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FUNCTORIAL RELATIONSHIPS
BETWEEN QH*(G/B) AND QH*(G/P)

NAICHUNG CONAN LEUNG & CHANGZHENG LI

Abstract

We give a natural filtration F on QH*(G/B), which respects
the quantum product structure. Its associated graded algebra
Gr”7 (QH*(G/B)) is isomorphic to the tensor product of QH* (G /P)
and a corresponding graded algebra of QH*(P/B) after localiza-
tion. When the quantum parameter goes to zero, this specializes
to the filtration on H*(G/B) from the Leray spectral sequence
associated to the fibration P/B — G/B — G/P.

1. Introduction

Let G be a simply connected complex simple Lie group, B be a Borel
subgroup, and P D B be a parabolic subgroup of . The natural
fibration P/B—G/B—G/P of homogeneous varieties gives rise to a
Z2-filtration F on H*(G/B) over Q (or C) such that Gr* (H*(G/B)) =
H*(P/B)® H*(G/P) as graded algebras by the Leray-Serre spectral se-
quence. Given another parabolic subgroup P’ with B € P’ C P, we ob-
tain the corresponding natural fibration P'/B — P/B — P/P’. Com-
bining it with the former one, we obtain a Z3-filtration on H*(G/B).
We can continue this procedure to obtain a (maximal) Z"*!-filtration.

In the present paper, we study the small quantum cohomology rings
QH*(G/P)’s of homogeneous varieties G/P’s, which are deformations of
the ring structures on H*(G/P)’s by incorporating genus zero 3-pointed
Gromov-Witten invariants of G/P’s into the cup product. We show the
“functorial relationships” between QH*(G/B) and QH*(G/P) in the
sense that the Z"T!-filtration on H*(G/B) can be generalized to give a
Z" 1 filtration on QH*(G/B) and there exist canonical maps between
quantum cohomologies, in analog with the classical ones. We begin with
a toy example to illustrate our results.

Example 1.1. When G = SL(3,C), G/B = {V; < Vo < C?| dim¢ V;
= 1,i =1,2} =: F/l3 is a complete flag variety. Given a maximal para-
bolic subgroup P D B, we have P/B = P! and G/P = P? together with

a natural fibration P! < Ft3 =5 P2, The quantum cohomology ring
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QH*(G/B) has a basis consisting of Schubert classes 0%’s over Q[q1, ¢2],
indexed by the Weyl group W = S5 = {1, s1, $2, $152, $251, $S15281}. To
obtain the Z2-filtration F on QH*(G/B), we need a deformation gr
of the classical grading map which satisfies gr(qfgbo®) = agr(q) +
bgr(qz) + gr(c™). In this example, gr is given explicitly by Table 1.

Table 1. gr(¢iqso™) = (i,j) with —2<i<4,0<;<6

40 af | g0 | 4o | 4fqeo® | afeo™t |l | gl
30| ot | ot | uot s | glge 0 20® | o™ | qlqgo™
2 q1 q10%? Qo | a0t | q1qeo®?t | quqeott | qfqd
1 ot | o | gt 7142 020 | 1 q20**? | qug5o™
0 1 o°? o1 q20"! g0 2% q20™t 7% a143
-1 0 0 0 q2 q20°? G052 450"
-2 0 0 0 0 0 0 q22
: | 0 1 2 3 4 5 6

This determines a Z>-filtration F = {Fc}ecze on QH*(G/B). The
main point is that this filtration respects the quantum multiplication,
i.e., FcFq C Ferq. Indeed, this can be easily checked with the following
well known quantum products for F'/3:

ol % o' =% 4 ¢,

o % 0% =q10%2,

S 528 81828
02 % 05251 = 5515251

5182 518281 __ 52
o * o =q14920 ~,

o x0T =q10° 7 + qiqe,

0°2% % 0% = g0

5182
’

o1 % g%2 =g %152 4 55251

0,818281 * 0,818281:q1q2 0.81* 0.82.

This Z2-filtration of the algebra structure on QH*(G/B) is a g-
deformation of the classical one on H*(G/B), which comes from the
Leray spectral sequence. Due to the existence of such a filtration, we can
easily check that there are algebra isomorphisms ¢ : QH*(G/B)/I —

s S$182 __ 51828
o5l % g5152 = gS15251

0%2 x 092 =192 4 @9,

052 % 05152 = o0,

05152 4 5152 — q20,32317

s28 $18281 s
05251 % 515251 — (g o 051

0% % g1 = qa0%" + 14,

o172 % 0% = (1,
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QH*(P/B) and v : QH*(G/P) — A/J, where A := Uj>0 Flo.) is
a subalgebra of QH*(G/B), J = F 1) is an ideal of A, and T is
the ideal in QH*(G/B) spanned by those ¢fg50"’s with their gradings
(d1, dg) satisfying dy > 0. Here @ sends ¢?q5c™ +Z to y? where ¢¢q5c®
is the (unique) one among such expressions with its grading equal to
(4,0), and v sends 7 to the (unique) ¢¢¢bc® € QH*(G/B) whose grad-
ing equals (0, ), in which we have taken the well known isomorphisms
QH*(P/B) = Qly] and QH*(G/P) = Q[x]. In particular, QH*(G/P)
is the quotient of the subalgebra A generated by {g20°!, %2, qlqg, g2}
by the ideal J = g2.A. (We remark that in this case QH*(G/B) itself
is generated by {o®!,0%2,¢q1,q2}.)

These algebra isomorphisms generalize the classical ones in an obvious
way, namely, A, J, and Z are g-deformations of A := 7n*(H*(G/P)),
J =0, and I = Q{0%2,0%152, 55251 55152511 regpectively.

All the above descriptions for G = SL(3,C) will be generalized to ar-
bitrary complex semi-simple Lie groups. For simplicity, we assume P/B
is irreducible. (Note that any homogeneous variety splits into a direct
product of irreducible ones.) All the results can be easily generalized
for reducible P/B’s, and we will describe such generalizations in section
5. Note that P/B is again a complete flag variety, isomorphic to G’/ B’
for some other complex simple Lie group G’. Then we denote by r the
rank of G’, which depends only on P/B. Since we exclude the trivial
cases, namely, P equals B or G, we always have r = 1 for G = SL(3,C).

In general, we consider a special iterated fibration {P;_1/Py — P; /Py
— P;/Pj_ ’;% in which P;’s are parabolic subgroups with B = Py C
P C.-.-C P =PCG= P.4;. Consequently, we obtain a canonical
7"+ filtration on H*(G/B). Note that QH*(G/B) also has a natural
basis of Schubert classes 0"’s over Q[q]. As we will see in section 2.2,
there exists a grading map gr giving gradings gr(g\c™) € Z"! for the
(Q-)basis grxo"’s. The Peterson-Woodward comparison formula in [32]
plays a key role in defining gr. It is the only known formula that charac-
terizes the relations of genus zero 3-pointed Gromov-Witten invariants
between G/B and a general G /P explicitly. gr defines a Z"+!-filtration
F = {Fa}aczr+1 of subspaces in QH*(G/B), generalizing Example 1.1.
The next theorem says that F respects the quantum product structure.

Theorem 1.2. QH*(G/B) is a Z" "\ filtered algebra with filtration F.
We can obtain several important consequences as below.

Theorem 1.3. The wvector subspace I, spanned by those g o®’s
with their gradings (dy,--- ,d,41) satisfying dy+1 > 0, is an ideal of
QH*(G/B). Furthermore, there is a canonical algebra isomorphism

QH*(G/B)/I = QH*(P/B).
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Since QH*(G/B) has a Z"t!-filtration F, we obtain an associated
Z™1-graded algebra Gr’ (QH*(G/B)) = @,cpr+1 Gr, where Grl =
F,/ Up<a Fy. For each j, we denote Gr(];)(QH*(G/B)) =Py GT{;J_.

Theorem 1.4. For each 1 < j < r, there exists a canonical algebra
isomorphism

U : QH*(Pj/Pj_1) — Grl, (QH*(G/B)).

Furthermore, if P/B = Fl,y1, then there exists a canonical algebra
isomorphism

V11 QHY(G/P) = GT(];H)(QH*(G/B))-
As a consequence, we have the following results for any G.

Theorem 1.5. Suppose P/B = Fl,.1. Then there exists a subalge-
bra A of QH*(G/B) together with an ideal J of A, such that QH*(G/P)
is canonically isomorphic to A/J as algebras.

Theorem 1.6. Suppose P/B = F{,.y1. Then as graded algebras
Gr7 (QH*(G/B)) is isomorphic to QH*(P)®- - -@QH*(P")2QH*(G/P)
after localization.

We should point out that the requirement “P/B 2 F'¢,.,1” in Theo-
rem 1.5 and Theorem 1.6 is not a strong assumption, because both of
theorems can be easily generalized to the case “P/B is isomorphic to
a product of F;’s” (see section 5). As a consequence, all G/P’s for
G being of A-type or Ga-type satisfy this assumption. Furthermore,
for each remaining type, more than half of the homogeneous varieties
G/ P’s also satisfy this. (We could also show Theorem 1.5 holds for any
G/P with G = Sp(2n,C).)

As we saw in Example 1.1, the gradings of elements in QH*(F'¢3) only
form a proper sub-semigroup S of Z?2, which looks like stairs, so that the
Z2-filtration comes from an S-filtration. In general, the Z"*!-filtration
comes from a similar filtration. For this reason, we need localization to
obtain the analog of graded-algebra isomorphism (in Theorem 1.6). In
section 4, we will restate theorems 1.4, 1.5, and 1.6 more concretely. As
we will see later, all the relevant maps generalize the classical ones in
an obvious way, as in Example 1.1.

Our results relate the quantum cohomologies of the total space and
the base space of the fibration P/B — G/B — G/P. Similar struc-
tures occur when one studies the relationships of .JJ-functions between an
abelian quotient and a nonabelian quotient. Such relations were studied
by Bertram, Ciocan-Fontanine, and Kim in [3] and [4]. (See also [33].)
There were also relevant studies by Liu-Liu-Yau [23] and Paksoy [27]
by using mirror principle [22] .

Let us mention two more important problems on the study of
QH*(G/P), for which our theorems may also be helpful. One can see
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the excellent survey [9] and references therein for more details on the
developments. As mentioned before, the (small) quantum cohomology
ring QH*(G/P) has a basis of Schubert classes ¢"’s over Q[q]. In order
to understand QH*(G/P), one would like to have (i) a (good) presen-
tation of the ring structure on QH*(G/P) and (ii) a (nice) formula (or

algorithm) for the quantum Schubert structure constants N, s in

w,A\
NuyPar,o.

the quantum product o% x g¥ = Zw, Ap For classical co-
homology H*(G/P), these natural and important problems have been
solved in [5] for (i) and in [17] and [7] for (ii). However, for quan-
tum cohomology QH*(G/P), the answer to (i) is only known in certain
cases—for instance, when G is of A-type (see [15], [1]) or P = B is
a Borel subgroup [16]. For problem (ii), there were early studies for
a few cases, including complex Grassmannians (see the survey [9]) and
complete flag varieties of A-type [8], besides the quantum Chevalley for-
mula [11], which works for all cases. Recently, Mihalcea [26] has given
an algorithm, and the authors ([20], [21]) have given a combinatorial
formula for these structure constants.

All these problems were discussed in the unpublished work [28] by
Dale Peterson. In [32], Woodward proves a comparison formula of Pe-
terson. The Peterson-Woodward comparison formula explicitly charac-
terizes the relations of the quantum Schubert structure constants be-
tween QH*(G/P) and QH*(G/B). However, it does not tell us the
relations of the algebra structures between them. Along Peterson’s ap-
proach, Lam and Shimozono [18] show that the torus-equivariant exten-
sion of QH*(G/P) is isomorphic to a quotient of the torus-equivariant
homology of a based loop group after localization. In [29], K. Rietsch
discusses the relationships between Peterson’s work and mirror symme-
try. In [28], Peterson had also claimed there was an analogous isomor-
phism for the (un-iterated) fibration P/B — G/B — G/P in terms of
torus-equivariant homology of based loop groups after localization. We
were motivated by his claim and the results by Woodward and Lam-
Shimozono. We succeeded in obtaining natural generalizations of the
classical isomorphisms. It is interesting to compare our results with
Peterson’s claim. It is also interesting to compare our Theorem 1.5
with Theorem 10.16 of [18] by Lam and Shimozono. As commented by
Thomas Lam, our results should be related to the discussions in section
10.4 of [18].

We hope our results could be used to solve problem (i) by combining
with Kim’s early work [16], where a nice presentation of the ring struc-
ture on the complexified quantum cohomology QH*(G/B) was given.

This paper is organized as follows. In section 2, we define a grading
map and prove our main result, Theorem 1.2, assuming the Key Lemma.
Then we devote the whole section 3 to the proof of the Key Lemma.
In section 4, we prove the remaining theorems discussed as above. In
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section 5, we show how to generalize our results to the general case when
P/B is reducible. Finally in section 6, we give an appendix which deals
with exceptional cases in the proof of the Key Lemma. Our proofs are
combinatorial in nature. We hope to find nice geometrical explanations
of them later.

Acknowledgements. The authors thank Baohua Fu, Bumsig Kim,
Thomas Lam, Augustin-Liviu Mare, and Leonardo Constantin Mihalcea
for useful discussions. We also thank the referee for valuable suggestions.
The first author is supported in part by a RGC research grant from the
Hong Kong government. The second author is supported in part by
KRF-2007-341-C00006.

2. A filtration on QH*(G/B)

2.1. Preliminaries. We recall some basic notions and fix the notation.
See, for example, [12, 13] for more details on Lie theory.

Let G be a simply-connected complex simple Lie group of rank n,
B C G be a Borel subgroup and P D B be a proper parabolic sub-
group of G. Fix a basis of simple roots A = {a1,--- ,a,} (with respect
to (G, B)). Then P corresponds canonically to a proper subset Ap of
A. (In particular, B corresponds to the empty subset ().) Let b de-
note the corresponding Cartan subalgebra; then h* = @;" | Ca;. Let
{af, -, )} C bbe the fundamental coroots and {x1,--- , xn} C h* be
the fundamental weights. For any 1 < 1,7 < n, we have (xs, oz}’) = 0
with respect to the natural pairing (-,-) : h* x h — C. Furthermore,
we have p = %Zyelﬁ v = >, xi Foreach 1 <i < n, the simple
reflection s; := s,, acts on h and h* by

5i(A) =X —{a;, \)ay, for Aeb;  s;(8) =B — (B, ), for B € b*.

The Weyl group W, which is generated by {s1,--- ,s,}, acts on h and
h* and preserves the natural pairing. The root system is given by R =
W-A = R"U(=R"), where R" = RNEP." | Z>o«; is the set of positive
roots. Thus each root v € R is given by v = w(a;) for some w € W and
1 <i < n. Then we define vV = w(a) and s, = ws;w™ € W, which
is independent of the expressions of 7.

The length ¢(w) of w € W (with respect to A) is defined by £(1) £
0 and /(w) £ min{k | w = s;,---s;} for w # 1. An expression
w = s;, s, is called reduced if £ = f(w). Let P = Pz denote
the (standard) parabolic subgroup corresponding to a subset A C A,
Wp denote the subgroup generated by {s; | o; € A}, and wp denote

the longest element in Wp. For A C A with P = Px, we denote
WJJ; = {w e Wpll(w) < L(v), Vv € wWp}. Each coset in Wp/Wp has
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a unique (minimal length) representative in WII; C Wp C W. In par-
ticular, we have P = G and Wg = W, and simply denote W := WCI;
and w = wgq.

The (co)homology of a homogeneous variety X = G/P has an addi-
tive basis of Schubert (co)homology classes indexed by W¥: H,(X,Z) =
DB,cwr Loy, H*(X,Z) = @ cpwr Zo" with (o%,0,) = dy, for any
u,v € WP [2]. In particular, Ho(X,Z) = Do,ca\a, Zos,. Set QY =
D=, Za) and Qp = D, cn , Za; . Then we can identify Ha(X,Z) with
Q"/Q}p canonically, by mapping Y ajos; todAp = > ajaf+

a; EA\Ap a; EA\Ap
QY. For each oj € A\ Ap, we introduce a formal variable oY +QY- For
such Ap, we denote gy, = HajeA\Ap ch]JVJrQIVD’

Let ﬂo,m(X, Ap) be the moduli space of stable maps of degree Ap €
Hy(X,7Z) of m-pointed genus zero curves into X [10], and ev; denote the
ith canonical evaluation map ev; : Mo (X, A\p) — X given by ev;([f :
C — X;p1, -+ ,pm]) = f(p:i). The genus zero Gromov-Witten invariant
for yi,- -+ ,ym € H*(X) = H*(X,Q) is defined as Io m rp (V15 5 9m) =
fﬂo,m(X,Ap) evi(y) U---Uev} (9m). The (small) quantum product for
a,b € H*(X) is a deformation of the cup product, defined by

axb2 Z In3ap(a,b, (O‘u)ﬁ)O'quP,
ueWP A\peH(X,Z)

where {(0%)* | u € W} are the elements in H*(X) satisfying [} (c%)*U
0" = 0y, for any u,v € WP, The quantum product * is associative,
making (H*(X) ® Q[q], *) a commutative ring. This ring is denoted as
QH*(X) and called the (small) quantum cohomology ring of X.
The same Schubert classes 0% = " ® 1 form a basis for QH*(X) over
Q[q], and we write

u v W, w
o'xo" = E NP anpo®.
weWP ApeQV/QY

The coefficients fof ;)’\P ’s are called the quantum Schubert structure con-
stants. They generalize the well known Littlewood-Richardson coeffi-
cients when X = Gr(k,n + 1) is a complex Grassmannian. It is also
well known that the quantum Schubert structure constants are non-
negative.

