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ORLICZ CENTROID BODIES

ERwIN LUuTwAK, DEANE YANG & GAOYONG ZHANG

Abstract

The sharp affine isoperimetric inequality that bounds the vol-
ume of the centroid body of a star body (from below) by the
volume of the star body itself is the Busemann-Petty centroid in-
equality. A decade ago, the L, analogue of the classical Busemann-
Petty centroid inequality was proved. Here, the definition of the
centroid body is extended to an Orlicz centroid body of a star
body, and the corresponding analogue of the Busemann-Petty cen-
troid inequality is established for convex bodies.

The centroids of the intersections of an origin-symmetric body with
half-spaces form the surface of a convex body. This “centroid body” is
a concept that dates back at least to Dupin.

The classical affine isoperimetric inequality that relates the volume
of a convex body with that of its centroid body was conjectured by
Blaschke and established in a landmark work by Petty [53]. Petty’s in-
equality became known as the Busemann-Petty centroid inequality be-
cause, in establishing his inequality, Petty not only made critical use of
Busemann’s random simplex inequality, but as Petty stated, he “rein-
terpreted” it. (See, e.g., the books by Gardner [12], Leichtweiss [25],
Schneider [55], and Thompson [58] for reference.)

The concept of a centroid body had a natural extension in what
became known as the L, Brunn-Minkowski theory and its dual. This
theory had its origins in the early 1960s when Firey (see, e.g., Schneider
[55]) introduced his concept of L, compositions of convex bodies. Three
decades later, in [34] and [35] these Firey-Minkowski L, combinations
were shown to lead to an embryonic L, Brunn-Minkowski theory. This
theory (and its dual) has witnessed a rapid growth. (See, e.g., [1-9,17—
23,26-32,34-44,46-48,54,56, 57,59, 62].)

The L, analogues of centroid bodies became a central focus within
the L, Brunn-Minkowski theory and its dual and establishing the L,-
analogue of the Busemann-Petty centroid inequality became a major
goal. This was accomplished by the authors of the present paper in [37]
with an independent approach presented by Campi and Gronchi [3].
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The L, centroid bodies quickly became objects of interest in asymptotic
geometric analysis (see, e.g., [10], [11], [24], [49], [50], [51], [52]) and even
the theory of stable distributions (see, e.g., [48]).

Using concepts introduced by Ludwig [29], Haberl and Schuster [21]
were led to establish “asymmetric” versions of the L, Busemann-Petty
centroid inequality that, for bodies that are not origin-symmetric, are
stronger than the L, Busemann-Petty centroid inequality presented in
[37] and [3]. The “asymmetric” inequalities obtained by Haberl and
Schuster are ideally suited for non-symmetric bodies. This can be seen
by looking at the Haberl-Schuster version of the L, analogue of the
classical Blaschke-Santalé inequality that was presented in [46]. While
for origin symmetric bodies, the L, extension of [46] does recover the
original Blaschke-Santal6 inequality as p — oo, for arbitrary bodies only
the Haberl-Schuster version does so.

The works of Haberl and Schuster [21] (see also [22]), Ludwig and
Reitzner [32], and Ludwig [31] have demonstrated the clear need to
move beyond the L, Brunn-Minkowski theory to what we are calling
an Orlicz Brunn-Minkowski theory. This need is not only motivated by
compelling geometric considerations (such as those presented in Ludwig
and Reitzner [32]), but also by the desire to obtain Sobolev bounds
(see [22]) of a far more general nature.

This paper is the second in a series intended to develop a few of the
elements of an Orlicz Brunn-Minkowski theory and its dual. Here we
define the Orlicz centroid body, establish some of its basic properties,
and most importantly establish (what we call) the Orlicz Busemann-
Petty centroid inequality (for Orlicz centroid bodies).

We consider convex ¢ : R — [0, 00) such that ¢(0) = 0. This means
that ¢ must be decreasing on (—o0,0] and increasing on [0,00). We
require that one of these is happening strictly so; i.e., ¢ is either strictly
decreasing on (—o0, 0] or strictly increasing on [0, 00). The class of such
¢ will be denoted by C.

