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MINKOWSKI AREAS AND VALUATIONS

Monika Ludwig

Abstract

All continuous GL(n) covariant valuations that map convex
bodies to convex bodies are completely classified. This estab-
lishes a characterization of moment and projection operators and
shows that the Holmes-Thompson area is the unique Minkowski
area that is also a bivaluation.

On finite dimensional Banach spaces, there are essentially different
ways to choose a notion of surface area that is independent of the choice
of a Euclidean coordinate system. In particular, Minkowski areas have
this property. The precise definition of Minkowski area requires a set
of conditions, which will be given in Section 2. Important examples of
Minkowski areas are due to Busemann [12], Gromov [19], and Holmes
and Thompson [28]. Central questions in the geometry of finite dimen-
sional Banach spaces are those of finding the right notion of Minkowski
area and, more generally, of invariant area (see Section 2 for the defi-
nition), and of finding distinctive properties of different such areas (see
[9] and [55] for more information on area in Banach and Finsler spaces
and see [7, 8, 50] for some recent results). As will be shown, if the
critical valuation property is required and if invariant areas are defined
for spaces with not necessarily symmetric unit balls, it turns out that
Holmes-Thompson area is the only answer.

We need the following definitions. Let Kn be the space of convex bod-
ies (that is, of compact convex sets) in R

n equipped with the Hausdorff
metric, and let Kn

0 be the subspace of convex bodies in R
n that contain

the origin in their interiors. A function z defined on a certain subset C
of Kn and taking values in an abelian semigroup is called a valuation if

(1) z(K) + z(L) = z(K ∪ L) + z(K ∩ L),

whenever K,L,K ∪ L,K ∩ L ∈ C. A function z : Kn × Kn
0 → 〈R,+〉 is

called a bivaluation if it is a valuation in both arguments. Valuations on
convex bodies are a classical concept going back to Dehn’s solution in
1900 of Hilbert’s Third Problem. Starting with Hadwiger’s celebrated
classification of rigid motion invariant valuations and characterization
of elementary mixed volumes, valuations have become a critical notion
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(see [27, 31, 47] and see [1, 2, 3, 4, 5, 6, 11, 15, 29, 30, 49, 51, 52, 53]
for some of the more recent contributions).

Invariant areas have strong invariance properties with respect to the
general linear group, GL(n). In recent years, such affine functions on
convex bodies have attracted increased interest (see, for example, [10,
14, 18, 21, 25, 26, 41, 42, 43, 45, 46, 56, 57]). Many of these affine
functions on convex bodies can be completely characterized by their
invariance and valuation properties (see, for example, [22, 23, 24, 33,
34, 35, 36, 37, 38, 40]). The following result shows that the valuation
property also completely characterizes the Holmes-Thompson area.

Theorem 1. A functional z : Kn ×Kn
0 → R is a bivaluation and an

invariant area if and only if there is a constant c > 0 such that

z(K,B) = c V (K, . . . ,K,ΠB∗)

for every K ∈ Kn and B ∈ Kn
0 .

Here V (K1, . . . ,Kn) denotes the mixed volume of K1, . . . ,Kn ∈ Kn

and B∗ denotes the polar body of B ∈ Kn
0 (see Section 1). A convex

body K is uniquely determined by its support function

h(K, v) = max{v · x : x ∈ K} for v ∈ R
n,

where v · x is the standard inner product of v and x. The projection

body, ΠK, of K is the convex body whose support function is given by

h(ΠK,u) = Vn−1(K|u⊥) for u ∈ Sn−1,

where Vn−1 denotes (n − 1)-dimensional volume, K|u⊥ the image of
the orthogonal projection of K onto the subspace orthogonal to u, and
Sn−1 the unit sphere in R

n. Projection bodies are an important tool in
geometric tomography (see [16]) and have found intriguing applications
in recent years (see [54, 57]).

The invariant area obtained in Theorem 1 is the Holmes-Thompson
area, which is a Minkowski area. Thus Theorem 1 implies that every
invariant area that is also a bivaluation is a Minkowski area and that
the Holmes-Thompson area is (up to multiplication with a positive con-
stant) the unique Minkowski area that is a bivaluation.

Theorem 1 is a consequence of a new classification of valuations. An
operator Z : Kn

0 → 〈Kn,+〉 is called a Minkowski valuation if (1) holds
and addition on Kn is Minkowski addition (defined for K,L ∈ Kn by
K + L = {x + y : x ∈ K, y ∈ L}). An operator Z : Kn

0 → 〈Kn,+〉 is
called GL(n) covariant if for some q ∈ R,

(2) Z(φK) = |detφ|q φZK for every φ ∈ GL(n) and K ∈ Kn
0 .

In [36], a classification of GL(n) covariant Minkowski valuations on the
space of convex bodies containing the origin was obtained. Here we
show that the space Kn

0 allows additional important GL(n) covariant
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Minkowski valuations and establish a complete classification of such
valuations.

Theorem 2. An operator Z : Kn
0 → 〈Kn,+〉, where n ≥ 3, is a

continuous non-trivial GL(n) covariant valuation if and only if either

there are constants c0 ≥ 0 and c1 ∈ R such that

ZK = c0 MK + c1m(K)

for every K ∈ Kn
0 or there is a constant c0 ≥ 0 such that

ZK = c0 ΠK
∗

for every K ∈ Kn
0 .

A valuation is called trivial if it is a linear combination of the identity
and central reflection. The moment body, MK, of K is defined by

h(MK,u) =

∫

K

|u · x| dx, for u ∈ Sn−1.

When divided by the volume of K, the moment body of K becomes the
centroid body of K and is a classical and important notion going back
to at least Dupin (see [16]). The vector m(K) =

∫

K
x dx is called the

moment vector of K.
In the proof of Theorem 2, a classification of Minkowski valuations

on the space of convex polytopes containing the origin in their interiors
is established. These results are contained in Sections 4 and 5. The
definition of invariant areas and Minkowski areas is given in Section 2.
The proof of Theorem 2 is given in Section 6 and makes essential use of
the new classification of Minkowski valuations.

1. Notation and background material

General references on convex bodies are the books by Gardner [16],
Gruber [20], Schneider [48], and Thompson [55]. We work in Euclidean
n-space, R

n, and write x = (x1, . . . , xn) for x ∈ R
n. We denote by

e1, . . . , en the vectors of the standard basis of Rn.
For K ∈ Kn, it follows immediately from the definition of the support

function that for every s > 0 and φ ∈ GL(n),

(3) h(K, s x) = s h(K,x) and h(φK, x) = h(K,φtx),

where φt is the transpose of φ. Support functions are sublinear, that is,
for all x, y ∈ R

n,

h(K,x + y) ≤ h(K,x) + h(K, y).

Let x, y ∈ R
n be given and let Kt for t ≥ 0 be convex bodies. If

h(Kt,±y) = o(1) as t → 0, then the sublinearity of support functions
implies that

h(Kt, x)− h(Kt,−y) ≤ h(Kt, x+ y) ≤ h(Kt, x) + h(Kt, y).
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Hence

(4) h(Kt, x+ y) = h(Kt, x) + o(1) as t→ 0.

If h(Kt,±y) = o(1) uniformly (in some parameter) as t → 0, then also
(4) holds uniformly.

For K,L ∈ Kn, the mixed volume V (K, . . . ,K,L) = V1(K,L) is
defined by

V1(K,L) =
1

n
lim

ε→0+

Vn(K + εL)− Vn(K)

ε
,

where Vn denotes n-dimensional volume. The following properties are
immediate consequences of the definition (see [48]). For K,L ∈ Kn,

(5) V1(φK,φL) = |detφ|V1(K,L) for every φ ∈ GL(n)

and

(6) V1(K, r L) = r V1(K,L) for every r ≥ 0.

If K,L1, L2 ∈ Kn, then

(7) V1(K,L1 + L2) = V1(K,L1) + V1(K,L2).

If P ∈ Kn is a polytope with facets F1, . . . , Fm lying in hyperplanes with
outer normal unit vectors u1, . . . , um and L ∈ Kn,

(8) V1(P,L) =
1

n

m
∑

i=1

h(L, ui)Vn−1(Fi).