When P = B, we have Q) = 0, Wp = {1} and W = W. In
this case, we simply denote A = Ap and ¢; = Qo - A combinatorial

formula for N, Vs has been given by the authors recently [20]. As a

consequence, we can obtain the combinatorial formula for N, ;)’\P ’s for
general G /P, due to the following comparison formula.
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Proposition 2.1 (Peterson-Woodward comparison formula [32]; see
also [18]).
1) Let \p € QV/Q}. Then there is a unique \g € QV such that
Ap = A + QY and (a,\g) € {0,—1} for all « € R} (= RT N
@aj EAp Zaj) .
2) For every u,v,w € W, we have

N;ﬁb)\P = Nztingw/JB,
where W' = wpr with Apr = {a; € Ap | {ay, A\g) = 0}.

Thanks to Proposition 2.1, we have canonical representatives of W/Wp
xQY/QY in W x Q¥ with respect to the pair (A, Ap), which is a gen-
eralization of the case W/Wp S WP ¢ W. We will discuss them in
more details in the next subsection.

When v is a simple reflection s;, we have the following (Peterson’s)
quantum Chevalley formula for o" * 0%, which has been proved earlier
n [11].

Proposition 2.2 (Quantum Chevalley Formula for G/B). For u €
W, 1 <1 <n,

o % o’ :Zb@, us,Y‘FZ Xis q“/va

Y

where the first sum is over roots 7y in RJr for which €(us) = £(u) +
and the second sum is over roots  in RT for which €(usy) = £(u) + 1 -
(2p, 7).

Note that we have fixed a base A = {aq, -+ ,a,}. As a subset of
A, we can write Ap = {a;,, - ,a;.}. Then giving an order on Ap is
equivalent to giving a permutation of Ap. Once such a permutation

T is given, we denote o, = T(ay;) for each 1 < j < r and then nat-

urally rewrite the remaining simple roots so that A = {«f, -+ ,al,}.
In the present paper, we always keep the information on the order,
whenever referring to (Ap,T) or (an ordered set) Ap = (a’l, ceal).

Furthermore for convenience, we simply denote a 's by «;’s. (In other
words, we take T = ida, under the assumption 1n the begmnlng that

Ap ={aq, - ,q,} satisfies certain properties on its associated Dynkin
diagram.)

Notation 2.3. Let (Ap,T) be given with Ap = (o, -+, ).

For any integers k,m with 1 < k < m < r, we denote u@’;’l(] M=
SapSagir " . If K > m, then we just denote u[AkP’(] " . := 1. Further-
more, we define u[AkI:;L(] m = u[AkI:;L(] ") and denote u; Apy(m) u[enp_’(iiq m] for
i1 =0,1,--- ,m. Whenever there is no confusion, we simply denote

(T) R AP7(T)

§j 1= Sayy  Ufp ) = U] > D ™ =,
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Let Aj :={a1, -+ ,a;} and Pj := Pa, for each 1 < j < r. Denote
Py =B and P,;1 = G. A decomposition of w € W associated to
(Ap,T) is an expression w = v,41---v; with v; € Wlljj’l for each 1 <
t < r+ 1, where Wlfl‘) = Wp,. By the iterated fibration associated
to (Ap,YT), we mean the family of fibrations of homogeneous varieties,
given by {Pj—l/PO — P]/PO — Pj/Pj—l ;ié

We denote by Dyn(A’) the Dynkin diagram associated to a base A’.

Example 2.4. Suppose Dyn(Ap) is given by o7 as  a, . Con-

sider the iterated fibration {P;_/Py — P;j/Py — P; /Pj_l};;r% as-
sociated to Ap = (ay, - ,,). Then we have P,y1/P, = G/P and
P;/P;_y = PJ for each 1 < j < r. Furthermore, the natural inclu-
sion {aq, -+ ,a,—1} <= Ap (or SL(r,C) — SL(r + 1,C)) induces a
canonical embedding P,_1/B = F{¢._y — F{, = P/B of complete
flag varieties, which maps a flag V73 < --- < V,_1 in C" to the flag
Vi< <V, <Cin CFL

Due to the following well known lemma (see e.g., [14]), we obtain
Corollary 2.6.

Lemma 2.5. Let v € Rt and w = s;, - - si, be a reduced expression
ofwe W.
1) w € WF if and only if w(a) € R* for any a € Ap.
2) If l(wsy) < L(w), then w(y)e—R* and there is a unique 1<k </
such that
Sig " SigSy = Sipyy 7 Sig and = SigSig_y " Sik+1(aik)'

Furthermore for 1 < j < n, l(wsj) = £(w) — 1 if and only if

w(eyj) € —RT.
Corollary 2.6. For each w € W, there exists a unique decompo-
sition w = vp4q1 ---v1 associated to Ap = (a1, , ). Furthermore,
we assume that Dyn({aq, -+ ,am}) is given by of o  am, ; Where

m < r. Then for each 1 < j < m, £(v;) = i; if and only if v; = ug)
(In particular, the expression ugj ) itself is reduced.)

Proof. The former is also well known (see e.g., [14]). The latter

statement is a direct consequence of Lemma 2.5, by noting |W£_j*1| =
j+ 1 and u(()j ), e ,ug-j ) are distinct elements of Wp, for which (1) of
Lemma 2.5 can be applied. q.e.d.

The following lemma should also be well known.
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Lemma 2.7. Let AC A C A, P = Px and P = Px. Let w = vu
with w € Wp and v = s;, -+ - s4,, being a reduced expression of v € Wg.
For any 1 < j <'m, we have v' := s;,_, -~ 54, € W;; and (V'u) " (ay;) €
RE\ Rp.

Proof. Assume that theset {a | s;,, 8i, o Si,, ¢ WII;, 1 <a<m}is
non-empty. Then we can take the minimum £ of this set. Consequently,
1£/ = Sipy Sim & Wg and s;, W € Wg. Hence, there exists o €
A such that w'(a) € —R" and s; w'(«) € RT. Since s;, preserves
—RT\ {~a, }, we have w'(a) = —a;,. Thus w'squw’~! = S—ay, = Siy SO
that £(w's) = £(s;,w") = £(w')+1. This implies w'(a) € R* by Lemma
2.5 and therefore deduces a contradiction. Hence, for any 1 < j < m,
we have v/ 1= s;, -8, € W]I;.

Note that (v'u)~!(ay,) € R; and v := v Hay,) € R}g. We claim v ¢

Rp; otherwise we would conclude v's,(y) = —v'(y) € —RF, contrary
to v'sy(y) = s;;v'(y) € RT. Since u € Wp, we have (v'u) (ai;;) =
u=t(v) ¢ Rp. q.e.d.

2.2. Definition of gradings. In this subsection, we define a grading
map gr with respect to an ordered set (Ap,Y), which is used for con-
structing a filtration on QH*(G/B). In order to obtain gr, we first
define “PW-lifting” (Peterson-Woodward lifting) as follows.

Definition 2.8. Given (Ap,T) with Ap = (a1, -+ ,q;), we de-
note A; = {a1,---, aj}, Pj = Pa;, and Q} = @j_, Za; for each
j < r. By the PW-lifting associated to (Ap,T), we mean the fam-
ily {TZJAJ-H,A]»};:l of injective maps defined as follows. (We denote
QL4 = QY. A1 = Aand Py = G.) For each 1 < j < r, the
map

P.
(INTRW I/VPJ-J+1 X ng+1/ng' — W x Q"
is defined by sending (v, \) to its associated elements (vajijf, ) as

described by the Peterson-Woodward comparison formula (see Proposi-
tion 2.1) with respect to (A;j11,A;). That is, M is the unique element

in QY,, C QY satisfying A\ = X + QY and (a,\) € {0,—1} for all
a € RT NP, Za; APJ{ ={aeAj| (a,\) =0}

Remark 2.9. Each ¢a;,, A, also defines an injective map in the
canonical way:
VWp.Wpt
QH*(Pj1/Pj) — QH*(Pjs1/B)iaso” v ayo 7.
Recall that a natural basis of QH*(G/B)[ql_l, - ,q;1] is given by
g o’s labeled by (w,\) € W x Q. We simply denote both of them as
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g w (or wgy) by abuse of notation. Note that ¢yw € QH*(G/B) if and
only if ¢\ € Q[q] is a polynomial.

Definition 2.8 (continued). Let {e1,--- ,e,41} be the standard basis
of Z't'. We define a grading map gr : W x Q¥ — Z™! associated
to (Ap,Y) as follows.

1) Forw € W, we take its (unique) decomposition w = Vy4q -+ - vy as-
r+1
sociated to (Ap,Y). Then we define gr(w) :=gr(w,0)=>_ {(v;)e;
j=1

2) For all a € A, we simply denote gr(qav) = gr(l,qav). Using
the PW-lifing associated to (Ap,Y), we can define all gr(q;)’s
recursively in the following way. Define gr(q1) = 2e1; for any
a€Ajp1\Aj, we define

J
gr(qav) = (U(wp, (UP/ —1—2—1—2 2a;)ej1—gr(wp, wp) Zi=1 a;gr(q),

where wp, wpr and a;’s satisfy (wp, wpr, +z a;o) )= Va,,a,(1,

i=1
o’ +QY).
3) In general, x = w][}_, qzk; then we define gr(x) = gr(w) +
> e bregr(ar).-
Furthermore for 1 < k <m < |Ap|, we define

grm = griim),  With  grgm WX QY — zm R

being the composition of the natural projection map and the grading map
gr. Precisely, write gr(gw) = Z:ill die;; then we define gri m (g w) =
Recall that the inversion set of w € W is defined to be
Inv(w) = {y € RT | w(y) € —R*}.

It is well known that ¢(w) = |Inv(w)| (see e.g., [14]). Take the de-
composition w = wv,41---v; of w associated to (Ap,T). For each
k, we note vUy41---UgL1 € WP and vg---v; € Wp,. Thus for v €
Rp,, v vi(y) € —R" if and only if w(y) € —RT. Consequently,
lvg---v1) = [{y € R;Sk | w(y) € —R*} = |[Inv(w) N R;Sk\. Note that
l(vg---v1) = Zle ¢(vi). Hence, we have

r+1
Z |Inv(w R;Sk \ RPk lex.

Remark 2.10. We would like to thank the referee for reminding
us of the above expression of gr(w). Following the suggestions of the
referee, the proof of Proposition 3.1 has been simplified substantially
in the present version. In type A, the vector gr(w) is essentially what



314 N.C. LEUNG & C. LI

is known as an “inversion table” (see e.g., [31]). The referee has also
made the following conjecture:

r+1

grae) =Y > B)er

=t BERItk \thkﬂ

If it is true, the proofs of our main results might also be simplified
substantially.

In Proposition 3.10, Proposition 3.12, Lemma 3.26, and (the proof
of) Lemma 3.27, we will explicitly describe all the gradings gr(g;)’s
with respect to a fixed (Ap,Y). In particular, we will see that gr(g;) =
(1—-j)ej—1+ (1+j)e;j for 2 < j <r —1 (which also holds for j = r if
Ap is of A-type).

2.3. Proof of Theorem 1.2. Assuming Dyn(Ap) is connected, we
always consider (Ap,Y) with the fixed order Ap = (ay, -+ ,,) in a
special way that will be explained in section 2.4. In this subsection, we
construct a filtration on QH*(G/B) with respect to a totally ordered
sub-semigroup S of Z"t!' and prove Theorem 1.2, which is the most
essential part of our main results.

Unless otherwise stated, we will always use the lexicographical or-
der whenever referring to a partial order on (a sub-semigroup of) Z™
in the present paper. (Recall that a < b, where a = (a1,--- ,a,,) and
b = (b1, -+ ,bp), if and only if there is 1 < j < m such that a; < b;
and ay = by for each 1 < k < j.)

Definition 2.11. We define a subset S of Z"! and a family F =
{Fa}acs of subspaces of QH*(G/B) as follows:

S {gr(pw) | pw € QH (G/B)}Y; Fa2 P Qqw C QH(G/B).
gr(gaw)<a

As will be shown in section 4, we have:
Lemma 2.12. S is a totally-ordered sub-semigroup of Z" 1.

Now we can state Theorem 1.2 more explicitly as follows.

Theorem 1.2. QH*(G/B) is an S-filtered algebra with filtration F.
Furthermore, this S-filtered algebra structure is naturally extended to a
Z' L filtered algebra structure on QH*(G/B).

That is, we need to show FaF}, C Faip for any a,b € S. In order to
prove it, we need to assume the following Key Lemma first.
Key Lemma. Let u € W and v € R™.

a) If l(usy) = £(u)+ 1, then we have gr(usy) < gr(u)+ gr(s;) when-
ever the fundamental weight x; satisfies (xi,7") # 0.



FUNCTORIAL RELATIONSHIPS BETWEEN QH*(G/B) AND QH*(G/P) 315

b) If b(usy) = L(u)+1—(2p,7"), then we have gr(g,vusy) < gr(u)+
gr(s;) whenever (x;,v") # 0.

Lemma 2.13. For any 1 # w € W, there exist w' € W and 1 < j <

n such that gr(w) = gr(w’)+gr(s;) and the quantum structure constant

w70 . ..
ngnw’ s positive.

Proof. Take the decomposition w = wv,y1---v; of w associated to
(Ap,Y). Since w # 1, the set {i | £(v;) > 0} is non-empty, so that we
can take the minimum k of this set. Thus we have v1 = -+ =vp_1 =1
and vy, = 5,0 with £(s,0) = 1 + £(v). Note that v := v 1(a,) € R;k
and vs, = vy. Consequently, for w’ := v, 11 -+ vp110, we have w = w's,,
and ((w'sy) = {(w) + 1. By Lemma 2.7, we have 0 € Wlf:’l and
v & R;Skil. Hence, there exists 1 < j < n with a; € Ay \ Ay
such that (x;,7Y) > 0. For any one such j, by Proposition 2.2 we
have N0, = N0 = (xj»7Y) > 0. Furthermore, we have gr(w) =

sj,w’ sj,w’
S l(v)er = (£(D)er + S L(vi)es) + e, = gr(w') + gr(s;). qe.d.
Proof of Theorem 1.2. For the first half of the statements, it suffices to
show o x q\o" € Fuyp, for any o¥, gro" € QH*(G/B) with a = gr(w)
and b = gr(g\u). We use induction on £(w).

If /(w) = 0, then ¢ is the unit and it is done. If {(w) = 1, then
w = s; and consequently we have 0% %0 € Fy(s,)1gr(u) = Fatb—gr(gy):
by using Proposition 2.2 and the Key Lemma. Thus we have c¥Wxqy\o" €
Faip in this case. Assume f(w) > 1. By Lemma 2.13, there ex-
ist w' € W and 1 < j < n such that gr(w) = gr(w') 4+ gr(s;) and
oV x5 = co¥ + va Co,uquo’, where ¢ = N:}’,’gj > 0 and the sum-
mation is only over finitely many non-zero terms for which ¢, , > 0. In
particular, we have ¢(w') = ¢(w) — 1. Using the induction hypothesis,
we have o' % g u € Fyr(w)+b- Thus (co® + EU# Copquo®) * o =
0% % (¥ xqrot) € Fyr(s;)+gr(w)+b = Fatp. Since all the quantum Schu-
bert structure constants are non-negative, there is no cancellation in the
summation on the left-hand side of the equality. Hence, we conclude
oV * qro" € Faip, by noting ¢ > 0.

The second half is a direct consequence of the first half. Indeed,
QH*(G/B) has a Z'tfiltration {Fs}acz+1, which is a natural ex-
tension of F. Here we just need to set I, := Ub<a’b65 F, for any
acZ 1\ S (note S is sub-semigroup of Z"*1). q.e.d.

The next proposition follows directly from Definition 2.8.

Proposition 2.14. The evaluation of q at 0 reduces the Z™ 1 -filtration
on QH*(G/B) to the classical Z" 1 -filtration on H*(G/B), which comes
from the iterated fibration {P;_1/Py — Pj/Py — Pj/Pj_l};fi%. (Recall
that Py = B and P41 =G.)
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2.4. A canonical order (Ap,T). When referring to (Ap, T), we have
already given an order on Ap via the permutation Y. It is done if r = 1,
since T = ida, is the only permutation map. In this subsection, we
introduce the special choice of the orders for r > 2 as mentioned at the
beginning of section 2.3. We will use this special order throughout the
present paper, which is in fact obtained in a canonical way. We introduce
it first for a subbase of A-type and then for others by reducing them to
the case for A-type.

Suppose Ap is of A.-type. We rewrite the simple roots so that A =
{B1, - ,Bn} and Dyn(A) is given by one of the cases in Table 2. In
terms of the order (f1,---,/,), we obtain a canonical order (Ap,T),
in the sense that Dyn(Ap) is inside Dyn(A \ {marked points}) in a
natural way. That is, we require the condition (x) to be satisfied.

(%) : there exists o > 0 such that o; = ,1; for each 1 < j <r.

Furthermore, the additional conditions in Table 2 tell us the information
on the starting point a;(= Sy+1) and the ending point a,.(= 5, =
Bo+tr). For instance, any one case of C8),C9), and C10) implies that
o =0and Ap = (a1,a2) = (51,82). That is, the order of Ap =
{a1, a5} is expressed in terms of the order of {f, f2} with respect to
the corresponding case.

Remark 2.15. In Table 2, we have treated bases of type Fg and Fr
as subsets of a base of type Fg canonically. Because of our assumption
2 <r <n=|A|, abase of Ga-type does not occur there.

Remark 2.16. Intrinsically, we obtain the canonical order (Ap,Y)
as follows. Ap admits canonical orders in the sense that Dyn(Ap) is

- 0—0

given by o7 as a, - There are two ways to denote an ending point

(by aq or «;). We fix one in the following way. There is at most
one root in Ap, say, «, such that the Dynkin diagram of Ap U {ay €
A\ Ap | (ag,aV) # 0} is not of A-type. We denote an ending point
by a7 such that both the ending point and the connected component of
A\ Ap adjacent to it are as far away from « as possible.

