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INSUFFICIENT CONVERGENCE OF INVERSE MEAN

CURVATURE FLOW ON ASYMPTOTICALLY

HYPERBOLIC MANIFOLDS

André Neves

Abstract

We construct a solution to inverse mean curvature flow on an
asymptotically hyperbolic 3-manifold which does not have the con-
vergence properties needed in order to prove a Penrose–type in-
equality. This contrasts sharply with the asymptotically flat case.
The main idea consists in combining inverse mean curvature flow
with work done by Shi–Tam regarding boundary behavior of com-
pact manifolds. Assuming the Penrose inequality holds, we also
derive a nontrivial inequality for functions on S2.

1. Introduction

A Penrose inequality for asymptotically flat 3-manifolds was proven
independently by Huisken-Ilmanen [8], using inverse mean curvature
flow, and Hugh Bray [1], using a conformal deformation of the ambient
metric. Recently, Hugh Bray and Dan Lee [1] extended Bray’s approach
and prove a Penrose inequality for dimensions less than 8.

In this paper we investigate an analogous problem for (M,g), an
asymptotically hyperbolic 3-manifold with scalar curvature R ≥ −6.

We start by mentioning that these manifolds can arise in General
Relativity in two ways: As spacelike hypersurfaces in space-time with
a cosmological constant Λ = −3 or as “hyperboloidal hypersurface”
in space-time (i.e., second fundamental form h in space-time satisfies
h = g) with cosmological constant Λ = 0. In both cases, the dominant
energy condition translates into

R ≥ −6.

We also recall that the mean curvature of an apparent horizon Σ is given
by H = trΣh. Hence, in the first case (Λ = −3) and assuming that
h = 0 (time-symmetric hypothesis), we have that apparent horizons are
minimal surfaces, while in the second case (Λ = 0) apparent horizons
correspond to H = 2 surfaces.
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Broadly speaking, the Penrose inequality says that, assuming the
dominant energy condition, the presence of outermost apparent horizons
implies (conjecturally) a lower bound on the “mass” of M . Following
the presentation of [2], the lower bound should be given by

Mass ≥ |Σ|1/2
(16π)3/2

(
16π − 4

3
Λ|Σ|

)
,

where Σ is a sphere which is an outermost apparent horizon (see next
subsection for definitions) and Λ is the cosmological constant.

Xiadong Wang in [16] proposed a definition of mass (see also [5] and
[6] for a less restrictive definition) and conjectured the following version
of the Penrose inequality for Λ = 0. The definition of mass M will be
recalled in the next subsection.

Conjecture. If Σ0 is an outermost sphere with H(Σ0) = 2, then

M ≥
( |Σ0|
16π

)1/2

.

If equality holds then (M,g) is isometric to an Anti–de Sitter–Schwarz-

schild manifold outside Σ0.

The main purpose of this paper is to show that, contrarily to what
was suggested in [16], the inverse mean curvature flow does not have
the necessary convergence properties needed to prove this conjecture.

As it was pointed out by the referee, our argument does not carry to
the case Λ = −3, i.e., where Σ0 is an outermost minimal surface. At the
end of the proof of Theorem 1.2, in Section 5, we suggest a modification
in our argument that would handle that case.

We should also point out that, even if it is geometrically natural, there
is no physical evidence supporting the choice of the mass considered
in [16]. An evidence-based choice for the “correct” mass term in the
Penrose inequality was suggested by Chruściel and Simon in [4] (see
also [2]) which we now briefly describe. Like before, we refer the reader
to the next subsection for the relevant definitions.

Assume that there is a smooth function u defined on M so that
∂{u < 0} coincides with the outermost horizon Σ0, and the surfaces
Σt = ∂{u < t} give a smooth solution for inverse mean curvature flow.
Set the mass to be the limit of the Hawking masses

Mass = lim
t→∞

mH(Σt).

Then, it is a standard fact that

Mass ≥ mH(Σ0) =
|Σ|1/2

(16π)3/2

(
16π − 4

3
Λ|Σ|

)
.