Let Kn
c denote the set of origin-symmetric convex bodies in R

n. An
immediate consequence of the equality case of Minkowski’s inequality
(see [48]) is the following result: If L1, L2 ∈ Kn

c and

(9) V1(K,L1) = V1(K,L2) for every K ∈ Kn,

then L1 = L2.
Let Pn

0 denote the set of convex polytopes in R
n that contain the

origin in their interiors. A function defined on Pn
0 is called measurable

if it is Borel measurable, that is, the pre-image of any open set is a Borel
set in the space Pn

0 equipped with the Hausdorff metric. We require the
following results on valuations on P1

0 . Let ν : P1
0 → R be a measurable

valuation that is homogeneous of degree p, that is, ν(t I) = tp ν(I) for
all t > 0 and I ∈ P1

0 . If p = 0, then there are a, b ∈ R such that

(10) ν([−s, t]) = a log(
t

s
) + b

for every s, t > 0. If p 6= 0, then there are a, b ∈ R such that

(11) ν([−s, t]) = a sp + b tp

for every s, t > 0 (see [34], Equations (3) and (4)). These results follow
from the fact that every measurable solution f of the Cauchy functional
equation, f(x+ y) = f(x) + f(y), is linear.
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An operator Z : Pn
0 → 〈Kn,+〉 is called GL(n) covariant of weight q

if

ZφP = |detφ|q φZP for every φ ∈ GL(n) and P ∈ Pn
0 .

An operator Z : Pn
0 → 〈Kn,+〉 is called GL(n) contravariant of weight q

if

(12) ZφP = |detφ|q φ−t ZP for every φ ∈ GL(n) and P ∈ Pn
0 ,

where φ−t is the inverse of the transpose of φ. Let Z : Pn
0 → 〈Kn,+〉 be

a valuation which is GL(n) contravariant of weight q. We associate with
Z an operator Z∗ in the following way. For P ∈ Pn

0 , the polar body, P
∗,

of P is defined by

P ∗ = {x ∈ R
n : x · y ≤ 1 for every y ∈ P}.

We define the operator Z∗ : Pn
0 → 〈Kn,+〉 by setting Z∗ P = ZP ∗ for

P ∈ Pn
0 and show that

(13) Z∗ : Pn
0 → 〈Kn,+〉 is a valuation GL(n) covariant of weight −q.

It follows immediately from the definition of polar body that for P ∈ Pn
0 ,

(14) (φP )∗ = φ−tP ∗ for every φ ∈ GL(n)

and that for P,Q,P ∪Q ∈ Pn
0 ,

(15) (P ∪Q)∗ = P ∗ ∩Q∗ and (P ∩Q)∗ = P ∗ ∪Q∗.

Since Z is a valuation, for P,Q ∈ Pn
0 with P ∪ Q ∈ Pn

0 it follows from
(15) that

Z∗ P + Z∗Q = ZP ∗ + ZQ∗

= Z(P ∗ ∪Q∗) + Z(P ∗ ∩Q∗)

= Z(P ∩Q)∗ + Z(P ∪Q)∗

= Z∗(P ∩Q) + Z∗(P ∪Q).

Thus Z∗ is also a valuation. Since Z is GL(n) contravariant of weight q,
it follows from (14) that

Z∗(φP ) = Z(φP )∗ = Z(φ−tP ∗) = |detφ|−qφZ∗ P.

Thus (13) holds.
For n = 2, we also associate with Z : P2

0 → 〈K2,+〉 an operator Z⊥.
Suppose that Z is a valuation which is GL(2) contravariant of weight
q. Let ρπ/2 denote the rotation by the angle π/2 and let ρ−π/2 denote
its inverse. Define Z⊥ : P2

0 → 〈K2,+〉 by setting Z⊥ P = ρ−π/2 ZP for
P ∈ P2

0 . We show that

(16) Z⊥ :P2
0 → 〈K2,+〉 is a valuation GL(2) covariant of weight q−1.



138 M. LUDWIG

Since Z is a valuation, we have for P,Q ∈ P2
0 with P ∪Q ∈ P2

0 ,

Z⊥ P + Z⊥Q = ρ−π/2 ZP + ρ−π/2 ZQ

= ρ−π/2(Z(P ) + Z(Q))

= ρ−π/2(Z(P ∪Q) + Z(P ∩Q))

= Z⊥(P ∪Q) + Z⊥(P ∩Q).

Thus Z⊥ is also a valuation. For φ ∈ GL(2) and P ∈ P2
0 ,

Z⊥(φP ) = |detφ|q ρ−π/2 φ
−tρπ/2 Z

⊥ P = |detφ|q−1φZ⊥ P.

Hence Z⊥ is GL(2) covariant of weight q − 1. Thus (16) holds.

In the proof of Theorem 2, we make use of the following results.

Theorem 1.1 ([34]). A functional z : Pn
0 → 〈R,+〉, where n ≥ 2, is

a measurable valuation so that for some q ∈ R,

(17) z(φP ) = |detφ|q z(P )

holds for every φ ∈ GL(n) if and only if there is a constant c ∈ R such

that

z(P ) = c or z(P ) = c Vn(P ) or z(P ) = c Vn(P
∗)

for every P ∈ Pn
0 .

Theorem 1.2 ([32]). Let z : P2
0 → 〈R2,+〉 be a measurable valuation

which is GL(2) covariant of weight q. If q = 1, then there is a constant

c ∈ R such that

z(P ) = cm(P )

for every P ∈ P2
0 . If q = −2, then there is a constant c ∈ R such that

z(P ) = c ρ−π/2m(P ∗)

for every P ∈ P2
0 . In all other cases, z(P ) = {0} for every P ∈ P2

0 .

Theorem 1.3 ([32]). Let z : Pn
0 → 〈Rn,+〉, where n ≥ 3, be a

measurable valuation which is GL(n) covariant of weight q. If q = 1,
then there is a constant c ∈ R such that

z(P ) = cm(P )

for every P ∈ Pn
0 . In all other cases, z(P ) = {0} for every P ∈ Pn

0 .
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2. Background material on invariant areas

Let (Rn, ‖·‖) be a normed space and B = {x ∈ R
n : ‖x‖ ≤ 1} its unit

ball. An axiomatic approach to Minkowski areas following Busemann’s
ideas is presented in Thompson’s book [55]. This approach has two
important components. First, the notion of surface area is independent
of the choice of a Euclidean coordinate system and has certain regu-
larity properties. We call functionals with these properties invariant

areas. Second, a Minkowski area assigns a notion of area in an intrinsic

way. In [55], notions of volume for all Banach spaces in all dimensions
are discussed. Here we restrict our attention to n-dimensional spaces
and extend the definition of area to spaces with not necessarily origin-
symmetric unit balls. For a hyperplane H, let K(H) denote the set of
convex bodies contained in H.

Definition. A functional z : Kn × Kn
0 → [0,∞) is an invariant area

if

(i) z(K,B) = z(φK,φB) for all φ ∈ GL(n);
(ii) z(K,B) = z(K + x,B) for all x ∈ R

n;
(iii) z is continuous in both variables;
(iv) for every hyperplane H, there exists a constant cH > 0 such that

z(·, B) = cH Vn−1 on K(H);
(v) for every polytope P ∈ Kn with facets F1, . . . , Fm, z(F1, B) ≤

∑m
i=2

z(Fi, B).

An invariant area z : Kn × Kn
0 → [0,∞) is a Minkowski area if it is

intrinsic, that is, for every (n − 1)-dimensional subspace H and every
B,B′ ∈ Kn

0 satisfying B′ ∩H = B ∩H, we have z(K,B) = z(K,B′) for
every K ∈ K(H).

3. Extension

Let P
n

0 denote the set of convex polytopes P which are either in
Pn
0 or are the intersection of a polytope P0 ∈ Pn

0 and a polyhedral
cone with apex at the origin. Here a polyhedral cone with apex at the
origin is the intersection of finitely many closed halfspaces containing
the origin in their boundaries. As a first step, we extend the valuation
Z : Pn

0 → 〈Kn,+〉 to a valuation on P
n

0 .
We need the following definitions. For A1, . . . , Ak ⊂ R

n, we denote
the convex hull of A1, . . . , Ak by [A1, . . . , Ak]. For the convex hull of
A ⊂ R

n and u1, . . . , uk ∈ R
n, we write [A, u1, . . . , uk]. For A ⊂ R

n, let

A⊥ = {x ∈ R
n : x · y = 0 for every y ∈ A}.

For a hyperplane H containing the origin, let H+ and H− denote the
complementary closed halfspaces bounded by H. Let P0(H) denote the
set of convex polytopes in H that contain the origin in their interiors
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relative to H. For v ∈ R
n, let 〈v〉 denote the linear hull of v and P0(v)

the set of intervals in 〈v〉 that contain the origin in their interiors.
Let C1(R

n) be the set of continuous functions f : Rn → R that are
positively homogeneous of degree 1, that is, f(t x) = t f(x) for all t ≥ 0
and x ∈ R

n. Since h(K1 +K2, ·) = h(K1, ·) + h(K2, ·) for K1,K2 ∈ Kn,
we see that if Z : Pn

0 → 〈Kn,+〉 is a valuation, then the operator Y on
Pn
0 defined by Y P = h(ZP, ·) is a valuation taking values in C1(R

n).
An operator Y : Pn

0 → C1(R
n) is called GL(n) covariant of weight q

if
Y(φP ) = |detφ|q Y P ◦ φt

for every φ ∈ GL(n) and P ∈ Pn
0 . It is called GL(n) contravariant of

weight q if
Y(φP ) = |detφ|q Y P ◦ φ−1

for every φ ∈ GL(n) and P ∈ Pn
0 .