Comparing it with Table 2, we can easily see that Ap must occur in
at least one case of Table 2 (together with condition (*) being satisfied).
If it occurs in more than one case, then we just choose any one of these
cases. The choice does not affect all the results, since all the relevant
statements hold with respect to all cases in Table 2, as we will see later.

Remark 2.17. If (A, Ap) occurs in more than one case in Table
2 (for instance, in case C2) and C3) with respect to the condition
k =1 =n—1=3), then the corresponding orders (Ap,T) and (Ap, Y’)
are isomorphic. That is, there exists an isometry of ¢ : A — A such
that ¢(Ap) = Ap and To¢p =Y.
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Table 2. (Ap,YT) when r > 2

Additional conditions

Dynkin diagram of A (k:=0+T)
kK<n-—1;

A is of type A, B, or Cy,

Cl) |8 B2 Burs Bu is adjacent to -1

Bn
r>3
C2) oo lign—2or{ -
Bi Bz Bn-s Bnt K=n-—1
Bs
C3) k=r<3

o —eo - -
Bn Bn—1 Ba B2 Bi

Bs
> >
C4) o000 l o—o /@§5or{r—3 or{r_5
B1 B2 B3 Ba Bs PBe PBr K = K =

Ba

>
05) ’—O—Q—O—I—O—O HS:‘}OI‘{T_
Bs Br Be PBs Bs P2 P K=

Bs
06) o—o—o—o—l—o—o k=r=4
Br Be Bs Ba Bz B2 P

Be
07) o—o—o—o—I—o—o k=0,7>3
B1 B2 Bz Ba Bs Br Bs

B1
C8) k=2
Be Bs Ba Bz B2 Pr PBs
C9) Br B2 Bs Ba k=2
o—C==0—0
C10) B Bz Bs Ba K=2
Now we assume Ap is not of A-type and denote ¢ := r — 1. Note

that there always exists & € Ap such that Dyn(Ap\ {a}) is of A--type.
Thus when r > 2, we obtain a canonical order (Ap,YT) by requiring:

a) the restriction of Ap to A¢ = («, - , ) is the canonical order
obtained by directly replacing r with ¢ in Table 2;
b) a, = Botr (note that a,—1 = fy+r—1 once a) holds).

Precisely, Ap fulfills one and only one of the followings (note that
k = o+ ¢ and condition (x) is satisfied):

1) Apisnot of D-type. It occurs in a unique case (among C1), C4) for
k =17,C9) and C10)) in Table 2.
2) Ap and A are both of D-type. It occurs in case C2).
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3) Ap is of D-type and A is of E-type. It occurs in either of cases
C5), C7).
As a consequence, the canonical order (Ap,Y) is determined by the
corresponding case in which Ap occurs. For convenience, if Ap occurs
in both C5) and C7), then we always choose case C7) for use.

When r = 2, we can still give an order on Ap so that it is compatible
with our arrangements for r > 2. Indeed, we do this as follows. Since
Ap is a proper subset of Ap, the case of Go-type does not occur. Since
Ap is not of A-type, A must be of type B,C, or F. We take (a1, as) to
be (Bn-1, ) for the former two cases, or (2, 33) in C10) for the last
case.

Remark 2.18. Ap occurs in case C5) other than in case C7) only if
r =25 and A is of Er-type or Eg-type.

3. Proof of the Key Lemma

This whole section is devoted to the proof of the Key Lemma. Readers
who wish to see more concrete statements of our theorems as well as
their proofs can skip this section by assuming the Key Lemma and two
consequences (Proposition 3.23 and Proposition 3.24) of a special case
of it first. For emphasis, we restate the Key Lemma as follows.

Key Lemma. Let u € W and v € R™.
a) If l(usy) = L(u) + 1, then we have gr(us,) < gr(u) + gr(s;) when-
ever the fundamental weight x; satisfies (x;,v") # 0.
b) If l(usy) = L(u)+1—(2p,~"), then we have gr(g,vus,) < gr(u)+
gr(s;) whenever the fundamental weight x; satisfies {x:;,v") # 0.

We first do some preparations in section 3.1 and section 3.2. Then
we prove the Key Lemma for the special case when Ap is of A-type in
section 3.3, and we obtain two consequences in section 3.4. Finally in
section 3.5, we prove the Key Lemma for general cases. In addition,
we also give the explicit descriptions of all gr(g;)’s in section 3.2 and
section 3.5.

We would like to remind our readers of the notation gr(w) = Z;i% ije;
= (i1, ,ip41) for w € W and the notions “gry,”, “grym~ in Defi-
nition 2.8. Furthermore, we assume Ap to be of A-type throughout
thzl; sectgo)n except subsection 3.5. As a consequence, we have w =

1

ul(r ~--u;~ € Wp by Corollary 2.6, once assuming i, +1 = 0. Unless oth-

erwise stated, by w = vuf-’?) e uz(ll) we always mean the decomposition

of w associated (Ap,T) when A p is of A-type; equivalently, we have
ve WP,

3.1. Some properties on W. The main results of this subsection are
Proposition 3.1 and Proposition 3.4, which compare the gradings of
certain elements in W.
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Proposition 3.1. Let v € R" satisfy (a,y") =0 for all o € Ap =
Ap\{ag}, where 1 <a <r. For any w € W, we have

gra—1(wsy) = gra—1(w) and gr.(ws,) < gry(w) + Z

Lemma 3.2. Lety € R,Ap C A and w = vu with v € WP and u e
Wp. If (oj,7") = 0 for all aj € Ap, then ws, = tu with v € WF. In
particular, if Ap = {on,--- ,an} where a <, then grqo(wsy) = gra(w).

Proof. Let ws, = vt where v € WP and @ € Wp. By the assump-
tion, we conclude s,(a;) = a; and sjs, = sys; for any a; € Ag.
Hence, us, = s,u and consequently we have taut = wsﬁ,u_l =
wu_lsw = vsy. If 4 # u, then there exists 3 € R; such that 8 :=
au(B) € —RE. Hence, we conclude vs,(8) = v(8) € RT, contrary

to vs,(8) = v~ (B) = 9(B) € —R*. The latter statement becomes a

direct consequence. q.e.d.
r+1 r+1 _

Proof of Proposition 3.1. Write gr(w) = > ixer and gr(ws,) = > ixey.
k=1 k=1

By Lemma 3.2, we conclude grq_1(ws,) = gro—1(w). That is, iy = ik
for 1 <k <a-1
Clearly, i, < a < ig+a. For a+1 < k < r, we note that R \RPk | =

{foj ar |1 < j < k}. Inaddition, we have iy, = |Inv(w)N (RJISk\RPk 1)\
and i, = [Inv(ws,) N (Rj;k \Rj;kil)|. Since (ay,vY) = 0 for any a + 1 <
f <r, we havekwsy(Zf:j ap) = w(Zf:j ay) whenever j > a+ 1. Hence,
i =ik < {ijou [ 1<) <a}[=a

Hence, we have gr,(ws,) < grr(w) + Y j_, ae. q.e.d.
Lemma 3.3. Forany1<i<j<m<r andl <k <m, we have
(m)  (m) ~ :
Uk i) ifk=j+2
m . .
(m), (m) Ui m)? ifk=3j+1

W™ ™ i<k <
if k <1

For the above lemma, we recall that ug';)] = 5;8;+1---5;. As a direct
consequence, we obtain the following grading comparisons.

Proposition 3.4. Let w = ug) e uz(ll) Suppose j <m <.

a) If E(ugm)w) =j+l(w), then gr(ugm)w) =gr(w) + jey for a unique
1 <k<r.

b) If {(sjw) = {(w) — 1, then gr(sjw) = gr(w) — ey for a unique
1<k<r.
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c) L(ws;) = L(w) — 1 if and only if ij > ij_q —|— 1 (where iy := 0).
When this happens, we have gr(ws;) = Zk Liker+(i;—1)ej_1 +
ij—1€5 + 3k jy1 ikek-

Furthermore, if w' € Wp satisfies {(w'w)=~¢(w) £ £(w"), then there exist
non-negative integers py’s such that Y ,_, pr = ((w') and gr(w'w) =

gr(w) £ >k Pres-

(m) (r) _  (m) ") _ M
Proof. Note that Ui g = Ui Uit = Yme it tm]
uE:)_ZT IReE By Lemma 3.3, there are exactly four possibilities for this

product. Since E(ugm)w) = j + ¢(w), the (third) case m —j + 1 <
r —i, +1 < m cannot occur. If m = r — i, (i.e., the second case

occurs), then it is done by taking e, = e,. If r —i. +1 > m + 2,
(m) (T’) (r) (r) (r), (m),

we have m < r — 1 and u; = U1 Ymejim] = Wi Yy
ifr—i.+1<m-—j+1, we have u§ )ug) = uE:)_ir+1’r}uf2_j7m_1] =
E:) i1 T}ufnri:’ ]l)m = (T)ug-m_l). That is, in either of the remaining

two cases, we always have ug-m)w = ug)ugml)w’ in which E(u&ml)w’ ) =

J+L(w') with m’ <r—1 and v’ E::l) e ugll) Hence, a) follows by
induction.

The arguments for the remaining parts of the statement are also easy
and similar, which we leave to the readers. q.e.d.

Proof of Lemma 3.3. Note that s;js;, = sis; if |j — k| > 2, and sps55;, =
sjsis; if |[j — k| = 1. The first two cases are trivial. For 1 <k <b < m,
we have
s ™ — s (g .
b Uy = S (k™ Sm) = Sk Sp-28pS5-15b5b41 " * Sm
= Sk Sb—25b—15bSb—1Sb+1 """ Sm

= (8K 8m) - Sp—1 = UEZ?,LJSb—l-

Thus if £ < 4, then uE j)]uf,?gﬂ = f:lgﬂ Elm)l 1 If i <k <j, then
Wl = i s s s) - (sn o sm)

= (s

= (8i - 8k) - (Sk - Sm)(sk - 8j-1)
(Sz “Sk—1)(Skt1 - Sm) (k- 55-1)
= (

k1 Sm)(8iv -+ 8j-1) = ufﬁl,m]ufﬁ)—l]’ q.e.d.

Let us recall the following well known fact, which holds in general.

Lemma 3.5. Let P C P be parabolic subgroups of G. If w € WP,

then L(w) < l(wpwp). Furthermore, the equality holds if and only if
W= Wpwp.
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Proof. Note that wp sends positive roots R}; to negative roots —R}; C
—R}g and Wp sends —RE to R}g. Hence w]gwp(R;g) C R*, implying
wpwp € Wg . Hence the statement follows, by noting wj is the unique
longest element in Wp and l(wpv) = l(wp) — £(v) for any v € Wp.
q.e.d.

Lemma 3.6. For Ay = Ap \ {ag} where 1 < k < r, both of the
following hold. a) gr(wpwp) = > _; kep; b) for any v € Wk, gr(v) =
Sk dpep with jr < - < jp < k.

Proof. Write gr(v) = Z;Zl Jpep and set jo = 0. For each oy, € Ap,
we have ¢(vs,) = {(v) + 1 by Lemma 2.5. This implies j, < j,—1 by
Proposition 3.4. That is, j, < -+ < jpyr1 < Jr < kand 0 < jp_1 <
-+ < 1 < jo=0. Thus b) follows.

Let w = u,(;) . u,(fk) Note that w € W} and l(w) = k(r —k + 1) =
|RE| — ]R;] = l(wpwp). By Lemma 3.5, we have w = wpwp. That is,
a) follows. q.e.d.

In addition, we introduce the next three useful lemmas.
Lemma 3.7 (see e.g., [24]). Let v € R*. Then {(s,) < (2p,7") — 1.

Lemma 3.8. Let v € RT \ A satisfy {(sy) = (2p,7Y) — 1. For any
1 < j < n with (aj,7") > 0, we have (aj,yV) = 1. Furthermore, for
B = sj(7), we have B¥ =" — ) and l(sg) = £(sy) —2 = (2p, ") — 1.

Lemma 3.9. Let v € RT\ A. If l(usy) = £(u) + 1 — (2p,7") where
u e W, then £(sy) = (2p,~v") — 1. Furthermore, we take any 1 < j <n
with (o, vY) > 0 and set 3 := sj(7). Then all the following hold:

l(us;) = L(u) — 1,€(usjsp)
=l(us;) —U(sg), l(usy) = l(usjsgsj) = L(us;sg) — 1.

Proof. We prove all these three statements together, including the
proof of Lemma 3.7 from [24] by induction on £(s.).

If (sy) =1, then v € A and consequently ((s,) =1 = 2(p,v") — 1.
Now we assume v € R\ A. Take any 1 < j < n such that (y,a)) >0
(such j does exist; otherwise, we would conclude 2 = (v,7") < 0). Con-
sequently, (aj,vY) > 0. Thus s,(a;) = aj — (o), 7")y € —RT. Also,
sjsy(aj) = ((v,af){aj,7Y) — Dy — (aj,7")7y is a negative root. By
Lemma 2.5, we have £(s;sys;) = {(s,) — 2. Because s;(v)" = s;(v") =
7Y = (aj,7Y)e, we have (p,s;(7)") = (p,7") — (@;,7"). By the induc-
tion hypothesis, we conclude the following:

(3.1)  Elsy) = Lsysns) 12 < 2p,s(n)Y) — 142
(3:2) = 2p, ") — 14201 —(a5,7"))
(3.3) < (2p,7") - 1L
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If £(sy) = (2p,7Y) — 1, then both (2.1) and (2. 3) must be equalities.
In particular, we conclude (aj,v") =1, B¥ = vV —af and l(sg) =

fs,) —2 = (20,8Y) — 1.
It remains to show Lemma 3.9. Indeed, we have
fu) — €s,) < fusy) = (u) — ((20,7") — 1) < 0(u) — (s,).
Hence, both inequalities become equalities. Thus ((s,) = (2p,7") — 1.

Furthermore, we note £(us;sgs;) = {(us,) = (u) — £(s,) and

l(usjsgsj) > L(us;jsg) — 1

> l(usj) —L(sg) —1>L(u) —1—4L(sg) —1 = L(u) — £(s,).
Hence, the statements in Lemma 3.9 also follow. q.e.d.
3.2. Explicit gradings of ¢;’s. The main results of this subsection
are Proposition 3.10 and Proposition 3.12, giving explicit formulas for
gradings gr(g;)’s.

Proposition 3.10. Let 2 < j < r. Following the notation in Defi-
nition 2.8, we have Ya; A, (L af +QF ) = (ugj 11), of) and gr(q;) =
(1 —J)ej—1+ (L +j)e;.

Proof. Note that Aj_; C A; with A; \ Aj_y = {a;}. Clearly,
(a,af) € {0,~1} for all @« € RTN @Z;ll Za;. Hence, we have APj,l =
{a € Ajy | (waf) =0} = Ajq1\ {aj_1}. Therefore we conclude
gr(wp;_, ij{il) = (] — 1)ej_1 by using Lemma 3.6 (with respect to
Aj;_1). Thus the former equality holds. Consequently, the latter equal-
ity follows by Definition 2.8. q.e.d.

The next lemma works in general, namely, we do not need to assume
Ap to be of A-type.

Lemma 3.11. Letu € W and A € QV.

1) Write gr(gyu) = (j1,- -+ ,Jr+1). Then 271;111 gk = 0(u) + (2p, N).
2) Lety € RT satisfy ((usy) = £(u)+1—(2p,7"). Foranyl <p <mn,
gr(gyvusy) < gr(u) 4+ gr(sp) if and only if gry(gyvusy) < grp(u) +

grr(sp)-
Proof. Denote |(a1,--- ,a,41)| = Zill ay. Note that £(u) = |gr(u)|.
Furthermore, we conclude |gr(gqov)| = 2 for all & € A by induction.

Thus (1) follows. . .
Write gr(u)+gr(sp) = (i1, ,ir+1) and gr(gyvusy) = (21, -+, tp41).

Assume (i1, ,ip41) < (i1, ,irtl); thgn we have (i1,--- ,%r) <
(i1,--- ,ip) by definition. Assume (i1, ,tr) < (i1, -+ ,4). If <
holds, then it is already done by the definition of the lexicographi-
cal order. If “=" holds, then we conclude 4,41 = i,41, by noting

Wik = lgr(gyvusy)| = Llusy) + (20,7Y) = £u) +1 = Y3E g

Thus (2) follows. q.e.d.
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Proposition 3.12. For any o € A\ Ap, one and only one of the
cases in Table 3 occurs, where we require r > 2 (resp. 3 and 5) for case

b) (resp. e) and f)).

Table 3. Explicit grading gr(g,v) for « € A\ Ap

| | Dyn(ApU{a}) | vanar(l,a”+Q%) | 97(qav)
a) | a1 as  ar o o ul” (r+2)e,.41 —re,
®e—0—0:+:-0—0 r 1 T

b) | o o a ar quvug S ug : (r+2)ery — ijl €j

C) a az. ' a, o QQVQTuS;)luE«T,ZD (2T + 2)er+l - 2rer

d) aq 052. . ar @ qavuy) (T + 2)er+1 —Tre,

(r) , (r—=1) _

e) | o—o-- o_l_o Qo Uy Uy 2re,41+ (1 —7r)(e, +e,-1)
[e5] [e') (679

)] o.. o_l_o_o qavufi)zuy:;)uff:;) Br—4)e,s1+(2—1) > e
@1 Q1 Qe j=r—2

g) === (o 51 -1,3)

h) ol o qav 4151 (—37 5)

1) aq ' an .a qav 2er-i—l

Proof. Clearly, Dyn(Ap U {a}) is given by a unique case in Table 3.