If K is a star body (see Section 1 for precise definitions) with respect
to the origin in R™ with volume | K|, and ¢ € C then we define the Orlicz
centroid body I'y K of K as the convex body whose support function at
x € R" is given by

h(F¢K;$):inf{/\>0:ﬁ/K¢<x—)'\y> dy §1},

where x -y denotes the standard inner product of z and ¢ in R™ and the
integration is with respect to Lebesgue measure in R".
When ¢,(t) = |¢t|P, with p > 1, then

T, K =T,K,
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where I,K is the L, centroid body of K, whose support function is
given by

1
h,K;x)P = 4l /K |z -y dy.

For p = 1 the body I},K is the classical centroid body, I'K, of K.
We will establish the following affine isoperimetric inequality for Or-
licz centroid bodies.

Theorem. If ¢ € C and K is a convex body in R™ that contains the
origin in its interior, then the volume ratio

T K[/ K|
is minimized if and only if K is an ellipsoid centered at the origin.

The theorem contains as a special case the classical Busemann-Petty
centroid inequality for convex bodies [53], as well as the L, Busemann-
Petty centroid inequality for convex bodies that was established in [37]
and [3] and the “asymmetric” version of the L, Busemann-Petty cen-
troid inequality for convex bodies that was established by Haberl and
Schuster [21].

For quick later reference, we list in Section 1 some basic, and for
the most part well-known, facts regarding convex bodies. The basic
properties of the Orlicz centroid operator are developed in Section 2.
In Section 3 the Theorem is established. Section 4 concludes with some
open problems.

Acknowledgements. The authors are indebted to the referees for
their very careful reading of the original submission.

1. Basics regarding convex and star bodies

The setting will be Euclidean n-space R™. We write eq, ..., e, for the
standard orthonormal basis of R” and when we write R = R*~! x R
we always assume that e, is associated with the last factor.

We will attempt to use x,y for vectors in R" and 2,4y’ for vectors in
R™~1. We will also attempt to use a, b, s, t for numbers in R and ¢, \ for
strictly positive reals. If () is a Borel subset of R” and () is contained in
an i-dimensional affine subspace of R™ but in no affine subspace of lower
dimension, then |@| will denote the i-dimensional Lebesgue measure of
Q. If z € R™ then by abuse of notation we will write |z| for the norm
of x.

For A € GL(n) write A’ for the transpose of A and A~ for the inverse
of the transpose (contragradient) of A. Write |A| for the absolute value
of the determinant of A.

We say that a sequence {¢;}, of ¢; € C, is such that ¢; — ¢, € C
provided

61— ol1 += max |i(t) — Bo(B)] — 0,
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for every compact interval I C R. For ¢ € C define ¢* € C by

1
(11) (1) = /O o(ts) ds",

where ds" = ns""!ds. Obviously, ¢; — ¢, € C implies ¢F — ¢?.
Associated with each ¢ € C is ¢4 € (0,00) defined by

¢y = min{c > 0 : max{¢(c), p(—c)} > 1}.

Let p(K;-) = px : R\ {0} — [0,00) denote the radial function of
the set K C R", star-shaped about the origin; i.e. p(K,z) = pg(x) =
max{\ > 0: Az € K}. If px is strictly positive and continuous, then
we call K a star body and we denote the class of star bodies in R™ by
SI'. If ¢ > 0, then obviously for the dilate ¢cK = {cz : € K} we have

(1.2) PeK = CPK -
The radial distance between K,L € S) is

Pk — pLloc = max |px(u) — pr(u).
ueSn—1

Let h(K;-) = hi : R™ — R denote the support function of the convex
body (compact convex) K C R"; i.e., h(K;x) = max{zx -y :y € K}.
The Hausdorff distance between the convex bodies K and L is

|hg — hrloo = max |hi(u) — hp(u)l.
uesSn—1

We write K" for the space of convex bodies of R". We write K for the

set of convex bodies that contain the origin in their interiors. On K7

the Hausdorff metric and the radial metric induce the same topology.
We shall require the obvious facts that for K, L € K™, we have

(1.3) KclL if and only if  hgx < hp,
and that for ¢ > 0 and x € R",
(1.4) hex (z) = chi (x) and hi(cx) = chi(x).

