Denote

Q̇∨ =
⊕n

i=1 Zβ̇
∨
i .

Definition 3.19. Let λ ∈ Q∨. We call λ̇ ∈ Q̇∨ a virtual coroot
of λ (at level η) if λ̇ satisfies both grr(qλ̇) = grr(qλ) and 〈α̇i, λ̇〉 =
〈αi, λ〉 for 1 ≤ i ≤ r.

Lemma 3.20. For each case in Table 2 (where we have assumed

r ≥ 2), there is a virtual coroot λ̇ of λ =
∑n

j=1 cjβ
∨
j (at level η), given

by Table 4.

Table 4. Virtual coroot λ̇= cηµ̇+
∑η−1

j=1 cj β̇
∨
j

C1) C9) C10) C2) C3) C5) C7) C4) C6) C8)
η n 3 3 n 4 5 7 8 8 7

µ̇ −〈βη−1, β
∨
η 〉β̇

∨
η β̇∨

η−1 + 2β̇∨
η

3
∑

j=1

jβ̇∨
5+j

5
∑

j=1

jβ̇∨
3+j

5
∑

j=1

jβ̇∨
2+j

Proof. Note that ∆̇ \ {β̇η} is canonically isomorphic to ∆ \ {βη} as

bases and that ∆P ⊂ {β1, · · · , βη−1}. It is easy to see β̇∨j is a virtual

coroot of β∨j (resp. 0) for each j ≤ η − 1 (resp. j ≥ η + 1). Combining

Table 2 and Table 3, we conclude that grr(qµ̇) = grr(qβ∨
η
) and 〈α̇i, µ̇〉 =

〈αi, β
∨
η 〉 for 1 ≤ i ≤ r. That is, µ̇ is a virtual coroot of β∨η . Hence, the

statement follows. q.e.d.

Remark 3.21. Lemma 3.20 tells us about the existence of a virtual
coroot. Due to Lemma 3.18, we note that the uniqueness does not hold:
if λ̇ is a virtual coroot of λ, so is λ̇+

∑η
j=1 jβ̇

∨
j .

Due to Lemma 3.17, it remains to care about the case when r ≥ 2.
The next proposition shows that we can describe most of the coroots
uniformly with the help of the notion of “virtual coroot.”

Proposition 3.22. Assume r ≥ 2. Let γ ∈ R+ \∆ satisfy ℓ(sγ) =
〈2ρ, γ∨〉 − 1. Then one and only one of the following holds.

1) There exists a virtual coroot γ̇∨ =
∑r+1

p=1 ċpα̇
∨
p of γ∨, where α̇r+1 :=

β̇o+r+1, ċr+1 ≤ r and ċp−1 ≤ ċp−1 ≤ ċp for each p ∈ {1, · · · , r+1}
(where ċ0 := 0).

2) γ∨ =
∑m

p=d β
∨
p where o ≤ m ≤ o+ r and d < m.
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3) Case C9) occurs and γ∨ = β∨3 + β∨4 .

Proof. Let γ∨=
∑n

j=1 cjβ
∨
j , which has a virtual coroot

∑η
j=1 c̃j β̇

∨
j by

Lemma 3.20.
We first assume cη 6= 0. Set (c′1, · · · , c

′
η) := (c1, · · · , cη)−[

cη
η ](1, · · · , η).

Then we obtain another virtual coroot
∑η

j=1 c
′
j β̇

∨
j of γ∨ by noting that

∑η
j=1 jβ̇

∨
j is a virtual coroot of 0. We claim c′j − 1 ≤ c′j−1 ≤ c′j for each

i (where c′0 := 0) and show this by discussing all possible coroots with
respect to the type of ∆.

When ∆ is of A-type, clearly it is done (by noting (c′1, · · · , c
′
η) =

(c̃1, · · · , c̃η) = (0, · · · , 0, 1, · · · , 1)). When ∆ is of D-type, either C2) or
C3) will occur. For the former case, we have η = n and cn−2 ∈ {1, 2}.
If cn−2 = 2, then we have cn−1 = 1 and (c′1, · · · , c

′
n) = (c̃1, · · · , c̃n) =

(0, · · · , 0, 1, · · · , 1, 2, · · · , 2). If cn−2 = 1, then γ∨ = β∨n +
∑b

p=a β
∨
p for

some a ≤ n − 2 ≤ b ≤ n − 1. Hence, (c′1, · · · , c
′
n) = (c̃1, · · · , c̃n) =

(0, · · · , 0, 1, · · · , 1, 1 + δb,n−1, 2). Thus our claim holds. For the latter
case, we have η = 4 and can show our claim with similar arguments.
When ∆ is of E-type, there are only finite coroots which are listed in
Plate V, VI and VII of [6]. In this case, our claim still holds by direct
calculations.

When ∆ is of type Bn (resp. Cn), then our claim follows immediately
from Plate III (resp. II) of [6], except for the following coroots.

C1) for type Bn C1) for type Cn

γ∨ β∨
n + 2

∑

i6p<n

β∨
p (1 ≤ i < n)

∑

i6p<j

β∨
p + 2

∑

j6p6n

β∨
p (1 ≤ i < j ≤ n)

However, none of the above coroots satisfies our condition: ℓ(sγ) =
〈2ρ, γ∨〉 − 1. Indeed if they satisfied this condition, then for the former
case we would have 〈βi, γ∨〉 = 2 > 1, contrary to Lemma 3.8. For the
latter case, we denote γ∨k =

∑

i≤p<k β
∨
p + 2

∑

k≤p≤n β
∨
p for j ≤ k ≤ n.

Note that γ∨j = γ∨ and 〈βk, γ
∨
k 〉 > 0 for all k. By Lemma 3.8, we have

γ∨j+1 = γ∨j − β∨j and ℓ(sγj+1) = 〈2ρ, γ∨j+1〉 − 1. Thus by induction we

conclude ℓ(sγn) = 〈2ρ, γ∨n 〉− 1. However, 〈βn, γ
∨
n 〉 = 〈βn, β

∨
n−1 +2β∨n 〉 =

2 > 1, contrary to Lemma 3.8 again. Hence, our claim holds in this
case. When ∆ is of type F4, which is the remaining case we need to
consider since r ≥ 2, case C10) or C9) must occur. When C10) occurs,
our claim follows immediately from Plate VIII of [6] and Table 4. When
C9) occurs, we denote M := max{c1, c2, c3, c4}. If M > 1, then there
are 14 coroots in total (see Plate VIII of [6]), only 5 coroots among
which satisfy our condition on the length. Explicitly, (c1, c2, c3, c4) =
(1, 2, 1, 0), (1, 2, 1, 1), (1, 2, 2, 1), (1, 3, 2, 1), or (2, 3, 2, 1). If M = 1, then

γ∨ =
∑b

p=a β
∨
p for some 1 ≤ a < b ≤ 4. Clearly, our claim follows,

except for the coroot γ∨ = β∨3 + β∨4 .
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Note that ∆P ⊂ {β1, · · · , βη−1}. We conclude β̇∨j is a virtual coroot

of 0 whenever j < o or j > o+1. In particular, we set ċi = c′o+i − c′o for

each 0 ≤ i ≤ r+1. Then we obtain a virtual coroot γ̇∨ =
∑r+1

p=1 ċpα̇
∨
p of

γ∨ satisfying ċp−1 ≤ ċp−1 ≤ ċp for each p, whenever cη 6= 0 except when
the case of statement (3) occurs. Furthermore, we note that ċr+1 ≤ r+1

and if “=” holds then we must have γ̇∨ =
∑r+1

p=1 pα̇
∨
p , which is still a

virtual coroot of 0. In this case, we just replace γ̇∨ with 0 =
∑r+1

p=1 0·α̇
∨
p .

Now we assume cη = 0. Note that Dyn({β1, · · · , βη−1}) is of A-type
and that o+ r+ 1 ≤ η. Thus if 0 is not a virtual coroot of γ∨, then we
must have γ∨ =

∑m
p=d β

∨
p for some 1 ≤ d < m ≤ η − 1. Hence, one of

the following must hold: (i) m < o; (ii) m ≥ o + r + 1 and d ≤ o; (iii)
m ≥ o + r + 1 and d > o; (iv) o ≤ m ≤ o+ r. If either (i) or (ii) held,

then 0 would be a virtual coroot of γ∨. If (iii) holds, then
∑r+1

p=d β̇
∨ is

a virtual coroot of γ∨, so that statement (1) holds. If (iv) holds, then
statement (2) holds. q.e.d.

Proof of Proposition 3.16. Due to Lemma 3.17, we assume r ≥ 2 and
then use induction on ℓ(sγ).

If ℓ(sγ) = 1, then γ ∈ ∆ and consequently (L2) follows from Propo-
sition 3.14.

Now we assume γ ∈ R+ \∆. Take any 1 ≤ j ≤ n with 〈αj , γ
∨〉 > 0.

Write β = sj(γ), gr(qβ∨) = (λ1, · · · , λr+1),min{gr(si) | 〈χi, β
∨〉 6= 0} =

ec and

gr(qj) + gr(usj) = gr(u) + (a1, · · · , ar+1),

gr(qβ∨) + gr(usjsβ) = gr(usj) + ec + (µ1, · · · , µr+1),

gr(usjsβsj) = gr(usjsβ) + (b1, · · · , br+1).

Thus we have gr(qγ∨usγ) = gr(u) + ec +
∑r+1

p=1(ap + bp + µp)ep, taking
the summation of the last three equalities. Due to Lemma 3.8 and
Lemma 3.9, we conclude min{gr(si)|〈χi, γ

∨〉 6= 0} = min{ec, gr(sj)}
and (µ1, · · · , µr+1) ≤ 0 by the induction hypothesis. Furthermore, we
have (a1, · · · , ar+1) ≤ gr(sj) by Proposition 3.14. We first make several
observations as follows.

(Ob1) Assume ec ≤ gr(sj) and 〈α,α∨
j 〉 = 0 for all α ∈ ∆P . Then

(b1, · · · , br+1) = −er+1 = −gr(sj) (by Lemma 3.2). Consequently,
(L2) follows.

(Ob2) Assume j = 1. Then we have ec ≤ gr(s1), (b1, · · · , br+1) =
−gr(s1) by Proposition 3.4 and consequently (L2) follows.

(Ob3) Assume 2 ≤ j ≤ r and ec < ej . Then gr(qj) = (j + 1)ej − (j −

1)ej−1. Write gr(u) =
∑r+1

p=1 ipep and gr(usjsβ) =
∑r+1

p=1 kpep.

Note that ℓ(usj) = ℓ(u) − 1 and ℓ(usjsβsj) = ℓ(usjsβ) − 1. By
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Proposition 3.4, we have

(a1, · · · , ar+1) = (ij − ij−1 − j)ej−1 + (j + 1 + ij−1 − ij)ej ,

(b1, · · · , br+1) = (kj − kj−1 − 1)ej−1 + (kj−1 − kj)ej ,

kj = ij−1 + µj − λj and kj−1 = ij − 1 + µj−1 − λj−1.

As a consequence, we have (a1+b1+µ1, · · · , ar+1+br+1+µr+1) =
(µ1, · · · , µj−2, µj + M,µj−1 − M,µj+1, · · · , µr+1), where M :=
λj−1 − λj − j. Thus if M = 0 and (µ1, · · · , µj−2, µj , µj−1) ≤
(0, · · · , 0), then (L2) follows.

Now we begin to discuss all possibilities for γ∨, using Proposition
3.22.

When case (1) of Proposition 3.22 holds, there exists a virtual coroot

γ̇∨ =
∑r+1

p=1 ċpα̇
∨
p of γ∨ such that ċr+1 ≤ r and ċp − 1 ≤ ċp−1 ≤ ċp for

each p (recall that α̇p := β̇o+p and ċ0 = 0). Clearly, if a): ċr+1 = 0,
then all ċp’s are equal to 0. If b): 1 ≤ ċr+1 ≤ r and any two non-zero ċp
and ċp′ are distinct, then we have

∑r+1
p=1 ċpα̇p =

∑m+1
p=1 pα̇r−m+p where

0 ≤ m < r. Otherwise, we have c): 1 ≤ ċr+1 ≤ r and there exist
distinct p < p′ such that ċp = ċp′ 6= 0. This must imply ċp = ċp+1 since
(ċ1, · · · , ċr+1) is a non-decreasing sequence. Corresponding to these
three cases, we have the following conclusions.

a) (ċ1, · · · , ċr+1) = (0, · · · , 0). Then we have grr(qγ∨) = 0 and
grr(usγ) = grr(u) by Lemma 3.2. Thus (L2) holds by Lemma
3.11.

b) γ̇∨ =
∑m+1

p=1 pα̇r−m+p, where 0 ≤ m < r. Hence, we have grr(qγ∨)

= grr(qγ̇∨) = (m−r)
∑r

p=r−m ep (by Lemma 3.18) and 〈αp, γ
∨〉 =

〈α̇p, γ̇
∨〉 = 0 for p ∈ {1, · · · , r} \ {r −m}. By Proposition 3.1, we

have grr(usγ) ≤ grr(u) + (r−m)
∑r

p=r−m ep. Thus (L2) holds by
Lemma 3.11.

c) In this case, we can take j := min{p | 1 ≤ p ≤ r, ċp = ċp+1 6= 0}.