Let Ap = a¥ + Q) and Ya a,(1,Ap) = ) wpwpr. Here Ap € QY
is the (unique) element satisfying (3, A\g) € {0,—1} for all B € R}.
Since Ap is of A-type, this is equivalent to requiring (o, Ag) = 0 for all
a; € Ap but at most 1, and if such unique o exists, then (o, A\p) = —1.
For each case in Table 3, it is easy to see that the element \p as provided
does satisfy this property. Consequently, Apr = {a; € Ap | {(aj, Ap) =
0} = Ap\{ag} for a certain 1 < k < r+1. Hence, we can directly write
down wpwpr by using Lemma 3.6. Finally, we obtain gr(q,v) as is listed
in Table 3, by direct calculations (with Definition 2.8 and Proposition

3.10).

The next corollary follows directly from Table 3.

Corollary 3.13. If r = 1, then gr(q;) = (a,—a + 2) with a =
<0z1,0z}/> for each j. Consequently, for any A € QV, we have gr(qy) =

((alﬂ)‘>7 <2P - alﬂ)‘>)'

q.e.d.

As we will see later, we use induction on /(s,) to prove the Key
Lemma. The next proposition shows the special case of the Key Lemma

when /(s,) = 1.
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Proposition 3.14. Let u e W and 1 < j <n. If l(us;) = £(u) — 1,
then gr(qjus;) < gr(u) + gr(s;).

Proof. Let gr(u) = (i1, ,ir41) and gr(us;) = (i1, ,iy4+1). When
a; € Ap, we have 1 < j < r. If j = 1, then we have iy = 1 and
gr(usi) = (0,i2,--- ,ip+1). Hence, gr(qusi) = gr(qi) + gr(usi) =
(2707' o 70) + (07i27' o 7ir+1) = g?"(’LL) + gr(sl)' If2< J <, then by
Proposition 3.4 and Proposition 3.10, we conclude

gr(gjus;j) — gr(u) — gr(s;)
=((1=j)+i; —1—ij_1)ej1+ ((1+j) +ij-1 —i; — Le;.

Thus we have gr(qjus;) < gr(u) + gr(s;), by noting 0 <i;_1 <i; < j.

When «o; € A\ Ap, we note that gr(s;) = e,1. By Lemma 3.11, it
suffices to show gr,(qjus;) < gr.(u). Write gr(qjus;) = (i1, ,ir41)-
and wA,AP(l,aJV- + Q}) = Apwpw'. We first assume \p = a]V. Then
Apr = {a € Ap | (a,af) = 0}. If Apr = Ap (i.e., case i) of Table 3
occurs), then we have gr,(¢;) = 0 and gr,(us;) = gry(u) (by Lemma
3.2). Thus it is done in this case. Otherwise, we conclude Ap =
Ap \ {ag} for a unique 1 < a < r (from Table 3). Consequently, we
have gr,(q;) = —gry(wpw’) by definition, gr,(us;) < gry(u)+ > _, aeg
by Proposition 3.1, and gr(wpw') = Y ") _, aey, by Lemma 3.6. Hence, we
do have gr,(gjus;) < gry(u) in this case. Now we assume Ap # . Due
to Table 3, it remains to consider case ¢) and h). If case h) occurs, then
n=2,r=1,9r(q;) = (—3,5) and we do have 1= —3+i1 < —2<ip. If

case ¢) occurs, then gr,(¢;) = —2re, and we have gr,_i(us;) = gry—1(u)
by Lemma 3.2. Hence, gr,(qjus;j) —grr(u) = (=2r+i, —i,)e, < (—2r+
r —0)e, < 0. Hence, the statement follows. q.e.d.

3.3. Proof of the Key Lemma when Ap is of A-type. Recall that
we have assumed Ap to be of A-type in this subsection.

Proposition 3.15. Part a) of the Key Lemma holds.

. k
Proof. Write us, = vy 10, - - v1, where v, 1 € WF and v, = ugk)

1 <k <r. Thus gr(usy) = (i1, - ,ir,¢(vy41)). Fix a reduced expres-
sion of v,1;. Since £(u) = l(usys,) < {(usy), by Lemma 2.5 we have
U= Vpt1 " Uptr10mUm—1 - - - 01 for some 1 < m < r 4 1, in which oy, is
the element obtained by with deleting a (unique) simple reflection from
Uy Since £(u) = €(us,) — 1, the induced expression of u is also reduced.
Hence, £(0,,) = £(vy,) — 1, and if we write 9, = v'w with v’ € WJI;’:*I
and w € Wp,,_,, then £(0,,) = £(v")+(w) and L(wvy,_; - --v1) = L(w)+
0(Uy—1 - - v1). By Proposition 3.4, there exist non-negative integers py’s
such that gr(u) = (i1 +p1, - yim—1+ Pm—1, (V") ims1, - ir, L(Vry1))
with 3277 pr = £(w). On the other hand, by Lemma 2.7 we conclude
v E R+m \ Rp,,_,, so that min{gr(s;) | (xi,7") # 0} = e;,. Hence, we

for
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have gT’(US«/) = (ily e 7ir7£(vr+1)) < (Zl +p1,- - 7im—1 +DPm—1, E(U/)‘i'la
Ity i, L(Upg1)) = gr(u) + ey, by noting £(vey1) + > p_qix =
Uusy) = 0(u) + 1= L") + S in + S0 pr+ 1. q.e.d.

The remaining part of this subsection is devoted to a proof of the
following.

Proposition 3.16. Part b) of the Key Lemma holds. That is, for
anyu € W oand v € RT, if (L1): L(usy) = (u) +1— (2p,~"), then
we have (L2): gr(gyvusy) < gr(u) +min{gr(s;) | (x:,7") # 0}.

Lemma 3.17. Partb) of the Key Lemma holds when Ap = {a1}.

Proof. We use induction on ¢(sy). If /(s,) = 1, then v € A and
consequently (L2) follows from Proposition 3.14. Now we assume vy €
RT\A. Write gr(u) = (i1,42), gr(usy) = (j1,j2), and gr(g,v) = (k1, ka),
in which k1 = {(aq,7") by Corollary 3.13. If k; < 0, then j; + k1 <
1+k < 0. If ky = 0, then we have iy = j; by Lemma 3.2. In
either of the cases, we conclude j; + k1 < 4. Thus (L2) holds by
Lemma 3.11. Otherwise, (a1,7Y) = k3 > 0. Then by Lemma 3.8
and Lemma 3.9, we conclude that for 5 := s1(vy) the following holds:
BY =Y —ay; gr(q1) + gr(us1) < gr(u) + gr(s1) (by Proposition 3.14);
gr(gav)+gr(usisg) < gr(usi)+e. (by the induction hypothesis), where
we denote e, := min{gr(s;) | (xi,3Y) # 0}; gr(usisgs1) = gr(usisg) —
gr(s1) (by Proposition 3.4). Hence, we conclude (L2) holds, by noting
e. = min{e., gr(s1)} = min{gr(s;) | {x:,7") # 0}. q.e.d.

When A is also of A-type, it is easy to obtain Ap and gr(gy,) asso-
ciated to a given Ap € QV/QY. For instance, by direct calculations we
conclude the following lemma. (Recall that oj = Bo4; for 1 < j <7 in
Table 2.)

Lemma 3.18. Let A be of A-type and m < r+ 1. Following the no-
tation in case C1), we set A =Y k50v+r+1—m+k- Then the following
holds (where 0 - ey :=0).

1) If m = r + 1, then (a,\) = 0 for all « € Ap; if m < r+1,
then for any o € Ap, {a, ) is equal to —1 if & = qpy1-m, or
equal to 0 otherwise. In particular, A is the element associated to
mpB 1+ Qp via PW-lifing.

2) gr(gn)=m(r+2)e,1 1 —(r+1—-m)> . 1 ek In particular,
if m=r+1, then gr.(qx) = 0.

Furthermore, we have gr,( Z:(;H BY) =0, whenever o > 1.

Since the case of A-type is relatively easy to handle, we would like
to compare all relevant information for A being of general type with
those when A is of A-type. Due to Lemma 3.11, we only need to care
about gr,(g\w). For these purposes, we bring in a base A of A-type
and introduce the notion of “virtual coroot” as below for r» > 2.
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Let A = {f1, -, B, } be a base with Dyn(A) given by B 5:2' T,

Denote ¢&; = Bo+i for each 1 < i < r (the notation “0” is the same one
as in Table 2). Set Ap = {dy,--- ,d, }. Following Definition 2.8, we can
obtain a grading map with respect to (A p,1d Ap)’ which we also denote
as gr by abuse of notation. Clearly, Bj — B; extends to an isometry
A\ {B,} — A\ {B,} of bases, where 7 is given in Table 4. Denote

Qv =® Zﬁzv :

Definition 3.19. Let A € QY. We call A € QY a virtual coroot
of A (at level n) if A satisfies both gr.(¢;) = grr(qx) and (&4, \) =
(ajy, Ay for 1 <i <.

Lemma 3.20. For each case in Table 2 (where we have assumed

r > 2), there is a virtual coroot \ of A = 2?21 cjﬁ]\-/ (at level n), given
by Table 4.

Table 4. Virtual coroot A= Cpfi+ E?;i CjB}/

C1)[C9)[C10)[C2)[C3)[Ch) [CT [ C4a) C6) CR)
ni n 3 3 n 4 5 7 8 8 7
. . . 3. .. 5 . 5 .
/.L _<ﬂn717 57\7/>ﬂ7\7/ ﬂr\;/—l + 2[31\7/ Zl jﬁ5v+j Zl jﬂ;fﬂ- leﬂ;/Jrj
J= J= J=

Proof. Note that A\ {3,} is canonically isomorphic to A\ {8,} as
bases and that Ap C {f1,---,0y,—1}. It is easy to see 5;/ is a virtual
coroot of ij (resp. 0) for each j <n —1 (resp. j > n+1). Combining
Table 2 and Table 3, we conclude that gr,(¢u) = grr(qgy) and (&, 1) =
(a;, By) for 1 < i < r. That is, i is a virtual coroot of ). Hence, the
statement follows. q.e.d.

Remark 3.21. Lemma 3.20 tells us about the existence of a virtual
coroot. Due to Lemma 3.18, we note that the uniqueness does not hold:
if A is a virtual coroot of A, so is A + Z?:l jﬁ}/.

Due to Lemma 3.17, it remains to care about the case when r > 2.
The next proposition shows that we can describe most of the coroots
uniformly with the help of the notion of “virtual coroot.”

Proposition 3.22. Assume r > 2. Let v € Rt \ A satisfy ((sy) =
(2p,vV) — 1. Then one and only one of the following holds.

1) There exists a virtual coroot %" = Z;ﬁ ply of ¥V, where Gy =
Botr+1, Cre1 <1 and ép—1 < é,_1 < ¢, foreachp € {1,--- ,r+1}

(where ¢o :=0).
2) 4V :Zm:dﬁg where o <m < o+71 and d < m.
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3) Case C9) occurs and v¥ = By + By .

Proof. Let ’YVZZ?:1 c;j ij , which has a virtual coroot 22:1 Cj ﬁjv by
Lemma 3.20.

We first assume ¢, # 0. Set (¢}, -+ ,¢p) := (c1,- - ,cn)—[%](l,u- ,1).

Then we obtain another virtual coroot Z?Zl c;» BJV of vV by noting that
[y ﬁjv is a virtual coroot of 0. We claim ¢; —1 < ¢;_; < ¢} for each
i (where ¢, := 0) and show this by discussing all possible coroots with
respect to the type of A.
When A is of A-type, clearly it is done (by noting (cj,---,c)) =
(€1,-+-,¢y) =(0,---,0,1,--- ,1)). When A is of D-type, either C2) or
C3) will occur. For the former case, we have n = n and ¢,—2 € {1,2}.

If ¢,—o = 2, then we have ¢,y = 1 and (¢}, -+ ,c},) = (€1, ++ ,¢) =
(0,-++,0,1,-++, 1,2, ,2). If ¢p = 1, then 4" = BY + S20_ B for
some a < n—2<b<n-—1 Hence (, - ,c) = (¢1,+,¢) =

0,---,0,1,--- ;1,1 4 6pp—1,2). Thus our claim holds. For the latter
case, we have 1 = 4 and can show our claim with similar arguments.
When A is of E-type, there are only finite coroots which are listed in
Plate V, VI and VII of [6]. In this case, our claim still holds by direct
calculations.

When A is of type By, (resp. C,,), then our claim follows immediately
from Plate IIT (resp. II) of [6], except for the following coroots.

C1) for type B, C1) for type C,
W B2 X B (A<i<n)| X B/+2 3 B (I<i<j<n)
1Sp<n 1Sp<j JSpPSn

However, none of the above coroots satisfies our condition: /(s,) =
(2p,7") — 1. Indeed if they satisfied this condition, then for the former
case we would have (3;,7") = 2 > 1, contrary to Lemma 3.8. For the
latter case, we denote vy = >, 1 B +2> o<, By for j <k <n.
Note that v} =" and (B,7)/) > 0 for all k. By Lemma 3.8, we have
Vi = — B} and €(s,;,,) = (2p,7/41) — 1. Thus by induction we
conclude £(s, ) = (2p,7,/) — 1. However, (B,,7) = (Bn, By _1 +2B,) =
2 > 1, contrary to Lemma 3.8 again. Hence, our claim holds in this
case. When A is of type Fj, which is the remaining case we need to
consider since r > 2, case C10) or C9) must occur. When C10) occurs,
our claim follows immediately from Plate VIII of [6] and Table 4. When
C9) occurs, we denote M := max{cy,ca,c3,c4}. If M > 1, then there
are 14 coroots in total (see Plate VIII of [6]), only 5 coroots among
which satisfy our condition on the length. Explicitly, (c1,co,c3,¢4) =
(1,2,1,0),(1,2,1,1), (1,2,2,1),(1,3,2,1), or (2,3,2,1). If M =1, then
vV = Ef}:a 5;,/ for some 1 < a < b < 4. Clearly, our claim follows,
except for the coroot vV = By + 3.
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Note that Ap C {1, ,By—1}. We conclude BV is a virtual coroot
of 0 whenever j < o or j > o+ 1. In particular, we set ¢; = ¢ ; — ¢, for

each 0 < ¢ < r+1. Then we obtain a virtual coroot 4" = Z;ﬂ épa of
vV satisfying ¢, —1 < ¢,_1 < ¢, for each p, whenever ¢, # 0 except when
the case of statement (3) occurs. Furthermore, we note that ¢,41 <r+1

and if “=" holds then we must have 4" = Z;ﬂ pap, which is still a

virtual coroot of 0. In this case, we just replace 4V with 0 = Z;i O'O'z;,/.

Now we assume ¢, = 0. Note that Dyn({f1, -, By—1}) is of A-type
and that o+ r + 1 <. Thus if 0 is not a virtual coroot of v, then we
must have ¥ = >77* ;) for some 1 < d < m <7 — 1. Hence, one of
the following must hold: (i) m < o; (ii) m > o+ 7+ 1 and d < o; (iii)
m>o+r+1andd>o; (iv) o <m < o+ r. If either (i) or (ii) held,
then 0 would be a virtual coroot of Y. If (iii) holds, then ZH'I is
a virtual coroot of 4V, so that statement (1) holds. If (iv) holds then
statement (2) holds. q.e.d.

Proof of Proposition 3.16. Due to Lemma 3.17, we assume r > 2 and
then use induction on £(s).

If ¢(sy) =1, then v € A and consequently (L2) follows from Propo-
sition 3.14.

Now we assume v € Rt \ A. Take any 1 < j <n with (a;,7Y) > 0.
Write = 5;(1), gr(gs) = (M- Aeer), min{gr(s:) | (xi, 87) # 0} =
e, and

gr(qj) + gr(us;) = gr(u) + (a1, ,ar41),
gr(gsv) + gr(usjsg) = gr(us;) +ec+ (1, pry1),
gr(usjsgs;) = gr(usjsg) + (b1, -+, bry1).

Thus we have gr(g,vusy) = gr(u) + e, + Zrﬂ(ap + by + pp)ep, taking
the summation of the last three equahtles Due to Lemma 3.8 and
Lemma 3.9, we conclude min{gr(s;)|(x:,7") # 0} = min{ec, gr(s;)}
and (g1, -+, pr41) < 0 by the induction hypothesis. Furthermore, we
have (a1, - ,ar41) < gr(s;) by Proposition 3.14. We first make several
observations as follows.

(Obl) Assume e. < gr(s;) and {(a,af) = 0 for all @ € Ap. Then
(b1, ,bry1) = —epp1 = —gr(s;) (by Lemma 3.2). Consequently,
(L2) follows.