Even if Σ0 does not admit a smooth solution to inverse mean curva-
ture flow, the work done by Huisken and Ilmanen in [8] implies with
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no difficulty that if Σ0 is an outermost horizon, then there is a weak
solution (Σt)t≥0 to inverse mean curvature flow such that mH(Σt) is
non-decreasing and so

Mass = lim
t→∞

mH(Σt) ≥ mH(Σ0) =
|Σ0|1/2
(16π)3/2

(
16π − 4

3
Λ|Σ0|

)
.

1.1. Notation and Definitions. Given a complete noncompact Rie-
mannian 3-manifold (M,g), we denote its connection by D, the Ricci
curvature by Rc, and the scalar curvature by R. The induced connec-
tion on a surface Σ ⊂ M is denoted by ∇, the exterior unit normal by
ν (whenever its defined), the mean curvature by H, the trace free part

of the second fundamental form by Å, and the surface area by |Σ|.
A sphere Σ ⊂ M with mean curvature H(Σ) = 2 is said to be out-

ermost if it is the boundary of a compact set and its outside region
contains no other spheres with H = 2. We say that Σ is outer minimiz-

ing if every compact perturbation lying outside of Σ has bigger surface
area.

In what follows g0 denotes the standard metric on S2.

Definition 1.1. A complete noncompact Riemannian 3-manifold
(M,g) is said to be asymptotically hyperbolic if the following are true:

(i) There is a compact set K ⊂⊂M such thatM \K is diffeomorphic
to R

3 minus an open ball.
(ii) With respect to the spherical coordinates induced by the above

diffeomorphism, the metric can be written as

g = dr2 + sinh2 r g0 + h/(3 sinh r) +Q

where h is a symmetric 2-tensor on S2 and

|Q|+ |DQ|+ |D2Q|+ |D3Q| ≤ C exp(−4r)

for some constant C.

For simplicity, the manifolds we consider have only one end. The
above definition is stated differently from the one given in [16] (see also
[6]). Nonetheless, using a simple substitution of variable

t = ln

(
sinh(r/2)

cosh(r/2)

)
,

they can be seen to be equivalent.
Note that a given coordinate system on M \K induces a radial func-

tion r(x) on M \K. With respect to this coordinate system, we define
the inner radius and outer radius of a surface Σ ⊂M \K to be

r = sup{r |Br(0) ⊂ Σ} and r = inf{r |Σ ⊂ Br(0)}
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respectively. Furthermore, we denote the coordinate spheres induced by
a coordinate system by

{|x| = r} := {x ∈M \K | r(x) = r}
and the radial vector by ∂r. We stress that the radial function r(x)
depends on the coordinate system chosen. If γ is an isometry of H3, the
radial function s(x) induced by this new coordinate system is such that

|s(x)− r(x)| ≤ C for all x ∈M \K,
where C depends only on the distance from γ to the identity. We denote
by s and s the correspondent quantities defined with respect to this new
coordinate system.

The mass M of an asymptotically hyperbolic manifold (M,g) with
R ≥ −6 is given by

M =
1

16π

[(∫

S2

trg0hdµ0

)2

−
3∑

i=1

(∫

S2

trg0hxidµ0

)2
]1/2

,

where (x1, x2, x3) are the standard coordinates on S2 ⊂ R
3. This quan-

tity is well defined (i.e. independent of the coordinate system chosen
for M \K) by [16] (see also [5] and [6] for a less restrictive definition).

The Anti–de Sitter–Schwarzschild metric (S2× [t0,+∞), gm) is given
by

gm =
dt2

1 + t2 −m/t
+ t2g0,

where we choose t0 so that the mean curvature of the coordinate sphere
Σ0 = {|x| = t0} is 2. A change of variable (see [16, page 294]) shows
that the metric can be written as

g = dr2 + (sinh2 r +m/(3 sinh r))g0 + P,

where P is term with order exp(−5r). An explicit computation reveals
that the scalar curvature equals −6 and that

M =
m

2
=

( |Σ0|
16π

)1/2

.

1.2. Statement of the main results. We start by briefly describing
how inverse mean curvature flow could prove the conjecture. Find a
family of surfaces (Σt)t≥0 with initial condition Σ0 such that

dx

dt
=

ν

H(Σt)
.

Note that the existence theory for a weak solution developed in [8, Sec-
tion 3] can be used in the current setting. Moreover, the same arguments
in [8, Section 5] show that the quantity (called the Hawking mass)

mH(Σt) :=
|Σt|1/2
(16π)3/2

(
16π −

∫

Σt

H2 − 4 dµt

)
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is monotone nondecreasing along the flow. Therefore,
( |Σ0|
16π

)1/2

= mH(Σ0) ≤ lim
t→∞

mH(Σt).