More generally, from the definition of the support function it follows
immediately that for A € GL(n) the support function of the image
AK = {Ay :y € K} of K is given by
(1.5) hAK(x) = hK(Atx)

For K € S8, define the real numbers Rx and rg by

(1.6) Ri = max pg(u) and rg = min pg(u).
uesSn—1 uesSn—1

Note that the definition of S’ is such that 0 < rx < Rg < oo, for all
Kes).
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Throughout, B = {z € R" : |z| < 1} will denote the unit ball centered
at the origin, and w,, = |B| will denote its n-dimensional volume. We
shall make use of the trivial fact that for u, € S*~1,

(1.7) wn_lz/sn(?o.u)erS(u):%/snl g - | dS(u),

where (t)+ = max{t,0} for ¢t € R, and where S denotes Lebesgue mea-
sure on S"!:ie., S is (n — 1)-dimensional Hausdorff measure.

For a convex body K and a direction v € S"!, let K, denote the
image of the orthogonal projection of K onto u', the subspace of R™
orthogonal to u. We write £,(K;-) : K, — R and ¢,(K;-) : K, = R
for the undergraph and overgraph functions of K in the direction u; i.e.

K={y+tu: —L,(K;y)<t<l,(K;y)fory € K,}.
Thus the Steiner symmetral S, K of K € K7 in direction u can be

defined as the body whose orthogonal projection onto u' is identical to
that of K and whose undergraph and overgraph functions are given by

(1.8a) Cu(SuK;y) = %[ﬁu(K;y’) + Cu(K; )]
and
(1.8b) (4 (SuK;y) = %[ﬁu(K;y’) + Cu(K3 ).

For y € K, define m,, = m,(u) by
1-
my (u) = 5[0u(K:y) = Lu(Ky)]

so that the midpoint of the chord K N (v 4+ Ru) is y’ + my (u)u. The
length |K N (y' + Ru)| of this chord will be denoted by o,y = oy (u).
Note that the midpoints of the chords of K in the direction u lie in a
subspace if and only if there exists an 2/ € K,, such that

z, -y =my, for all i € K,.

In this case {y — £, (K;y )u : ¢ € relint K, }, the undergraph of K with
respect to u, is mapped into the overgraph by the linear transformation

y' +tu — '+ 225 - y) — tu
A classical characterization of the ellipsoid is the following: A convex
body K € K} is an origin centered ellipsoid if and only if for each
direction u € 8"~ ! all of the midpoints of the chords of K parallel to u

lie in a subspace of R™. Gruber [15] showed how the following Lemma
is a consequence of the Gruber-Ludwig theorem [16]

Lemma 1.1. A convex body K € K} is an origin centered ellipsoid if
and only if there exists an ex > 0 such that for each direction v € S*~!
all of the chords of K that come within a distance of ek of the origin
and are parallel to u, have midpoints that lie in a subspace of R™.
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When considering the convex body K € R"! xR, for (z/,¢) € R" ! x
R we will usually write h(K;2’,t) rather than h(K; (2/,t)).
The following is well known:

Lemma 1.2. Suppose K € K andu € S"~ 1. Fory' € relint K, the
overgraph and undergraph functions of K in direction u are given by

(1.92) Cu(K3y) = min {h(K;2',1) —a' -4},
and
(1.9b) Cu(Ksy) = gélnl {h(K; 2, —-1) -2 y'} .

See [3] for an application of (1.9a) and (1.9b) to the proof of the L,
Busemann-Petty centroid inequality.

Proof. Suppose ' € u'. From the definition of the overgraph it

follows immediately that ¢’ + £, (K;y")u € K, and thus the definition
of the support function shows that

(' + (K59 )u) - (2 +u) < hy (2 +u).
Thus,
o'y + (K y) < hi (2! +u) = h(K; 2", 1),
for all ' € u™t. ~
Since K has a support hyperplane at '+ /¢, (K; 1y )u € 0K, and since
y' € relint K, there exists a vector of the form 2/, +u, with 2/, € u*, so
that
(' +Cu(Ksy)u) - (2, +u) = hic(ag, +u) = h(K;2),1).
Therefore,
?.(K;y') = min {h(K;x',l) — m/'y'}.

' cut

Formula (1.9b) can be shown in the same way. q.e.d.

We shall require the following crude estimate.

Lemma 1.3. Suppose K € K? and v € S"~L. Ify/ € (rk/2)BNu*,
and x|, 2% € ut are such that
Cu(Ksy') = WK, 1) — 2 - yf
and
then both

2Rk
EANEARES -
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Proof. Note that since 3/ € (rx/2)BNu", it follows that both £, (K
y')>0and £,(K;y') > 0.
Observe that since rx B C K, we have from (1.3),

1
(1.10) hx _ @D > rg.
V142 ?
From the fact that K contains the origin in its interior, the definition
of Ry, the hypothesis, (1.10) and (1.4), we have

Ry > Lu(Ksy')
= h(Kal{l’l) _l{l 'y/
> (L4 [2h )2 —af -y
> il — a1y
TK
> o] — e
where the last step comes from the hypothesis that |y/| < rg/2.