(Ob2) Assume j = 1. Then we have e. < gr(s1), (b1, - ,br41) =
—gr(s1) by Proposition 3.4 and consequently (L2) f llows

(Ob3) Assume 2 < j <7 and e. < e;. Then gr(q;) = (j +1)e; — (j —
lej_1. Write gr(u) = p+1 ipep, and gr(us;sg) = Zri kpep.
Note that ¢(us;) = €(u) — 1 and l(us;sgs;) = £(usjsg) — 1. By
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Proposition 3.4, we have
(a1, yarg1) = (i —ij-1 — jlejo1 + (J + L+ ij-1 —ij)ey,
(by, -+ bra) = (k) — kjo1 — Dej1 + (kj—1 — kj)ey,
kj=1tj_1+p;j—Aj and kj_1 =1; — 1+ pj—1 — Aj_1.
As a consequence, we have (a1 +by+ 1, ,ap41+bpg1+ prg1) =
(,ula sy M2y + Moo — Mg, s Hr1), where M
Aj—1 —Aj —j. Thus if M = 0 and (u1,--- , -2, i, fj—1)
(0,---,0), then (L2) follows.
Now we begin to discuss all possibilities for vV, using Proposition
3.22.
When case (1 ) of Proposition 3.22 holds, there exists a virtual coroot

AV = Z;Jﬁ cpa of vV such that ¢,41 < rand ¢, —1 < ¢,_1 < ¢, for

IA

each p (recall that ¢, := ﬂo+p and ¢y = 0). Clearly, if a): ¢4 = 0,
then all ¢,’s are equal to 0. If b): 1 < ¢4 < 7 and any two non-zero ¢,
and ¢y are distinct, then we have Z;g Cplyy = zzﬁll POy —mtp Where
0 < m < r. Otherwise, we have c¢): 1 < ¢é.41 < r and there exist
distinct p < p’ such that ¢, = ¢,y # 0. This must imply ¢, = ¢p41 since
(¢1,++ ,¢r+1) is a non-decreasing sequence. Corresponding to these
three cases, we have the following conclusions.

a) (é1,-++ ,é41) = (0,---,0). Then we have gr.(¢,v) = 0 and
grr(usy) = gry(u) by Lemma 3.2. Thus (L2) holds by Lemma
3.11.

b) 4V = Zgﬁ POy —mtp, Where 0 < m < r. Hence, we have gr,(g,v)
= grr(q,y )= (m-—r) Zp —m €p (by Lemma 3.18) and (a,,v") =
(cp,7Y) =0for p € {1,--- ,r} \ {r — m}. By Proposition 3.1, we
have gry(usy) < gry(u )+ (r—m)> > ., e Thus (L2) holds by
Lemma 3.11.

c) In this case, we can take j :=min{p | 1 < p < ré, = éq1 # 0}
That is, Z;E CpQyy = M1 + Z;nzlpo'zj_mﬂ, where 1 < m <
j < 7. Consequently, we have (aj,7Y) = (d;,5") > 0, g¥ :=
4Y — & is virtual coroot of 8¥ (=" —a}), and e, < e;. If j =1,

then we are done by (Ob2). If j > 2, then we use (Ob3). Note
that gr.(¢sv) = grr(qﬁv) By using Lemma 3.18, we conclude
(A Ajma) = (m=5) Y025 ep N1 = (m—j) = (—j+1) =
m—1and \j =m(j+1) —mj—(j+1) =m—1—j. Hence,
M:)\j_l—/\j—j:().

By the induction hypothesis, we have Z;j ppep < 0. If “<”
holds, already done. If “=" holds, we have p; = --- = pj_o =0
and consequently p;—q < 0. Write gr(us,) = (ki, -, krs1),
gr(gyv) = (A1, Arq1) and gr(us;) = (i1,--+ ,ip41). Then
Ap+kp=rip+pp, \p=XAp, tp =1p and k, =k, for 1 <p <j—2.
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Hence, (ki,--- ,kj_2) = (i1, - ,ij_2) + (j —m) Zg;i_m ep. Since
(ap,7Y) = (6p,7") = 0 for all p € {1,2,---,j — 1} \ {j — m},

we conclude (l;:l,--- ,lzrj_1) < (i1, ,ij—1) + (j —m) Zj_l

p=j—m ©p>
by using Proposition 3.1 with respect to (A,Ap) with Ap =
(aq,+-- ,a5-1). Thus we have kj_1 < ;-1 + (j —m). Since

l(us;) = L(u) — 1 and l(usy) = L(usjsgsj) = L(us;sg) — 1, we
have Ej = ij_1 and l;:j_l = k; — 1. Hence, pu; = kj + A\; — %j =
kj—1+14+(m—1—3j)—ij_1 <0.

Therefore, we conclude (1, -+, pj—2, ttj, tj—1) < (0,---,0) and
consequently (L2) holds by (Ob3).

When case (2) of Proposition 3.22 holds, we have v¥ = Y3 3/
where o < m <o+ r and d < m. If m = o, then d < 0; consequently,
we take a; = 4 and use (Obl). If m = 0+ 1 or d = 0+1, then we take
j =1 and use (Ob2). Otherwise, we have either d <o <m =0+ j or
o+j=d<m< o+r, where 2 < j <r. Then we take such j and use
(Ob3). Note that ¥ =+" — af and e. < e;. For the former case, we
have A\j_1 = j — 1 and A\; = —1; for the latter case, we have A\;_1 =0
and A\; = —j. Hence, we always have M = \;_; — \; —j = 0. By
the induction hypothesis again, we have Z;j ppep < 0. If “<” holds,
it is already done. If “=" holds, we have p; = --- = pj_o = 0 and
consequently p;_1 < 0. For the former case, we conclude p;_1 = 0 and
consequently p; < 0, by noting 0 > p;_1 = kj_1+(j—1)—(i; —1) > 0.
For the latter case, we have p1; = k; —i;_1+(—j) < 0. Hence, we always
have (g1, , -2, fj, pt—1) < (0,---,0). Thus (L2) holds.

It remains to consider the case when statement (3) of Proposition
3.22 holds. That is, C9) occurs and 7" = 8y + ). Then we just take
a; = (4 and use (Obl). Thus (L2) still holds. q.e.d.

3.4. Two consequences. In this subsection, we derive two proposi-
tions with the help of our notion of virtual coroot.

Proposition 3.23. Let u € WP and 1 < 7 <r. Then o"“x % =
ousi 1+ Zw’)\ buwagro™ with gr(gyw) < gr(us;j) whenever by, x # 0.

Proof. Clearly, ¢(usj) = £(u) + 1. Thus Ni‘i’;o = (xj,af) = 1 by
quantum Chevalley formula (Proposition 2.2). We need to analyze the
remaining non-zero terms.

If £(usy) = £(u)+1 and (x;,7") # 0, then we have gr(us,) < gr(u)+
gr(s;) by part a) of the Key Lemma. Note that gr(us;) = e;+£4(u)e,41.
If the equality holds, then we have us, = vs; where {(v) = ¢(u) and
v € WP. By Lemma 2.5, an expression of v € W7 is obtained by
deleting a simple reflection from a (fixed) reduced expression of vs;.
Note that this simple reflection cannot come from v. Otherwise, we
denote by v the element obtained by deleting such simple reflection from
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v. Then v = vs; and we would deduce a contradiction, say, 1 + ¢(u) =
l(us;) = £(v) < £(v) = L(u). Thus u=v.

If l(usy) = L(u) +1 — (2p,vY) and (x;,7") # 0, then we have
gr(gyvusy) < gr(u) + gr(s;) by part b) of the Key Lemma. Further-
more, we have £(usy) = £(u) — 1 whenever (a,v") > 0, by Lemma 3.8
and Lemma 3.9. Since u € W, £(us,) = £(u) + 1 for any o, € Ap.
If the equality held, then we would deduce a contradiction as follows
(mainly by finding o € Ap satisfying (a, ") > 0).

Note that £(s,) > 1 (otherwise, we would conclude v = a; € Ap).

We first assume r > 2 and write gr(us,) = (k1,--- , ky11) and gr(gyv)

= (A, -, Ary1). Since the grading equality holds, we have l?:,, + 5\p =
0p,j for each 1 < p < r. As before, we discuss all possible coroots by
using Proposition 3.22.

When (1) of Proposition 3.22 holds, " has a virtual coroot 4V =
Z;ﬂ cpa satisfying one and only one of the followings (from the proof
of Proposition 3.16).

a) (€1, ,¢41) = (0,---,0). In this case, we have grr(gyv) = 0 and
grr(usy) = grr(u). In particular, we have ki = A\j = 0, deducing
a contradiction: 1 = d; ; —k‘ —i—)\ =0+0.

b) 4V = Z;”Jrll POy —m+p, where 0 < m < 7. Then we have gr,(g,v) =

gTT(q:Y ) (m T) Zp:r—m €p and <Oép7/7\/> =0forpe {17 to ,7"}\
{r — m}. Note that gr,_ m—l(qu) = 0 and grp—m—1(usy) =
9rr—m—1(u) = 0. If j <r—m — 1, then we would deduce the con-
tradiction 1 = §; ; —k —i—)\ —0+0aga1n If j = r — m, then we
still deduce a contradiction: 1 = d;; = k +)\ = ky_mt+m—r < 0.
Hence, we conclude j > r — m. Then we have r>j>j53—12>
r—m > 0and (a;,7y V) = 0. Thus we have k; = 6, ;—\; = 14r—m,
k —1 = 0jj-1 — Aj—1 = r —m and consequently/;: = kj_1+ 1.
Hence, we have E(uswsj) = ((usy)—1 by Proposition 3.4. Then by
Lemma 2.5, we conclude us,(a;) € —R™, contrary to us,(c;) =

u(aj) € RT.

c) Z;;ll Cplyy = My + E;nzlpdi_m+p, where 1 < m < ¢ < r.
Then we have (a;,v") = (&;,7Y) > 0 and therefore deduce a
contradiction.

When (2) of Proposition 3.22 holds, we have 4" = 37" ; 8,/ where
o<m<o+randd<m. Since (x;,7") # 0, we conclude m > o +r.
Thus we find o = 3,,, € Ap that satisfies (o,7") > 0. Hence, we deduce
a contradiction in this case.

It remains to consider the case when (3) of Proposition 3.22 holds.
That is, C9) occurs and vV = 8y + ). In this case, we note r = 2 and
deduce a contradiction, say, —4 = Ay = 0o j — ko >0—2=—2.



332 N.C. LEUNG & C. LI

Hence, our assumption that the grading equality holds is not true,
when r > 2.

Now we assume 7 = 1. Then a; = «; and we have A\ = {aq, V)
by Corollary 3.13. If A\; > 0, then we find a contradiction by taking
a=aj € Ap. If \; <0, then gri(gyvusy) <0+ ki <1= gri(usy) and
consequently the grading equality does not hold. If 5\1 = 0, then 12:1 =
gri(usy) = gri(u) = 0 and consequently we deduce the contradiction
1:5]'71 :l?:1+5\1 =0+40.

Due to the quantum Chevalley formula, we have discussed all the
non-zero terms for the quantum product o%x o . Hence, the statement
follows. q.e.d.

By Theorem 1.2, we obtain a filtered-algebra structure on QH*(G/B),
which induces an associated graded subalgebra along the Ze, 1 direc-
tion. Thanks to the Peterson-Woodward comparison formula and our
definition of gr(g;)’s (with the help of PW-lifting), we wish to obtain
an algebra isomorphism between QH*(G/P) and (at least a subalge-
bra of) this graded subalgebra. For this it is necessary that the grad-
ings of ¥a aA,(1,¢x,)’s, which are canonical candidates in QH*(G/B)
playing the role of the polynomials gy,’s in QH*(G/P), are in Ze,;.
Indeed, the Peterson-Woodward comparison formula, together with our
definition of gr(g;)’s, has shown that gr.(¥a a,(1,qr,)) = 0 when-
ever ¢\, € QH*(G/P) occurs in the quantum product " p o¥ for
o 0¥ € QH*(G/P). However, apparently it does not tell us about
the behavior when the degree of ¢, is large. Therefore we need the
following proposition for later use.

Proposition 3.24. gr,(¢Ya ax(1,qr,)) = 0 whenever gy, €
QH*(G/P).

The idea of the proof is as follows. We write A Ap(1,grp) = @rpwpw’
as before. The case when r = 1 is easy to handle. When r > 2, we
can use our notion of virtual coroot to obtain Ap and consequently
wpw' and gry(gy,). More precisely, we write Ap = X + Q) with X =
> agAp Gac. Consider a virtual coroot N of X; then we can easily write
down the element X' +377_, a;& associated to N'4+Q% € QV/QY%, where
QY = @)_, Zay. For instance, the case of mfBY,,,; + Q) has been
studied in Lemma 3.18. By our definition of virtual coroot, we conclude
N+377_ ae) is the element that we expect. In addition, we also show
the a;’s are indeed non-negative so that gy 5r 40y € QH*(G/B).

Proof of Proposition 3.24. Write ¥a A, (1,qx,) = @y pzwpw’. When r =
1, we have gri(qr,) = (a1,Ap) =: k1 by Corollary 3.13. Thus k; €
{0, —1} following from the definition of Ag. If k1 = 0, then Ap = {a; },
implying ' = s1 = wp and wpw’ = 1. Thus gri(qr,) +gr1(wpw') = 0+
0 =0. If, k; = —1. Then we have Ap/ = (), implying wpw’ = s1-1 = s7.
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Thus gri(gx,) + gri(wpw’) = —1 +1 = 0. Hence, the statement holds
when r = 1.

Now we assume r > 2. We consider the virtual coroots alqd introduce
some special elements in @V first. Denote fom = Yo kB mtk-
Whenever o > 0, we denote v, = Z:()l (m—k)BY,,, and o = O+T+1 Bk
where 1 < m < r + 1. By direct calculations, we conclude gm(qx) =0
and (&;,z) = 0 for all 1 < i < r whenever = p,41, Vp41 or po. That
is, fr11, Vr41 and o are all virtual coroots of 0 € QY. Furthermore, for
1 <m <r, we have

T m—1 T
grr(qu,,) = —mzej+z(m—k)((k+1)ek—(k—1)ek_1) =-m Z ek,
j=1 k=1 k=m

and g7, (qu,,) = —(r+1—=m)> ;. .1_,, e (by Lemma 3.18).

Write Ap = X' + Qp with X' = >7%_, bjﬁv + Z;L otrp10iB) . From
Table 4, we obtain a virtual coroot \ = J 1 b; BV of \ in which we
note b, = b, and o+r+1<n. If b, < bo+r+1, we set y = bog—l—aur+1+,um
where o := 0 and bo+r+1 by = a(r+1) +m with 0 < m < r and
a > 0. Similarly, if bo > l~)o+r+1, we set y = l~)o+r+1g + avyy1 + v where
vy := 0 and BO—EOJFT,H =a(r+1)+m with 0 <m < r and a > 0.
Clearly, we can write y = BOBO + l~)o+r+1 Bo+r+1 + Zgzl d;c;. Note that
Bl\,/ is a virtual coroot of 0 € QY whenever p < oorp > o+ r + 1.
Thus we conclude y is virtual coroot of Ag := X + > 7_,(d; — bosi ).
Furthermore, we note that for all a; € Ap we have (o, Ap) = (&, y) =
(i, z) = { é gt}?ér;vigf (resb Gretom) ehere o = vy, (vesp. i)
if b, > l~)o+r+1 (resp. by < 50+r+1). Hence, Ap is the very one associated
to Ap that we are expecting. Correspondingly, we can directly write
down Ap: as well as gr(wpw’) = —gr.(q;) by Lemma 3.6. Note that
grr(Q)\B) = grr(Qm)- Hence, QTT(Q)\BWPW,) =0.

Since ¢\, € QH*(G/P), b; > 0 for each j. It remains to show
Oy € QH*(G/B). That is, we need to show d; — boti is non-negative
for each 1 < 7 < r. Clearly, only the part ZJ ol jﬁ of X make
contributions for the part ZZ 1 bi ﬂo '+ of the coroot N of N. From Table
4 we see that bo+1 < bo+2 << bo+r+1 Thus if b, > bo+r+1, then we
have d; — boﬂ > b bo+r+1 > ( for each 1 < ¢ < r. Now we consider
the case when (0 < b, —)b < bo+r+1 and then note that all d;’s are
non-negative from the way we obtain them. From Table 4 and Table
2, we can make the following observations. (i) If case C1),C9), or C10)
occurs, then the virtual coroot A’ does not make contributions on these
BO_H"S. That is, we have d; — b0+r =d; >0foreach 1 <¢<r. () For
the remaining cases, we have b0+1 = b0+r 1=0< 2b0+r < b0+r+1,
except for the case when C4) occurs Wlth r>5and o+r =7. (iii) For
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the only exceptional case, we have l~)o+1 = l~)O+2 l~) =0, 56 = bg,
by = 2b8 and bs = 3bg > 0. Recall that i 1 ¢ ZBOH = boo + apr+1 +
o, — ( o0 + bo+r+1ﬁo+r+1) in which bo+r+1 = by + a(r + 1) +m. When
(i) holds, we have d,. — byr, > b, +ar+(m—1)— bosr > by +ar+m—

1— [b"““] >ar+m—1-— [7%*"51_1’“] =ar+m—1-— [7a(r+;)+m] >0,
and note d; —byp; = d; > 0 for 1 <i < r—1. When (iii) holds, we have
by > 0+a(5—|—1)+0 so that a < bs . Since a is an integer, a < [ 8], Thus
we have d, bo+rzb +ar+m— 1 2b8—bg—a 1—-2bg =bg—a—1>
bg—[b—S]—1 >0 and dr_y — bosr_1 > by +a(r —1) +m —2 —bg =
b8—2a—2—b8 =20bg—a—1) > 0. For 1 < i < r —2, we have
d; —b0+2—d > 0. Hence, we do show d; —b0+2>0for1<z<rf0rall
cases. q.e.d.

Remark 3.25. In [18], Lam and Shimozono have given a combina-
torial description of Ap. In our case when Ap is of A-type, we obtain
another way to describe Ag and to show the property ¢, € QH*(G/B)
in the above proof.

3.5. Proof of the Key Lemma for general Ap. In this subsection,
we assume Ap is not of A-type. We give the proof of the Key Lemma,
after describing the formulas for the gradings of all ¢;’s. Recall that
¢ =71 — 1 and that in this case we have replaced r with ¢ in Table 2, in
order to fix the order (Ap,T). In particular, we have K = 0 + ¢ in this
subsection.

Using Definition 2.8 with respect to the ordered subset A; = (ay, ...,
a¢) of (Ap,Y), we obtain a grading map

gr=gra.: Wx Q" — VARES

That is, we define gr(w) = Zgﬂ {(vj)e; using the decomposition w =
Vep1Vc - vy of w e W assocnated to ordered subset A¢ = (aq,-- -, ac),
define gr(q1) = 2e;, and define the remaining gr(g;)’s recursively with
the help of PW-lifting {¢A27A1, YA, Agy " 7¢A<7A<717¢A,A<}- Let ¢ :
75t = 7" — Z"*! be the natural inclusion. Thus we obtain a map
vogr: W x QY — Z"+!, which we simply denote as grr whenever there
is no confusion.