The result would follow if one could show that the limit of the Hawking
mass is not bigger than M .

In the asymptotically flat case, Huisken and Ilmanen [8, Section 7]
showed this by proving that

lim inf
t→∞

area(Brt(0))

area(Brt(0))
= lim inf

t→∞

rt
rt

= 1,

where rt and rt denote the outer radius and inner radius of Σt respec-
tively. In our setting, it is not hard to see that in order for the limit of
the Hawking mass to be smaller than M we need to find an isometry
γ of H3 such that, with respect to the induced coordinate system, the
following two properties hold:

1)

lim inf
t→∞

|Bst(0)|
|Bst(0)|

= lim inf
t→∞

(st − st) = 0,

where st and st denote, respectively, the outer radius and inner
radius of Σt with respect to the radial function s(x) induced by γ;

2) If the metric with respect to the coordinates induced by γ is writ-
ten as

g = ds2 + sinh2 s g0 + hγ/(3 sinh s) + P,

then ∫

S2

xitrg0h
γdµ0 = 0 for i = 1, 2, 3,

where xi denotes the coordinate functions of the unit sphere in
R
3.

If these properties do not hold, it is impossible to compare the limit of
the Hawking mass with the mass of the manifold. More precisely, we can
construct a family of spheres (Σr)r≥0 and an asymptotically hyperbolic
metric (M,g) where

mH(Σ∞) := lim
r→∞

mH(Σr)

is bigger or smaller than the mass M . This comes from the following
observation. Pick a 2-tensor h on S2 such that∫

S2

xitrg0hdµ0 = 0 for i = 1, 2, 3.

Then the mass is given by

M =
1

4

(∫

S2

trg0hdµ0

)
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and, according to Proposition 2.1 e), given any function f in C∞(S2)
we can construct a family of spheres (Σr)r≥0 such that

mH(Σ∞) =
1

4

(∫

S2

exp(2f)dµ0

)1/2 ∫

S2

trg0h exp(−f)dµ0.

It is simple to recognize that one can choose h positive definite and some
function f for which mH(Σ∞) < M . Moreover, if one chooses f to be
zero but ∫

S2

xitrg0hdµ0 6= 0 for i = 1, 2, 3.

then we would have in this case

mH(Σ∞) =
1

4

∫

S2

trg0hdµ0 > M.

We can now state the main theorem.

Theorem 1.2. There is an asymptotically hyperbolic 3-manifold (M,
g) with scalar curvature −6 and for which its boundary Σ0 is an outer-

minimizing sphere with H(Σ0) = 2 satisfying the following property.

There is a smooth solution to inverse mean curvature flow (Σt)t≥0

with initial condition Σ0 such that for every coordinate system we have

lim inf
t→∞

(st − st) > 0.

Remark 1.3. i) We note that the sphere Σ0 might not be outer-
most, i.e., there could be another H = 2 sphere enclosing Σ0. If
this is the case, the area of this sphere has to be bigger than |Σ0|.
We point out that the Penrose inequality in the asymptotically flat
case also holds with an outer-minimizing minimal sphere instead
of an outermost minimal sphere.

ii) The author does not know whether the manifold constructed con-
stitutes a counterexample to the Penrose inequality. The reason
is that it is hard to compute explicitly the mass of the manifold
(M,g). In the last section of the paper and assuming that the
manifolds we construct do not violate the Penrose inequality, we
deduce a nontrivial inequality for functions on S2 (see Section 5.1).
Jointly with Alice Chang, we have verified that such inequality in-
deed holds.

The strategy of the proof is the following. We first construct a so-
lution to inverse mean curvature flow (Σt)t≥0 on an Anti–De Sitter–
Schwarschild metric gm with mass m/2 such that

lim
t→∞

mH(Σt) > m/2.

This is done in Sections 2 and 3, where we prove a long time existence
result for inverse mean curvature flow on Anti–de Sitter–Schwarzschild
space. It is important that the estimates in this section do not depend on
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the area of our initial condition and this requires a careful bookkeeping.
Unfortunately the initial condition for this solution is not a sphere with
H = 2. To fix that, we find a function u such that the metric

g =
u2

H2
dt2 + gt

has

R = −6 and uΣ0
= H(Σ0)/2.