The estimate for |24| can be established in the identical manner.
q.e.d.

2. Definition and basic properties of Orlicz centroid bodies

If ¢ € C, then the Orlicz centroid body I', K of K € S is defined as
the body whose support function is given by

(2.1) hp¢K(:E):inf{)\>0:ﬁ/K¢<x—;\y) dy§1},

where the integration is with respect to Lebesgue measure on R™. Ob-
serve that since limg oo ¢(s) = 00 or lims,_oo P(s) = oo we have
hr,k(z) > 0 whenever x # 0.

It will be helpful to also use the alternate definition:

(2.2) hr,k(x) = inf {/\ >0: /S ¢* (F(z - w)pK (u)) dVi(u) < 1} ,

n—1

where ¢* is defined by (1.1) and dV} is the volume-normalized dual
conical measure of K, defined by

1
|[KdVie = —plic dS,

where S is Lebesgue measure on S"~! (i.e., (n — 1)-dimensional Haus-
dorff measure). We shall make use of the fact that the volume-normalized
dual conical measure

(2.3) Vi is a probability measure on St
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The equivalence of the two definitions is a consequence of the fact that

e [ o(5e)dr= 2 [ o (3 vomo) prlor ast)

To see (2.4) observe that:

o) o
_ /S B /O pK(v)qsG(g;.u)r) L dr dS(v)
_ /S . < /0 1 é G(x : v)pK(v)t> ¢t dt> pi (v)"dS(v)

2 [ o (56 0ox@)) prlo ase

n

Since ¢* is strictly increasing on [0,00) or strictly decreasing on
(—00,0] it follows that the function

e [ G vn() avi o)

is strictly decreasing in (0, 00). It is also continuous. Thus, we have:

Lemma 2.1. Suppose K € S? and u, € S"~ 1. Then

/ 6" (& (o v)pr(v)) AVi(v) =1
Sn—1
if and only if

hp¢K(uo) = )\o'

Observe that (1.4) now shows that Lemma 2.1 holds for all u, €

R™\ {0}.
We now demonstrate that (2.1) defines a convex body that contains
the origin in its interior.

Lemma 2.2. If K € §) then hr, i is the support function of a body
n K.

Proof. Observe that it follows immediately from definition (2.1) that
for x € R™ and ¢ > 0,

hF¢K(C$) = ChF¢K($).
We show that indeed for nonzero x1,z9 € R",
hryk(r1+22) < hryr(21) + b, (22).

To that end let hr,k(z;) = A; i.e.,

25) o (5ot aviw -1
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The convexity of the function s — ¢*(s px(u)) shows that

([ T1-utzT2 U
_ U
o (P )
)\1 <[ T1-U )\2 [ T2-U
< .
<o (Bten) + 12 (B k)
Integrating both sides of this inequality with respect to the measure Vy
and using (2.5) gives

o @1t @) u >
= u) | dVi(u) < 1,
[ o (B o) v <
which, using (2.2), gives the desired result that
hp¢K(x1+332) < AL A Ao

Thus hr,x is indeed the support function of a compact convex set, and
since hr,rc > 0 on R™\{0}, we see that [4K € K. q.e.d.

We shall require more than hr,x > 0. Specifically,
Lemma 2.3. If K € S, then

W rn-‘rl R
nollK < hF¢K(U) < K)
nees | K| Cor

for all u € S,

Proof. Suppose u, € S"! and let hp¢K(uo) = Ao, 1.€.

e [ o (M ) L

To obtain the lower estimate we proceed as follows. From the defini-
tion of cg», either ¢*(cgx) = 1 or ¢*(—cy«) = 1. Suppose ¢*(cg+) = 1.
Then from the fact that ¢* is non-negative and ¢*(0) = 0, Jensen’s in-
equality, and definition (1.6) together with the fact that ¢* is monotone
increasing on [0,00) and (1.7), we have

¢*(cpr) =1
- /Sn1 o* <M PK(U)> P (u)" dS(u)

Ao n|K|

[ (L ) et 50

(1 /Sn1 (o - u)+ prc(w)"! dS(M))

n Ao K]

* w”—lr?{—i—l
nXo |K| |-

v

*

> ¢

v
<
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Since ¢* is monotone increasing on [0, o), from this we obtain the lower

bound for hr,k:

n+1
Wn—1Tg

neg | K| S Ao
The case where ¢*(—cg+) = 1 is handled the same way and gives the
same result.