As a direct consequence of the definition of gr, we can apply Propo-
sition 3.10 and Proposition 3.12 with respect to the ordered subset A,
so that we have:

Lemma 3.26. gr(q;) = gr(q;) for each 1 < j < ¢+ 1. Precisely,
gr(q1) = 2e1; gr(g;) = (L = jlej—1 + (1 +j)e; for 2 < j < <; gr(get1)
is obtained by directly replacing r with <. (Only case c), d), e) or f) in
Table 3 can occur.)

Furthermore, we note from Table 2 that either o > 1 or k+2 < n must
hold. For any aw € A\ (Ap U {By, Brt2}), we have gr(qg,v) = 2€,41 <
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2eci1 = gr(gav). For Ap € QY/QY,, we write grzwpw’ = YA ap(1, Ap)
as before.

Lemma 3.27. Suppose p € {o,s+2}N{1,--- ,n}. Set \p = 3 +Q}p.
Then we have A\p = ﬁg except for either of the following cases.

1) p=o0 and {B,}UAp is of C-type. In this case, \p = 5(\,/4-2;:1 oz}/.
2) p=r+2 and C9) occurs. In this case, \p = B,/ o+ o/_; + .

Furthermore, we write gr(qpy) = Z;i% dje; and gr(qpy) = Z;Z% dje;,

and denote Ap = {a € Ap | (o, B)) = 0}. Then dj = dj for1<j<g
and we have

s

a) gr(gpy) < Gr(gsy); b) driy < Lwwp)+1; ¢) Y dj < —l(wpwp).

j=1

Proof. Let 0p = 25:1 ajo; denote the highest root in Rp. Note
that {(wpwp) = |Rp| — |R};|, l(wwp) = |RY| — |Rp| and Apr = {a €
AP ’ <a, )\B> = O}

We first assume p = o and note that gr(ggy) = (c+2)ec1 -5 €;.

Whenever {3,} U Ap is not of C-type, we note (Table 2 and [12])
that a1 = 1, (a1, 8)) = —1, and («;,8)) = 0 for 2 < j < r. Hence,
we conclude Ap = B, Apr = Ap = Ap \ {oq} and consequently we
have ' = wp and gr(gsy) = ({(wpw') + 2)er11 — gr(wpw’). Hence,
dry1 = lwpw') + 2 < l(wwp) + 1 by direct calculations. Write wpw' =
vpu, where v, € WI{:“ and u = Wp_. Then we have u(a;) € RJIS< for all
aj € AcNApr = A\ {a1} (otherwise, we would conclude v,u(a;) €
—R*, contrary to wpw’ € WE'). Noting u(a;) € —R*, we deduce
U = Sk --8981 for some 1 < k < ¢, by Lemma 3.6. If Ap is of B-type
(resp. D-type), then we conclude wpw' = v,sc -+ s1 with v, = s1--- s,
(resp. v, = $1---Sy—28,) by easily checking such element satisfies the
condition in Lemma 3.5. If Ap is of E-type, we note that sc---s1(a,) =
u(ay) + Z;:k-i-l bjo; for non-negative integers b;’s. Consequently, we
have v,sc---s1 € Wh and l(vpsc---s1) = L(v,u) +¢ — k = L(wp) —
l(w') 4+ ¢ — k. Thus k = ¢ by Lemma 3.5, implying ¢(v,) = {(wpw') — .
For all these cases, we deduce gr(wpw') = (((wpw’) —c)ect1 + 35, e;.
Hence, d; = —1for 1 < j <, d, = ¢ —{(wpw'), and gr(qay) < gr(qpy).
Thus >77_, dj = ~l(wpw') = —l(wpwp).

Assume {f,} U Ap is of C-type, in which case there are only two
possibilities, say, (i) case C1) with A being of C-type and (ii) case C10)
with r = 2. Then Ap itself is of C-type. Thus we have {(wpwp) =
r2—(r—12=2r—1and f(wwp) =n?—7r2>(r+1)2 72 =2r +1.
Furthermore, we conclude Ap = 8, + >77_; o, by noting such element
satisfies (aj, A\p) = 0 for each 1 < j < r. Thus Apr = Ap, wpw' =1

and then gr(gsy) = (26 +4)ecr2 — (s + 2)ect1 — Y5, e; by definition.
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In particular, we have gr(qgy) < gr(qpy), dry1 = 26 +4 = 2r +2 <
lwwp) +Land Y0 dj =dp —¢ =20 —2=—2r < —L(wpwp).

Now we assume p = x + 2, which holds only if case C5),C7),C9), or
C10) in Table 2 occurs. Note that jr(qﬁxw) = 2ec41. If C9) does not
occur, then we conclude a, = 1, (a,, 5,/ 5) = —1 and («;, 8, 5) = 0 for
1 <j <. Hence, A\p = 3,5, Apr = Ap = A and consequently we
have gr(qﬁxﬁ) = (l(wpwp)+2)eqr2—l(wpwp)er1. Therefore, a) and c)
follow, so does b) by direct calculations. If C9) occurs, then |[R*| = 24,
IR = r?, |Ap| = T(Tgrl), n=4=rk+2 and r € {2,3}. By direct
calculations, we conclude Ap = £ + o,/_; + a,. Furthermore, if r = 2,
then Aps = Ap and consequently we have gr(gsy) = 6ecro — deciq.
If r = 3, then Ap: = {ay,a3}. Consequently, wpw’ = s152838951 with
gr(wpw’) = (1,1,3,0). Hence, we have gr(gsy) = 1lecio — 9ecy. For
either of the cases, it is easy to check all the statements hold. q.e.d.

From the above discussions, we note that gr.(gq;) = gr.(g;) for all
j. Using these discussions together with Lemma 3.11, we obtain the
following immediately.

Lemma 3.28. Lety € RT. Write gr(g,v) = Z;Z} djej and gr(q,v) =
Z’;% czjej. Then we have d, + dy41 = d, + d~r+1 =d, and d; = dj for
each 1 < j <c.

Now we give the proof of the Key Lemma as follows.

Proof of the Key Lemma. Let w € W and take its decomposition w =
Up41---v1 associated to (Ap,Y). Suppose {(ws,) < {(w); then by
Lemma 2.5 we conclude ws, = Vp41 -+ Vg 1UmVUm—1 - - - v1 for a unique
1 <m < r+1, in which v,, is obtained by deleting a unique simple
reflection from (a fixed reduced expression of) vy,. Set D := (gr(ws,)—
gr(w)) — (gr(wsy) — gr(w)). If 1 < m < r, then we have D = 0 and
v € Rp. Furthermore, we have gr(q,) = gr(q,) and gr(s;) = gr(s;)
whenever (x;,7") # 0. In particular, the Key Lemma holds for such
v, by using Proposition 3.15 and Proposition 3.16 with respect to the
ordered subset A.. If m = r + 1, we write U410, = Upp10.u’ with
1 € WP, 0, € Wg‘, and v’ € Wp.. Thus wsy = Upq1--- 01 with
v; € Wgﬁl foreach 1 < j <r—+1.

In order to show a), it remains to consider the case when m = r + 1.
Set w := us, and note that gr(us,) = > 5_; £(v;)e;+(L(v,) +L(vr41))er.
Thus we have —D = ((vp41) —€(Vr41))€r+1+ (L(vy) —€(Dy) —L(Vpy10p) +
E(@r-i-l@r))er = (E(’Ur+1) — E(ﬂr—i-l))(er—‘rl — e?‘) < €ri1 — €. Note that
v € R\ Rp (by Lemma 2.7). Therefore we have gr(usy) — gr(u) =
D + (gr(usy) — Gr(w)) < er41 — e +min{gr(ss) | (i7"} # O} =
e,+1 = min{gr(s;) | {(x:,7") # 0}. Thus a) follows.
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To show b), we set w := w in the rest of the proof and use induction
on £(s-).

First we observe that gr(q;) + gr(us;) < gr(u) + gr(s;) for any 1 <
7 < n. Indeed, this inequality holds if 1 < j < r with the discussion
in the beginning. If (a,a)) = 0 for all @ € Ap, then for v = q;
we have m = r + 1, 9,41 € WP (by Lemma 3.2) and consequently
gr(usj) —gr(u) = —e,41 = —gr(q;) + gr(s;). Otherwise, we much have
a; = fp with p € {o,k+2}N{1,--- ,n}. Then the inequality still holds
by using Lemma 3.29 a) (with v = /3,) and Lemma 3.27 c).

Now we assume v ¢ A. Take any simple root «; satisfying (a;,v") >
0 and write 5 = 8](7)7 gT‘(QQ\/) = ()‘17 t 7)\T+1)7min{gr(si) | <XZ75V> 7&
0} = e, and

gr(qj) + gr(us;) = gr(u) + (a1, ,ar41),
gr(qsv) + gr(usjsg) = gr(us;) +ec+ (1, pry1),
gr(usjsgs;) = gr(usjsg) + (b1, -+, bry1).

In addition, we use the notations ¢, a;’s, l;j’s, and [i;’s, whenever re-
placing “gr” with “gr” in the above three equalities. Then we have
min{gr(s;)|{xi,7") # 0} = min{e., gr(s;)} and by the induction hy-
pothesis (u1,- ,pr41) < (0,---,0). Due to Lemma 3.11, it suffices
to show >, (a; + b; + p1;)e; < 0. Furthermore, we note that a,1; =
br41 = firt1 = 0, fir + plrg1 = fir, €z > €c and ay = ag, b = by, fix = ik
for each 1 < k <. Clearly, either of the following must hold.

(i) There is 8, € A such that p € {1--- ,n} \ {0,k + 1,k + 2} and
<5p7 ,7\/> > 0.

(i) Whenever 3, € A satisfies (8,,7") > 0, we have p € {0,k + 1,k +
2}. In this case, we note the constrain £(sy) = (2p,7") — 1 on ~,
which is deduced from our assumption by using Lemma 3.9.

Suppose (i) holds. Then we just take any one such a; = f,. If
p¢{o,0+1,--- k+2}, then (a, a}’) = 0 for all « € Ap; consequently,
it is done by noting a = b = 0 for 1 < k < r (using Lemma 3.2) and
€. = €,41. Otherwise, there exists 0+1 < p < o+¢ such that (5,,7") >
0. Recall that a; = Bo4; for each 1 < ¢ < r. For any one choice a;j = 3,
among such roots, we always have a; = b; = 0 for i ¢ {j — 1,5} and
consequently ZZ:J. 1 (aitbitp)e; =0 41 Mi€;. In addition from the
proof of Proposition 3.16, we can always take a certain a; = /3, among
such roots such that both e; < e; and Y 7_;(a; + bi + fi;)e; < 0 hold by
considering gr. Since j < r — 1, we have a; = a;, b; = b; and i, = p; for
each 1 <14 < j. Thus for such a choice a; = 3, both e, < ez < e; and
>7_(a;+b; + pi)e; < 0 hold. Hence, the Key Lemma holds for such v
by using the induction hypothesis.
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Suppose (ii) holds. Then the constrains are so strong that there are
only very few roots. We discuss all such roots with respect to each type
of A and label the method we will use.

Assume A is of B-type. (That is, part of case Cl) in Table 1
occurs.) There are only two coroots satisfying the conditions, say,
BY L+ 23 BY + BY (with 0 > 2) or 2 BY. (See the proof of
Proposition 3.22.)

(M1): For the former coroot, we note that Ap = {a € Ap | (a,7") =
0} = A and gr(g,v) = Z:ill die; = dy+1 by direct calculations.
Hence, >/ _;d; = 0 = —l(wpwp). Thus the inequality holds by
using Lemma 3.29 a).

(M2): For the latter coroot, we take o = f3,; that is, oj = «,. Then
BY =~Y =B and gr(gsv) = dry1€,41 — 1€y +cec. Write gr(u) =
(ilv e 7iT+1)7 gT(UST) = (Z,17 e 7i;+1)7gr(usrsﬁ) = (kla e 7]{77“4-1)7
and gr(us,) = gr(us,sgs;) = (k},--- ,k.,;). Noting that (a, /)
= (o, B8y =0for 1 <t <¢—1, we conclude a; = by = py = 0 for
t < ¢—1 by Lemma 3.2 and consequently pc < 0 by the induction
hypothesis. Furthermore, we note that ac + a, = 1, bc + b, = —1,
ac +be = —2¢ + il —ic +kl — ke <0. If ac + be + pc < 0, then it is
done. Otherwise, we conclude i, = k. = ¢ and ic = k¢ = pc = 0.
Consequently, we have a, + b, + pp = pr = pey1 < 0 and it is
done.

Assume A is of C-type. (That is, part of case C1) in Table 1 occurs.)
There are only one such coroots, say, v¥ = > ;" 3. Thus the inequality
holds by (M1).

Assume A is of D-type. (Case C2) is used.) There are only two such
coroots, say, By, +2 Z?:_f B +BY_1+5Y (with o > 2) or 2?2—02 By +BY.
For the former coroot, the inequality holds by using (M1).

(M3): For the latter coroot, we have gr(q,v) = 2re,11 + ce, — ce; by
direct calculation. Using the notation of Lemma 3.29, we conclude
S di =0, Ap ={Bo. Bo1, B} Bt = {8} U{SIZE Bowi +
B | 1<k <r—2}, and Eg := {Bo+ D12 4 Bit Bu1+Pn | 0+1 <
k<n—2}U{>" B} Note that n =0+ r in this case. Hence,
we have |2i| — [Eo] =r—1—(r—1) =0= Y, d;. Hence, the

n—2
Key Lemma holds for v = > 3 + 3/ by using Lemma 3.29 b).
=0
It remains to discuss the cases when A is of either E-type or F-type.
Since there are only finite exceptional types (among which only a few
roots satisfy (ii)) and the arguments are similar, we leave the details in
the appendix (see section 6).
Hence, the statement follows. q.e.d.
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It remains to show the following, which was used in the proof of the
Key Lemma.

Lemma 3.29. Let u € W and v € RT \ Rp. Write gr(g,v) =
Z’;% d;je;. Then Key Lemma b) holds, if either of the following holds.
a) D5y dj < —l(wpwp), where Ap = {a € Ap | (a,7") = 0}.
b) Z;zl dj < |Z1| — |Z2|, where 21 = {a € R; | (a,vY) > 0} and
Zy = {a € R;\RP | @« —v € RT,{a,7Y) > 0} with Ap =
ApU {ai €A ’ <X¢,’yv> #* O}

Proof. Let u = vy41---v1 (resp. us, = ¥Up41---01) be its decomposi-
tion associated to (Ap,T). Since v € RT \ Rp, we have min{gr(s;) |
(xi,7') # 0} = e,+1. Note that gre(qw) = gr (gw) for any g w.
Applying Proposition 3.16 with respect to A., we have Z;;%(dj +
0(v5))e; < Z;;% l(vj)ej. If “<” holds, it is already done. If “="
holds, we conclude Z;;} dj + L(Vp—1---01) = €(vp—1---v1). Due to
Lemma 3.11, we have Z;Z%(d] +0(05)) = (2p,7Y) +L(usy) = 1+4(u) =
1+ Z;ii £(vj). It remains to show d, 4+ £(0,) < £(v,), or equivalently to
show £(vr11) < €(Vpq1) +dry1 —1 = U(Tpq1) + (E;j dj—1) _Eg':l dj =
(T41) + £ls,) = Y d.

a) Since v,41,0,41 € WP, we conclude 4(v,---v1) = |A;| and
U(Dy -+ D7) = |Az| where Ay := {8 € R5 |u(B) € —RT} and Ay :={B €
R} | us,(B) € —RT}. Note that us,(3) = u(B) for 8 € Rp. Hence,
,8 € Ay \Al only lfﬂ S R}t \Rp Thus ’AQ‘ — ‘Aﬂ < ‘Ag \Aﬂ < ’R}t\
Rp| = {(wpwp). Consequently, we have £(7,) — £(v,) = (L(Ty -+ 1) —
vy 01)) + 521 dy = [Ag| = [Ar|+ 2521 dy < Lwpwp) + 3527 dj <
—d,.

b) Since v,41 € WF and Ap D Ap, we can write vp11 = v ov, in
which v/, € WP and v, € Wlf C WP, Similarly, we write @41 =
V). 90, with 0], € WP and v, € Wlf. Note that (v, ;) = |As]
and (v, ,) = |A4|, where Az := {a € R;\RP | u(a) € —R™}
and Ay := {a € R; \ Rp | usy(a) € —RT}. We claim Az can be
written as a disjoint union B U By Ll B3 such that |Bi| < £(s,) — |Z1],
By C By, and By C Ay. Hence, {(v], ) = |As| = |Bi| + |Ba| + |B3| <
U(sy) — |21] + |Z2| + €(0],,). Since v € Rp, we have v, 5 = v} .
Therefore (v, 1) — €(Vr41) = L(v) ;1) — (0. ) < U(sy) — [E1] +|Z2| <
C(sy) = 2251 dj-

It remains to show our claim. Clearly, As is a disjoint union of B;’s in
which the corresponding sets are given by By := {a € RJIg\Rp | u(a) €
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—R*,sy(a) € =R},

u(a) € —RT,
By:=Sac R};\RP sy(a) € RT, 3,
(a,7Y) >0
u(a) € —RT,
Bs:=<{ a€ RE\ Rp| sy(a) € RT,

P v
(,7Y) <0

Note that By C {a € R\ Rp | sy(a) € =RT} = {a € R} | 54(a) €
~RT} —{a € R} | s,(0) € =R™}. Since v ¢ Rp, for any o € R}, we
conclude that s (a) = a — (a,7")y € —R™ if and only if (o, v") > 0.
Hence, |By| < ‘{oz € R;; | sy(a) € —R+}‘ - Ha € R; | sy(a) €
—R*}| = (sy) — |21]. It is obvious that By C Zp. Since £(us,) < {(u),
we have u(y) € —RT by Lemma 2.5. Consequently, if « € Bg, then we
have usy(a) = u(a) + (—(a,7"))u(y) € —R™, implying o € A4. Hence,
Bs C Ay. q.e.d.