That is,
∑j+1

p=1 ċpα̇p = mα̇j+1 +
∑m

p=1 pα̇j−m+p, where 1 ≤ m ≤

j ≤ r. Consequently, we have 〈αj , γ
∨〉 = 〈α̇j , γ̇

∨〉 > 0, β̇∨ :=
γ̇∨ − α̇∨

j is virtual coroot of β∨(= γ∨ −α∨
j ), and ec < ej. If j = 1,

then we are done by (Ob2). If j ≥ 2, then we use (Ob3). Note
that grr(qβ∨) = grr(qβ̇∨). By using Lemma 3.18, we conclude

(λ1, · · · , λj−2) = (m− j)
∑j−2

p=j−m ep, λj−1 = (m− j)− (−j+1) =

m − 1 and λj = m(j + 1) − mj − (j + 1) = m − 1 − j. Hence,
M = λj−1 − λj − j = 0.

By the induction hypothesis, we have
∑j−2

p=1 µpep ≤ 0. If “<”
holds, already done. If “=” holds, we have µ1 = · · · = µj−2 = 0

and consequently µj−1 ≤ 0. Write gr(usγ) = (k̃1, · · · , k̃r+1),

gr(qγ∨) = (λ̃1, · · · , λ̃r+1) and gr(usj) = (̃i1, · · · , ĩr+1). Then

λp + kp = ĩp + µp, λ̃p = λp, ĩp = ip and k̃p = kp for 1 ≤ p ≤ j − 2.
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Hence, (k̃1, · · · , k̃j−2) = (i1, · · · , ij−2)+ (j−m)
∑j−2

p=j−m ep. Since

〈αp, γ
∨〉 = 〈α̇p, γ̇

∨〉 = 0 for all p ∈ {1, 2, · · · , j − 1} \ {j − m},

we conclude (k̃1, · · · , k̃j−1) ≤ (i1, · · · , ij−1) + (j −m)
∑j−1

p=j−m ep,

by using Proposition 3.1 with respect to (∆,∆P̄ ) with ∆P̄ =

(α1, · · · , αj−1). Thus we have k̃j−1 ≤ ij−1 + (j − m). Since
ℓ(usj) = ℓ(u) − 1 and ℓ(usγ) = ℓ(usjsβsj) = ℓ(usjsβ) − 1, we

have ĩj = ij−1 and k̃j−1 = kj − 1. Hence, µj = kj + λj − ĩj =

k̃j−1 + 1 + (m− 1− j) − ij−1 ≤ 0.
Therefore, we conclude (µ1, · · · , µj−2, µj , µj−1) ≤ (0, · · · , 0) and

consequently (L2) holds by (Ob3).

When case (2) of Proposition 3.22 holds, we have γ∨ =
∑m

p=d β
∨
p

where o ≤ m ≤ o + r and d < m. If m = o, then d < o; consequently,
we take αj = βd and use (Ob1). If m = o+1 or d = o+1, then we take
j = 1 and use (Ob2). Otherwise, we have either d ≤ o < m = o+ j or
o+ j = d < m ≤ o+ r, where 2 ≤ j ≤ r. Then we take such j and use
(Ob3). Note that β∨ = γ∨ − α∨

j and ec < ej . For the former case, we
have λj−1 = j − 1 and λj = −1; for the latter case, we have λj−1 = 0
and λj = −j. Hence, we always have M = λj−1 − λj − j = 0. By

the induction hypothesis again, we have
∑j−2

p=1 µpep ≤ 0. If “<” holds,
it is already done. If “=” holds, we have µ1 = · · · = µj−2 = 0 and
consequently µj−1 ≤ 0. For the former case, we conclude µj−1 = 0 and
consequently µj ≤ 0, by noting 0 ≥ µj−1 = kj−1+(j− 1)− (ij − 1) ≥ 0.
For the latter case, we have µj = kj−ij−1+(−j) ≤ 0. Hence, we always
have (µ1, · · · , µj−2, µj , µj−1) ≤ (0, · · · , 0). Thus (L2) holds.

It remains to consider the case when statement (3) of Proposition
3.22 holds. That is, C9) occurs and γ∨ = β∨3 + β∨4 . Then we just take
αj = β4 and use (Ob1). Thus (L2) still holds. q.e.d.

3.4. Two consequences. In this subsection, we derive two proposi-
tions with the help of our notion of virtual coroot.

Proposition 3.23. Let u ∈ WP and 1 ≤ j ≤ r. Then σu ⋆ σsj =
σusj +

∑

w,λ bw,λqλσ
w with gr(qλw) < gr(usj) whenever bw,λ 6= 0.

Proof. Clearly, ℓ(usj) = ℓ(u) + 1. Thus N
usj ,0
u,sj = 〈χj, α

∨
j 〉 = 1 by

quantum Chevalley formula (Proposition 2.2). We need to analyze the
remaining non-zero terms.

If ℓ(usγ) = ℓ(u)+1 and 〈χj , γ
∨〉 6= 0, then we have gr(usγ) ≤ gr(u)+

gr(sj) by part a) of the Key Lemma. Note that gr(usj) = ej+ℓ(u)er+1.
If the equality holds, then we have usγ = vsj where ℓ(v) = ℓ(u) and
v ∈ WP . By Lemma 2.5, an expression of u ∈ WP is obtained by
deleting a simple reflection from a (fixed) reduced expression of vsj .
Note that this simple reflection cannot come from v. Otherwise, we
denote by v̄ the element obtained by deleting such simple reflection from
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v. Then u = v̄sj and we would deduce a contradiction, say, 1 + ℓ(u) =
ℓ(usj) = ℓ(v̄) < ℓ(v) = ℓ(u). Thus u = v.

If ℓ(usγ) = ℓ(u) + 1 − 〈2ρ, γ∨〉 and 〈χj , γ
∨〉 6= 0, then we have

gr(qγ∨usγ) ≤ gr(u) + gr(sj) by part b) of the Key Lemma. Further-
more, we have ℓ(usα) = ℓ(u) − 1 whenever 〈α, γ∨〉 > 0, by Lemma 3.8
and Lemma 3.9. Since u ∈ WP , ℓ(usp) = ℓ(u) + 1 for any αp ∈ ∆P .
If the equality held, then we would deduce a contradiction as follows
(mainly by finding α ∈ ∆P satisfying 〈α, γ∨〉 > 0).

Note that ℓ(sγ) > 1 (otherwise, we would conclude γ = αj ∈ ∆P ).

We first assume r ≥ 2 and write gr(usγ) = (k̃1, · · · , k̃r+1) and gr(qγ∨)

= (λ̃1, · · · , λ̃r+1). Since the grading equality holds, we have k̃p + λ̃p =
δp,j for each 1 ≤ p ≤ r. As before, we discuss all possible coroots by
using Proposition 3.22.

When (1) of Proposition 3.22 holds, γ∨ has a virtual coroot γ̇∨ =
∑r+1

p=1 ċpα̇
∨
p satisfying one and only one of the followings (from the proof

of Proposition 3.16).

a) (ċ1, · · · , ċr+1) = (0, · · · , 0). In this case, we have grr(qγ∨) = 0 and

grr(usγ) = grr(u). In particular, we have k̃j = λ̃j = 0, deducing

a contradiction: 1 = δj,j = k̃j + λ̃j = 0 + 0.

b) γ̇∨ =
∑m+1

p=1 pα̇r−m+p, where 0 ≤ m < r. Then we have grr(qγ∨) =

grr(qγ̇∨) = (m−r)
∑r

p=r−m ep and 〈αp, γ
∨〉 = 0 for p ∈ {1, · · · , r}\

{r − m}. Note that grr−m−1(qγ∨) = 0 and grr−m−1(usγ) =
grr−m−1(u) = 0. If j ≤ r−m− 1, then we would deduce the con-

tradiction 1 = δj,j = k̃j + λ̃j = 0 + 0 again. If j = r −m, then we

still deduce a contradiction: 1 = δj,j = k̃j+λ̃j = k̃r−m+m−r ≤ 0.
Hence, we conclude j > r − m. Then we have r ≥ j > j − 1 ≥
r−m > 0 and 〈αj , γ

∨〉 = 0. Thus we have k̃j = δj,j−λ̃j = 1+r−m,

k̃j−1 = δj,j−1 − λ̃j−1 = r − m and consequently k̃j = k̃j−1 + 1.
Hence, we have ℓ(usγsj) = ℓ(usγ)−1 by Proposition 3.4. Then by
Lemma 2.5, we conclude usγ(αj) ∈ −R+, contrary to usγ(αj) =
u(αj) ∈ R

+.

c)
∑i+1

p=1 ċpα̇p = mα̇i+1 +
∑m

p=1 pα̇i−m+p, where 1 ≤ m ≤ i ≤ r.

Then we have 〈αi, γ
∨〉 = 〈α̇i, γ̇

∨〉 > 0 and therefore deduce a
contradiction.

When (2) of Proposition 3.22 holds, we have γ∨ =
∑m

p=d β
∨
p where

o ≤ m ≤ o+ r and d < m. Since 〈χj , γ
∨〉 6= 0, we conclude m ≥ o + r.

Thus we find α = βm ∈ ∆P that satisfies 〈α, γ∨〉 > 0. Hence, we deduce
a contradiction in this case.

It remains to consider the case when (3) of Proposition 3.22 holds.
That is, C9) occurs and γ∨ = β∨3 + β∨4 . In this case, we note r = 2 and

deduce a contradiction, say, −4 = λ̃2 = δ2,j − k̃2 ≥ 0− 2 = −2.
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Hence, our assumption that the grading equality holds is not true,
when r ≥ 2.

Now we assume r = 1. Then αj = α1 and we have λ̃1 = 〈α1, γ
∨〉

by Corollary 3.13. If λ̃1 > 0, then we find a contradiction by taking
α = α1 ∈ ∆P . If λ̃1 < 0, then gr1(qγ∨usγ) < 0 + k̃1 ≤ 1 = gr1(us1) and

consequently the grading equality does not hold. If λ̃1 = 0, then k̃1 =
gr1(usγ) = gr1(u) = 0 and consequently we deduce the contradiction

1 = δj,1 = k̃1 + λ̃1 = 0 + 0.
Due to the quantum Chevalley formula, we have discussed all the

non-zero terms for the quantum product σu ⋆σsj . Hence, the statement
follows. q.e.d.

By Theorem 1.2, we obtain a filtered-algebra structure on QH∗(G/B),
which induces an associated graded subalgebra along the Zer+1 direc-
tion. Thanks to the Peterson-Woodward comparison formula and our
definition of gr(qj)’s (with the help of PW-lifting), we wish to obtain
an algebra isomorphism between QH∗(G/P ) and (at least a subalge-
bra of) this graded subalgebra. For this it is necessary that the grad-
ings of ψ∆,∆P

(1, qλP
)’s, which are canonical candidates in QH∗(G/B)

playing the role of the polynomials qλP
’s in QH∗(G/P ), are in Zer+1.

Indeed, the Peterson-Woodward comparison formula, together with our
definition of gr(qj)’s, has shown that grr(ψ∆,∆P

(1, qλP
)) = 0 when-

ever qλP
∈ QH∗(G/P ) occurs in the quantum product σu ⋆P σv for

σu, σv ∈ QH∗(G/P ). However, apparently it does not tell us about
the behavior when the degree of qλP

is large. Therefore we need the
following proposition for later use.

Proposition 3.24. grr(ψ∆,∆P
(1, qλP

)) = 0 whenever qλP
∈

QH∗(G/P ).

The idea of the proof is as follows. We write ψ∆,∆P
(1, qλP

) = qλB
ωPω

′

as before. The case when r = 1 is easy to handle. When r ≥ 2, we
can use our notion of virtual coroot to obtain λB and consequently
ωPω

′ and grr(qλB
). More precisely, we write λP = λ′ + Q∨

P with λ′ =
∑

α6∈∆P
aαα. Consider a virtual coroot λ̇′ of λ′; then we can easily write

down the element λ̇′+
∑r

i=1 aiα̇
∨
i associated to λ̇′+Q̇∨

P ∈ Q̇∨/Q̇∨
P , where

Q̇∨
P :=

⊕r
i=1 Zα̇

∨
i . For instance, the case of mβ̇∨o+r+1 + Q̇∨

P has been
studied in Lemma 3.18. By our definition of virtual coroot, we conclude
λ′+

∑r
i=1 aiα

∨
i is the element that we expect. In addition, we also show

the ai’s are indeed non-negative so that qλ′+
∑r

i=1 aiα
∨

i
∈ QH∗(G/B).