Let H be a hyperplane containing the origin and Y : Pn
0 → C1(R

n).
We say that

Y has the Cauchy property for P0(H)

if for every ε > 0 and centered ball B, there exists δ > 0 (depending
only on ε and B) so that

(18) max
x∈Sn−1

∣

∣Y[P, u, v](x) −Y[P, u′, v′](x)
∣

∣ < ε

for every u, u′ ∈ H−\H and v, v′ ∈ H+\H with |u|, |u′|, |v|, |v′| < δ and
for every P ∈ P0(H) with P ⊂ B. Let w ∈ H+\H. We say that Y
has the Cauchy property for P0(H) with respect to 〈w〉 if (18) holds for
u, u′, v, v′ ∈ 〈w〉.

Lemma 3.1. If Y : Pn
0 → 〈C1(R

n),+〉 is a valuation so that for

every hyperplane H containing the origin,

(19) Y has the Cauchy property for P0(H),

then Y can be extended to a valuation on P
n

0 . Moreover, if Y is GL(n)

covariant on Pn
0 , so is the extended valuation on P

n

0 . If Y is GL(n)

contravariant on Pn
0 , so is the extended valuation on P

n

0 .

Proof. For j = 1, . . . , n, let Pn
j be the set of convex polytopes P

containing the origin such that there exist P0 ∈ Pn
0 and hyperplanes

H1, . . . ,Hi, where i ≤ j, containing the origin with linearly independent
normal vectors and either

(20) P = P
0
∩H+

1
∩ · · · ∩H+

i

or

(21) P = P
0
∩H+

1
∩ · · · ∩H+

i−1
∩Hi.

Note that H+

1
∩ · · · ∩ H+

i is the support cone at 0 of the polytope P
defined by (20). For a hyperplane H and j = 1, . . . , n − 1, let Pj(H)
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be the set of convex polytopes P such that there exist P0 ∈ Pn
0 and

hyperplanes H1, . . . ,Hi, where i ≤ j, containing the origin with linearly
independent normal vectors such that

(22) P = P
0
∩H+

1
∩ · · · ∩H+

i ∩H.

Note that Pj(H) ⊂ Pn
j+1

. If Y is defined on Pn
j for j ∈ {1, . . . , n − 1}

and H is a hyperplane containing the origin, we say that

Y has the Cauchy property for Pj(H)

if, for every ε > 0 and centered ball B, there exists δ > 0 (depending
only on ε and B) so that for every P ∈ Pj(H) defined by (22) with
P ⊂ B, we have

max
x∈Sn−1

∣

∣Y[P, u, v](x) −Y[P, u′, v′](x)
∣

∣ < ε

for every u, u′, v, v′ ∈ H1∩· · ·∩Hi with u, u
′ ∈ H−\H and v, v′ ∈ H+\H

such that |u|, |u′|, |v|, |v′| < δ.
Define Y on Pn

j for j = 1, . . . , n inductively, starting with j = 1, in

the following way. For P given by (20) or (21) with j hyperplanes, set

(23) Y P = lim
u,v→0

Y[P, u, v],

where u, v ∈ H1 ∩ · · · ∩Hj−1 and u ∈ H−

j \Hj and v ∈ H+

j \Hj .

We show that the limit in (23) exists uniformly on Sn−1 and does
not depend on the choice of Hj among H1, . . . ,Hj and that for every
hyperplane H containing the origin,

(24) Y has the Cauchy property for Pj(H).

In addition, we show Y has the following additivity properties:
If P ∈ Pn

j−1 and H is a hyperplane such that P ∩ H+, P ∩ H− ∈ Pn
j ,

then

(25) Y P +Y(P ∩H) = Y(P ∩H+) + Y(P ∩H−).

If P,Q,P ∩ Q,P ∪ Q ∈ Pn
j , where j < n, are defined by (20) by the

same halfspaces H+

1
, . . . ,H+

j , then

(26) YP +YQ = Y(P ∪Q) + Y(P ∩Q).

The operator Y is well defined, and a valuation on Pn
0 and properties

(24) and (26) hold for j = 0 by assumption. Let 1 ≤ k ≤ n. Suppose
that Y is well defined by (23) on Pn

k−1
. Further suppose that we have

(24) and (26) for 0 ≤ j < k and that we have (25) for 1 ≤ j < k.
First, we show that the limit in (23) exists uniformly on Sn−1. For

P ∈ Pn
k given by (21), this follows from (24) for j = k − 1. So, let

P ∈ Pn
k be given by (20) with i = k. Note that [P, u, v] = [P, u] for |v|

suitably small. Suppose that ū ∈ H1 ∩ · · · ∩Hk−1 with ū ∈ H−

k \Hk is
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chosen such that [P, u] ⊆ [P, ū] and −ū ∈ P . Then applying (26) with
j = k − 1 gives

Y[P, u] + Y[P ∩Hk, ū,−ū] = Y[P, ū] + Y[P ∩Hk, u,−ū].

Consequently, it follows from (24) for j = k−1 that (23) exists uniformly
on Sn−1 and that Y P is continuous on Sn−1. For k > 1 and P ∈ Pn

k

given by (20) with i = k, we show that YP as defined by (23) does
not depend on the choice of the hyperplane Hk among H1, . . . ,Hk. Let
u ∈ H1 ∩ · · · ∩Hk−1 and u ∈ H−

k \Hk. Choose w ∈ H2 ∩ · · · ∩Hk with

w ∈ H−

1
\H1. Then applying (25) for j = k − 1 gives

Y[P, u,w] + Y[P ∩Hk, w] = Y[P,w] + Y[P ∩Hk, u, w].

Hence, by (24) for j = k − 1, there exists δ > 0 such that on Sn−1,

|Y[P, u,w] −Y[P,w]| = |Y[P ∩Hk, u, w] −Y[P ∩Hk, w]| < ε,

whenever |u| < δ and [P ∩Hk, w] is contained in a suitable ball. Hence

lim
u,w→0

Y[P, u,w] = lim
w→0

Y[P,w].

Thus Y is well defined on Pn
k .

Next, we show that (24) holds for j = k. Let ε > 0 and a centered
ball B be chosen. Suppose that P ∈ Pk(H) and that

P = P0 ∩H
+

1
∩ · · · ∩H+

k ∩H

where H,H1, . . . ,Hk have linearly independent normal vectors. Choose
z ∈ H∩H1∩· · ·∩Hk−1 with z ∈ H−

k \Hk. Then [P, z] ∈ Pk−1(H) and by
(24) for j = k− 1, there exists δ > 0 so that for ui, vi ∈ H1 ∩ · · · ∩Hk−1

with ui ∈ H
−\H and vi ∈ H+\H for i = 1, 2, we have on Sn−1,

(27) |Y[P, z, u1, v1]−Y[P, z, u2, v2]| < ε,

whenever |ui|, |vi| < δ and [P, z] is contained in B. By (23), letting
z → 0 in (27) shows that (24) holds for j = k.

Next, we show that (25) holds for j = k. Let P ∈ Pn
k−1

, that is, there

exist P0 ∈ Pn
0 and H1, . . . ,Hk−1 such that P = P0 ∩H

+

1
∩ · · · ∩H+

k−1
.

Choose u ∈ H1∩· · ·∩Hk−1, such that u ∈ P ∩H+\H and −u ∈ P ∩H−.
The four polytopes P , [P ∩H,u,−u], [P ∩H+,−u], [P ∩H−, u] have
the hyperplanes H1, . . . ,Hk−1 in common. Applying (26) for j = k − 1
gives

Y P +Y[P ∩H,u,−u] = Y[P ∩H+,−u] + Y[P ∩H−, u].

By (24) and definition (23), this implies that (25) holds for j = k.
Finally, we show that (26) holds for j = k. Choose u ∈ H1∩· · ·∩Hk−1

with u 6∈ Hk such that −u ∈ P ∩Q. Applying (26) for j = k − 1 shows
that

Y[P, u] + Y[Q,u] = Y[P ∪Q,u] + Y[P ∩Q,u].

Because of definition (23), this implies that (26) holds for j = k.
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The induction is now complete and Y is extended to Pn
n . Let P ∈ Pn

n

and let H be a hyperplane such that P ∩H+, P ∩H−∈ Pn
n . We show

that

(28) Y P +Y(P ∩H) = Y(P ∩H+) + Y(P ∩H−).