4. Proofs of main results

In this section, we prove all the theorems mentioned in the introduc-
tion. Recall that the proof of Theorem 1.2 has been given in section
2.3.

When Ap is not of A-type, we have denoted ¢ = r — 1. For con-
venience, we denote ¢ = r if Ap is of A-type. Recall that A, =
{a1,--+,ac}, P. = Pa, and QY = @;_; Z«a;. (In particular when
¢=r, we have P, = P and Q! = Q}.)

Lemma 4.1. gr(Wp, x Q) = @;_, Ze;, where we have treated
Wp, x QY as a subset of W x QV naturally. Furthermore, for any
d=®P;_, die;, we have
1) d = gr(wgy) for a unique wgy € WxQV. In fact, wgy € Wp.x Q.
2) Take the unique wqy as in (1). Then wqy € QH*(G/B) if d; > 0
for all 3.

Proof. Define a matrix M = (mm)gxg by using the gradings gr(g;)’s.
That is, we define > 3%_; m; je; = (1 —i)e;—1 + (1 + i)e;(= gr(q;)) for
each 1 <i <. Note that M is a lower-triangular matrix. Hence, there
exist unique sequences a = (a,---,ac),b = (b1, - ,b.) of integers
such that d = aM +b and 0 < b; < m;; —1 =i for 1 < i <.
Furthermore, if d; > 0 for all 4, then we conclude a; > 0 for all i, by
noting m; ; < 0 whenever j < i. Since ngil = {ug) | 0 <k <1}, each
0 < b; <1 corresponds to a unique element in Wg’l, say, ul()?. Hence,

we find a unique (w,\) = (ul()z)u'ué?, i aia)) € Wp x QY such
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that gr(wgy) = d; furthermore, wqy € QH*(G/B) whenever d; > 0 for
all 1.

It remains to show gr(ugq,) & @;_, Ze; whenever (u, ) € Wp. x Q/.
Indeed, it follows directly from Definition 2.8 that gry, .1 1)(qav) = Tres
with z > 2, whenever a € Ay \ Ag_;. Take the decomposition
u = vp41---v1 of u associated to (Ap,T) and note that gr(ug,) =
@it t(v)ei + gr(gu). Thus if gr(ug,) € @5_, Ze;, then we have
l(vy41) = 0 and p € QY(= Q). When ¢ = r, it is done. When
¢ = r — 1, we proceed to conclude £(v,) = 0 and p ¢ Q) \ QY. Thus
weWp and p € Q. q.e.d.

Proof of Lemma 2.12. We need to show for any q,u,q,v € QH*(G/B)
there exists gyw € QH*(G/B) such that gr(g,u) + gr(qv) = gr(gw).
Note that gr(qu) + gr(qv) = gr(qu+v) and gr(g.) + gr(u) = gr(g.u).
Thus it remains to show gr(u) + gr(v) € S. It suffices to show x =
(z1,-+ ,2r41) € S for any x € (Zso)" L.

We first assume ¢ = r. Take any simple root in Acy; \ Ac(= A\ Ap),
say, a. From Table 3, we conclude gr(q,v) = Zfill d;e; with 2 <
det1 < 1+ lwp,wp.)(= l(wwp) + 1) and d; < 0 for i < ¢. Since
ZTey1 > 0, we can write 41 = acyider1 + beyr for unique acyqp > 0
and 0 < be1 < l(wp,_,wp.). Note that l(wp_, ,wp,) = max{{(v) | v €
WI{::H} so that we can choose v € WI{::H satisfying £(vet1) = begq-
Furthermore, (21 — act1dy, -+ ,xc — acy1dc) is again a sequence of non-
negative integers. Thus it is the grading of a unique (w’, \') € Wp. x Q!
with ¢ € QH*(G/B) by Lemma 4.1. Set w = vepqw’ and A = acy1a +
N. Then wqy € QH*(G/B) is the element as required.

Now we assume ¢ = r — 1. By Lemma 3.27 there exists o/ € A\ Ap
such that gr(guv) = Y217 de; with 2 < d. 1 <1+ {(wwp) and d; <0
for : < r = ¢ + 1. Repeating the above discussions, we can reduce
it to the question of finding a element in qyw € Wp_, X Q¥+1 with
pw € QH*(G/B) and the grading of it being equal to f;rll xhe; for
given non-negative integers z;’s. Thus the statement follows by using
the same arguments again. q.e.d.

Remark 4.2. Z>pe,y; is a sub-semigroup of S. Indeed, we can
take a € A such that grj i ,411(¢av) = dry1€,41 with 2 < dpyq <
1+ ¢(wwp), from the above proof. For any ¢ € Z>q, ¢ = ady4+1 + b with
0 <b<dy1— 1. Then we can choose v € W such that ¢(v) = b.
Note that —gr,(qeav) = 22:1 x;€; with ;’s being in Z>¢. Hence, it is a
grading of certain element g u € QH*(G/B) where (u,\) € Wp x Q).
Then guovirvu € QH*(G/B) and its grading is equal to ce, 1.

The next lemma proves the first half of Theorem 1.3.

Lemma 4.3. The subspace I defined in Theorem 1.3 is an ideal of
QH*(G/B).
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Proof. We need to show for any ¢q,u € 7 and q,v € QH*(G/B), the
product g u*q,v = zw,)\ Nﬁb)‘q,\+p+,,w also lies in Z. That is, we need
to show d,y1 > 1 where g7 1 ,41) (@ rpsvw) = dry1€041, whenever

Ny, M £ 0. Clearly, this is true if either u or v lies in QY \ QY, which
follows directly from Definition 2.8. When u,v € Q),, we must have
u € W\ Wp. Then we shall show gri,,;,11j(qaw) > €41 whenever
ijf;} # 0, by using induction on £(v).

If £(v) = 0, then v = id and it is done. If ¢(v) = 1, then v is a sim-
ple reflection and therefore we can use the quantum Chevalley formula
(Proposition 2.2). When f(us,) = ¢(u) + 1, we take the decomposi-
tion wsy, = vy41 -+ - vy associated to (Ap,YT) and note u is obtained by
deleting a reflection in some v,,. Since u ¢ Wp, we conclude v, # 1.
In particular, we have grp. 1 ,41)(usy) > €,11. When {(us,) = £(u) +
1 —(2p,7"), then we also conclude 974141 (v usy) > €41, by not-
ing gr[r+1’r+1}(q,yvu3y) 2 G141 (usy) = 9T r41,r41] (u) > epqq if
v E Q%y and gT[r-i—l,r-i—l](q'yVUS'y) 2 9Tlr+1,0+1] (qWV) > 2ep41 if v ¢ Q%
Thus if ¢(v) = 1, then ¢V *Z C Z. Now we assume /(v) > 1. By Lemma
2.13, there exist v € W and 1 < j < n such that gr(v) = gr(v')+gr(s;)
and 0¥ * 0% = co? + Zw’)\ Cw @ W, where ¢ > 0 and the summation is
only over finitely many non-zero terms for which ¢, » > 0. In particu-
lar, we have ¢(v") = ¢(v) — 1. Using the induction hypothesis, we have
oV *Z C I. Thus (co® + D Corpw) * L = 0% * (c¥ *T) C T. Since
all the structure constants are non-negative, there is no cancellation in

the summation on the left-hand side of the equality. Hence, we conclude
o'xT CT. q.e.d.

It remains to show the second half of Theorem 1.3. There are com-
binatorial characterizations of QH*(G/B) (see e.g., [25]), or more gen-
erally on its torus-equivariant extension [26]. In particular, intuitively,
QH*(G/B) should also have a non-equivariant version of Mihalcea’s cri-
terion [26] for torus-equivariant quantum cohomology of G/B. That is,
an algebra (,,cy Qla]o®, *) should be isomorphic to QH*(G/B) as al-
gebras, if it satisfies the quantum Chevalley formula together with some
natural properties (e.g., commutativity and associativity). However, we
did not find any explicit reference for this. In our case, we obtain a
natural algebra of this form which has one more (strong) property say-
ing that (D,,ci Qla]c™, *)|q=0 is canonically isomorphic to H*(G/B).
Thus it becomes easy to show the algebra isomorphism (by using induc-
tion). We would like to thank A.-L. Mare and L. C. Mihalcea for their
comments for such a criterion and the proof.

Proof of Theorem 1.3. Due to Lemma 4.3, it remains to show QH*(P/B)
is canonically isomorphic to QH*(G/B)/Z. Note that P/B is isomor-
phic to the complete flag variety determined by the pair (Ap, (). Hence,
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QH*(P/B) has a natural basis of Schubert classes {c" | w € Wp} over
Qlg1,- - ,qr], and the formula of % x¢ 0% (where u € Wp and o; € Ap)
is directly obtained from Proposition 2.2 by restriction of v € A to
v € Ap in the summation. Here we denote the quantum product of
QH*(P/B) by xf, in order to distinguish it with the quantum product
* of QH*(G/B). On the other hand, QH*(G/B)/I has a natural al-
gebra structure induced from QH*(G/B). Thus it is also commutative
and associative, and we denote the product of it by the same x by abuse
of notation.

It is clear that for any wgy, € W x QV, grirt1,0+1)(wgy) = 0, ie.,
wqy ¢ Z, if and only if wgy € Wp x Qf. We define a map ¢ :
QH*(G/B) — QH*(P/B), given by ¢(qx) = qx if wgy ¢ Z, or 0 if
wqy € L. Clearly, ¢ induces a natural isomorphism ¢ of vector spaces,
5 : QH*(G/B)/T — QH*(P/B), given by $(wg5) = ¢(wqy). In par-
ticular, it is easy to check @(0% x 0%7) = 0% %y 0% for any oy, a; € Ap.
It is a well known fact that QH*(P/B) is generated by {o°* | « € Ap}
over Q[q1,- - ,¢r]. Thus it is sufficient to show QH*(G/B)/T is gener-
ated by {o% | « € Ap}. Since our filtration on QH*(G/B) general-
izes the classical filtration on H*(G/B) (by Proposition 2.14) naturally,
QH*(G/B)/T |ﬁ=0 is canonically isomorphic to H*(P/B) as algebras.
In particular, it is generated by {o®1,--- 0%} with respect to the in-
duced cup product. Hence, the statement follows by using the quantum
Chevalley formula and induction (for instance one can follow the proof
of Lemma 2.1 of [30] exactly). q.e.d.

Remark 4.4. For the classical case, the induced map i*: H*(G/B) —
H*(P/B) is given by i*(¢") = o if w € Wp, or 0 otherwise. And the
ideal I is given by I = Q{o"| w = vu with u € Wp,v € WF v # 1}.
Note that for any w € W,w ¢ I if and only if grj4q,41(c") = 0.
Clearly, Z is a g-deformation of I and ¢ is a natural generalization of

¥,

Lemma 4.5. Let w = v,41---v1 be the decomposition of w € W
associated to (Ap,T). For any 1 < m <, the following holds.
1) If £(vy,) < m, then there exists v € R such that (xm,v") = 1,
lwsy) = L(w) + 1 and gr(wsy) = gr(w) + ep,.
2) If L(vy,) = m, then there exists v € Rt such that (xm,7") = 1,
l(wsy) = L(w) +1—(2p,7Y) and gr(gvws,) = gr(w) + ep,.

Proof. Note that Dyn({ay, - ,ac}) is of A-type. We have vy, = ugj)
with iy = ¢(v) whenever 1 < k <.

(1) If iy, < m, we set 7y 1= (V1 01) " (Quni,, + Qi o1+ +
Q). Then v is of the form o, + Z;n:_ll ajoaj € R. Thus v € RT and
(xm>7") = 1. Moreover, we conclude ws, = vy41-- -vm+1uz(-::3rlvm_1- .
Thus (1) follows.
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(2) Denote k = 1 + max{j | i; = 0,0 < j < m — 1}, where ig :=
0, and set v = ag + ags1 + -+ + a € RT. Clearly, (xm,7") =

1. For each j < m, we denote v; = aj + ajp1 + -+ + . Then

v = Yj+1 + a; = sj(vj4+1). Thus for any i; > 1, we have u(]) Sy, =

(J) (G-1) (G-1) (J)

Ui Sj8y; 18] = Ug,_1 S0 55 = 3%+1uz-—1 8§ = Syypa Uy Furthermore

we have s1s9--- s]ugj_) = ug)_lslsg -sj_1 by Lemma 3.3. Note that

Y = Y, Y = Q and denote u = vy, - - - v1. Hence,

(m) (k) (k=2) (1)

USy = Uy e Uy Sy Uy Uy
=™ s sl Y )
= u{s TV ulaf TPl
= 5152 Sm— 1u(m711) ugf)ugfjj) cee ugll)
= " f’l g (1 sty 2l

Note that i, = m and i; = £(v;) for j <. Thus,

wsy) =3 () + (ZL:( 1)) +k-1+ ij

p=m+1
r+1
—Z lvp) —(m—k)+k—1—m
= {(w )+1—2<p,(ak+---+am)v>Zﬁ(w)+1—<2p,vv>-

Furthermore, we conclude gr(g,vws,) = gr(w)+e,, by noting 4,, = m,
ir—1 =0, and gr(g,v) = (1 — k)eg—1 + (m + L)e,, + Z;”:_kl e;. qed.

Since QH*(G/B) has an S-filtration F, we obtain an associated S-
graded algebra Gr”(QH*(G/B)) = @,cgGry, where Gr] :=
Fa/ Up<a Fy. For each j < r + 1, we denote Gr (QH*(G/B)) =
Di>o Grlej. Note that for the iterated fibration {Pj_l/Po — Pj/Py —
P]:/Pj_l}gié associated to (Ap, Y), we have P,y /P, = G/P and P;/P;_1 =
P/ whenever 5 < ¢. Take the canonical isomorphism QH*(P*) =

% for each £ < ¢. Then we can state Theorem 1.4 more con-
—lk

cretely as follows (in which we denote u(o) =1).
Theorem 1.4. There exist canonical isomorphisms Vi ’s of algebras:
For each k <, U :QH*(PF) — Gr (QH*(G/B))

Tl n—)ug ), tr — qk u](f 1).
Fork=¢+1, ¥y : QH( g+1/P)—>Gr§+1 (QH*(G/B));

q)\Pg o’ 2IZ)Achl A (Q)\P< UU)‘
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In particular if Ap is of A-type (i.e., if ¢ = r), then we have Py, /P, =
G/P, Ary1 = A and Ac = Ap. Thus in this case, Theorem 1.4 gives

an isomorphism QH*(G/P) —» Gr(];+l)(QH*(G/B)).

Proof of Theorem 1.4. By Lemma 4.1, for any a € @;_, Ze; there exists
a unique gyu € QH*(G/B) such that gr(gyu) = a. Thus dimg Gr =1
and Gr{ = Qgyu. Then we simply denote A, := gyu. In particular, we
conclude A, x Ae; = ¢jAate; whenever j < ¢. Furthermore, we have
¢j =1 by Lemma 4.5. When ¢(v) > 1, there exists v' € Wp,_ satisfying
gr(v') + gr(sp) = gr(v) with p < ¢ by using Lemma 4.5 again. Thus by
induction on £(v), we conclude Aax Ay, () = Aaygr(v) for any v € We..
Hence, Aa * Ay, = Aaqp for any a,b € @;_, Ze;. As a consequence,
we obtain a canonical isomorphism QH*(P*) = Gr(];;)(QH *(G/B)) for

each 1 <k <, given by xj u&k) and ¢t +— qku]gk__l).

In order to analyze ¥ 11, we need to compare the algebra structure of
QH*(P-41/P.) with the filtered-algebra structure of QH*(G/B). Note
that if ¢ = » — 1, then P..1/B = P/B. Due to Theorem 1.3, essen-
tially we need to compare QH*(P.11/P;) with QH*(P/B) by using the
Peterson-Woodward comparison formula in this case. Thus without loss
of generality, we can assume ¢ = r in the rest, which is of main interest
to us and can bring convenience on the notation.

Denote the quantum product of QH*(G/P) by xp. Write
Yanp(@po?) = Q)\BO'UMPMI, where ¢y,0" € QH*(G/P). Then we
have grr(qABa”wa/) = 0 by Proposition 3.24. On the other hand, if
grr(gao’™) = 0 with Ap = A+ Q) and u € Wp, then we conclude
gr(grg—rwpw') = gr(u) where A\g — XA € Q). By the uniqueness (from
Lemma 4.1), we conclude A\ = A and wpw’ = u. Hence, ¥, is an
isomorphism of vector spaces.

By Proposition 2.1, we have ¥, 1 (c%"*xpc?) = ¥, 1(c")xV,11(c?) for
u,v € WP, To show W, is an algebra isomorphism, it remains to show
(i) \IIT—I—I(QAP*PQMP) = \Ijr+1(Q)\p)*\I’r+1(qu) and (ii) \I’r—l—l(Q)\p*PO'v) =
U, 41(gxp ) *Prpr(a?). For (i), we write \p = N+ Q}) and pup = '+ QY
where X, 1/ are elements in Docara, Za" . Note that gri. 1 ,.1)(qn) —
941041 (@ pwpw’) = 0. Hence, gyywpw’ = gva with z being the
unique element in Wp x Q} determined by the grading —gr,(X) =: a.
Similarly, we have YA Ap(qup) = quy and YA AR (Qrptup) = V4w ?
where gr(y) = —gr.(qu) =: b and gr(z) = —gr.(qv4w). Hence,
Ui 1(qp)* Vi1 (Qup) = VT QY = Qur * Aa* Ab = Qv x Aatb =
U, 1(qrp4pp)- For (ii), we first conclude 0% x0¥ = %% where1 < j <r
and v € WP by Proposition 3.23. Thus by induction on £(u) where
u € Wp, we conclude % x oV = g%, As a consequence, (ii) follows.
Hence, ¥, is an algebra isomorphism. q.e.d.