Note that, with respect to this metric, Σ0 has H = 2. This is done in
Section 4 where we adapt the work of Shi-Tam [14] and Wang-Yau [15]
to prove the existence of such function u. A simple computation will
show that (Σt)t≥0 is also a solution to inverse mean curvature flow with
respect to the metric g. We are left to show that this solution has the
desired asymptotic behavior. Using Proposition 2.1 f) we will see that

the Gaussian curvature K̂t of Σt with respect to the normalized metric

ĝt := (4π)|Σt|−1gt

does not converge to one when t goes to infinity. Note that it does not
matter whether we choose g or gm in this step because the intrinsic
geometry is the same. This fact and Proposition 2.1 f) imply that the
metric g is such that for every coordinate system we have

lim inf
t→∞

(st − st) > 0.

The proof of Theorem 1.2 is done in Section 5.

Acknowledgments. The author would like to express his thanks to
Gang Tian and Piotr Chruściel for many useful discussions and their
interest in this work. The author is also grateful to the referee for the
insightful suggestions.

2. Basic properties of graphical surfaces on asymptotically

hyperbolic 3-manifolds

In this section (M,g) denotes an asymptotically hyperbolic manifold
with some given coordinate system on M \ K. Given a function f on
S2 we consider the surfaces

Σ(q0) =
{
(q0 + f(θ), θ) | θ ∈ S2

}
⊂M \K.

The function f satisfies hypothesis (I) if there are constants V, V0 such
that

(I)

{
|f | ≤ V,

|∇0f | ≤ V0,

where ∇0 denotes the connection with respect to the round metric on
S2. We denote by s(q0) and s(q0), respectively, the outer radius and
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inner radius of Σ(q0), where s(x) is the radial function induced by some
coordinate system γ.

Given any geometric quantity T defined on Σ(q0), we use the notation

T = O(exp(−kr))
when we can find a constant C = C(g, V, V0) for which

|T | ≤ C exp(−kr).
The next proposition collects some properties for the surfaces Σ(q0)

when q0 is very large.

Proposition 2.1. Assume that f satisfies hypothesis (I). The fol-

lowing properties hold:

a) When q0 goes to infinity, the normalized metrics

ĝ(q0) := 4π|Σ(q0)|−1gΣ(q0)

converge to

ĝ :=

(∫

S2

exp(2f)dµ0

)−1

exp(2f)g0.

b) There is a constant C = C(g, V, V0) such that, for all q0 ≥ 1,

|Σ(q0)||H − 2|+ |Σ(q0)||Å| ≤ C + C sup
S2

|∇2
0f |

and

sup
S2

|∇2
0f | ≤ C(|Σ(q0)||H − 2|+ |Σ(q0)||Å|) + C;

c) Assume that

sup
S2

|∇k
0f | ≤ E for all k = 2, · · · , n− 1.

There is a constant C = C(g,E, V, V0) such that for all q0 ≥ 1

|Σ(q0)|n+2|∇nA|2 ≤ C + C sup
S2

|∇n
0f |2

and

sup
S2

|∇n
0f |2 ≤ C + C|Σ(q0)|n+2|∇nA|2;

d) The mean curvature of Σ(q0) satisfies

H2 − 4 = 4K(Σ) + 2|Å|2 − 2trg0h

sinh3 r
+O(exp(−4r));

e)

lim
q0→∞

mH(Σ(q0)) =
1

4

(∫

S2

exp(2f)dµ0

)1/2 ∫

S2

trg0h exp(−f)dµ0.
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f) There is a coordinate system γ for which

lim
q0→∞

(s(q0)− s(q0)) = 0

if and only if

K̂ = lim
q0→∞

K̂(q0) = 1,

where K̂(q0) is the Gaussian curvature of Σ(q0) with respect to

ĝ(q0).

Note that this proposition also holds, with obvious modifications, if

Σ(q0) =
{
(q0 + fq0(θ), θ) | θ ∈ S2

}
,

where the functions fq0 converge to a function f on S2 when q0 goes to
infinity.