Since (25) holds, it suffices to show (28) for a polytope P whose sup-
port cone at 0 is bounded by n facets with linearly independent normal
vectors.

First, let n = 2. Let P = P0 ∩H
+

1
∩H+

2
, where H1 and H2 are lines

containing the origin and P0 ∈ P2
0 . Further, let P ∩H+ = H+

1
∩H+∩P0

and P ∩ H− = H+

2
∩H− ∩ P0. For u ∈ H ∩ (H−

1
\H1) ∩ (H−

2
\H2), it

follows from (25) that

Y[P, u] + Y[P ∩H,u] = Y[P ∩H+, u] + Y[P ∩H−, u].

By (23), this implies that

(29) lim
u→0

Y[P, u] + Y[P ∩H] = Y(P ∩H+) + Y(P ∩H−).

On the other hand, it follows from (25) that

(30) Y[P, u] + Y[P ∩H1, w] = Y[P,w] + Y[P ∩H1, u, w],

where w ∈ H1 depends on u. Let B be a centered ball such that
[P ∩ H1, w] ⊂ B for |u| < 1 and let ε > 0. Since Y has the Cauchy
property for P0(H1), it follows from (23) that on S1,

|Y[P ∩H1, w]−Y[P ∩H1, u, w]| < ε

for |u| sufficiently small. Thus, by (23), we obtain from (30) that
limu→0Y[P, u] = YP . Combined with (29), this implies (28).

Second, let n ≥ 3. Let P = P0 ∩ H+

1
∩ · · · ∩ H+

n , where P0 ∈ Pn
0 .

Since P ∩H+, P ∩H− ∈ Pn
n , we can say that the support cone at 0 of

P ∩H+ is bounded by H1,H,H3, . . . ,Hn and that the support cone at 0
of P∩H− is bounded by H,H2, . . . ,Hn, whereH1∩H2∩· · ·∩Hn−1 ⊆ H.
Therefore Y P = limu→0Y[P, u] and

Y(P ∩H+) = lim
u→0

Y[P ∩H+, u], Y(P ∩H−) = lim
u→0

Y[P ∩H−, u],

where u ∈ H1 ∩ H2 ∩ · · · ∩ Hn−1 and u ∈ H−
n \Hn. Applying (25) for

j = n shows that

Y[P, u] + Y[P ∩H,u] = Y[P ∩H+, u] + Y[P ∩H−, u].

Because of definition (23), this implies (28).

As a last step, we extend Y to a valuation on P
n

0 . For P ∈ P
n

0 ,
there are P1, . . . , Pm ∈ Pn

n such that P = P1 ∪ · · · ∪ Pm. It is proved
in [39] that defining h(ZP, ·) by the inclusion-exclusion principle with
h(ZPi, ·), where i = 1, . . . ,m, leads to a well-defined extension of Z on

P
n

0 . Clearly, the extension is GL(n) covariant (GL(n) contravariant) if
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Z is GL(n) covariant (GL(n) contravariant) on Pn
n . This completes the

proof of the lemma. q.e.d.

The following result is an immediate consequence of Lemma 3.1. Let
C+

1
(Rn) denote the subset of non-negative functions in C1(R

n).

Lemma 3.2. If Y : Pn
0 → 〈C+

1
(Rn),+〉 is a valuation so that for

every hyperplane H containing the origin and w ∈ H+\H, the operator

Y has the Cauchy property for P0(H) with respect to 〈w〉 and

lim
u,v→0

Y[P, u, v] = 0 for every P ∈ P0(H),

where u, v ∈ 〈w〉 with u ∈ H+\H and v ∈ H−\H, then Y can be

extended to a valuation on P
n

0 . Moreover, if Y is GL(n) covariant on

Pn
0 , so is the extended valuation on P

n

0 . If Y is GL(n) contravariant

on Pn
0 , so is the extended valuation on P

n

0 .

Proof. Let H be a hyperplane containing the origin and P ∈ P0(H).
Since Y is a non-negative valuation, for u ∈ H−\H and v ∈ H+\H,

Y[P, u, v] = Y[P, u,−t u] + Y[P,−s v, v] −Y[P,−s v,−t u]

≤ Y[P, u,−t u] + Y[P,−s v, v],

when t, s > 0 are chosen suitably small. Thus (18) holds and Lemma 3.1
implies the existence of an extension. q.e.d.

4. The classification on P2
0

In Section 4.2, we prove the following result.

Proposition 4.1. An operator Z : P2
0 → 〈K2,+〉 is a measurable

valuation which is GL(2) covariant of weight q ≥ 0 if and only if there

are c0, c1 ≥ 0, and c2 ∈ R such that

ZP =











c1 MP + c2m(P ) for q = 1

c0 P + c1 (−P ) for q = 0

{0} otherwise

for every P ∈ P2
0 .

By (16), Proposition 4.1 has the following immediate consequence.

Proposition 4.2. An operator Z : P2
0 → 〈K2,+〉 is a measurable

valuation which is GL(2) contravariant of weight q ≥ 1 if and only if

there are c0, c1 ≥ 0, and c2 ∈ R such that

ZP =











ρπ/2(c1 MP + c2m(P )) for q = 2

ρπ/2(c0P + c1(−P )) for q = 1

{0} otherwise

for every P ∈ P2
0 .
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By (13), Proposition 4.2 is equivalent to the classification of GL(2)
covariant valuations of weight q ≤ −1. Hence Propositions 4.1 and 4.2
imply the following theorem. Note that the case q ∈ (−1, 0) remains
open.

Theorem 4.3. An operator Z : P2
0 → 〈K2,+〉 is a measurable valu-

ation which is GL(2) covariant of weight q ∈ (−∞,−1] ∪ [0,∞) if and

only if there are c0, c1 ≥ 0, and c2 ∈ R such that

ZP =































c1 MP + c2m(P ) for q = 1

c0P + c1(−P ) for q = 0

ρπ/2(c0P
∗ + c1(−P

∗)) for q = −1

ρπ/2(c1 MP ∗ + c2m(P ∗)) for q = −2

{0} otherwise

for every P ∈ P2
0 .

In the proof of Proposition 4.1, the following result is used.

Theorem 4.4 ([36]). Let Z : P
2

0 → 〈K2,+〉 be a valuation which is

GL(n) covariant of weight q. If q = 1, then there are constants c1 ≥ 0
and c2 ∈ R such that

ZP = c1 MP + c2m(P )

for every P ∈ P
2

0. If q = 0, then there are constants a0, b0 ≥ 0 and

ai, bi ∈ R with ai+ b0+ b1 ≥ 0 and a0+a1+ bi ≥ 0 for i = 1, 2 such that

ZP = a0 P + b0(−P ) +
∑

i=1,2
(ai Ei(P ) + bi Ei(−P ))

for every P ∈ P
2

0. In all other cases, ZP = {0} for every P ∈ P
2

0.

Here E1 and E2 are certain operators that map each P ∈ P2
0 to {0}.

4.1. An auxiliary result. We derive a lemma that is also used for
n ≥ 3. For v = (v′, 1) with v′ ∈ R

n−1, define the map φv ∈ SL(n) by
φven = v and φvei = ei for i = 1, . . . , n − 1. For r > 0, define the map
φr ∈ GL(n) by φren = r en and φrei to ei for i = 1, . . . , n − 1. We say
that a function z : Pn

0 → 〈R,+〉 is φr homogeneous of degree p if

z(φr[P, s u, t v]) = rpz([P, s u, t v])

for all P ∈ P0(e
⊥
n ), for all r > 0, and for all u = (u′,−1) and v = (v′, 1)

with u′, v′ ∈ R
n−1. Let B be a centered ball.
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Lemma 4.5. Suppose z : Pn
0 → 〈R,+〉 is a measurable valuation

which is φr homogeneous of degree p 6= 1 and v = (v′, 1) with v′ ∈ R
n−1.

If

lim
s,t→0

z([P,−s en, t en])

exists uniformly for all P ∈ P0(e
⊥
n ) with P ⊂ B and

lim
s,t→0

z(φv [P,−s en, t en]) = z([P,−s en, t en])

uniformly for all P ∈ P0(e
⊥
n ) with P ⊂ B, then

lim
s,t→0

z([P, s u, t v]) = lim
s,t→0

z([P,−s en, t en])

uniformly for all P ∈ P0(e
⊥
n ) with P ⊂ B and all u = (u′,−1) with

u′ ∈ R
n−1.

Proof. First, we show that

(31) lim
s,t→0

z([P, s u, t v])

exists uniformly for P ⊂ B. Since z is a valuation and since u and
v lie in complementary halfspaces, we have for s, t > 0 suitably small,
0 < t′ < t, and t′′ > 0 suitably large with respect to s,

z([P, s u, t v])+z([P,−t′′ v, t′ v])(32)

= z([P, s u, t′ v]) + z([P,−t′′ v, t v]).