As a consequence, we obtain the following.
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Theorem 1.5. DenoteI' := {gr(qgy\w) | gr(gyw) < 0,qpw € QH*(G/B)}.
Let A = @gr(quw)eZerﬂur Qg ¥ and J = @gr(qu)er Qqro®™. Then
A is a subalgebra of QH*(G/B) and J is an ideal of A. Furthermore,
if Ap is of A-type, then there is a canonical algebra isomorphism

QH*(G/P) = A/J;

D0’ = YA (@po”) +T.

Proof. Note that for any gV € QH*(G/B), gr(g\c™) € Ze,+1
if and only if gr(gxc®) € Z>oer+1. Clearly, Z>pe,41 UT is a sub-
semigroup of S. Hence, A is a subalgebra of QH*(G/B), due to The-
orem 1.2. From Definition 2.8, we note grj, 1 ,41)(¢xw) > 0 whenever
pw € QH*(G/B). Thus for such element, gr(¢gyw) < 0 if and only
if gr.(gyw) < 0. In particular, we conclude J is an ideal of A, by
use of Theorem 1.2 again. As a consequence, we obtain a natural iso-
morphism A/Z — GT(J;H)(QH*(G/B)). Hence, the statement follows
from Theorem 1.4. q.e.d.

Remark 4.6. In fact, A =, Fe,,,- If we use the Z"!-filtration
on QH*(G/B) that is naturally extended from the S-filtration, then
we have J = F_o ,. Furthermore, it is obvious that A, J are g-
deformations of A = 7*(H*(G/P)) and J = 0, respectively. Note that
7*(0?) = oV for any v € WF. )a A, is a natural generalization of 7*.

Recall that in Definition 2.8, we have given the gradings for all g w’s.
Clearly, S is contained in Z" x Zx>¢ as a sub-semigroup. Combining
Lemma 4.1 and (part of) the proof of Lemma 2.12, we conclude that
S is naturally extended to the whole Z" x Z>¢ with negative powers
of {q1,---,¢} allowed. That is, Z" X Z>o = {gr(gpo™) | qxo® €
QH*(G/B)[¢; ", ;¢ ']}. Therefore we obtain a natural Z" x Zs-
filtration on QH*(G/B)[ql_l, -+, q; Y], making it a Z" x Zso-filtered
algebra, due to Theorem 1.2. By abuse of notation, we also denote
this filtration as F. Consequently, we obtain a natural embedding of
graded algebras Gr* (QH*(G/B)) — Gr¥ (QH*(G/B)[q; ", , ¢ ).
For simplicity, we assume Ap is of A-type. Then for each 1 < k < r, we
note \I’k(t’]z) = Hle q¢¢. By defining t,;l — \I!k(tﬁ_l) * Hle qz._i, we can
extend the algebra isomorphism Wy to a larger algebra isomorphism

QH*(PF)[t, '] = €D Gre, (QH(G/B)[ar "+ .q;)),
JEZ

which we also simply denote as W;. Thus the next theorem follows as
a direct consequence of Theorem 1.2 and Theorem 1.4.
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Theorem 1.6. QH*(G/B)[q; ", ,q;'] has a Z" x Zso-filtration F. If
Ap is of A-type, then combining Wy, ’s gives an isomorphism of 7" X Z>¢-
graded algebras,

Vi (QQH(PH[ ') Q) QH(G/P)
k=1

— GrT(QH(G/B)gr ", 7)),

That is, U = Wy x -+ Uy (®@f 4 fr) @ ap0” — (TThey Yi(fr)) *
U,y1(grp0?).

(Note we have an isomorphism H*(P') @ - @ H*(P") ® H*(G/P) =
Gr? (H*(G/B)) of graded algebras, coming from the Leray spectral se-
quence.)

5. Conclusions

All the theorems in the induction can be easily generalized to all
cases by dropping our assumption that Ap is connected. We give a
brief description as follows.

Write Ap = | [iL; A such that Dyn(Ay)) is a connected compo-
nent of Dyn(Ap) for each k. Then the Weyl subgroup Wp also splits
into direct product of W}’s which are the corresponding Weyl subgroups
of Ay’s. That is, Wp = Wy x -+ x Wy,,. Among these A,)’s, there
is at most one which is not of A-type. If such a subbase exists, then
we just assume it to be the last one, say, A(,,). For each k, we de-
note 1 = |Agy|. Set M = >7}" r) and then take the standard basis
{el,la T 7el,r17 T 7em,17 e 7em,rm7 em+1,1} of ZM+1-

For each k, we fix the canonical order (A, Ty) as described in
section 2.4. Then we obtain a grading map gra,, : W x QY —
@:5{1 Zey;, using Definition 2.8 with respect to (A, Tx). In par-
ticular, for any x € Wy or = qov with a € A, we have gT‘A(k)(:E) €
Dk, Zey,; — ZMT, which we treat as an element of ZM*+! naturally.

Definition 5.1. We define a grading map gr : W x Q¥ — ZM+1
associated to (Ap,T) as follows, where T = [, Tk.

1) Write w = vpp410p, - - - v1 (uniquely), in which (vi, -+, U, Umt1) €
Wix: - x Wy x WP, Then gr(w) £ £(vm+1)em+11+ pey 9ra g (Vk)-
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2) For each ay; € Ay, gr(qazyi) = Ir A (qaz’i). For o € A\ Ap,

m Tk )
we write YA Ap(dav1@y) = wrw'dav ] ] qggz and then define

k=1i=1
m T
grigar) = ((wpe) + 243 ) 2as)emtn - griwpe)
k=1 1=1
m Tk
=22 akigr(day,)
k=11i=1

3) Ingeneral, z = w[[,cn qg%, then gr(z) 2 gr(w)+>" nea bagr(gav).

As in section 2.3, we can define a subset, consisting of the gradings of
@w’s in QH*(G/B). This subset also turns out to be a (totally-ordered)
sub-semigroup of ZM*! and we also simply denote it as S by abuse of
notation. In addition, we obtain a family of subspaces of QH*(G/B) in
the same way, which we also simply denote as F = {Fa}acs by abuse
of notation. Then all the theorems in the introduction can be easily
generalized. For instance, we state part of them in summary as follows.

Theorem 5.2.

1) QH*(G/B) has an S-filtered algebra structure with filtration F,
which naturally extends to a ZM+1-filtered algebra structure on
QH*(G/B).

2) There is a canonical algebra isomorphism
QH*(G/B)/T =+ QH"(P/B)

for an ideal T (which is explicitly defined) of QH*(G/B).

3) Assume P/B is isomorphic to product of Fli1y, s (i.e., Agy’s are
of A-type).

a) There exists a subalgebra A of QH*(G/B) together with an
ideal J of A, such that QH*(G/P) is canonically isomorphic
to A/TJ as algebras.

b) As graded algebras, (after localization) Gr”* (QH*(G/B)) is iso-
morphic to (@2, Q;F_) QH*(P'*)) @ QH*(G/P) .

We would like to point out again that our assumption “ all Agy's
are of A-type” is already general enough. This situation has covered all
G/P’s for G being of A-type or Ga-type, and more than half of G/P’s
for each remaining type. Unfortunately, Theorem 5.2 (3.b) is not true
in a more general case when A(,,) is not of A-type. In fact in this
case, QH*(G/P) is only canonically isomorphic to a proper subspace
of GT(fMH)(QH*(G/B)) = @izo Fiepi1/ Ub<iey Fb as vector spaces.
However, we could still expect the following.
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Conjecture 5.3. There exists a canonical algebra isomorphism be-
tween QH*(G/P) and a subalgebra of GT(FMH)(QH*(G/B)).

As a direct consequence of Conjecture 5.3, we can conclude Theorem
5.2 (3.a) always holds for any G/P. Part of the points of the proof for
this is to show (i) and (ii) in the proof of Theorem 1.4. That is, we
need to show the behavior of 1A A, (g, )’s is like that of polynomials.
Indeed, when A is of C-type, (i) and (ii) become trivial. (Precisely,
we use the notation in case Cl) in Table 2 and assume Ap to be of
C-type. Then for any Ap = Z?:l bjﬂjv + Q) € QV/QY, we conclude

Uanp(@rp) = Qg - L with Ap = 329, 0;87 + b5 30,11 By by direct
calculations.) In this case, we could still prove Conjecture 5.3 together
with some other arguments. On the other hand, it is shown in [18] that
after taking torus-equivariant extension and localization, Theorem 5.2
(3.a) is true in terms of the localization of equivariant homology of a
based loop group. Hence, we believe that Theorem 5.2 (3.a) also holds
without taking equivariant extension and localization. Both of these
provide evidence for our conjecture.
In addition, we would like to ask the following.

Question 5.4. What is the difference between QH*(G/P) and
Grly ) (QH"(G/B))?

The ring structure of GT(FMH)(QH*(G/B)), or equivalently A/J,
which is defined in the same form as in Theorem 1.5, seems close to the
ring structure of QH*(G/B). Especially, there might be one way to ob-
tain a nice presentation of Gr(ﬁ/l Jrl)(QH *(G/B)) from the presentation
of QH*(G/B) [16]. Suppose there were such a way and we knew the
answer to Question 5.4; then we would have a better understanding on

QH*(G/P).

6. Appendix

In this section, we show the Key Lemma also holds for all the roots
that satisfy condition (ii) in the proof of the Key Lemma in section
3.5 whenever A is of Fy-type or E-type. Since all the arguments are
similar, we just list all such roots as well as the corresponding methods
for them. One can see [19] for more details.

When A is of Fy-type, case C9) or C10) will occur. For instance
for C9), 4" must be either of the form ), ,., ;) or equal to one of
the following five coroots: B + 28y + BY, Y + 28y + BY + BY, BY +
285 +2035 + BY, BY + 385 + 285 + B/, 26Y + 385 +285 + B, by noting
l(sy) = (2p,7") — 1. Then we have:
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Table for case C9) Table for case C10)
| Coroots |r:2|r:3|| Coroots |r:2|r:3|

By + By done (verp) B3 + B (M3) | (M2)

By + B (M3) BY + B3 + 55 (M1) | done

BY + B3 + 55 (M3) | dome || B + 85 +85 +p8/ | (MI) [ done

Bs + B3 + 61 (M1) B3 + 2635 + B4 (M3) | (M2)

BY + B3 + 85 +87 | (ML) | done || BY +55 +285 + 5] | (M2) | done
BY + 285 +2B85 +BY (M2) BY +285 +385 + 8 (M2)
287 +3B5 + 285 + B | (M1) [ done || BY + 255 + 385 + 287 (MT1)

We would like to make some comments for the tables in this section.

1) By “done,” we mean that there exists a; € {ay, - ,—1} such
that («j,7") > 0. Thus it is done by the arguments for condition
(i) in the proof of the Key Lemma. By “done (y€ Rp),” we mean
v € Rp and thus it is done by the arguments at the beginning of
the proof of the Key Lemma.

2) By “(M1)” (resp. “(M3)”), we mean the corresponding method,
especially the use of part a) (resp. b)) of Lemma 3.29.

3) By “(M2)”, we mean the induction hypothesis is used. In fact,
whenever referring to (M2) in the tables, we can use the same argu-
ments as follows. For instance, we consider the case when C10) oc-
curs, vV = By 4285 + 8y, and r = 3. In this case, we can take a; =
B3(= as). Then Y = s;(vY) = By + By + B and consequently
(A1, A2, A3, A1) = gr(gpv) = (—1,1,—-2,8). Furthermore, we have
(al, as, as, a4) = (0, a2, as, 0) and (bl, bg, b3, b4) = (0, bQ, b3, 0) with
as +a3 = 1 and by + b3 = —1 by noting <o¢1,a}/> = 0. If
w1 < 0, then it is done. If u; = 0, then by the induction hy-
pothesis we have po < 0. We claim po = 0. Thus pus < 0
and ag + by = ag + pe + ba < 0 (by considering gr). Since
as + ag + ba + by = 0, if as + by < 0 then it is done; otherwise,
we have az + bg = —(a2 + b2) = 0 so that as + bs + u3 = uz < 0.
Thus it is done. It remains to show our claim. Indeed, we note that
po+iy = ka+Xo = ko+1. Since £(us;sg) < L(usj), us;(3) € —R™.
Then if (o, 8Y) < 0, usj(a) € —R™ implies us;sp(a) € —R™.
Hence i, = t{a € R;§2 \ Rp, | usj(a) € =R} = t{a € R;S2 \
Rp, | usj(a) € —R*, (o, 8Y) < 0} + #{a € R, \ Rp, | usj(a) €
—R*, (o, 8Y) > 0} < #{a € R}, \ Rp, | usjsg(a) € —RT} +#{a €
Ry, \ Rp, | (a,Y) >0} = ko +£{B2}. Thus g = ka +1—1i5 >0
and consequently we have po = 0.

Now we assume A is of E-type. Denote = := {3; | (8;,7") > 0}.
Recall that we should replace k = 0o+ r with k =0+¢(=0+7r—1) in
Table 2 when Ap is not of A-type. Note that any v € R™ is of length
(2p,7V) — 1. Tt suffices to assume n = 8. It remains to discuss at most
the roots in the tables as below.
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Table for case C4) withr =6 or r =7

Roots with = C {51, 82, 8s} | r==6 | r=1 |
B+ B2 done | done
B2 + B3 + 1 + B5 + Bs (M3) | done
Bi+ B2+ Bs+ Ba+ B85 + Bs done | (M3)
B1+ 282 + 285 +2B4 + 285 + B + Bs (M1) | done
B3 4+ 2B4 + 3085 + 206 + B + 208 done (v € Rp)
B2 + Bs +2B4 + 365 + 286 + Br + 28s (M3) [ done

B1+ B2+ B3+ 284+ 3P5 + 206 + P + 205 done | (M3)
B1+ 282 4+ 2834+ 264 + 305 + 286 + 7 +20s | (M2) | done
B1+2B2+383+4B1+5Bs +30s + 87 +36s | (M2) | (M3)
B1+3B2 +4P3 + 5684 + 605 + 486 + 207 +308s | (M1) | done

261 + 382+ 48B3 + 584 + 605 + 486 + 287 + 38s | done | (M1)

Table for case C5) with r =5

Roots with = C {Bs, 86} | Method |

Bs + Be (M3)

B2+ 2B3 + B4+ 285 + B (

B2+ 2B3 4+ Ba + 205 + 286 + PBr (
B1+2P2 + 383 + Ba+ 385 + 2086 + b7 (
B1+2B2 + 3B3 + B4+ 365 + 386 + 207 + B (
(

(

(

B1+ 282 + 483 + 284 + 485 + 3B6 + 287 + Bs
2061 + 4P2 + 683 + 384 + 585 + 386 + 267 + Ps
261 + 4P2 + 683 + 384 + 585 + 486 + 267 + Bs

===

3
1
3
1
2
2
1

Table for case C7) with 0 < o0 <3

. = C {B1, B2, B3, B, Bs} .

Roots with { 2N {81, Bz, Bs}| < 1 Constraint Method
1) B3+ Ba+ Bs + B 0=3
2) B2 + Bs + Ba+ Bs + Br 0=2 (M3)
3) B14 P2+ B3+ Pa+ Bs + Br 0=
4) B2+ 2B3 + 284 + 205 + Bs + PBr 0=3 (M1)
5) B1 4262 + 283 + 24 + 285 + B + b7 0=2
6) B7 + Bs 0>0 (M272,373)
7 Bs + Ba+ Bs + B + Bs 0=3
8) B2+ Bz + Ba+ Ps + B + B 0=2
9) B1+ B2+ Bs + Ba + B5 + Br + Bs 0= (M1)
10) B2 + 2P5 + 284 + 285 + Bs + Br + Bs 0=3
11) | B1+2B2 +2B3 +2B4 + 285 + Bs + Br + Bs 0=2
12) 54 + 255 + 56 + 257 + ﬂg 0>0 (M272,373)
13) B3 + Ba + 2B5 + Bs + 287 + Bs 0= (M3)
14) B2+ B3+ 1+ 265 + B + 287 + Ps 0=
15) B1 4 P2+ Bs 4+ Ba+ 285 + Be + 267 + Bs 0= (M2)
16) B2 + 283 + 284 + 285 + Bs + 287 + Bs 0=3
17) | B1+2B2 + 283 + 284 + 285 + Bs + 2B7 + Bs 0=2
18) | B1+2B2+3B5 4384+ 385 + B + 287 + Bs 0=3 (M1)
19) B2 4+ 2B3 + 384 + 485 + 286 + 387 + Bs 0>0
20) b1+ B2+ 2083 + 304 + 485 + 2086 + 307 + O 0= (M2)
21) | 1+ 282+ 2083+ 384 + 485 + 286 + 387 + Bs 0=2
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22) | B1 4282+ 3083+ 384 + 485 + 286 + 387 + Bs o=3

23) B2+ 203 + 364 + 405 + 2B6 + 367 + 205 0>0

24) | B1+ B2 +2B85 + 3Ba + 485 + 266 + 387 + 285 o=1 (M1)
25) | B1+2B2 + 283+ 364+ 465 + 206 + 367 + 208 0=2

26) | B1+2B2+ 303+ 30a+ 485 + 286 + 307 + 208 o0=3

27) | Br+2B2 + 383+ 484 + 505 + 206 + 487 + 28 0>0 (M3,2,2,2)
28) | B1+ 202 + 483+ 584+ 665 + 386 + 457 + 208 0=3

29) | B1+3B2 + 483 + 584 + 685 + 386 + 487 + 2[5 0=2 (M1)
30) | 281 + 382 + 483 + 584 + 685 + 386 + 457 + 20 o=1

In the above table, by “(M2,2,3,3)” for the root 7 + s, we mean
(M2) (resp. (M2), (M3), and (M3)) is used when o =0 (resp. 1, 2 and
3). Similar notations are used for the case no. 12) and no. 27).
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