Proof of Proposition 3.24. Write ψ∆,∆P
(1, qλP

) = qλB
ωPω

′. When r =
1, we have gr1(qλB

) = 〈α1, λB〉 =: k1 by Corollary 3.13. Thus k1 ∈
{0,−1} following from the definition of λB . If k1 = 0, then ∆P ′ = {α1},
implying ω′ = s1 = ωP and ωPω

′ = 1. Thus gr1(qλB
)+gr1(ωPω

′) = 0+
0 = 0. If, k1 = −1. Then we have ∆P ′ = ∅, implying ωPω

′ = s1 ·1 = s1.
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Thus gr1(qλB
) + gr1(ωPω

′) = −1 + 1 = 0. Hence, the statement holds
when r = 1.

Now we assume r ≥ 2. We consider the virtual coroots and introduce
some special elements in Q̇∨ first. Denote µm =

∑m
k=1 kβ̇

∨
o+r+1−m+k.

Whenever o > 0, we denote νm =
∑m−1

k=0 (m−k)β̇∨o+k and ̺ =
∑o+r+1

k=o β̇∨k
where 1 ≤ m ≤ r + 1. By direct calculations, we conclude grr(qx) = 0
and 〈α̇i, x〉 = 0 for all 1 ≤ i ≤ r whenever x = µr+1, νr+1 or ̺. That
is, µr+1, νr+1 and ̺ are all virtual coroots of 0 ∈ Q∨. Furthermore, for
1 ≤ m ≤ r, we have

grr(qνm) = −m
r

∑

j=1

ej+

m−1
∑

k=1

(m−k)
(

(k+1)ek−(k−1)ek−1

)

= −m
r

∑

k=m

ek,

and grr(qµm) = −(r + 1−m)
∑r

k=r+1−m ek (by Lemma 3.18).
Write λP = λ′ + Q∨

P with λ′ =
∑o

j=1 bjβ
∨
j +

∑n
j=o+r+1 bjβ

∨
j . From

Table 4, we obtain a virtual coroot λ̇′ =
∑η

j=1 b̃jβ̇
∨
j of λ′ in which we

note b̃o = bo and o+r+1 ≤ η. If b̃o ≤ b̃o+r+1, we set y = b̃o̺+aµr+1+µm
where µ0 := 0 and b̃o+r+1 − b̃o = a(r + 1) + m with 0 ≤ m ≤ r and

a ≥ 0. Similarly, if b̃o > b̃o+r+1, we set y = b̃o+r+1̺+ aνr+1 + νm where

ν0 := 0 and b̃o − b̃o+r+1 = a(r + 1) + m with 0 ≤ m ≤ r and a ≥ 0.

Clearly, we can write y = b̃oβ̇o + b̃o+r+1β̇o+r+1 +
∑r

i=1 diα̇i. Note that

β̇∨p is a virtual coroot of 0 ∈ Q∨ whenever p < o or p > o + r + 1.

Thus we conclude y is virtual coroot of λB := λ′ +
∑r

i=1(di − b̃o+i)αi.
Furthermore, we note that for all αi ∈ ∆P we have 〈αi, λB〉 = 〈α̇i, y〉 =

〈α̇i, x〉 =
{ −1, if α̇i = α̇m (resp. α̇r+1−m)

0, otherwise
where x = νm (resp. µm),

if b̃o > b̃o+r+1 (resp. b̃o ≤ b̃o+r+1). Hence, λB is the very one associated
to λP that we are expecting. Correspondingly, we can directly write
down ∆P ′ as well as gr(ωPω

′) = −grr(qx) by Lemma 3.6. Note that
grr(qλB

) = grr(qx). Hence, grr(qλB
ωPω

′) = 0.
Since qλP

∈ QH∗(G/P ), bj ≥ 0 for each j. It remains to show

qλB
∈ QH∗(G/B). That is, we need to show di − b̃o+i is non-negative

for each 1 ≤ i ≤ r. Clearly, only the part
∑n

j=o+r+1 bjβ
∨
j of λ′ make

contributions for the part
∑r

i=1 b̃iβ̇
∨
o+r of the coroot λ̇

′ of λ′. From Table

4 we see that b̃o+1 ≤ b̃o+2 ≤ · · · ≤ b̃o+r+1. Thus if b̃o ≥ b̃o+r+1, then we

have di − b̃o+i ≥ b̃o − b̃o+r+1 ≥ 0 for each 1 ≤ i ≤ r. Now we consider
the case when (0 ≤ bo =)b̃o < b̃o+r+1 and then note that all di’s are
non-negative from the way we obtain them. From Table 4 and Table
2, we can make the following observations. (i) If case C1),C9), or C10)

occurs, then the virtual coroot λ̇′ does not make contributions on these
b̃o+i’s. That is, we have di − b̃o+r = di ≥ 0 for each 1 ≤ i ≤ r. (ii) For

the remaining cases, we have b̃o+1 = · · · = b̃o+r−1 = 0 ≤ 2b̃o+r ≤ b̃o+r+1,
except for the case when C4) occurs with r ≥ 5 and o+ r = 7. (iii) For
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the only exceptional case, we have b̃o+1 = b̃o+2 = · · · = b̃5 = 0, b̃6 = b8,
b̃7 = 2b8 and b̃8 = 3b8 > 0. Recall that

∑r
i=1 diβ̇o+i = b̃o̺ + aµr+1 +

µm− (b̃oβ̇o + b̃o+r+1β̇o+r+1) in which b̃o+r+1 = b̃o + a(r+1)+m. When

(ii) holds, we have dr − b̃o+r ≥ b̃o + ar+(m− 1)− b̃o+r ≥ b̃o + ar+m−

1 − [ b̃o+r+1

2 ] ≥ ar +m− 1− [ b̃o+r+1−b̃o
2 ] = ar +m− 1 − [a(r+1)+m

2 ] ≥ 0,

and note di − b̃o+i = di ≥ 0 for 1 ≤ i ≤ r− 1. When (iii) holds, we have

b̃8 ≥ 0+a(5+1)+0 so that a ≤ b8
2 . Since a is an integer, a ≤ [ b82 ]. Thus

we have dr− b̃o+r ≥ b̃o+ar+m−1−2b8 = b̃8−a−1−2b8 = b8−a−1 ≥
b8 − [ b82 ] − 1 ≥ 0 and dr−1 − b̃o+r−1 ≥ b̃o + a(r − 1) + m − 2 − b8 =

b̃8 − 2a − 2 − b8 = 2(b8 − a − 1) ≥ 0. For 1 ≤ i ≤ r − 2, we have

di − b̃o+i = di ≥ 0. Hence, we do show di− b̃o+i ≥ 0 for 1 ≤ i ≤ r for all
cases. q.e.d.

Remark 3.25. In [18], Lam and Shimozono have given a combina-
torial description of λB . In our case when ∆P is of A-type, we obtain
another way to describe λB and to show the property qλB

∈ QH∗(G/B)
in the above proof.

3.5. Proof of the Key Lemma for general ∆P . In this subsection,
we assume ∆P is not of A-type. We give the proof of the Key Lemma,
after describing the formulas for the gradings of all qj’s. Recall that
ς = r − 1 and that in this case we have replaced r with ς in Table 2, in
order to fix the order (∆P ,Υ). In particular, we have κ = o+ ς in this
subsection.

Using Definition 2.8 with respect to the ordered subset ∆ς = (α1, . . . ,
ας) of (∆P ,Υ), we obtain a grading map

g̃r = gr∆ς : W ×Q∨ −→ Zς+1.

That is, we define g̃r(w) =
∑ς+1

j=1 ℓ(vj)ej using the decomposition w =

vς+1vς · · · v1 of w ∈ W associated to ordered subset ∆ς = (α1, · · · , ας),
define g̃r(q1) = 2e1, and define the remaining g̃r(qj)’s recursively with
the help of PW-lifting {ψ∆2,∆1 , ψ∆3,∆2 , · · · , ψ∆ς ,∆ς−1 , ψ∆,∆ς}. Let ι :

Zς+1 = Zr →֒ Zr+1 be the natural inclusion. Thus we obtain a map
ι ◦ g̃r :W ×Q∨ −→ Zr+1, which we simply denote as g̃r whenever there
is no confusion.

As a direct consequence of the definition of g̃r, we can apply Propo-
sition 3.10 and Proposition 3.12 with respect to the ordered subset ∆ς ,
so that we have:

Lemma 3.26. gr(qj) = g̃r(qj) for each 1 ≤ j ≤ ς + 1. Precisely,
gr(q1) = 2e1; gr(qj) = (1 − j)ej−1 + (1 + j)ej for 2 ≤ j ≤ ς; gr(qς+1)
is obtained by directly replacing r with ς. (Only case c), d), e) or f) in
Table 3 can occur.)

Furthermore, we note from Table 2 that either o ≥ 1 or κ+2 ≤ nmust
hold. For any α ∈ ∆ \ (∆P ∪ {βo, βκ+2}), we have gr(qα∨) = 2er+1 <
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2eς+1 = g̃r(qα∨). For λP ∈ Q∨/Q∨
P , we write qλB

ωPω
′ = ψ∆,∆P

(1, λP )
as before.

Lemma 3.27. Suppose p ∈ {o, κ+2}∩{1, · · · , n}. Set λP = β∨p +Q
∨
P .

Then we have λB = β∨p except for either of the following cases.

1) p = o and {βo}∪∆P is of C-type. In this case, λB = β∨o +
∑r

j=1 α
∨
j .

2) p = κ+ 2 and C9) occurs. In this case, λB = β∨κ+2 + α∨
r−1 + α∨

r .

Furthermore, we write gr(qβ∨
p
) =

∑r+1
j=1 djej and g̃r(qβ∨

p
) =

∑r+1
j=1 d̃jej,

and denote ∆P̃ = {α ∈ ∆P | 〈α, β∨p 〉 = 0}. Then dj = d̃j for 1 ≤ j ≤ ς
and we have

a) gr(qβ∨
p
) < g̃r(qβ∨

p
); b) dr+1 ≤ ℓ(ωωP )+1; c)

∑r

j=1
dj ≤ −ℓ(ωPωP̃ ).

Proof. Let θP =
∑r

j=1 ajαj denote the highest root in RP . Note

that ℓ(ωPωP̃ ) = |R+
P | − |R+

P̃
|, ℓ(ωωP ) = |R+| − |R+

P | and ∆P ′ = {α ∈

∆P | 〈α, λB〉 = 0}.
We first assume p = o and note that g̃r(qβ∨

o
) = (ς+2)eς+1−

∑ς
j=1 ej .

Whenever {βo} ∪ ∆P is not of C-type, we note (Table 2 and [12])
that a1 = 1, 〈α1, β

∨
o 〉 = −1, and 〈αj , β

∨
o 〉 = 0 for 2 ≤ j ≤ r. Hence,

we conclude λB = β∨o , ∆P ′ = ∆P̃ = ∆P \ {α1} and consequently we
have ω′ = ωP̃ and gr(qβ∨

p
) = (ℓ(ωPω

′) + 2)er+1 − gr(ωPω
′). Hence,

dr+1 = ℓ(ωPω
′) + 2 ≤ ℓ(ωωP ) + 1 by direct calculations. Write ωPω

′ =

vru, where vr ∈ WPς

P and u = WPς . Then we have u(αj) ∈ R+
Pς

for all

αj ∈ ∆ς ∩ ∆P ′ = ∆ς \ {α1} (otherwise, we would conclude vru(αj) ∈

−R+, contrary to ωPω
′ ∈ WP ′

P ). Noting u(α1) ∈ −R+, we deduce
u = sk · · · s2s1 for some 1 ≤ k ≤ ς, by Lemma 3.6. If ∆P is of B-type
(resp. D-type), then we conclude ωPω

′ = vrsς · · · s1 with vr = s1 · · · sr
(resp. vr = s1 · · · sr−2sr) by easily checking such element satisfies the
condition in Lemma 3.5. If ∆P is of E-type, we note that sς · · · s1(αr) =
u(αr) +

∑ς
j=k+1 bjαj for non-negative integers bj ’s. Consequently, we

have vrsς · · · s1 ∈ WP ′

P and ℓ(vrsς · · · s1) = ℓ(vru) + ς − k = ℓ(ωP ) −
ℓ(ω′) + ς − k. Thus k = ς by Lemma 3.5, implying ℓ(vr) = ℓ(ωPω

′)− ς.
For all these cases, we deduce gr(ωPω

′) = (ℓ(ωPω
′)− ς)eς+1 +

∑ς
j=1 ej .