To obtain the upper estimate, observe that from the definition of
ce*, the fact that ¢* is monotone decreasing on (—oo,0] and mono-
tone increasing on [0,00), together with the fact that the function
t — max{¢*(t),¢*(—t)} is monotone increasing on [0,00), definition
(1.6), and finally (2.3) it follows that

max{¢*(cy ), " (—ce)}
=1

_ /S oy (“;(‘)“pK(u)> AV (u)

< [ o (Lortionl)) e (o tlonl))) gy

< [ max{a*(pse(u)/Ao), 6" (—prc (1) Ao))} AV ()

< Snglax{W(RK//\o),¢*(—RK//\0)}deE(U)

= max{¢"(Ri/Ao), " (= Rk /o) }-

But the even function ¢t — max{¢*(t), »*(—t)} is monotone increasing

on [0, 00) so we conclude
N < BK
Cop*

q.e.d.

For ¢ > 0, an immediate consequence of definition (2.2) and (1.2) is
the fact that

(2.7) I,eK = cIL,K.
¢ ¢

We next show that the Orlicz centroid operator Iy : S — S is
continuous.

Lemma 2.4. Suppose ¢ € C. If K; € S and K; — K € S}, then
F(j)Kz' — Fd)K.
Proof. Suppose u, € S"~!. We will show that
hr,k, (o) = hr,k(uo).
Let
hr,k; (o) = A,
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and note that Lemma 2.3 gives

n+1
Wn—1Tg. Ry,
R < 2R
NCpx ’Kz‘ Cop

Since K; -+ K € §)', we have rg, = rxg > 0 and Rg, - Rg < oo, and
thus there exist a,b such that 0 < a < A\; < b < o0, for all i. To show
that the bounded sequence {\;} converges to hr,x(u,), we show that
every convergent subsequence of {);} converges to hr, i (u,). Denote an
arbitrary convergent subsequence of {\;} by {\;} as well, and suppose
that for this subsequence we have

Obviously, a < A\, < b. Let K; = )\i_lKZ-. Since )\i_l — /\*_1 and
K; — K, we have

KZ' — /\;1K
Now (2.7), (1.4), and the fact that hr,k,(u,) = A;, shows that
hr, &, (uo) = 1; Le.

[ o () V(1) = 1.
for all 4. But K; — A;'K and the continuity of ¢* now give

[ o ) Vi (00 = 1.
which by Lemma 2.1 gives
hF¢A:1K(uo) =1
This, (2.7) and (1.4) now give
hF¢K(uO) = )\*.
This shows that hr,, (uo) = hr,x(u,) as desired.
But for support functions on S”~! pointwise and uniform convergence

are equivalent (see, e.g., Schneider [55, p. 54]). Thus, the pointwise
convergence hp¢Ki — hp¢K on S™ ! completes the proof. q.e.d.

We next show that the Orlicz centroid operator is continuous in ¢ as
well.

Lemma 2.5. If ¢; € C and ¢; — ¢ € C, then L'y, K — I'y K, for each
K eS].
Proof. Suppose K € S and u, € S"~'. We will show that for the
support functions of the convex bodies I'y, K we have
hF%.K(Uo) — hp¢K(uo).
Let
hr,, k(o) = Ai,
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and note that Lemma 2.3 gives

1
Wp_1T5" <\ < Rk
negs [K[ = 70 T ey

Since ¢; — ¢* € C, we have cgr — ¢y« € (0,00) and thus there exist
a,b such that 0 < a < \; < b < o0, for all 4.

To show that the bounded sequence {\;} converges to hr,k (uo), we
show that every convergent subsequence of {);} converges to hr, k (uo).
Denote an arbitrary convergent subsequence of {\;} by {\;} as well,
and suppose that for this subsequence we have,

Obviously, 0 < a < A, < b. Since h(Iy, K;u,) = A,

1= [ ot (M o) Vi,

This, together with ¢ — ¢* € C and \; — A, gives

1= [ o (M tw)) avico)

But by Lemma 2.1 this gives
hF¢K(uO) = )\*.