Proof. Consider tangent vectors to Σ(q0)

∂i :=
∂f

∂θi
∂r + ∂θi , i = 1, 2,

where (θ1, θ2) represent coordinates on S
2 which are orthonormal (with

respect to g0) at a given point p.
The induced metric on Σ(q0) is given by

gij =
∂f

∂θi

∂f

∂θj
+ sinh2(q0 + f)g0(∂θi , ∂θj ) +O(exp(−r))

and so
√

detgij = sinh2(q0+f)
√
detg0+O(1)=sinh2(q0) exp(2f)

√
detg0+O(1).

This implies that

(1) lim
q0→∞

|Σ(q0)|
4π sinh2 q0

=

∫

S2

exp(2f) dµ0

and the first property follows from the fact that

lim
q0→∞

(sinh q0)
−2gij = exp(2f)g0(∂θi , ∂θj ).

Denoting the connection with respect to the standard hyperbolic met-
ric by D̄, we have

D̄∂r∂r = 0, D̄∂θj
∂r =

cosh r

sinh r
∂θj , D̄∂θi

∂θj = − sinh rcosh rδij∂r,

and

|D − D̄| ≤ C exp(−3r)

for some C = C(g).
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Thus,

D∂i∂j =
∂2f

∂θj∂θi
∂r+

∂f

∂θj

∂f

∂θi
D∂r∂r+

∂f

∂θj
D∂θi

∂r+
∂f

∂θi
D∂r∂θj +D∂θi

∂θj

= − cosh r sinh rδij∂r +
∂2f

∂θj∂θi
∂r +O(1)∂θj +O(exp(−r)).

An easy computation shows that the exterior unit normal is given by

(2) ν = (1 +O(exp(−2r))∂r +O(exp(−2r))∂θ1 +O(exp(−2r))∂θ2

and thus

Aij = 2
cosh r

sinh r
gij −

∂2f

∂θj∂θi
+O(1).

This implies Property b).
Property c) follows from what was done above plus some tedious

computations. We now prove Property d).
It was shown in [13, Lemma 3.1.] that

Rc(ν, ν)+2 = − trg0h

2 sinh3 r
+O(exp(−4r)) and R = −6+O(exp(−4r)).

Combining this with Gauss equations we obtain that

H2 − 4 = 4K(Σ(q0)) + 2|Å|2 + 4(R(ν, ν)−R/2− 1)

= 4K(Σ(q0)) + 2|Å|2 − 2trg0h

sinh3 r
+O(exp(−4r)).

Combining Property a) with Property d), it follows from the defini-
tion of Hawking mass that

lim
q0→∞

mH(Σ(q0)) = lim
q0→∞

|Σ(q0)|1/2
(16π)3/2

∫

Σ(q0)

2trg0h

sinh3 r
dµ

= lim
q0→∞

1

(16π)3/2

∫

Σ(q0)

2|Σ(q0)|3/2
sinh3 r

trg0hdµ̂

=
1

43/2

(∫

S2

exp(2f)dµ0

)3/2 ∫

S2

2trg0h exp(−3f)dµ̂

=
1

4

(∫

S2

exp(2f)dµ0

)1/2 ∫

S2

trg0h exp(−f)dµ0.

Finally, we prove Property e). Given a coordinate system induced by
an isometry γ of H3, we consider the function on Σ(q0) given by

w(x) = s(x)− q̂0 where |Σ(q0)| = 4π sinh2 q0,

where s(x) is the radial function for this coordinate system. For all q0
sufficiently large, Σ(q0) is graphical over the coordinate spheres for this
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new coordinate system and so

lim sup
q0→∞

(
|∂⊤s |2 + (1− 〈ν, ∂s〉)

)
exp(2q0) <∞.

Due to [13, Propostion 3.3], we know that

∆s = (4− 2|∂⊤s |2) exp(−2s) + 2−H

+ (H − 2)(1 − 〈∂s, ν〉) + (1− 〈∂s, ν〉)2 +O(exp(−3s)).

Therefore, Property d) implies that w satisfies the following equation
with respect to ĝ(q0)

(3) ∆̂w = exp(−2w)− K̂(q0) + P (q0),

where

lim
q0→∞

∫

Σ(q0)
|P (q0)|dµ̂ = 0.