Hence, dj = −1 for 1 ≤ j ≤ ς, dr = ς − ℓ(ωPω
′), and gr(qβ∨

o
) < g̃r(qβ∨

o
).

Thus
∑r

j=1 dj = −ℓ(ωPω
′) = −ℓ(ωPωP̃ ).

Assume {βo} ∪ ∆P is of C-type, in which case there are only two
possibilities, say, (i) case C1) with ∆ being of C-type and (ii) case C10)
with r = 2. Then ∆P itself is of C-type. Thus we have ℓ(ωPωP̃ ) =

r2 − (r − 1)2 = 2r − 1 and ℓ(ωωP ) = n2 − r2 ≥ (r + 1)2 − r2 = 2r + 1.
Furthermore, we conclude λB = β∨o +

∑r
j=1 α

∨
j , by noting such element

satisfies 〈αj , λB〉 = 0 for each 1 ≤ j ≤ r. Thus ∆P ′ = ∆P , ωPω
′ = 1

and then gr(qβ∨
o
) = (2ς + 4)eς+2 − (ς + 2)eς+1 −

∑ς
j=1 ej by definition.
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In particular, we have gr(qβ∨
o
) < g̃r(qβ∨

o
), dr+1 = 2ς + 4 = 2r + 2 ≤

ℓ(ωωP ) + 1 and
∑r

j=1 dj = dr − ς = −2ς − 2 = −2r < −ℓ(ωPωP̃ ).

Now we assume p = κ+ 2, which holds only if case C5),C7),C9), or
C10) in Table 2 occurs. Note that g̃r(qβ∨

κ+2
) = 2eς+1. If C9) does not

occur, then we conclude ar = 1, 〈αr, β
∨
κ+2〉 = −1 and 〈αj , β

∨
κ+2〉 = 0 for

1 ≤ j ≤ ς. Hence, λB = β∨κ+2, ∆P ′ = ∆P̃ = ∆ς and consequently we
have gr(qβ∨

κ+2
) = (ℓ(ωPωP̃ )+2)eς+2−ℓ(ωPωP̃ )eς+1. Therefore, a) and c)

follow, so does b) by direct calculations. If C9) occurs, then |R+| = 24,

|R+
P | = r2, |∆P̃ | =

r(r+1)
2 , n = 4 = κ + 2, and r ∈ {2, 3}. By direct

calculations, we conclude λB = β∨4 + α∨
r−1 + α∨

r . Furthermore, if r = 2,
then ∆P ′ = ∆P and consequently we have gr(qβ∨

4
) = 6eς+2 − 4eς+1.

If r = 3, then ∆P ′ = {α2, α3}. Consequently, ωPω
′ = s1s2s3s2s1 with

gr(ωPω
′) = (1, 1, 3, 0). Hence, we have gr(qβ∨

4
) = 11eς+2 − 9eς+1. For

either of the cases, it is easy to check all the statements hold. q.e.d.

From the above discussions, we note that grς(qj) = g̃rς(qj) for all
j. Using these discussions together with Lemma 3.11, we obtain the
following immediately.

Lemma 3.28. Let γ ∈ R+. Write gr(qγ∨) =
∑r+1

j=1 djej and g̃r(qγ∨) =
∑r+1

j=1 d̃jej . Then we have dr + dr+1 = d̃r + d̃r+1 = d̃r and dj = d̃j for
each 1 ≤ j ≤ ς.

Now we give the proof of the Key Lemma as follows.

Proof of the Key Lemma. Let w ∈ W and take its decomposition w =
vr+1 · · · v1 associated to (∆P ,Υ). Suppose ℓ(wsγ) < ℓ(w); then by
Lemma 2.5 we conclude wsγ = vr+1 · · · vm+1v̄mvm−1 · · · v1 for a unique
1 ≤ m ≤ r + 1, in which v̄m is obtained by deleting a unique simple
reflection from (a fixed reduced expression of) vm. Set D :=

(

gr(wsγ)−

gr(w)
)

−
(

g̃r(wsγ) − g̃r(w)
)

. If 1 ≤ m ≤ r, then we have D = 0 and
γ ∈ RP . Furthermore, we have gr(qγ) = g̃r(qγ) and gr(si) = g̃r(si)
whenever 〈χi, γ

∨〉 6= 0. In particular, the Key Lemma holds for such
γ, by using Proposition 3.15 and Proposition 3.16 with respect to the
ordered subset ∆ς . If m = r + 1, we write v̄r+1vr = ṽr+1ṽru

′ with

ṽr+1 ∈ WP , ṽr ∈ WPς

P , and u′ ∈ WPς . Thus wsγ = ṽr+1 · · · ṽ1 with

ṽj ∈W
Pj−1

Pj
for each 1 ≤ j ≤ r + 1.

In order to show a), it remains to consider the case when m = r+ 1.
Set w := usγ and note that g̃r(usγ) =

∑ς
j=1 ℓ(vj)ej+(ℓ(vr)+ℓ(vr+1))er.

Thus we have −D = (ℓ(vr+1)−ℓ(ṽr+1))er+1+(ℓ(vr)−ℓ(ṽr)−ℓ(vr+1vr)+
ℓ(ṽr+1ṽr))er = (ℓ(vr+1) − ℓ(ṽr+1))(er+1 − er) ≤ er+1 − er. Note that
γ ∈ R \ RP (by Lemma 2.7). Therefore we have gr(usγ) − gr(u) =
−D +

(

g̃r(usγ) − g̃r(u)
)

≤ er+1 − er + min{g̃r(si) | 〈χi, γ
∨〉 6= 0} =

er+1 = min{gr(si) | 〈χi, γ
∨〉 6= 0}. Thus a) follows.
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To show b), we set w := u in the rest of the proof and use induction
on ℓ(sγ).

First we observe that gr(qj) + gr(usj) ≤ gr(u) + gr(sj) for any 1 ≤
j ≤ n. Indeed, this inequality holds if 1 ≤ j ≤ r with the discussion
in the beginning. If 〈α,α∨

j 〉 = 0 for all α ∈ ∆P , then for γ = αj

we have m = r + 1, v̄r+1 ∈ WP (by Lemma 3.2) and consequently
gr(usj)− gr(u) = −er+1 = −gr(qj) + gr(sj). Otherwise, we much have
αj = βp with p ∈ {o, κ+2}∩ {1, · · · , n}. Then the inequality still holds
by using Lemma 3.29 a) (with γ = βp) and Lemma 3.27 c).

Now we assume γ /∈ ∆. Take any simple root αj satisfying 〈αj , γ
∨〉 >

0 and write β = sj(γ), gr(qβ∨) = (λ1, · · · , λr+1),min{gr(si) | 〈χi, β
∨〉 6=

0} = ec, and

gr(qj) + gr(usj) = gr(u) + (a1, · · · , ar+1),

gr(qβ∨) + gr(usjsβ) = gr(usj) + ec + (µ1, · · · , µr+1),

gr(usjsβsj) = gr(usjsβ) + (b1, · · · , br+1).

In addition, we use the notations c̃, ãj ’s, b̃j’s, and µ̃j’s, whenever re-
placing “gr” with “g̃r” in the above three equalities. Then we have
min{gr(si)|〈χi, γ

∨〉 6= 0} = min{ec, gr(sj)} and by the induction hy-
pothesis (µ1, · · · , µr+1) ≤ (0, · · · , 0). Due to Lemma 3.11, it suffices
to show

∑r
i=1(ai + bi + µi)ei ≤ 0. Furthermore, we note that ãr+1 =

b̃r+1 = µ̃r+1 = 0, µr + µr+1 = µ̃r, ec̃ ≥ ec and ãk = ak, b̃k = bk, µ̃k = µk
for each 1 ≤ k ≤ ς. Clearly, either of the following must hold.

(i) There is βp ∈ ∆ such that p ∈ {1 · · · , n} \ {o, κ + 1, κ + 2} and
〈βp, γ

∨〉 > 0.
(ii) Whenever βp ∈ ∆ satisfies 〈βp, γ

∨〉 > 0, we have p ∈ {o, κ+1, κ+
2}. In this case, we note the constrain ℓ(sγ) = 〈2ρ, γ∨〉 − 1 on γ,
which is deduced from our assumption by using Lemma 3.9.

Suppose (i) holds. Then we just take any one such αj = βp. If
p /∈ {o, o+1, · · · , κ+2}, then 〈α,α∨

j 〉 = 0 for all α ∈ ∆P ; consequently,

it is done by noting ak = bk = 0 for 1 ≤ k ≤ r (using Lemma 3.2) and
ec = er+1. Otherwise, there exists o+1 ≤ p ≤ o+ς such that 〈βp, γ

∨〉 >
0. Recall that αi = βo+i for each 1 ≤ i ≤ r. For any one choice αj = βp
among such roots, we always have ai = bi = 0 for i /∈ {j − 1, j} and
consequently

∑r
i=j+1(ai+bi+µi)ei =

∑r
i=j+1 µiei. In addition from the

proof of Proposition 3.16, we can always take a certain αj = βp among

such roots such that both ec̃ < ej and
∑j

i=1(ãi + b̃i + µ̃i)ei ≤ 0 hold by

considering g̃r. Since j ≤ r− 1, we have ãi = ai, b̃i = bi and µ̃i = µi for
each 1 ≤ i ≤ j. Thus for such a choice αj = βp, both ec ≤ ec̃ < ej and
∑j

i=1(ai + bi +µi)ei ≤ 0 hold. Hence, the Key Lemma holds for such γ
by using the induction hypothesis.
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Suppose (ii) holds. Then the constrains are so strong that there are
only very few roots. We discuss all such roots with respect to each type
of ∆ and label the method we will use.

Assume ∆ is of B-type. (That is, part of case C1) in Table 1
occurs.) There are only two coroots satisfying the conditions, say,

β∨o−1 + 2
∑n−1

i=o β
∨
i + β∨n (with o ≥ 2) or

∑n
i=o β

∨
i . (See the proof of

Proposition 3.22.)

(M1): For the former coroot, we note that ∆P̄ = {α ∈ ∆P | 〈α, γ∨〉 =

0} = ∆ and gr(qγ∨) =
∑r+1

i=1 diei = dr+1 by direct calculations.
Hence,

∑r
i=1 di = 0 = −ℓ(ωPωP̄ ). Thus the inequality holds by

using Lemma 3.29 a).
(M2): For the latter coroot, we take αj = βn; that is, αj = αr. Then

β∨ = γ∨ − β∨n and gr(qβ∨) = dr+1er+1 − rer + ςeς . Write gr(u) =
(i1, · · · , ir+1), gr(usr) = (i′1, · · · , i

′
r+1), gr(usrsβ) = (k1, · · · , kr+1),

and gr(usγ) = gr(usrsβsr) = (k′1, · · · , k
′
r+1). Noting that 〈αt, α

∨
r 〉

= 〈αt, β
∨〉 = 0 for 1 ≤ t ≤ ς − 1, we conclude at = bt = µt = 0 for

t ≤ ς− 1 by Lemma 3.2 and consequently µς ≤ 0 by the induction
hypothesis. Furthermore, we note that aς + ar = 1, bς + br = −1,
aς + bς = −2ς + i′ς − iς + k′ς − kς ≤ 0. If aς + bς +µς < 0, then it is
done. Otherwise, we conclude i′ς = k′ς = ς and iς = kς = µς = 0.
Consequently, we have ar + br + µr = µr = µς+1 ≤ 0 and it is
done.

Assume ∆ is of C-type. (That is, part of case C1) in Table 1 occurs.)
There are only one such coroots, say, γ∨ =

∑n
i=o β

∨
i . Thus the inequality

holds by (M1).
Assume ∆ is of D-type. (Case C2) is used.) There are only two such

coroots, say, β∨o−1+2
∑n−2

i=o β
∨
i +β

∨
n−1+β

∨
n (with o ≥ 2) or

∑n−2
i=o β

∨
i +β

∨
n .

For the former coroot, the inequality holds by using (M1).

(M3): For the latter coroot, we have gr(qγ∨) = 2rer+1 + ςer − ςeς by
direct calculation. Using the notation of Lemma 3.29, we conclude
∑r

i=1 di = 0, ∆P̂ = {βo, βo+1, · · · , βn}, Ξ1 = {βn} ∪ {
∑r−2

i=k βo+i +

βn | 1 ≤ k ≤ r−2}, and Ξ2 := {βo+
∑n−2

i=o+k βi+βn−1+βn | o+1 ≤
k ≤ n− 2} ∪ {

∑n
i=o βi}. Note that n = o+ r in this case. Hence,

we have |Ξ1| − |Ξ2| = r − 1 − (r − 1) = 0 =
∑r

i=1 di. Hence, the

Key Lemma holds for γ =
n−2
∑

i=o
β∨i + β∨n by using Lemma 3.29 b).