Since [P,−t′′ v, t v] = φv[P, I] for I = [−t′′ en, t en], we have by assump-
tion

(33) z([P,−t′′ v, t v]) = z(φv [P, I]) = z([P, I]) + o(1)

as t, t′′ → 0 uniformly for P ⊂ B. Since lims,t→0 z([P, I]) exists uni-
formly for P ⊂ B, we obtain from (32) and (33) that for t′, t′′ = O(t),

z([P, s u, t v]) − z([P, s u, t′ v])

= z([P, [−t′′ en, t en]])− z([P, [−t′′ en, t
′ en]]) + o(1) = o(1)

as t → 0 uniformly for P ⊂ B. Similarly, for s, t′ > 0 suitably small,
0 < s′ < s,

z([P, s u, t′ v])− z([P, s′ u, t′ v]) = o(1)

as s→ 0 uniformly for P ⊂ B. Thus the limit (31) exists uniformly for
P ⊂ B.

For P ∈ P0(e
⊥
n ) fixed, we set

f(u′, v′) = lim
s,t→0

z([P, s u, t v]).

Note that f(0, 0) = lims,t→0 z([P, I]). Since z is a valuation, we have for
r > 0 suitably small,

z([P, s u, t v])+z([P,−rs en, rt en]) = z([P, s u, rt en])+z([P,−rs en, t v]).
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Taking the limit as s, t→ 0 gives

(34) f(u′, v′) + f(0, 0) = f(u′, 0) + f(0, v′).

Since φv[P, s (u
′ + v′,−1), t en] = [P, s u, t v], by assumption

z([P, s u, t v]) = z([P, s (u′ + v′,−1), t en]) + o(1).

Thus f(u′, v′) = f(u′+v′, 0). Setting g(u′) = f(u′, 0)−f(0, 0), it follows
from (34) that

g(u′ + v′) = g(u′) + g(v′)

for u′, v′ ∈ R
n−1. This is the Cauchy functional equation. Since z

is measurable, so is g, and there is a vector w(P ) ∈ R
n−1 such that

g(u′) = w(P ) · u′. Thus

(35) lim
s,t→0

z([P, s u, t v]) = w(P ) · (u′ + v′) + f(0, 0).

Using φr, it follows from (35) and the assumption that

1

r
w(P ) · (u′ + v′) + f(0, 0) = rp(w(P ) · (u′ + v′) + f(0, 0)).

Since this holds for all 0 < r ≤ 1, we obtain w(P ) = 0 (and f(0, 0) = 0
for p 6= 0). This implies the statement of the lemma. q.e.d.

4.2. Proof of Proposition 4.1. Let Z : P2
0 → 〈K2,+〉 be a measurable

valuation which is GL(2) covariant of weight q.

Lemma 4.6. For q 6= −1, there exist a, b ∈ R such that for all

si, ti > 0

h(Z[I1, I2], e1) = (a sq+1

1
+ b tq+1

1
)(sq

2
+ tq

2
)

h(Z[I1, I2], e2) = (a sq+1

2
+ b tq+1

2
)(sq

1
+ tq

1
)

where Ii = [−si ei, ti ei].

Proof. For P ∈ P2
0 , set zi(P ) = h(ZP, ei). If φ ∈ GL(2) is the

transformation that leaves e1 fixed and multiplies e2 by r > 0, then (2)
implies z2([I1, r I2]) = rq+1z2([I1, I2]). Thus z2([I1, · ]) is homogeneous
of degree q + 1 and it follows from (11) that there are a(I1), b(I1) ∈ R

such that

z2([I1, I2]) = a(I1) s
q+1

2
+ b(I1) t

q+1

2
.

If φ ∈ GL(2) is the transformation that leaves e2 fixed and multiplies
e1 by r > 0, then (2) implies z2([r I1, I2]) = rqz2([I1, I2]). Thus a and b
are valuations that are homogeneous of degree q. For q 6= 0, it follows
from (11) that there are constants a, b, c, d ∈ R such that

(36) z2([I1, I2]) = (a sq+1

2
+ b tq+1

2
)(c sq

1
+ d tq

1
)
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for all si, ti > 0. For q = 0, it follows from (10) and (11) that there are
constants a, b, c, d ∈ R such that

(37) z2([I1, I2]) = (a s2 + b t2)(c log(
t1
s1

) + d)

for all si, ti > 0. Define the transformation ψ ∈ GL(2) by ψe1 = −e1 and
ψe2 = −e2. By (2) and (3), z2(ψ[I1, I2]) = z2([−I1, I2]) = z2([I1, I2]).
Combined with (36) and (37), this gives the formula for z2. The formula
for z1 is obtained by applying ρπ/2. q.e.d.

Lemma 4.7. For q ≥ 0, the operator P 7→ h(ZP, ·) for P ∈ P2
0 has

the Cauchy property for P0(e1).

Proof. For Q ∈ P2
0 , set zi(Q) = h(ZQ, ei) and let B be a centered

ball. First, we show that there exist constants a, b ∈ R so that for
all I1 = [−s1 e1, t1 e1], where s1, t1 > 0, for all s, t > 0 and for all
u = (u′,−1) and v = (v′, 1), where u′, v′ ∈ R, we have

(38) z2([I1, s u, t v]) = (a sq+1 + b tq+1)(sq
1
+ tq

1
)

whenever [s u, t v] intersects I1.
Let I = [−s e2, t e2] and define φv, φr ∈ GL(2) as in Lemma 4.5. By

Lemma 4.6, lims,t→0 z2([I1, I]) exists uniformly for I1 ⊂ B. By (2), we
have z2(φr[I1, I]) = rq+1z2([I1, I]) and

z2([I1,−s v, t v]) = z2(φv[I1, I]) = z2([I1, I]).

Thus we apply Lemma 4.5 and obtain by Lemma 4.6 that

(39) lim
s,t→0

z2([I1, s u, t v]) = 0.

Since z2 is a valuation, we have for all s′, t′ > 0 sufficiently small,

z2([I1, s u, t v])+z2([I1,−t
′v, t′v]) = z2([I1, s u, t

′v])+z2([I1,−t
′v, t v])

z2([I1, s u, t
′v])+z2([I1, s

′u,−s′u]) = z2([I1, s u,−s
′u])+z2([I1, s

′u, t′v]).

Hence we have for all s′, t′ > 0 sufficiently small,

z2([I1, s u,t v]) = z2([I1,−t
′ v, t v]) − z2([I1,−t

′ v, t′ v]))

+ z2([I1, s u,−s
′ u] + z2([I1, s

′ u, t′ v])− z2([I1, s
′ u,−s′ u]).

Taking the limit as s′, t′ → 0 and using (39) and Lemma 4.6 gives (38).
It follows from (2) that

h(Z[I1,−s v, t v], e1) = h(Z[I1, I], φ
t
ve1) = h(Z[I1, I], e1 + v′ e2).

Hence, Lemma 4.6, (38) and (4) imply

z1([I1,−s v, t v]) = (a sq+1

1
+ b tq+1

1
)(sq + tq) + o(1)
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as s, t → 0 uniformly for I1 ⊂ B. Note that lims,t→0 z1([I1, I]) exists
uniformly for I1 ⊂ B and that by (2), z1(φr[I1, u, v]) = rq z1([I1, u, v]).
Thus we apply Lemma 4.5 and obtain by Lemma 4.6 that for q > 0

(40) lim
s,t→0

z1([I1, s u, t v]) = 0

uniformly for I1 ⊂ B and for q = 0,

(41) lim
s,t→0

z1([I1, s u, t v]) = 2(a s1 + b t1)

uniformly for I1 ⊂ B.
Let x = (x1, x2) ∈ S1. From (4) and (39), we obtain that

h(Z[I1, s u, t v], x) = z1([I1, s u, t v])x1 + o(1)

as s, t → 0 uniformly for I1 ⊂ B. Combined with (40) and (41), this
completes the proof of the lemma. q.e.d.

Set Y P = h(ZP, ·) for P ∈ P2
0 . Then Y : P2

0 → 〈C1(R
2),+〉 is

a valuation which is GL(2) covariant of weight q. For H a hyperplane
containing the origin, Lemma 4.7 shows that Y has the Cauchy property
for P0(H). Hence Lemma 3.1 implies that we can extend Y and therefore

Z to P
2

0. Thus Theorem 4.4 implies the statement of the proposition.

5. The classification on Pn
0 for n ≥ 3

The aim of this section is to establish the following result.