Suppose the coordinate system induced by γ is such that

lim
q0→∞

s(q0)− s(q0) = 0.

Then
lim

q0→∞
w = 0

and so equation (3) implies that

lim
q0→∞

K̂(q0) = 1.

Assume for simplicity that∫

S2

exp(2f) dµ0 = 1

because, according to (1), this implies that

lim
q0→∞

q̂0 − q0 = 0.

If K̂ = 1, then ĝ is a round metric on S2 and hence there is a conformal
transformation γ of S2 for which γ∗ĝ = g0. From Property a) we know
that ĝ = exp(2f)g0 and so γ∗g0 = exp(−2f ◦ T )g0. This conformal
transformation induces an isometry of hyperbolic space which we still
denote by γ. The relationship between the radial functions r(x) and
s(x) is determined by

|s(x) + f ◦ γ(x)− r ◦ γ(x)| ≤ C exp(−r(x))
for some constant C. This implies that for all x in Σ(q0)

|w(x) + q̂0 − q0| ≤ C exp(−q0),
and thus

lim
q0→∞

w = 0.

q.e.d.
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3. Long time existence for inverse mean curvature flow on

asymptotically hyperbolic 3-manifolds

In this section the ambient manifold will be an Anti–de Sitter–Schwarz-
schild metric (S2 × [s0,+∞), gm) with mass m > 0.

A sphere Σ0 satisfies hypothesis (H) if we can find constants (Qj)j∈N,
ε0, and δ0 for which

(H)





H ≥ ε0 and |Σ0||H2 − 4| ≤ Q0,

〈ν, ∂r〉 ≥ ε0 and 〈ν, ∂r〉 ≥ 1− |Σ0|−1Q1,

|Å|2 ≤ (1/4 − δ0)H
2 and |Σ0|2|Å|2 ≤ Q2,

sup
Σ0

|∇nA|2 ≤ Qn+2|Σ0|−(n+2) for all n ≥ 1,

Σ0 bounds a compact region containing S2 × {s0}.
Recall that r0 and r0 denotes, respectively, the outer radius and the

inner radius of Σ0.

Theorem 3.1. Assume that Σ0 satisfies (H).
There is a constant r = r((Qj)j∈N, ε0, δ0, r0−r0,m) such that if r0 ≥ r

then the inverse mean curvature flow (Σt) with initial condition Σ0 exists

for all time and has the following properties:

(i) There is a positive constant C = C((Qj)j∈N, ε0, δ0, r0−r0,m) such
that the mean curvature of Σt satisfies

H ≥ C

and, for some other constant C = C((Qj)j∈N, ε0, δ0, r0 − r0,m),

|Σ0||H2 − 4| ≤ C exp(−t);
(ii) For every n ≥ 0 and k ≥ 1 there is a constant

C = C((Qj)j∈N, ε0, δ0, r0 − r0,m)

such that

|Σ0|n+2|∂kt ∇nA|2 ≤ C exp(−(n+ 2)t)

and

|Σ0|n+2|∇nA|2 ≤ C exp(−(n+ 2)t) for n ≥ 1;

(iii) The surfaces Σt can be described as

Σt =
{
(r̂t + ft(θ), θ) | θ ∈ S2

}
,

where r̂t is such that

|Σt| = 4π sinh2 r̂t.

Moreover, the functions ft converge to a smooth function f∞ de-

fined on S2.
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(iv) For every n ≥ 0 and k ≥ 1 there is a constant

C = C((Qj)j∈N, ε0, δ0, r0 − r0,m)

such that

|Σ0|n|∇nft|2 ≤ C exp(−nt), |∂kt ft| ≤ C exp(−t),
and

|Σ0|n|∂kt ∇nft|2 ≤ C exp(−nt) for n ≥ 1.

We essentially adapt to our setting some of the ideas used in the work
of Huisken–Ilmanen [9] and Claus Gerhardt [7] on smooth solutions to
inverse mean curvature flow. We could have been more precise regarding
how the constants depend on (Qj)j∈N but this version of the theorem
suffices for our purposes. The important point is that the estimates do
not depend on r0 (only on r0 − r0).