It remains to discuss the cases when ∆ is of either E-type or F -type.
Since there are only finite exceptional types (among which only a few
roots satisfy (ii)) and the arguments are similar, we leave the details in
the appendix (see section 6).

Hence, the statement follows. q.e.d.
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It remains to show the following, which was used in the proof of the
Key Lemma.

Lemma 3.29. Let u ∈ W and γ ∈ R+ \ RP . Write gr(qγ∨) =
∑r+1

j=1 djej . Then Key Lemma b) holds, if either of the following holds.

a)
∑r

j=1 dj ≤ −ℓ(ωPωP̄ ), where ∆P̄ := {α ∈ ∆P | 〈α, γ∨〉 = 0}.

b)
∑r

j=1 dj ≤ |Ξ1| − |Ξ2|, where Ξ1 := {α ∈ R+
P | 〈α, γ∨〉 > 0} and

Ξ2 := {α ∈ R+

P̂
\ RP | α − γ ∈ R+, 〈α, γ∨〉 > 0} with ∆P̂ :=

∆P ∪ {αi ∈ ∆ | 〈χi, γ
∨〉 6= 0}.

Proof. Let u = vr+1 · · · v1 (resp. usγ = ṽr+1 · · · ṽ1) be its decomposi-
tion associated to (∆P ,Υ). Since γ ∈ R+ \ RP , we have min{gr(si) |
〈χi, γ

∨〉 6= 0} = er+1. Note that grς(qλw) = g̃rς(qλw) for any qλw.

Applying Proposition 3.16 with respect to ∆ς , we have
∑r−1

j=1(dj +

ℓ(ṽj))ej ≤
∑r−1

j=1 ℓ(vj)ej . If “<” holds, it is already done. If “=”

holds, we conclude
∑r−1

j=1 dj + ℓ(ṽr−1 · · · ṽ1) = ℓ(vr−1 · · · v1). Due to

Lemma 3.11, we have
∑r+1

j=1(dj + ℓ(ṽj)) = 〈2ρ, γ∨〉+ ℓ(usγ) = 1+ ℓ(u) =

1+
∑r+1

j=1 ℓ(vj). It remains to show dr+ ℓ(ṽr) ≤ ℓ(vr), or equivalently to

show ℓ(vr+1) ≤ ℓ(ṽr+1)+dr+1−1 = ℓ(ṽr+1)+(
∑r+1

j=1 dj−1)−
∑r

j=1 dj =

ℓ(ṽr+1) + ℓ(sγ)−
∑r

j=1 dj .

a) Since vr+1, ṽr+1 ∈ WP , we conclude ℓ(vr · · · v1) = |A1| and
ℓ(ṽr · · · ṽ1) = |A2| where A1 := {β ∈ R+

P | u(β) ∈ −R+} and A2 := {β ∈
R+

P | usγ(β) ∈ −R+}. Note that usγ(β) = u(β) for β ∈ RP̄ . Hence,

β ∈ A2 \A1 only if β ∈ R+
P \RP̄ . Thus |A2| − |A1| ≤ |A2 \A1| ≤ |R+

P \
RP̄ | = ℓ(ωPωP̄ ). Consequently, we have ℓ(ṽr) − ℓ(vr) =

(

ℓ(ṽr · · · ṽ1) −

ℓ(vr · · · v1)
)

+
∑r−1

j=1 dj = |A2| − |A1|+
∑r−1

j=1 dj ≤ ℓ(ωPωP̄ )+
∑r−1

j=1 dj ≤
−dr.

b) Since vr+1 ∈WP and ∆P̂ ⊃ ∆P , we can write vr+1 = v′r+2v
′
r+1 in

which v′r+2 ∈ W P̂ and v′r+1 ∈ WP
P̂

⊂ WP . Similarly, we write ṽr+1 =

ṽ′r+2ṽ
′
r+1 with ṽ′r+2 ∈ W P̂ and ṽ′r+1 ∈ WP

P̂
. Note that ℓ(v′r+1) = |A3|

and ℓ(ṽ′r+1) = |A4|, where A3 := {α ∈ R+

P̂
\ RP | u(α) ∈ −R+}

and A4 := {α ∈ R+

P̂
\ RP | usγ(α) ∈ −R+}. We claim A3 can be

written as a disjoint union B1 ⊔ B2 ⊔ B3 such that |B1| ≤ ℓ(sγ) − |Ξ1|,
B2 ⊂ Ξ2, and B3 ⊂ A4. Hence, ℓ(v′r+1) = |A3| = |B1| + |B2| + |B3| ≤
ℓ(sγ) − |Ξ1| + |Ξ2| + ℓ(ṽ′r+1). Since γ ∈ RP̂ , we have ṽ′r+2 = v′r+2.
Therefore ℓ(vr+1)− ℓ(ṽr+1) = ℓ(v′r+1)− ℓ(ṽ′r+1) ≤ ℓ(sγ)− |Ξ1|+ |Ξ2| ≤
ℓ(sγ)−

∑r
j=1 dj.

It remains to show our claim. Clearly, A3 is a disjoint union of Bi’s in
which the corresponding sets are given by B1 :=

{

α ∈ R+

P̂
\RP

∣

∣ u(α) ∈
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−R+, sγ(α) ∈ −R+
}

,

B2 :=







α ∈ R+

P̂
\RP

∣

∣

∣

∣

∣

u(α) ∈ −R+,
sγ(α) ∈ R+,
〈α, γ∨〉 > 0







,

B3 :=







α ∈ R+

P̂
\RP

∣

∣

∣

∣

∣

u(α) ∈ −R+,
sγ(α) ∈ R+,
〈α, γ∨〉 ≤ 0







.

Note that B1 ⊂
{

α ∈ R+

P̂
\ RP

∣

∣ sγ(α) ∈ −R+
}

=
{

α ∈ R+

P̂

∣

∣ sγ(α) ∈

−R+
}

−
{

α ∈ R+
P

∣

∣ sγ(α) ∈ −R+
}

. Since γ 6∈ RP , for any α ∈ R+
P we

conclude that sγ(α) = α − 〈α, γ∨〉γ ∈ −R+ if and only if 〈α, γ∨〉 > 0.
Hence, |B1| ≤

∣

∣{α ∈ R+

P̂
| sγ(α) ∈ −R+}

∣

∣ −
∣

∣{α ∈ R+
P | sγ(α) ∈

−R+}
∣

∣ = ℓ(sγ)− |Ξ1|. It is obvious that B2 ⊂ Ξ2. Since ℓ(usγ) < ℓ(u),
we have u(γ) ∈ −R+ by Lemma 2.5. Consequently, if α ∈ B3, then we
have usγ(α) = u(α) + (−〈α, γ∨〉)u(γ) ∈ −R+, implying α ∈ A4. Hence,
B3 ⊂ A4. q.e.d.

4. Proofs of main results

In this section, we prove all the theorems mentioned in the introduc-
tion. Recall that the proof of Theorem 1.2 has been given in section
2.3.

When ∆P is not of A-type, we have denoted ς = r − 1. For con-
venience, we denote ς = r if ∆P is of A-type. Recall that ∆ς =
{α1, · · · , ας}, Pς = P∆ς and Q∨

ς =
⊕ς

i=1 Zα
∨
i . (In particular when

ς = r, we have Pς = P and Q∨
ς = Q∨

P .)

Lemma 4.1. gr(WPς × Q∨
ς ) =

⊕ς
i=1 Zei, where we have treated

WPς × Q∨
ς as a subset of W × Q∨ naturally. Furthermore, for any

d =
⊕ς

i=1 diei, we have

1) d = gr(wqλ) for a unique wqλ ∈W×Q∨. In fact, wqλ ∈WPς×Q
∨
ς .

2) Take the unique wqλ as in (1). Then wqλ ∈ QH∗(G/B) if di ≥ 0
for all i.

Proof. Define a matrix M =
(

mi,j

)

ς×ς
by using the gradings gr(qi)’s.

That is, we define
∑ς

j=1mi,jej = (1 − i)ei−1 + (1 + i)ei(= gr(qi)) for
each 1 ≤ i ≤ ς. Note that M is a lower-triangular matrix. Hence, there
exist unique sequences a = (a1, · · · , aς),b = (b1, · · · , bς) of integers
such that d = aM + b and 0 ≤ bi ≤ mi,i − 1 = i for 1 ≤ i ≤ ς.
Furthermore, if di ≥ 0 for all i, then we conclude ai ≥ 0 for all i, by

noting mi,j ≤ 0 whenever j < i. Since W
Pi−1

Pi
= {u

(i)
k | 0 ≤ k ≤ i}, each

0 ≤ bi ≤ i corresponds to a unique element in W
Pi−1

Pi
, say, u

(i)
bi
. Hence,

we find a unique (w, λ) := (u
(ς)
bς

· · · u
(1)
b1
,
∑ς

i=1 aiα
∨
i ) ∈ WPς × Q∨

ς such
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that gr(wqλ) = d; furthermore, wqλ ∈ QH∗(G/B) whenever di ≥ 0 for
all i.

It remains to show gr(uqµ) 6∈
⊕ς

i=1 Zei whenever (u, µ) 6∈WPς ×Q∨
ς .

Indeed, it follows directly from Definition 2.8 that gr[k,r+1](qα∨) = xkek
with xk ≥ 2, whenever α ∈ ∆k \ ∆k−1. Take the decomposition
u = vr+1 · · · v1 of u associated to (∆P ,Υ) and note that gr(uqµ) =
⊕r+1

i=1 ℓ(vi)ei + gr(qµ). Thus if gr(uqµ) ∈
⊕ς

i=1 Zei, then we have
ℓ(vr+1) = 0 and µ ∈ Q∨

P (= Q∨
r ). When ς = r, it is done. When

ς = r − 1, we proceed to conclude ℓ(vr) = 0 and µ /∈ Q∨
r \ Q∨

ς . Thus
u ∈WPς and µ ∈ Q∨

ς . q.e.d.

Proof of Lemma 2.12. We need to show for any qµu, qνv ∈ QH∗(G/B)
there exists qλw ∈ QH∗(G/B) such that gr(qµu) + gr(qνv) = gr(qλw).
Note that gr(qµ) + gr(qν) = gr(qµ+ν) and gr(qµ) + gr(u) = gr(qµu).
Thus it remains to show gr(u) + gr(v) ∈ S. It suffices to show x =
(x1, · · · , xr+1) ∈ S for any x ∈ (Z≥0)

r+1.
We first assume ς = r. Take any simple root in ∆ς+1 \∆ς(= ∆\∆P ),

say, α. From Table 3, we conclude gr(qα∨) =
∑ς+1

i=1 diei with 2 ≤
dς+1 ≤ 1 + ℓ(ωPς+1ωPς )(= ℓ(ωωP ) + 1) and di ≤ 0 for i ≤ ς. Since
xς+1 ≥ 0, we can write xς+1 = aς+1dς+1 + bς+1 for unique aς+1 ≥ 0
and 0 ≤ bς+1 ≤ ℓ(ωPς+1ωPς ). Note that ℓ(ωPς+1ωPς ) = max{ℓ(v) | v ∈

WPς

Pς+1
} so that we can choose vς+1 ∈ WPς

Pς+1
satisfying ℓ(vς+1) = bς+1.

Furthermore, (x1 − aς+1d1, · · · , xς − aς+1dς) is again a sequence of non-
negative integers. Thus it is the grading of a unique (w′, λ′) ∈WPς ×Q

∨
ς

with qλ′ ∈ QH∗(G/B) by Lemma 4.1. Set w = vς+1w
′ and λ = aς+1α

∨+
λ′. Then wqλ ∈ QH∗(G/B) is the element as required.

Now we assume ς = r − 1. By Lemma 3.27 there exists α′ ∈ ∆ \∆P

such that gr(qα′∨) =
∑r+1

i=1 d
′
iei with 2 ≤ d′r+1 ≤ 1 + ℓ(ωωP ) and d

′
i ≤ 0

for i ≤ r = ς + 1. Repeating the above discussions, we can reduce
it to the question of finding a element in qλw ∈ WPς+1 × Q∨

ς+1 with

qλw ∈ QH∗(G/B) and the grading of it being equal to
∑ς+1

i=1 x
′
iei for

given non-negative integers x′i’s. Thus the statement follows by using
the same arguments again. q.e.d.