Theorem 5.1. An operator Z : Pn
0 → 〈Kn,+〉, where n ≥ 3, is a

measurable valuation which is GL(n) covariant of weight q if and only

if there are c0, c1 ≥ 0 and c2 ∈ R such that

ZP =



















c1 MP + c2m(P ) for q = 1

c0 P + c1(−P ) for q = 0

c0 ΠP
∗ for q = −1

{0} otherwise

for every P ∈ Pn
0 .

The proof of Theorem 5.1 is split into two cases. First, we derive in
Section 5.1 the following classification of GL(n) covariant valuations.

Proposition 5.2. An operator Z : Pn
0 → 〈Kn,+〉, where n ≥ 3, is a

measurable valuation which is GL(n) covariant of weight q > −1 if and

only if there are c0, c1 ≥ 0 and c2 ∈ R such that

ZP =











c1 MP + c2m(P ) for q = 1

c0 P + c1(−P ) for q = 0

{0} otherwise

for every P ∈ Pn
0 .
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In Section 5.2, we derive the following classification of GL(n) con-
travariant valuations.

Proposition 5.3. An operator Z : Pn
0 → 〈Kn,+〉, where n ≥ 3, is

a measurable valuation which is GL(n) contravariant of weight q ≥ 1 if

and only if there is a constant c ≥ 0 such that

ZP =

{

cΠP for q = 1

{0} otherwise

for every P ∈ Pn
0 .

By (13), Proposition 5.3 is equivalent to the classification of GL(n)
covariant valuations of weight q ≤ −1. Hence Propositions 5.2 and 5.3
imply Theorem 5.1, while Theorem 2 is an immediate consequence of
Theorem 5.1.

In the proof of Theorem 5.1, the following results are used.

Theorem 5.4 ([36]). Let Z : P
n

0 → 〈Kn,+〉, where n ≥ 3, be a

valuation which is GL(n) covariant of weight q. If q = 1, then there are

c1 ≥ 0 and c2 ∈ R such that

ZP = c1 MP + c2m(P )

for every P ∈ P
n

0 . If q = 0, then there are c0, c1 ≥ 0 such that

ZP = c0 P + c1(−P )

for every P ∈ P
n

0 . In all other cases, ZP = {0} for every P ∈ P
n

0 .

Theorem 5.5 ([36]). Let Z : P
n

0 → 〈Kn,+〉, where n ≥ 3, be a

valuation which is GL(n) contravariant of weight q. If q = 1, then there

are c1, c2, c3 ∈ R with c1 ≥ 0 and c1 + c2 + c3 ≥ 0 such that

ZP = c1 ΠP + c2 Π0 P + c3(−Π0 P )

for every P ∈ P
n

0 . In all other cases, ZP = {0} for every P ∈ P
n

0 .

Here Π0 is a certain operator with the property that Π0 P = {0} for
P ∈ Pn

0 .

5.1. Proof of Proposition 5.2. Let Z : Pn
0 → 〈Kn,+〉, where n ≥ 3,

be a measurable valuation which is GL(n) covariant of weight q. For
n > 3, assume that Proposition 5.2 holds in dimension (n − 1).

Lemma 5.6. For q > −1, there exist a, b ∈ R such that

h(Z[P, I], en) =











a s+ b t for q = 0

(a s2 + b t2)Vn−1(P ) for q = 1

0 otherwise

for every I = [−s en, t en] with s, t > 0 and P ∈ P0(e
⊥
n ).
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Proof. Set z([P, I]) = h(Z[P, I], en). If φ ∈ GL(n) leaves e⊥n fixed
and multiplies en by r > 0, then (2) implies z([P, r I]) = rq+1z([P, I]).
Thus z([P, ·]) is a valuation which is homogeneous of degree q + 1. If
φ ∈ GL(n) is a transformation that leaves en fixed, then (2) implies
z(φ[P, I]) = |detφ|qz([P, I]). Thus z([·, I]) is a valuation for which (17)
holds in dimension (n − 1). The statements follow from Theorem 1.1
and (11). q.e.d.

Lemma 5.7. For q > −1 and q 6∈ {0, 1}, we have Z[P, I] = {0} for

every I ∈ P0(en) and P ∈ P0(e
⊥
n ).

Proof. By Lemma 5.6 and the GL(n) covariance of Z,

(42) h(Z[P, I], en) = h(Z[P, I],−en) = 0.

For I ∈ P0(en), define ZI : Pn−1

0
→ 〈Kn−1,+〉 by setting h(ZI P, x) =

h(Z[P, I], x) for x ∈ R
n−1 and P ∈ Pn−1

0
, where we identify e⊥n and

R
n−1. Note that ZI is a valuation on Pn−1

0
that is GL(n− 1) covariant

of weight q.
Let n = 3. Define Zs

I : P2
0 → 〈K2

c ,+〉 by Zs
I P = ZI(P ) + ZI(−P ).

Since Zs
I is GL(2) covariant of weight q, Lemma 4.6 implies that there

are a(I) ∈ R such that

h(Zs
I [I1, I2], e1) = a(I)(sq+1

1
+ tq+1

1
)(sq

2
+ tq

2
)

h(Zs
I [I1, I2], e2) = a(I)(sq

1
+ tq

1
)(sq+1

2
+ tq+1

2
)

where Ii = [−si ei, ti ei] and si, ti > 0 for i = 1, 2. Define Q ∈ P3
0 as the

convex hull of I1, I2, and I. Let ψ be the linear transformation so that
ψ e1 = e3 and ψ e2 = e2 and ψ e3 = e1. Since Z is GL(3) covariant, it
follows from (42) that

h(Z(ψQ), e1) = h(ZQ, e3) = 0.

Let I = [−s e3, t e3] with s, t > 0 and set si = s and ti = t for i = 1, 2.
We conclude that

h(Zs
I [I1, I2], e1) = 0.

Hence a(I) = 0. Consequently, Lemma 3.2 shows that we can extend

Zs
I to P

2

0. Theorem 4.4 shows that Zs
I P = {0} for all P ∈ P2

0 . Since
ZI(P ) + ZI(−P ) = {0} for all P ∈ P2

0 , we see that ZI is vector-valued.
Consequently, Theorem 1.2 implies that ZI P = {0} for all P ∈ P2

0 .
Hence the lemma holds true for n = 3.

Let n > 3. Since Proposition 5.2 holds in dimension (n−1), we obtain
that ZI P = {0} for all P ∈ P0(e

⊥
n ). Hence the statement of the lemma

holds true for every n > 3. q.e.d.

Lemma 5.8. If q > −1 and q 6∈ {0, 1}, then ZP = {0} for all

P ∈ Pn
0 .
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Proof. Set Zs P = ZP + Z(−P ) and YP = h(Zs P, ·). Note that
Y : P0 → C+

1
(Rn) is a GL(n) covariant valuation. By Lemma 5.7

and Lemma 3.2, we can extend Y and thus Zs to P
n

0 . Theorem 5.4
implies that Zs P = {0} for all P ∈ P0. Hence Z is vector-valued and
Theorem 1.3 implies the statement of the lemma. q.e.d.

Lemma 5.9. There exist a, b ∈ R so that for all P ∈ P0(e
⊥
n ), for all

s, t > 0, and for all u = (u′,−1) and v = (v′, 1) with u′, v′ ∈ R
n−1,

h(Z[P, s u, t v], en) =

{

a s+ b t for q = 0

(a s2 + b t2)Vn−1(P ) for q = 1

whenever [s u, t v] intersects P .

Proof. Set z([P, s u, t v]) = h(Z[P, s u, t v], en). Let B be a centered
ball, let I = [−s en, t en], and let φv , φr ∈ GL(n) be defined as in
Lemma 4.5. By Lemma 5.6, lims,t→0 z([P, I]) exists uniformly for I ⊂ B.
It follows from (2) that z(φr[P, u, v]) = rq+1z([P, u, v]) and

z([P,−s v, t v]) = z(φv [P, I]) = z([P, I]).

Thus we apply Lemma 4.5 and obtain by Lemma 5.6 that

(43) lim
s,t→0

z([P, s u, t v]) = 0.

Since for all s′, t′ > 0 sufficiently small,

z([P, s u, t v]) = z([P,−t′ v, t v]) − z([P,−t′ v, t′ v])+

+ z([P, s u,−s′ u]) + z([P, s′ u, t′ v]) − z([P, s′ u,−s′ u]),

taking the limit as s′, t′ → 0 and using (43) and Lemma 5.6 gives the
statement of the lemma. q.e.d.

Lemma 5.10. There exist a, b ∈ R such that for x ∈ e⊥n

h(Z[P, I], x) =

{

ah(P, x) + b h(−P, x) for q = 0

a(s + t)h(MP, x) + b(s+ t)h(m(P ), x) for q = 1

for every I = [−s en, t en] and P ∈ P0(e
⊥
n ).