This shows that h(I'y, K;ue) = h(I's K u,) as desired.
Since the support functions hr‘% K — hp¢ Kk pointwise (on S"_l) they
converge uniformly and hence

F(z,iK — F¢K

The operator I, intertwines with elements of GL(n):

Lemma 2.6. Suppose ¢ € C. For a star body K € S]' and a linear
transformation A € GL(n),

(2.8) T,(AK) = A(T,K).

Proof. From (2.7) it follows that we may assume, without loss of
generality, that A € SL(n).
Suppose z, € R"\{0} and

hIyAK;2,) = o
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From Lemma 2.1 and (2.4), the substitution z = Ay and the facts
that |AK| = |K| and dz = |A|dy = dy, we have

|

- R /AK S0~ 2/\g) dz
|

- /K o0 - Ay/No) dy

= ﬁ /K ¢(Atxo : y/)‘o) dy

But by Lemma 2.1, (2.4) and (1.5) this implies that
Mo = h(TyK; Alz,) = h(AT,K; 2,),
giving h(Ty AK; 2,) = h(AT4 K x,). q.e.d.
3. Proof of the Orlicz Busemann-Petty centroid inequality

The proof of our theorem makes critical use of:

Lemma 3.1. Suppose ¢ € C, and K € K?. Ifu € S" ! and 2,2} €
ut, then

1 1

Equality in the mequalzty implies that all of the chords of K parallel to
u, whose distance from the origin is less than
'K
2max(L, |27, [ 5]}

have midpoints that lie in a subspace.

Proof. In light of Lemma 2.6 we may assume, without loss of gener-
ality, that |K| =1 =|S,K]|.

Let K’ = K, denote the image of the projection of K onto the sub-
space ut. For each y' € K, let oy/(u) = 0, = | K N (¥ + Ru)]| be the
length of the chord K N (y’ +Ru), and let m,» = m,(u) be defined such
that y' + m,u is the midpoint of the chord K N (y' 4+ Ru).

For Ay, Aa > 0, we have

i, 1) - 1) - (y,s
Tn/+0' //2
/ dy,/ (xl ?; +s> "
’ My =0y /2 1
(32) o, /2 y/+t+m ,
dy’/ ( y>dt
’ o, /2 A1

:/ ¢<””1 Y +t+my’(“)>dy’dt,
SuK A1

=
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by making the change of variables ¢ = —m,, + s, and
(x/27_1)’y / (w/27_1) '(ylvs) ’
—= - = \|d dy'd
/K<z5 < s y=1[ ¢ " y'ds
m /—|—0' //2 €T
d / ( 2"y = > ds
/' Y =2 A2
a, //2 . _ ,
! —0o //2 A2
— / (b x2 y + t - my’ (u) dy/dt7
WK A2

by making the change of variables ¢t = m,, — s.
Abbreviate

/ / /
x, = %xl + %wz and A\, = %)\1 + %)\2,

and from the convexity of ¢, follows
(3.4)

-y +t iy +t+my Ao [xhy +t—my
9 Lo¥ 1 DY Iy ) A2 (T2 TRy
¢< " ) ¢< N W X2

- (3.4), we have

3.2)
/\ l’l, . )\2 (33,27_1)'3/
o (52 e 3 o (B572) o

M ¢<wl.y/+t+my(u)> dy/dt
SuK

From (

)\O A1
e oyt omy )
t
P <z>< - dy'd
(3.5) 1 Loy + ¢
Z2/ (b (21:11—1_ 2'1;2)1 Yy + dy/dt
uK A1+ 52

1. 1, 1) - (¢ .t
2/ (b (23:1"11'21'271) (y7 ) dy/dt
uK A1+ 52

Lo (S

A = h(T,K;27,1) and Xy = h(TpK; x5, —1);

Choose

recall that |K| =1 and we have from Lemma 2.1 and (2.4),

oS s (2
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But this in (3.5), and the fact that | S, K| = 1 shows that

~[SuK] Js,x EONEE DY 7

which by definition (2.1) gives

h(T(SuK); 32h + 32h,1) < X+ 3o,

with equality forcing (in light of the continuity of ¢) equality in (3.4)
for all y' € K" and all t € [—0y//2,0,/2].

This establishes the desired inequality.