Remark 4.2. Z≥0er+1 is a sub-semigroup of S. Indeed, we can
take α ∈ ∆ such that gr[r+1,r+1](qα∨) = dr+1er+1 with 2 ≤ dr+1 ≤
1 + ℓ(ωωP ), from the above proof. For any c ∈ Z≥0, c = adr+1 + b with
0 ≤ b ≤ dr+1 − 1. Then we can choose v ∈ WP such that ℓ(v) = b.
Note that −grr(qaα∨) =

∑r
i=1 xiei with xi’s being in Z≥0. Hence, it is a

grading of certain element qλu ∈ QH∗(G/B) where (u, λ) ∈ WP ×Q∨
P .

Then qaα∨+λvu ∈ QH∗(G/B) and its grading is equal to cer+1.

The next lemma proves the first half of Theorem 1.3.

Lemma 4.3. The subspace I defined in Theorem 1.3 is an ideal of
QH∗(G/B).
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Proof. We need to show for any qµu ∈ I and qνv ∈ QH∗(G/B), the

product qµu ⋆ qνv =
∑

w,λN
w,λ
u,v qλ+µ+νw also lies in I. That is, we need

to show dr+1 ≥ 1 where gr[r+1,r+1](qλ+µ+νw) = dr+1er+1, whenever

Nw,λ
u,v 6= 0. Clearly, this is true if either µ or ν lies in Q∨ \ Q∨

P , which
follows directly from Definition 2.8. When µ, ν ∈ Q∨

P , we must have
u ∈ W \ WP . Then we shall show gr[r+1,r+1](qλw) ≥ er+1 whenever

Nw,λ
u,v 6= 0, by using induction on ℓ(v).
If ℓ(v) = 0, then v = id and it is done. If ℓ(v) = 1, then v is a sim-

ple reflection and therefore we can use the quantum Chevalley formula
(Proposition 2.2). When ℓ(usγ) = ℓ(u) + 1, we take the decomposi-
tion usγ = vr+1 · · · v1 associated to (∆P ,Υ) and note u is obtained by
deleting a reflection in some vm. Since u /∈ WP , we conclude vr+1 6= 1.
In particular, we have gr[r+1,r+1](usγ) ≥ er+1. When ℓ(usγ) = ℓ(u) +

1 − 〈2ρ, γ∨〉, then we also conclude gr[r+1,r+1](qγ∨usγ) ≥ er+1, by not-
ing gr[r+1,r+1](qγ∨usγ) ≥ gr[r+1,r+1](usγ) = gr[r+1,r+1](u) ≥ er+1 if

γ ∈ Q∨
P , and gr[r+1,r+1](qγ∨usγ) ≥ gr[r+1,r+1](qγ∨) ≥ 2er+1 if γ /∈ Q∨

P .
Thus if ℓ(v) = 1, then σv ⋆I ⊂ I. Now we assume ℓ(v) > 1. By Lemma
2.13, there exist v′ ∈W and 1 ≤ j ≤ n such that gr(v) = gr(v′)+gr(sj)

and σv
′

⋆ σsj = cσv +
∑

w,λ cw,λqλw, where c > 0 and the summation is
only over finitely many non-zero terms for which cw,λ > 0. In particu-
lar, we have ℓ(v′) = ℓ(v) − 1. Using the induction hypothesis, we have

σv
′

⋆ I ⊂ I. Thus (cσv +
∑

w,λ cw,λqλw) ⋆ I = σsj ⋆ (σv
′

⋆ I) ⊂ I. Since
all the structure constants are non-negative, there is no cancellation in
the summation on the left-hand side of the equality. Hence, we conclude
σv ⋆ I ⊂ I. q.e.d.

It remains to show the second half of Theorem 1.3. There are com-
binatorial characterizations of QH∗(G/B) (see e.g., [25]), or more gen-
erally on its torus-equivariant extension [26]. In particular, intuitively,
QH∗(G/B) should also have a non-equivariant version of Mihalcea’s cri-
terion [26] for torus-equivariant quantum cohomology of G/B. That is,
an algebra (

⊕

w∈W Q[q]σw, ∗) should be isomorphic to QH∗(G/B) as al-
gebras, if it satisfies the quantum Chevalley formula together with some
natural properties (e.g., commutativity and associativity). However, we
did not find any explicit reference for this. In our case, we obtain a
natural algebra of this form which has one more (strong) property say-
ing that (

⊕

w∈W Q[q]σw, ∗)|q=0 is canonically isomorphic to H∗(G/B).
Thus it becomes easy to show the algebra isomorphism (by using induc-
tion). We would like to thank A.-L. Mare and L. C. Mihalcea for their
comments for such a criterion and the proof.

Proof of Theorem 1.3. Due to Lemma 4.3, it remains to showQH∗(P/B)
is canonically isomorphic to QH∗(G/B)/I. Note that P/B is isomor-
phic to the complete flag variety determined by the pair (∆P , ∅). Hence,
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QH∗(P/B) has a natural basis of Schubert classes {σw | w ∈WP } over
Q[q1, · · · , qr], and the formula of σu ⋆f σ

si (where u ∈WP and αi ∈ ∆P )
is directly obtained from Proposition 2.2 by restriction of γ ∈ ∆ to
γ ∈ ∆P in the summation. Here we denote the quantum product of
QH∗(P/B) by ⋆f , in order to distinguish it with the quantum product
⋆ of QH∗(G/B). On the other hand, QH∗(G/B)/I has a natural al-
gebra structure induced from QH∗(G/B). Thus it is also commutative
and associative, and we denote the product of it by the same ⋆ by abuse
of notation.

It is clear that for any wqλ ∈ W × Q∨, gr[r+1,r+1](wqγ) = 0, i.e.,

wqλ 6∈ I, if and only if wqλ ∈ WP × Q∨
P . We define a map ϕ :

QH∗(G/B) −→ QH∗(P/B), given by ϕ(qλ) = qλ if wqλ 6∈ I, or 0 if
wqλ ∈ I. Clearly, ϕ induces a natural isomorphism ϕ̄ of vector spaces,
ϕ̄ : QH∗(G/B)/I −→ QH∗(P/B), given by ϕ̄(wqλ) := ϕ(wqλ). In par-
ticular, it is easy to check ϕ̄(σsi ⋆ σsj) = σsi ⋆f σ

sj for any αi, αj ∈ ∆P .
It is a well known fact that QH∗(P/B) is generated by {σsα | α ∈ ∆P }
over Q[q1, · · · , qr]. Thus it is sufficient to show QH∗(G/B)/I is gener-
ated by {σsα | α ∈ ∆P}. Since our filtration on QH∗(G/B) general-
izes the classical filtration on H∗(G/B) (by Proposition 2.14) naturally,
QH∗(G/B)/I

∣

∣

qλ=0
is canonically isomorphic to H∗(P/B) as algebras.

In particular, it is generated by {σs1 , · · · , σsr} with respect to the in-
duced cup product. Hence, the statement follows by using the quantum
Chevalley formula and induction (for instance one can follow the proof
of Lemma 2.1 of [30] exactly). q.e.d.

Remark 4.4. For the classical case, the induced map i∗ :H∗(G/B)−→
H∗(P/B) is given by i∗(σw) = σw if w ∈ WP , or 0 otherwise. And the
ideal I is given by I = Q{σw| w = vu with u ∈ WP , v ∈ WP , v 6= 1}.
Note that for any w ∈ W,w /∈ I if and only if gr[r+1,r+1](σ

w) = 0.
Clearly, I is a q-deformation of I and ϕ is a natural generalization of
i∗.

Lemma 4.5. Let w = vr+1 · · · v1 be the decomposition of w ∈ W
associated to (∆P ,Υ). For any 1 ≤ m ≤ ς, the following holds.

1) If ℓ(vm) < m, then there exists γ ∈ R+ such that 〈χm, γ
∨〉 = 1,

ℓ(wsγ) = ℓ(w) + 1 and gr(wsγ) = gr(w) + em.
2) If ℓ(vm) = m, then there exists γ ∈ R+ such that 〈χm, γ

∨〉 = 1,
ℓ(wsγ) = ℓ(w) + 1− 〈2ρ, γ∨〉 and gr(qγ∨wsγ) = gr(w) + em.

Proof. Note that Dyn({α1, · · · , ας}) is of A-type. We have vk = u
(k)
ik

with ik = ℓ(vk) whenever 1 ≤ k ≤ ς.
(1) If im < m, we set γ := (vm−1 · · · v1)

−1(αm−im + αm−im+1 + · · ·+
αm). Then γ is of the form αm +

∑m−1
j=1 ajαj ∈ R. Thus γ ∈ R+ and

〈χm, γ
∨〉 = 1. Moreover, we conclude wsγ = vr+1· · ·vm+1u

(m)
im+1vm−1· · ·v1.

Thus (1) follows.
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(2) Denote k = 1 + max{j | ij = 0, 0 ≤ j ≤ m − 1}, where i0 :=
0, and set γ = αk + αk+1 + · · · + αm ∈ R+. Clearly, 〈χm, γ

∨〉 =
1. For each j ≤ m, we denote γj = αj + αj+1 + · · · + αm. Then

γj = γj+1 + αj = sj(γj+1). Thus for any ij ≥ 1, we have u
(j)
ij
sγj =

u
(j)
ij
sjsγj+1sj = u

(j−1)
ij−1 sγj+1sj = sγj+1u

(j−1)
ij−1 sj = sγj+1u

(j)
ij

. Furthermore,

we have s1s2 · · · sju
(j)
ij

= u
(j)
ij−1s1s2 · · · sj−1 by Lemma 3.3. Note that

γ = γk, γm = αm and denote u = vm · · · v1. Hence,

usγ = u
(m)
im

· · · u
(k)
ik
sγku

(k−2)
ik−2

· · · u
(1)
i1

= u
(m)
im

· · · u
(k+1)
ik+1

sγk+1
u
(k)
ik
sγu

(k−2)
ik−2

· · · u
(1)
i1

= u
(m)
im

sγmu
(m−1)
im−1

· · · u
(k)
ik
u
(k−2)
ik−2

· · · u
(1)
i1

= s1s2 · · · sm−1u
(m−1)
im−1

· · · u
(k)
ik
u
(k−2)
ik−2

· · · u
(1)
i1

= u
(m−1)
im−1−1 · · · u

(k)
ik−1(s1 · · · sk−1)u

(k−2)
ik−2

· · · u
(1)
i1
.

Note that im = m and ij = ℓ(vj) for j ≤ ς. Thus,

ℓ(wsγ) =
∑r+1

p=m+1
ℓ(vp) +

(

∑m−1

j=k
(ij − 1)

)

+ k − 1 +
∑k−2

j=1
ij

=
∑r+1

p=1
ℓ(vp)− (m− k) + k − 1−m

= ℓ(w) + 1− 2〈ρ, (αk + · · · + αm)∨〉 = ℓ(w) + 1− 〈2ρ, γ∨〉.

Furthermore, we conclude gr(qγ∨wsγ) = gr(w)+em, by noting im = m,

ik−1 = 0, and gr(qγ∨) = (1− k)ek−1 + (m+ 1)em +
∑m−1

j=k ej. q.e.d.

Since QH∗(G/B) has an S-filtration F , we obtain an associated S-
graded algebra GrF (QH∗(G/B)) =

⊕

a∈S Gr
F
a , where Gr

F
a :=

Fa

/

∪b<a Fb. For each j ≤ r + 1, we denote GrF(j)(QH
∗(G/B)) :=

⊕

i≥0Gr
F
iej
. Note that for the iterated fibration {Pj−1/P0 → Pj/P0 −→

Pj/Pj−1}
r+1
j=2 associated to (∆P ,Υ), we have Pr+1/Pr = G/P and Pj/Pj−1

∼=

Pj whenever j ≤ ς. Take the canonical isomorphism QH∗(Pk) ∼=
Q[xk,tk]

〈xk+1
k

−tk〉
for each k ≤ ς. Then we can state Theorem 1.4 more con-

cretely as follows (in which we denote u
(0)
0 := 1).

Theorem 1.4. There exist canonical isomorphisms Ψk’s of algebras:

For each k ≤ ς, Ψk : QH∗(Pk) −→ GrF(k)(QH
∗(G/B));

xk 7→ u
(k)
1 , tk 7→ qku

(k−1)
k−1 .

For k = ς + 1, Ψς+1 : QH
∗(Pς+1/Pς) −→ GrF(ς+1)(QH

∗(G/B));

qλPς
σv 7→ ψ∆ς+1,∆ς (qλPς

σv).
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In particular if ∆P is of A-type (i.e., if ς = r), then we have Pς+1/Pς =
G/P , ∆r+1 = ∆ and ∆ς = ∆P . Thus in this case, Theorem 1.4 gives

an isomorphism QH∗(G/P )
≃

−→ GrF(r+1)(QH
∗(G/B)).