Proof. For I ∈ P0(en), define ZI : Pn−1

0
→ 〈Kn−1,+〉 by setting

h(ZI P, x) = h(Z[P, I], x) for x ∈ R
n−1 and P ∈ Pn−1

0
, where we identify

e⊥n and R
n−1. Note that ZI is a valuation on Pn−1

0
that is GL(n − 1)

covariant of weight q. By Theorem 4.3 for n = 3 and by Proposition 5.2
in dimension (n − 1) for n > 3, we obtain that there are a(I), b(I) ∈ R

such that for x ∈ e⊥n ,

h(Z[P, I], x) =

{

a(I)h(P, x) + b(I)h(−P, x) for q = 0

a(I)h(M P, x) + b(I)h(m(P ), x) for q = 1.
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If φr ∈ GL(n) is a transformation that leaves e⊥n fixed and multiplies
en by r > 0, then (2) implies h(Z[P, r I], x) = rqh(Z[P, I], x) for x ∈ e⊥n .
Thus a and b are valuations on P1

0 which are homogeneous of degree q.
By (2), we see that a(I) = a(−I) and b(I) = b(−I) for I ∈ P1

0 . Thus
(10) and (11) imply the statement of the lemma. q.e.d.

Lemma 5.11. If q = 0 or q = 1, then the operator P 7→ h(ZP, ·) for
P ∈ Pn

0 has the Cauchy property for P0(e
⊥
n ).

Proof. Let B be a centered ball and s, t > 0. First, we show that for
all P ∈ P0(e

⊥
n ) with P ⊂ B and for all u = (u′,−1) and v = (v′, 1) with

u′, v′ ∈ R
n−1, we have for x′ ∈ e⊥n ∩B,

(44) h(Z[P, s u, t v], x′) =

{

ah(P, x′) + b h(−P, x′) + o(1) for q = 0

o(1) for q = 1

as s, t→ 0 uniformly whenever [s u, t v] intersects P .
Let I = [−s en, t en] and define φv, φr ∈ GL(n) as in Lemma 4.5.

Since [P,−s v, t v] = φv[P, I], we obtain from (2) that

h(Z[P,−s v, t v], x′) = h(Z(φv [P, I]), x
′) = h(Z[P, I], x′ + (x′ · v) en).

By Lemmas 5.6 and 5.10 it follows from (4) that

h(Z[P,−s v, t v], x′) =

{

ah(P, x′) + b h(−P, x′) + o(1) for q = 0

o(1) for q = 1

as s, t → 0 uniformly. In particular, lims,t→0 h(Z[P, I], x
′) exists uni-

formly. It follows from (2) that h(Z(φr[P, I], x
′) = h(Z[P, I], x′). Thus

we apply Lemma 4.5 for z = h(Z[P, u, v], x′) and obtain by Lemma 5.10
that (44) holds.

Let x = (x′, xn) ∈ Sn−1, where x′ ∈ e⊥n and xn ∈ R. From (4) and
Lemma 5.6, we obtain that

h(Z[P, s u, t v], x) = h(Z[P, s u, t v], x′) + o(1)

as s, t→ 0. Combined with (44), this completes the proof of the lemma.
q.e.d.

Lemma 5.12. If q = 0, then there are constants c0, c1 ≥ 0 such that

ZP = c0 P + c1(−P )

for all P ∈ Pn
0 . If q = 1, then there are constants c1 ≥ 0 and c2 ∈ R

such that

ZP = c1 MP + c2m(P )

for all P ∈ Pn
0 .

Proof. For P ∈ Pn
0 , set Y(P ) = h(ZP, ·). By Lemmas 5.9 and 5.11,

we can apply Lemma 3.1 and extend Y and therefore Z to P
n

0 . Hence
Theorem 5.4 implies the statement of the lemma. q.e.d.
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5.2. Proof of Proposition 5.3. Let Z : Pn
0 → 〈Kn,+〉, where n ≥ 3,

be a measurable valuation which is GL(n) contravariant of weight q.
For n > 3, assume that Proposition 5.3 holds in dimension (n− 1).

Lemma 5.13. For q ≥ 1, there exist a, b ∈ R such that

h(Z[P, I], en) =

{

(a log(t/s) + b)Vn−1(P ) for q = 1

0 otherwise

for every I = [−s en, t en] and P ∈ P0(e
⊥
n ).

Proof. Set z([P, I]) = h(Z[P, I], en). If φ ∈ GL(n) leaves e⊥n fixed
and multiplies en by r > 0, then (12) implies z([P, r I]) = rq−1z([P, I]).
Thus z([P, ·]) is a valuation which is homogeneous of degree q − 1. If
φ ∈ GL(n) is a transformation that leaves en fixed, then (12) implies
z(φ[P, I]) = |detφ|qz([P, I]). Thus z([·, I]) is a valuation for which (17)
holds in dimension (n − 1). The statements follow from Theorem 1.1
and (10). q.e.d.

Lemma 5.14. For q > 1, we have Z[P, I] = {0} for every I ∈ P0(en)
and P ∈ P0(e

⊥
n ).

Proof. By Lemma 5.13 and the GL(n) contravariance of Z,

(45) h(Z[P, I], en) = h(Z[P, I],−en) = 0.

For I ∈ P0(en), define ZI : Pn−1

0
→ 〈Kn−1,+〉 by setting h(ZI P, x) =

h(Z[P, I], x) for x ∈ R
n−1 and P ∈ Pn−1

0
, where we identify e⊥n and

R
n−1. Note that ZI is a GL(n − 1) contravariant valuation of weight q

on Pn−1

0
.

Let n = 3. Define Zs
I : P2

0 → 〈K2
c ,+〉 by Zs

I P = ZI(P ) + ZI(−P ).
Since Zs

I is GL(2) contravariant of weight q, (16) implies that ρπ/2 ZI is
GL(2) covariant of weight q − 1. It follows from Lemma 4.6 that there
is a(I) ∈ R such that

h(ρπ/2 Z
s
I [I1, I2], e1) = a(I)(sq

1
+ tq

1
)(sq−1

2
+ tq−1

2
)

h(ρπ/2 Z
s
I [I1, I2], e2) = a(I)(sq−1

1
+ tq−1

1
)(sq

2
+ tq

2
)

where Ii = [−si ei, ti ei]. Define Q ∈ P3
0 as the convex hull of I1, I2, and

I. Let ψ be the linear transformation so that ψ e1 = e3 and ψ e2 = e2
and ψ e3 = e1. Since Z is GL(3) contravariant, it follows from (45) that

h(Z(ψQ), e1) = h(ZQ, e3) = 0.

Let I = [−s e3, t e3] with s, t > 0 and set si = s and ti = t for i = 1, 2.
We conclude that

h(Zs
I [I1, I2], e1) = 0.

Hence a(I) = 0. Consequently, Lemma 3.2 shows that we can extend Zs
I

to P
2

0. By Theorem 4.4, we have ρ−π/2 Z
s
I P = {0} for all P ∈ P2

0 . Since
ZI(P )+ZI(−P ) = {0} for all P ∈ P2

0 , ZI is vector-valued. Theorem 1.2
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implies that ρπ/2 ZI P = {0} for all P ∈ P2
0 . Hence the lemma holds

true for n = 3.
Let n > 3. Since Proposition 5.3 holds in dimension (n−1), we obtain

that ZI P = {0} for all P ∈ P0(e
⊥
n ). Hence the statement of the lemma

holds true for every n > 3. q.e.d.

Lemma 5.15. If q > 1, then ZP = {0} for all P ∈ Pn
0 .

Proof. Set Zs P = ZP + Z(−P ) and YP = h(Zs P, ·). Note that
Y : P0 → C+

1
(Rn) is a GL(n) contravariant valuation. By Lemma 5.14

and Lemma 3.2, we can extend Y and thus Zs to P
n

0 . Theorem 5.5
implies that Zs P = {0} for all P ∈ P0. Hence Z is vector-valued and
Theorem 1.3 implies the statement of the lemma. q.e.d.

Lemma 5.16. For q = 1, there exist a, b ∈ R such that for x ∈ e⊥n

h(Z[P, I], x) =

{

a(s+ t)h(ρπ/2P, x) + b(s+ t)h(−ρπ/2P, x) for n = 3

a(s+ t)h(ΠP, x) for n > 3

for every I = [−s en, t en] and P ∈ P0(e
⊥
n ).