Suppose there is equality. Hence there is equality in (3.4) for all
y € K'and all t € [—0y /2,0, /2].

From definition (1.6) of rx we see that if |y/| < rx /2 then

_TK 'K % Uy’)
(3.6) (53 < (m =S +3

and therefore also

TK TK Uy’ Uy’
(36b) <—7, 7) C <—my’ - 7, — Ty + B ) .
Suppose ¢ is such that
[/l =
2max{1, |z}, |25}

Then,

TK TK 'K TK

-y € (—7,7) and rhy € (—7,7>

and from (3.6) it follows that

oy Oy Oy Oy
x’l-y'+myr€<—2,2) and xé'y'—my/€<—2, 2).

Thus, the linear functions
te 2y +t+my and te ah-y +t—my

both have their root in (—o,//2,0,//2). Thus, they either (1) have their

root at the same t = t, € (—oy/2,0,/2) or (2) there will exist a

t=t;, € (—oy/2,0,/2) at which these functions have opposite signs.
Consider case (2) first. The fact that

-y ity +my and @y -y 4t —my
have opposite signs tells us that

gy +t+my and by +t—my
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have opposite signs for all ¢ € (tZ’ — Oy, by + d,) for some §,y > 0. This
and the fact that there is equality in (3.4) together with the fact that
¢ can not be linear in a neighborhood of the origin give
2y +t+my  why +t—my
A1 B A2 ’
for all t € (¢, — 6/, ¢y, + d,/) which contradicts the assumption that the
linear functions have opposite signs.
In case (1) the linear functions

te 2y +t+my and te ah-y +t—my

have a root at the same t = t,, € (—0,//2,0,//2) and this immediately
yields

(25 —21) -y = 2my.
But this means that for | y'| < rx/max{2,2|z}],2| 24|}, the midpoints
{(',my) 1y € K'}
of the chords of K parallel to u lie in the subspace that contains
{(, 5(ay —21) -y) ¢ € K'}
of R™. g.e.d.

As an aside, observe that the inequality of Lemma 3.1 could have
been presented as:

1
h(IT(SuK); 2af + 4ah, —1) < —h(T,K; ), 1) + §h(F¢K; xh, —1).

N =

If ¢ is assumed to be strictly convex, then the equality conditions of
the inequality in Lemma 3.1 are simple.

Lemma 3.2. Suppose ¢ is strictly convex and K € K. If u € S"1
and z}, 7% € ut, then

1
h(Ts(SuK); 22} + 35, 1) < Sh(TyK;27,1) + §h(F¢,K;x’2, —1),

DO | =

and

1
h(IT(SuK); daf + 4ah, —1) < —h(T,K; ), 1) + §h(F¢K; xh, —1).

1
2
Equality in either inequality, implies

h(P¢K; x'l, 1) = h(F¢K; a:'z, —1)
and that all of the midpoints of the chords of K parallel to u lie in a
subspace.
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Proof. Observe that equality forces equality in (3.4) for all ¢/ € K’
and all t € [—0,/2,0,/2]. But since ¢ is strictly convex this means
that we must have

oy +t+my by +t—my

for all t € (—oy/2,0,/2), where \i = h(I[LK;z},1) and Ay =
h(IyK; 25, —1). Equation (3.7) immediately gives

h(TyK;2h,1) = A = Ay = h(TyK;ah, —1),
and
(zy—2) -y = 2my,

for all 4 € K’. But this means that the midpoints {(y',m,) : v/ € K'}
of the chords of K parallel to u lie in the subspace that contains

1
{<y’, 5(:6'2 — ) y'> 1y € K’}

of R™. q.e.d.

The theorem will be proved using:

Lemma 3.3. Suppose ¢ € C and K € K?. If u € S, then
(3.8) Tp(SuK) C Su(ITHK).

If the inclusion is an identity then all of the chords of K parallel to u,
whose distance from the origin is less than

TK TT,K
4R1"¢K ’

have midpoints that lie in a subspace.