Proof of Theorem 1.4. By Lemma 4.1, for any a ∈
⊕ς

i=1 Zei there exists

a unique qλu ∈ QH∗(G/B) such that gr(qλu) = a. Thus dimQGr
F
a = 1

and GrFa = Qqλu. Then we simply denote Aa := qλu. In particular, we
conclude Aa ⋆ Aej = cjAa+ej whenever j ≤ ς. Furthermore, we have
cj = 1 by Lemma 4.5. When ℓ(v) > 1, there exists v′ ∈ WPς satisfying
gr(v′) + gr(sp) = gr(v) with p ≤ ς by using Lemma 4.5 again. Thus by
induction on ℓ(v), we conclude Aa ⋆ Agr(v) = Aa+gr(v) for any v ∈WPς .

Hence, Aa ⋆ Ab = Aa+b for any a,b ∈
⊕ς

i=1 Zei. As a consequence,

we obtain a canonical isomorphism QH∗(Pk) ∼= GrF(k)(QH
∗(G/B)) for

each 1 ≤ k ≤ ς, given by xk 7→ u
(k)
1 and tk 7→ qku

(k−1)
k−1 .

In order to analyze Ψς+1, we need to compare the algebra structure of
QH∗(Pς+1/Pς) with the filtered-algebra structure of QH∗(G/B). Note
that if ς = r − 1, then Pς+1/B = P/B. Due to Theorem 1.3, essen-
tially we need to compare QH∗(Pς+1/Pς) with QH

∗(P/B) by using the
Peterson-Woodward comparison formula in this case. Thus without loss
of generality, we can assume ς = r in the rest, which is of main interest
to us and can bring convenience on the notation.

Denote the quantum product of QH∗(G/P ) by ⋆P . Write

ψ∆,∆P
(qλP

σv) = qλB
σvωP ω′

, where qλP
σv ∈ QH∗(G/P ). Then we

have grr(qλB
σvωP ω′

) = 0 by Proposition 3.24. On the other hand, if
grr(qλσ

vu) = 0 with λP = λ + Q∨
P and u ∈ WP , then we conclude

gr(qλB−λωPω
′) = gr(u) where λB − λ ∈ Q∨

P . By the uniqueness (from
Lemma 4.1), we conclude λB = λ and ωPω

′ = u. Hence, Ψr+1 is an
isomorphism of vector spaces.

By Proposition 2.1, we have Ψr+1(σ
u⋆P σ

v) = Ψr+1(σ
u)⋆Ψr+1(σ

v) for
u, v ∈WP . To show Ψς+1 is an algebra isomorphism, it remains to show
(i) Ψr+1(qλP

⋆P qµP
) = Ψr+1(qλP

)⋆Ψr+1(qµP
) and (ii) Ψr+1(qλP

⋆P σ
v) =

Ψr+1(qλP
)⋆Ψr+1(σ

v). For (i), we write λP = λ′+Q∨
P and µP = µ′+Q∨

P
where λ′, µ′ are elements in

⊕

α∈∆\∆P
Zα∨. Note that gr[r+1,r+1](qλ′)−

gr[r+1,r+1](qλB
ωPω

′) = 0. Hence, qλB
ωPω

′ = qλ′x with x being the
unique element in WP ×Q∨

P determined by the grading −grr(λ
′) =: a.

Similarly, we have ψ∆,∆P
(qµP

) = qµ′y and ψ∆,∆P
(qλP+µP

) = qλ′+µ′z
where gr(y) = −grr(qµ′) =: b and gr(z) = −grr(qλ′+µ′). Hence,
Ψr+1(qλP

)⋆Ψr+1(qµP
) = qλ′x⋆qµ′y = qλ′+µ′ ⋆Aa ⋆Ab = qλ′+µ′ ⋆Aa+b =

Ψr+1(qλP+µP
). For (ii), we first conclude σsj ⋆σv = σvsj where 1 ≤ j ≤ r

and v ∈ WP , by Proposition 3.23. Thus by induction on ℓ(u) where
u ∈ WP , we conclude σu ⋆ σv = σvu. As a consequence, (ii) follows.
Hence, Ψr+1 is an algebra isomorphism. q.e.d.

As a consequence, we obtain the following.
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Theorem 1.5. Denote Γ := {gr(qλw) | gr(qλw) < 0, qλw ∈ QH∗(G/B)}.
Let A =

⊕

gr(qλσw)∈Zer+1∪Γ
Qqλσ

w and J =
⊕

gr(qλσw)∈Γ Qqλσ
w. Then

A is a subalgebra of QH∗(G/B) and J is an ideal of A. Furthermore,
if ∆P is of A-type, then there is a canonical algebra isomorphism

QH∗(G/P )
≃

−→ A/J ;

qλP
σv 7→ ψ∆,∆P

(qλP
σv) + J .

Proof. Note that for any qλσ
w ∈ QH∗(G/B), gr(qλσ

w) ∈ Zer+1

if and only if gr(qλσ
w) ∈ Z≥0er+1. Clearly, Z≥0er+1 ∪ Γ is a sub-

semigroup of S. Hence, A is a subalgebra of QH∗(G/B), due to The-
orem 1.2. From Definition 2.8, we note gr[r+1,r+1](qλw) ≥ 0 whenever
qλw ∈ QH∗(G/B). Thus for such element, gr(qλw) < 0 if and only
if grr(qλw) < 0. In particular, we conclude J is an ideal of A, by
use of Theorem 1.2 again. As a consequence, we obtain a natural iso-

morphism A/I
≃

−→ GrF(r+1)(QH
∗(G/B)). Hence, the statement follows

from Theorem 1.4. q.e.d.

Remark 4.6. In fact, A =
⋃

i≥0 Fier+1 . If we use the Zr+1-filtration

on QH∗(G/B) that is naturally extended from the S-filtration, then
we have J = F−er+1 . Furthermore, it is obvious that A, J are q-
deformations of A = π∗(H∗(G/P )) and J = 0, respectively. Note that
π∗(σv) = σv for any v ∈WP . ψ∆,∆P

is a natural generalization of π∗.

Recall that in Definition 2.8, we have given the gradings for all qλw’s.
Clearly, S is contained in Zr × Z≥0 as a sub-semigroup. Combining
Lemma 4.1 and (part of) the proof of Lemma 2.12, we conclude that
S is naturally extended to the whole Zr × Z≥0 with negative powers
of {q1, · · · , qr} allowed. That is, Zr × Z≥0 = {gr(qλσ

w) | qλσ
w ∈

QH∗(G/B)[q−1
1 , · · · , q−1

r ]}. Therefore we obtain a natural Zr × Z≥0-

filtration on QH∗(G/B)[q−1
1 , · · · , q−1

r ], making it a Zr × Z≥0-filtered
algebra, due to Theorem 1.2. By abuse of notation, we also denote
this filtration as F . Consequently, we obtain a natural embedding of
graded algebras GrF (QH∗(G/B)) →֒ GrF (QH∗(G/B)[q−1

1 , · · · , q−1
r ]).

For simplicity, we assume ∆P is of A-type. Then for each 1 ≤ k ≤ r, we

note Ψk(t
k
k) =

∏k
i=1 q

i
i. By defining t−1

k 7→ Ψk(t
k−1
k ) ⋆

∏k
i=1 q

−i
i , we can

extend the algebra isomorphism Ψk to a larger algebra isomorphism

QH∗(Pk)[t−1
k ]

≃
−→

⊕

j∈Z

GrFjek(QH
∗(G/B)[q−1

1 , · · · , q−1
r ]),

which we also simply denote as Ψk. Thus the next theorem follows as
a direct consequence of Theorem 1.2 and Theorem 1.4.
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Theorem 1.6. QH∗(G/B)[q−1
1 , · · · , q−1

r ] has a Zr×Z≥0-filtration F . If
∆P is of A-type, then combining Ψk’s gives an isomorphism of Zr×Z≥0-
graded algebras,

Ψ :
(

r
⊗

k=1

QH∗(Pk)[t−1
k ]

)

⊗

QH∗(G/P )

−→ GrF (QH∗(G/B)[q−1
1 , · · · , q−1

r ]).

That is, Ψ = Ψ1 ⋆ · · · ⋆Ψr+1 :
(

⊗r
k=1 fk

)

⊗ qλP
σv 7−→

(
∏r

k=1Ψk(fk)
)

⋆
Ψr+1(qλP

σv).
(Note we have an isomorphism H∗(P1) ⊗ · · · ⊗ H∗(Pr) ⊗ H∗(G/P ) ∼=
GrF (H∗(G/B)) of graded algebras, coming from the Leray spectral se-
quence.)

5. Conclusions

All the theorems in the induction can be easily generalized to all
cases by dropping our assumption that ∆P is connected. We give a
brief description as follows.

Write ∆P =
⊔m

k=1∆(k) such that Dyn(∆(k)) is a connected compo-
nent of Dyn(∆P ) for each k. Then the Weyl subgroup WP also splits
into direct product ofWk’s which are the corresponding Weyl subgroups
of ∆(k)’s. That is, WP = W1 × · · · ×Wm. Among these ∆(k)’s, there
is at most one which is not of A-type. If such a subbase exists, then
we just assume it to be the last one, say, ∆(m). For each k, we de-

note rk = |∆(k)|. Set M =
∑m

k=1 rk and then take the standard basis

{e1,1, · · · , e1,r1 , · · · , em,1, · · · , em,rm , em+1,1} of ZM+1.
For each k, we fix the canonical order (∆(k),Υk) as described in

section 2.4. Then we obtain a grading map gr∆(k)
: W × Q∨ −→

⊕rk+1
i=1 Zek,i, using Definition 2.8 with respect to (∆(k),Υk). In par-

ticular, for any x ∈ Wk or x = qα∨ with α ∈ ∆(k), we have gr∆(k)
(x) ∈

⊕rk
i=1 Zek,i →֒ ZM+1, which we treat as an element of ZM+1 naturally.

Definition 5.1. We define a grading map gr : W × Q∨ −→ ZM+1

associated to (∆P ,Υ) as follows, where Υ =
∏m

k=1Υk.

1) Write w = vm+1vm · · · v1 (uniquely), in which (v1, · · · , vm, vm+1) ∈
W1×· · ·×Wm×WP . Then gr(w) , ℓ(vm+1)em+1,1+

∑m
k=1 gr∆(k)

(vk).
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2) For each αk,i ∈ ∆(k), gr(qα∨

k,i
) , gr∆(k)

(qα∨

k,i
). For α ∈ ∆ \ ∆P ,

we write ψ∆,∆P
(qα∨+Q∨

P
) = ωPω

′qα∨

m
∏

k=1

rk
∏

i=1
q
ak,i
α∨

k,i
and then define

gr(qα∨) ,
(

ℓ(ωPω
′) + 2 +

m
∑

k=1

rk
∑

i=1

2ak,i
)

em+1,1 − gr(ωPω
′)

−
m
∑

k=1

rk
∑

i=1

ak,igr(qα∨

k,i
).

3) In general, x = w
∏

α∈∆ q
bα
α∨ , then gr(x) , gr(w)+

∑

α∈∆ bαgr(qα∨).

As in section 2.3, we can define a subset, consisting of the gradings of
qλw’s inQH

∗(G/B). This subset also turns out to be a (totally-ordered)
sub-semigroup of ZM+1, and we also simply denote it as S by abuse of
notation. In addition, we obtain a family of subspaces of QH∗(G/B) in
the same way, which we also simply denote as F = {Fa}a∈S by abuse
of notation. Then all the theorems in the introduction can be easily
generalized. For instance, we state part of them in summary as follows.

Theorem 5.2.

1) QH∗(G/B) has an S-filtered algebra structure with filtration F ,
which naturally extends to a ZM+1-filtered algebra structure on
QH∗(G/B).

2) There is a canonical algebra isomorphism

QH∗(G/B)/I
≃

−→ QH∗(P/B)

for an ideal I (which is explicitly defined) of QH∗(G/B).
3) Assume P/B is isomorphic to product of Fℓ1+rk ’s (i.e.,∆(k)’s are

of A-type).
a) There exists a subalgebra A of QH∗(G/B) together with an

ideal J of A, such that QH∗(G/P ) is canonically isomorphic
to A/J as algebras.

b) As graded algebras, (after localization) GrF (QH∗(G/B)) is iso-
morphic to

(
⊗m

k=1

⊗rk
ik=1QH

∗(Pik)
)
⊗

QH∗(G/P ) .

We would like to point out again that our assumption “ all ∆(k)’s
are of A-type” is already general enough. This situation has covered all
G/P ’s for G being of A-type or G2-type, and more than half of G/P ’s
for each remaining type. Unfortunately, Theorem 5.2 (3.b) is not true
in a more general case when ∆(m) is not of A-type. In fact in this
case, QH∗(G/P ) is only canonically isomorphic to a proper subspace
of GrF(M+1)(QH

∗(G/B)) =
⊕

i≥0 FieM+1
/ ∪b<ieM Fb as vector spaces.