Proof. During the first part of this proof, given any geometric quan-
tity T defined on Σt we use the notation

T = O(exp(−kr))
whenever there is a constant C = C(m) such that

|T | ≤ C exp(−kr).
Because H > 0 we have short-time existence for the flow. Denoting

by Σm
t := {|x| = rmt } the solution to inverse mean curvature flow with

initial condition {|x| = t0} we know that

|Σm
t | = |Σm

0 | exp(t)
and thus we can find a constant K = K(m) such that

t/2−K ≤ rmt − t0 ≤ t/2 +K.

Because two solutions that are initially disjoint must remain disjoint [8,
Theorem 2.2], we have that for some constant K = K(m)

(4) t/2 + r0 −K ≤ rt ≤ rt ≤ t/2 + r0 +K and rt ≥ r0.

Therefore, we can find K = K(m, r0 − r0) for which

K−1|Σ0| exp(t) ≤ exp(2r) ≤ K|Σ0| exp(t).
We now derive the evolution equations that will be needed later on.

We use the notation
Bij ≈ Cij

when Bij and Cij have the same trace-free part.
Set

X := φ(r)∂r and βt := exp(−t/2)〈X, ν〉,
where the function φ is such that gm = dr2 + φ(r)2g0 and ν is the
exterior normal vector to Σt.

Lemma 3.2. The following evolution equations hold.
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a)

dβt
dt

=
∆βt
H2

+

( |A|2
H2

− 1

2

)
βt + |∂⊤r |2

(
3m

2 sinh3 r
+O(exp(−5r)

)
βt

|H|2 ;

b)
dH

dt
=

∆H

H2
− (|A|2 +Rc(ν, ν))

1

H
− 2|∇H|2

|H|3 ;

c)

dÅ

dt
≈

∆Å

H2
− 2∇H ⊗∇H

H3
− Å− 2Å2

H

+

(
|Å|2
H2

− H2 + 2Rc(ν, ν) +O(exp(−3r))

2H2

)
Å

+

(
1

H
+

1

H2

)
O(exp(−3r));

d)

d|Å|2
dt

≤ ∆|Å|2
H2

+ 2

(
|Å|2
H2

− H2 + 2Rc(ν, ν) +O(exp(−3r)

2H2

)
|Å|2

− 2|Å|2 − 2
|∇Å|2
H2

− 4
〈∇H ⊗∇H, Å〉

H3

+

(
|Å|
H2

+
|Å|
H

)
O(exp(−3r)).

Proof. For every vector Y we have that

DYX = φ′(r)Y

and this implies that, using local coordinates (y1, y2) for Σt,

〈∇βt, ∂i〉 = exp(−t/2)A(∂i,X⊤), i = 1, 2

and

exp(t/2)∆βt =
∑

i

(∇∂iA) (∂i,X
⊤) +A(∂i,∇∂iX

⊤)

= 〈∇H,X〉 +Rc(ν,X⊤) + φ′H − 〈X, ν〉|A|2.
Moreover

D∂tν = ∇H/H2, D∂tX = φ′∂t,

and so
dβt
dt

=
φ′

H
+

〈∇H,X〉
H2

− βt
2
.

Therefore

dβt
dt

=
∆βt
H2

+

( |A|2
H2

− 1

2

)
β − exp(−t/2)Rc(ν,X

⊤)

|H|2 .
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Note that denoting by e1, e2 a gm-orthonormal basis for the coordinates
spheres

〈ν,X⊤〉 = 0 ⇒ 〈ν, ∂r〉〈∂r,X⊤〉 = −
∑

i

〈ν, ei〉〈ei,X⊤〉

and hence, we obtain from [12, Lemma 3.1 (iii)] that

Rc(ν,X⊤) =
∑

i

〈ν, ei〉Rc(ei,X⊤) + 〈ν, ∂r〉Rc(∂r,X⊤)

=

(
m

2 sinh3 r
+O(exp(−5r)

)∑

i

〈ν, ei〉〈ei,X⊤〉

−
(

m

sinh3 r
+O(exp(−5r)

)
〈ν, ∂r〉〈∂r,X⊤〉

= |∂⊤r |2
(
− 3m

2 sinh3 r
+O(exp(−5r)

)
〈ν,X〉.

The second evolution equation was derived in [8, Section 1].
We now prove the third identity. From [10, Theorem 3.2] it follows

that assuming normal coordinates around a point p

dÅij

dt
≈
dAij

dt
−Aij ≈

∇i∇jH

H2
− 2∇iH∇jH

H3
+
ÅikÅkj −Rνiνj

H
.