Proof. For I ∈ P0(en), define ZI : Pn−1

0
→ 〈Kn−1,+〉 by setting

h(ZI P, x) = h(Z[P, I], x) for x ∈ R
n−1 and P ∈ Pn−1, where we identify

e⊥n and R
n−1. Note that ZI is a valuation on Pn−1

0
that is GL(n − 1)

contravariant of weight q = 1.
By Proposition 4.2, we obtain that there are a(I), b(I) ∈ R such that

for x ∈ e⊥n

h(Z[P, I], x) =

{

a(I)h(ρπ/2P, x) + b(I)h(−ρπ/2P, x) for n = 3

a(I)h(ΠP, x) for n > 3.

If φr ∈ GL(n) is a transformation that leaves e⊥n fixed and multiplies en
by r > 0, then (12) implies h(Z[P, r I], x) = r h(Z[P, I], x). Thus a and
b are valuations on P1

0 which are homogeneous of degree 1. By (12), we
see that a(I) = a(−I) and b(I) = b(−I) for I ∈ P1

0 . Thus (11) implies
the statement of the lemma. q.e.d.

Lemma 5.17. For q = 1, there exists b ∈ R such that

h(Z[P, I], en) = b Vn−1(P )

for every I = [−s en, t en] and P ∈ P0(e
⊥
n ).

Proof. By Lemma 5.13, there are a, b ∈ R such that

(46) h(Z[P, I], en) = (a log(
t

s
) + b)Vn−1(P ).

Let P = [I1, . . . , In−1] and let Ii = [−si ei, ti ei]. Define ψ ∈ GL(n) by
ψe1 = en and ψen = e1 and ψei = ei for i = 2, . . . , n − 1. Since Z is
GL(n) contravariant, we have

h(Z[P, I], en) = h(Z(ψ[P, I]), e1).
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It follows from Lemma 5.16 that there are c, d ∈ R such that

h(Z(ψ[P, I]), e1) = c(s1+t1)h(ρπ/2[Î , I2], e1)+d(s1+t1)h(−ρπ/2[Î , I2], e1)

for n = 3 and

h(Z(ψ[P, I]), e1) = c(s1 + t1)h(Π[Î , I2, . . . , In−1], e1)

for n > 3, where Î = [−s e1, t e1]. Comparing coefficients in the above
equations and in (46) gives that a = 0 and completes the proof of the
lemma. q.e.d.

Lemma 5.18. For q = 1, there exist constants a, b ∈ R so that for

all P ∈ P0(e
⊥
n ), for all u = (u′,−1) and v = (v′, 1) with u′, v′ ∈ R

n−1,

and for all s, t > 0, we have for x ∈ e⊥n ,

h(Z[P, s u, t v], x) = a(s+ t)h(ρπ/2P, x) + b(s + t)h(−ρπ/2P, x)

for n = 3 and

h(Z[P, s u, t v], x) = a(s+ t)h(ΠP, x)

for n > 3, whenever [s u, t v] intersects P .

Proof. Let I = [−s en, t en] with s, t > 0 and x ∈ e⊥n . Lemma 5.16
implies that lims,t→0 h(Z[P, I], x) exists uniformly for P ∈ P0(e

⊥
n ) con-

tained in a centered ball. Let φv, φr ∈ GL(n) be defined as in Lemma 4.5.
Since [P,−s v, t v] = φv[P, I], by (12)

h(Z[P,−s v, t v], x) = h(Z[P, I], φ−1
v x) = h(Z[P, I], x).

By (12), we get

h(Z(φr[P, u, v], x) = rq−1h(Z[P, u, v], x).

Thus we apply Lemma 4.5 and obtain by Lemma 5.16 that

lim
s,t→0

h(Z[P, s u, t v], x) = 0

for x ∈ e⊥n .
Since Z is a valuation, we have for s′, t′ > 0 sufficiently small,

h(Z[P, s u, t v], x) = h(Z[P,−t′ v, t v], x) − h(Z[P,−t′ v, t′ v], x)

+ h(Z[P,−s′ u, s u], x) + h(Z[P, s′ u, t′ v], x)

− h(Z[P,−s′ u, s′ u], x).

Taking the limit as s′, t′ → 0 and using Lemma 5.16 gives the statement
of the lemma. q.e.d.

Lemma 5.19. For q = 1, the operator P 7→ h(ZP, ·) for P ∈ Pn
0 has

the Cauchy property for P0(e
⊥
n ).
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Proof. For I = [−s en, t en] with s, t > 0, it follows from Lemma 5.17
that lims,t→0 h(Z[P, I], en) exists uniformly for P ∈ P0(e

⊥
n ) contained in

a centered ball. Let u = (u′,−1) and v = (v′, 1) with u′, v′ ∈ R
n−1,

and let φv, φr ∈ GL(n) be defined as in Lemma 4.5. Since we have
[P,−s v, t v] = φv[P, I], we obtain from (12) that

h(Z[P,−s v, t v], en) = h(Z(φv [P, I]), en) = h(Z[P, I],−v′ + en).

Let B be a centered ball. By Lemmas 5.17 and 5.16, it follows from (4)
that

h(Z[P,−s v, t v], en) = b Vn−1(P ) + o(1)

as s, t→ 0 uniformly for P ⊂ B. By (12), we have

h(Z(φr[P, u, v], en) = h(Z[P, u, v], en).

Thus we apply Lemma 4.5 and obtain that

lim
s,t→0

h(Z[P, s u, t v], en) = b Vn−1(P )

uniformly for P ⊂ B.
Let x = (x′, xn) ∈ Sn−1. From (4) and Lemma 5.16, we obtain that

h(Z[P, s u, t v], x) = h(Z[P, s u, t v], x′) + o(1)

as s, t → 0 uniformly for x ∈ Sn−1 and P ⊂ B. Combined with
Lemma 5.16, this completes the proof of the lemma. q.e.d.

Lemma 5.20. If q = 1, then there is a constant c ≥ 0 such that

ZP = cΠP

for all P ∈ Pn
0 .

Proof. For P ∈ Pn
0 , set Y(P ) = h(ZP, ·). By Lemmas 5.18 and 5.19,

we can apply Lemma 3.1 and extend Y and therefore Z to P
n

0 . Hence
Theorem 5.5 implies the statement of the lemma. q.e.d.

6. Proof of Theorem 1

Let H be a hyperplane containing the origin and let u be a unit
normal vector to H. By Property (iv) in the definition of invariant area
in Section 2, there exists cB(u) > 0 such that

(47) z(K,B) = cB(u)Vn−1(K)

for all K ∈ K(H). Define cB(x) for x ∈ R
n by setting cB(t u) = t cB(u)

for t > 0. Note that cB : Rn → (0,∞) is sublinear by Property (v)
and hence a support function. Define the convex body IB by setting
h(IB,x) = cB(x) for x ∈ R

n. Note that IB ∈ Kn
0 and that IB is origin

symmetric.
By Groemer’s Extension Theorem (see [31]), z(·, B) can be extended

to a valuation on finite unions of convex polytopes in R
n. Hence, for a

polytope P ∈ Kn with facets F1, . . . , Fm lying in hyperplanes with outer
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normal unit vectors u1, . . . , um, we obtain by (47) and the definition of
IB that

z(P,B) =

m
∑

i=1

h(IB,ui)Vn−1(Fi) = nV1(P, IB),

where we used (8). By continuity,

z(K,B) = nV1(K, IB) for every K ∈ Kn.

The convex body IB is called isoperimetrix since it turns out to be the
solution to the isoperimetric problem.

It follows from Property (i), (5), and (6) that

V1(K, IB) = V1(φK, I(φB))

= |detφ|V1(K,φ
−1

I(φB))

= V1(K, |det φ|φ
−1

I(φB))

for all K ∈ Kn and B ∈ Kn
0 . Thus it follows from (9) that

I(φB) = |detφ|−1 φ IB

for all φ ∈ GL(n) and B ∈ Kn
0 . This shows that I : Kn

0 → Kn
0 is GL(n)

covariant of weight q = −1. Since we assume that z is a bivaluation,

z(K,B1) + z(K,B2) = z(K,B1 ∪B2) + z(K,B1 ∩B2)

and therefore by (7)

V1(K, IB1 + IB2) = V1(K, I(B1 ∪B2) + I(B1 ∩B2))

forK ∈ Kn and B1, B2, B1∪B2 ∈ Kn
0 . Thus it follows from (9) that I is a

Minkowski valuation on Kn
0 . Since z is continuous, also I is continuous.

Hence Theorem 4.3 and Theorem 5.1 imply that there is a constant
c ≥ 0 such that IB = cΠB∗ for all B ∈ Kn

0 .

7. An open problem

Theorem 1 shows that the Holmes-Thompson area is the only bivalu-
ation on Kn ×Kn

0 that is an invariant area. Is it also possible to obtain
a complete classifications of bivaluations on Kn ×Kn

c that are invariant
areas? Is the Holmes-Thompson area again the unique such area?
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