However, we could still expect the following.
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Conjecture 5.3. There exists a canonical algebra isomorphism be-
tween QH∗(G/P ) and a subalgebra of GrF(M+1)(QH

∗(G/B)).

As a direct consequence of Conjecture 5.3, we can conclude Theorem
5.2 (3.a) always holds for any G/P . Part of the points of the proof for
this is to show (i) and (ii) in the proof of Theorem 1.4. That is, we

need to show the behavior of ψ∆,∆P
(qλP

)’s is like that of polynomials.
Indeed, when ∆ is of C-type, (i) and (ii) become trivial. (Precisely,
we use the notation in case C1) in Table 2 and assume ∆P to be of
C-type. Then for any λP =

∑o
j=1 bjβ

∨
j + Q∨

P ∈ Q∨/Q∨
P , we conclude

ψ∆,∆P
(qλP

) = qλB
· 1 with λB =

∑o
j=1 bjβ

∨
j + bo

∑n
p=o+1 β

∨
p by direct

calculations.) In this case, we could still prove Conjecture 5.3 together
with some other arguments. On the other hand, it is shown in [18] that
after taking torus-equivariant extension and localization, Theorem 5.2
(3.a) is true in terms of the localization of equivariant homology of a
based loop group. Hence, we believe that Theorem 5.2 (3.a) also holds
without taking equivariant extension and localization. Both of these
provide evidence for our conjecture.

In addition, we would like to ask the following.

Question 5.4. What is the difference between QH∗(G/P ) and
GrF(M+1)(QH

∗(G/B))?

The ring structure of GrF(M+1)(QH
∗(G/B)), or equivalently A/J ,

which is defined in the same form as in Theorem 1.5, seems close to the
ring structure of QH∗(G/B). Especially, there might be one way to ob-
tain a nice presentation of GrF(M+1)(QH

∗(G/B)) from the presentation

of QH∗(G/B) [16]. Suppose there were such a way and we knew the
answer to Question 5.4; then we would have a better understanding on
QH∗(G/P ).

6. Appendix

In this section, we show the Key Lemma also holds for all the roots
that satisfy condition (ii) in the proof of the Key Lemma in section
3.5 whenever ∆ is of F4-type or E-type. Since all the arguments are
similar, we just list all such roots as well as the corresponding methods
for them. One can see [19] for more details.

When ∆ is of F4-type, case C9) or C10) will occur. For instance
for C9), γ∨ must be either of the form

∑

i≤t≤k β
∨
t or equal to one of

the following five coroots: β∨1 + 2β∨2 + β∨3 , β
∨
1 + 2β∨2 + β∨3 + β∨4 , β

∨
1 +

2β∨2 +2β∨3 +β∨4 , β
∨
1 +3β∨2 +2β∨3 +β∨4 , 2β

∨
1 +3β∨2 +2β∨3 +β∨4 , by noting

ℓ(sγ) = 〈2ρ, γ∨〉 − 1. Then we have:
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Table for case C9) Table for case C10)

Coroots r = 2 r = 3

β∨

2 + β∨

3 done (γ∈RP )

β∨

3 + β∨

4 (M3)

β∨

1 + β∨

2 + β∨

3 (M3) done

β∨

2 + β∨

3 + β∨

4 (M1)

β∨

1 + β∨

2 + β∨

3 + β∨

4 (M1) done

β∨

1 + 2β∨

2 + 2β∨

3 + β∨

4 (M2)

2β∨

1 + 3β∨

2 + 2β∨

3 + β∨

4 (M1) done

Coroots r = 2 r = 3

β∨

3 + β∨

4 (M3) (M2)

β∨

1 + β∨

2 + β∨

3 (M1) done

β∨

1 + β∨

2 + β∨

3 + β∨

4 (M1) done

β∨

2 + 2β∨

3 + β∨

4 (M3) (M2)

β∨

1 + β∨

2 + 2β∨

3 + β∨

4 (M2) done

β∨

1 + 2β∨

2 + 3β∨

3 + β∨

4 (M2)

β∨

1 + 2β∨

2 + 3β∨

3 + 2β∨

4 (M1)

We would like to make some comments for the tables in this section.

1) By “done,” we mean that there exists αj ∈ {α1, · · · , αr−1} such
that 〈αj , γ

∨〉 > 0. Thus it is done by the arguments for condition
(i) in the proof of the Key Lemma. By “done (γ∈RP ),” we mean
γ ∈RP and thus it is done by the arguments at the beginning of
the proof of the Key Lemma.

2) By “(M1)” (resp. “(M3)”), we mean the corresponding method,
especially the use of part a) (resp. b)) of Lemma 3.29.

3) By “(M2)”, we mean the induction hypothesis is used. In fact,
whenever referring to (M2) in the tables, we can use the same argu-
ments as follows. For instance, we consider the case when C10) oc-
curs, γ∨ = β∨2 +2β∨3 +β

∨
4 , and r = 3. In this case, we can take αj =

β3(= α3). Then β∨ = sj(γ
∨) = β∨2 + β∨3 + β∨4 and consequently

(λ1, λ2, λ3, λ4) = gr(qβ∨) = (−1, 1,−2, 8). Furthermore, we have
(a1, a2, a3, a4) = (0, a2, a3, 0) and (b1, b2, b3, b4) = (0, b2, b3, 0) with
a2 + a3 = 1 and b2 + b3 = −1 by noting 〈α1, α

∨
j 〉 = 0. If

µ1 < 0, then it is done. If µ1 = 0, then by the induction hy-
pothesis we have µ2 ≤ 0. We claim µ2 = 0. Thus µ3 ≤ 0
and a2 + b2 = a2 + µ2 + b2 ≤ 0 (by considering g̃r). Since
a2 + a3 + b2 + b3 = 0, if a2 + b2 < 0 then it is done; otherwise,
we have a3 + b3 = −(a2 + b2) = 0 so that a3 + b3 + µ3 = µ3 ≤ 0.
Thus it is done. It remains to show our claim. Indeed, we note that
µ2+i

′
2 = k2+λ2 = k2+1. Since ℓ(usjsβ) < ℓ(usj), usj(β) ∈ −R+.

Then if 〈α, β∨〉 ≤ 0, usj(α) ∈ −R+ implies usjsβ(α) ∈ −R+.

Hence i′2 = ♯{α ∈ R+
P2

\ RP1 | usj(α) ∈ −R+} = ♯{α ∈ R+
P2

\

RP1 | usj(α) ∈ −R+, 〈α, β∨〉 ≤ 0} + ♯{α ∈ R+
P2

\ RP1 | usj(α) ∈

−R+, 〈α, β∨〉 > 0} ≤ ♯{α ∈ R+
P2

\RP1 | usjsβ(α) ∈ −R+}+ ♯{α ∈

R+
P2

\RP1 | 〈α, β∨〉 > 0} = k2 + ♯{β2}. Thus µ2 = k2 + 1− i′2 ≥ 0
and consequently we have µ2 = 0.

Now we assume ∆ is of E-type. Denote Ξ := {βi | 〈βi, γ
∨〉 > 0}.

Recall that we should replace κ = o+ r with κ = o+ ς(= o+ r − 1) in
Table 2 when ∆P is not of A-type. Note that any γ ∈ R+ is of length
〈2ρ, γ∨〉 − 1. It suffices to assume n = 8. It remains to discuss at most
the roots in the tables as below.
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Table for case C4) with r = 6 or r = 7
Roots with Ξ ⊂ {β1, β2, β8} r = 6 r = 7

β1 + β2 done done

β2 + β3 + β4 + β5 + β8 (M3) done

β1 + β2 + β3 + β4 + β5 + β8 done (M3)

β1 + 2β2 + 2β3 + 2β4 + 2β5 + β6 + β8 (M1) done

β3 + 2β4 + 3β5 + 2β6 + β7 + 2β8 done (γ ∈ RP )

β2 + β3 + 2β4 + 3β5 + 2β6 + β7 + 2β8 (M3) done

β1 + β2 + β3 + 2β4 + 3β5 + 2β6 + β7 + 2β8 done (M3)

β1 + 2β2 + 2β3 + 2β4 + 3β5 + 2β6 + β7 + 2β8 (M2) done

β1 + 2β2 + 3β3 + 4β4 + 5β5 + 3β6 + β7 + 3β8 (M2) (M3)

β1 + 3β2 + 4β3 + 5β4 + 6β5 + 4β6 + 2β7 + 3β8 (M1) done

2β1 + 3β2 + 4β3 + 5β4 + 6β5 + 4β6 + 2β7 + 3β8 done (M1)

Table for case C5) with r = 5

Roots with Ξ ⊂ {β5, β6} Method

β5 + β6 (M3)

β2 + 2β3 + β4 + 2β5 + β6 (M3)

β2 + 2β3 + β4 + 2β5 + 2β6 + β7 (M1)

β1 + 2β2 + 3β3 + β4 + 3β5 + 2β6 + β7 (M3)

β1 + 2β2 + 3β3 + β4 + 3β5 + 3β6 + 2β7 + β8 (M1)

β1 + 2β2 + 4β3 + 2β4 + 4β5 + 3β6 + 2β7 + β8 (M2)

2β1 + 4β2 + 6β3 + 3β4 + 5β5 + 3β6 + 2β7 + β8 (M2)

2β1 + 4β2 + 6β3 + 3β4 + 5β5 + 4β6 + 2β7 + β8 (M1)

Table for case C7) with 0 ≤ o ≤ 3

Roots with
{ Ξ ⊂ {β1, β2, β3, β7, β8}

|Ξ ∩ {β1, β2, β3}| ≤ 1
Constraint Method

1) β3 + β4 + β5 + β7 o = 3
2) β2 + β3 + β4 + β5 + β7 o = 2 (M3)
3) β1 + β2 + β3 + β4 + β5 + β7 o = 1

4) β2 + 2β3 + 2β4 + 2β5 + β6 + β7 o = 3
5) β1 + 2β2 + 2β3 + 2β4 + 2β5 + β6 + β7 o = 2

(M1)

6) β7 + β8 o ≥ 0 (M2,2,3,3)

7) β3 + β4 + β5 + β7 + β8 o = 3
8) β2 + β3 + β4 + β5 + β7 + β8 o = 2
9) β1 + β2 + β3 + β4 + β5 + β7 + β8 o = 1 (M1)
10) β2 + 2β3 + 2β4 + 2β5 + β6 + β7 + β8 o = 3
11) β1 + 2β2 + 2β3 + 2β4 + 2β5 + β6 + β7 + β8 o = 2

12) β4 + 2β5 + β6 + 2β7 + β8 o ≥ 0 (M2,2,3,3)

13) β3 + β4 + 2β5 + β6 + 2β7 + β8 o = 3 (M3)

14) β2 + β3 + β4 + 2β5 + β6 + 2β7 + β8 o = 2
15) β1 + β2 + β3 + β4 + 2β5 + β6 + 2β7 + β8 o = 1
16) β2 + 2β3 + 2β4 + 2β5 + β6 + 2β7 + β8 o = 3

(M2)

17) β1 + 2β2 + 2β3 + 2β4 + 2β5 + β6 + 2β7 + β8 o = 2

18) β1 + 2β2 + 3β3 + 3β4 + 3β5 + β6 + 2β7 + β8 o = 3 (M1)

19) β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + β8 o ≥ 0
20) β1 + β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + β8 o = 1
21) β1 + 2β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + β8 o = 2

(M2)
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22) β1 + 2β2 + 3β3 + 3β4 + 4β5 + 2β6 + 3β7 + β8 o = 3

23) β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + 2β8 o ≥ 0
24) β1 + β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + 2β8 o = 1
25) β1 + 2β2 + 2β3 + 3β4 + 4β5 + 2β6 + 3β7 + 2β8 o = 2

(M1)

26) β1 + 2β2 + 3β3 + 3β4 + 4β5 + 2β6 + 3β7 + 2β8 o = 3

27) β1 + 2β2 + 3β3 + 4β4 + 5β5 + 2β6 + 4β7 + 2β8 o ≥ 0 (M3,2,2,2)

28) β1 + 2β2 + 4β3 + 5β4 + 6β5 + 3β6 + 4β7 + 2β8 o = 3
29) β1 + 3β2 + 4β3 + 5β4 + 6β5 + 3β6 + 4β7 + 2β8 o = 2 (M1)
30) 2β1 + 3β2 + 4β3 + 5β4 + 6β5 + 3β6 + 4β7 + 2β8 o = 1

In the above table, by “(M2,2,3,3)” for the root β7 + β8, we mean
(M2) (resp. (M2), (M3), and (M3)) is used when o = 0 (resp. 1, 2 and
3). Similar notations are used for the case no. 12) and no. 27).
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