Proof. Suppose y' € relint (F¢K )u- By Lemma 1.2 there exist :1:’1 =
71 (y') and x5 = x5(y’) in ut such that

(F¢K7 y/) = hF¢K(gj€l7 1) - 33‘,1 : y/7

ly
(3.9)
ﬁu(RﬁKa y/) = hF¢K(x,27 _1) - ‘T/2 : y,'
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Now by (1.8), (3.9), followed by Lemma 3.1, and then Lemma 1.2 we
have

(3.10)

_ _ 1
Cu(SuTpK);y') = (DK y') + §£u(F¢K;y’)

1
(hp¢K(x3, 1) — 2} -y') + 3 (hF¢K($/27 —1) —ab - y')

RN =N

1
§hF¢K(SE/1, 1)+ §hF¢K($I27 —1) = (32} + 323) -y

/

> hr,(s,5) (321 + 35, 1) — (521 + 523) - y
> min {h 1) —a - ,}
- o' eut FtP(SuK)( ) Yy

=Ly (Ffb(SuK); y’),
and

_ 1
L(Su(TyK);y) = 0, (T K y') + §£u(F¢K;y’)

N =N

1
1
= §hF¢K($/17 1) + §hF¢K($l27 _1) - (%x/l + %l‘é) ’ y/

/

> hr¢(suK)(%$/1 + %xév -1) - (%55/1 + %15/2) Y
> min {h 2, 1) -2 /}
= min 4 hrys, 0@, —1) =2y

Lu(Ty(Suk )i y).

This establishes the inclusion.

Now suppose

Tp(SuK) = S, (T4 K).

Then by Lemma 1.2, for each y' € ([yK), N (rr,x/2)B, there exist
o =2} (y') and x4 = 24(y') in ut such that
ZU(I};,K, y) = hp¢K(x/1, 1) -2} -y,
L(TsK,Y') = hryre (25, —1) — 25 - ¢/,
and since I'y (S, K) = Sy (I K), from (3.10) we see that

(3.11)

1 1
(3.12) th(SuK)(%x& + %ZEIQ, 1) = §hF¢K(:E/1, 1)+ §hF¢K(:E/2, —1).

From Lemma 1.3 and (3.11), it follows that both

2R
FARE =i
1 2
TTyK

But now (3.12) and the equality conditions of Lemma 3.1 show that all
of the chords of K parallel to u, whose distance from the origin is less
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than
TK TT,K
4RF¢ K
have midpoints that lie in a subspace. g.e.d.

As a direct consequence of Lemma 1.1, we now have:

Corollary. Suppose ¢ € C and K € K. If u € S"71, then
If the inclusion is an identity for all u, then K is an ellipsoid centered
at the origin.

The Corollary and a standard Steiner symmetrization argument now
yield:

Theorem. If ¢ € C and K € K}, then the volume ratio |T,K|/|K|

o
is minimized if and only if K is an ellipsoid centered at the origin.

4. Open Problems

The class-reduction technique introduced in [33] can be used to show
that once the Busemann-Petty centroid inequality and its equality con-
ditions have been established for convex bodies (in fact for a much
smaller class of bodies) then one can easily extend the inequality and
its equality conditions to all star bodies. It was shown in [37] that
this is also the case for L, centroid bodies. Does there exist a similar
class-reduction technique that is applicable for Orlicz centroid bodies?

Conjecture. If ¢ € C and K € S}, then the volume ratio | T, K|/| K|
18 minimized only by ellipsoids.

In [45], the Orlicz projection body II4K of a convex body K € K7,
was defined as the convex body whose support function is given by

(4.1) hn,k(z) =inf {/\ >0: /S O(3(z - u)pr+(u)) dVi (u) < 1} ,

where Vi, the volume-normalized conical measure, is defined by

n—1

1
|K|dVic = ~h dSk,

and Sk is the classical Aleksandrov-Fenchel-Jessen surface area measure
of K. Let IIy K = (II,K)" denote the polar Orlicz projection body of
K. Compare definition (4.1) with definition (2.2).

In [45], the following inequality was established.

Orlicz Petty projection inequality. Suppose ¢ € C is strictly
convex. If K € K} then the volume ratio

[T/ | K]

1s mazimal if and only if K is an ellipsoid centered at the origin.
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The technique introduced in [33] shows that once the Petty Pro-
jection inequality has been established then one can easily derive the
Busemann-Petty centroid inequality as a consequence, and vice versa.
The same is true of the L, Busemann-Petty centroid inequality and
the L, Petty projection inequality. Is there an easy road from the Or-
licz Petty projection inequality to the Orlicz Busemann-Petty centroid
inequality? Is there an easy road from the Orlicz Busemann-Petty cen-
troid inequality to the Orlicz Petty projection inequality?

(1]

(15]
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