Arguing like in the proof of Simons’ identity for the Laplacian of the
second fundamental form A (see for instance [10]), one can see that

∆Åij ≈ ∇i∇jH +HÅimÅmj + ÅijH
2/2− Åij |Å|2 +HRνiνj

−RννÅij +RkikmÅmj +RkjkmÅim +RkijmÅkm +RmjikÅkm

+DkRνjik +DiRνkjk.

Because the metric gm satisfies

Rstuv = −(δsuδtv − δsvδtu) +O(exp(−3r))

DqRstuv = O(exp(−3r))

it follows that

RkikmÅmj +RkjkmÅim +RkijmÅkm +RmjikÅkm

= −4Åij + ÅijO(exp(−3r))

= 2Rc(ν, ν)Åij + ÅijO(exp(−3r)),

Rνiνj = −gij +O(exp(−3r)),
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and therefore

dÅij

dt
≈

∆Åij

H2
− 2∇iH∇jH

H3

+

(
|Å|2
H2

− H2 + 2Rc(ν, ν) +O(exp(−3r))

2H2

)
Åij

+

(
1

H
+

1

H2

)
O(exp(−3r)).

Using the formula

dÅ

dt
(∂i, ∂j) =

dÅij

dt
− 〈D∂t∂i, ∂k〉Åkj − 〈D∂t∂j , ∂k〉Åik

we obtain Lemma 3.2 c). The last identity follows from

d|Å|2
dt

= 2

〈
dÅ

dt
, Å

〉

and

〈Å2, Å〉 = 0.

q.e.d.

We now argue that we can choose r = r(m) and a positive constant
C = C(ε0, r0 − r0,m) such that if r0 ≥ r̂, then

(5) H ≥ C and 〈ν, ∂r〉 ≥ C exp(r0 − r0)

while the solution exists.
Choosing r large enough so that for all r ≥ r the term

3m

2 sinh3 r
+O(exp(−5r))

in the equation of Lemma 3.2 a) is positive, we obtain that

dβt
dt

≥ ∆βt
H2

while βt is nonnegative and thus βt ≥ min β0 > 0. Note that φ(r) grows
like exp(r) and so, for some constant C = C(m),

βt ≤ C exp(r0)〈∂r, ν〉.

This implies the desired bound for 〈ν, ∂r〉.
Set αt := βtH. Because

Rc(ν, ν) = −2 +O(exp(−3r)),

the previous lemma implies that, provided we choose r sufficiently large,
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dαt

dt
=

∆αt

H2
− 2〈∇αt,∇H〉

H3
+ (4 +O(exp(−3r))−H2)

αt

2H2

≥ ∆αt

H2
− 2〈∇αt,∇H〉

H3
+ (3−H2)

αt

2H2
.

Because αt ≤
√
3(min β0) implies that H2 ≤ 3, it follows from the

maximum principle that αt ≥ min{
√
3(min β0),minα0} for all t and

thus we can use the inequalities in (4) in order to obtain the desired
bound for the mean curvature.

Lemma 3.3. We can find constants r = r(ε0, δ0, r0 − r0,m) and

C = C(ε0, δ0, r0 − r0,m) such that if r0 ≥ r, then

|Σ0||H2 − 4| ≤ C

(
|Σ0| sup

Σ0

(|H2 − 4|+ |Å|2) + exp(−r0)
)
exp(−t)

and

|Σ0|2|Å|2 ≤ C

(
|Σ0|2 sup

Σ0

|Å|2 + exp(−2r0)

)
exp(−2t)

while the solution exists.

Proof. We assume that the bounds in (5) hold. Let αt := |Å|2H−2.
From Lemma 3.2

dH−2

dt
=

∆H−2

H2
+ 2

(
|Å|2
H2

+
H2 + 2Rc(ν, ν)

2H2

)
H−2 − 2|∇H|2

|H|6

and thus

(6)
dαt

dt
≤ ∆αt

H2
+4α2

t −2αt+
(
αt +

√
αt +H−1√αt

) O(exp(−3r))

H2
+Q,

where

Q := 4
〈∇H,∇|Å|2〉

H5
− 2|Å|2 |∇H|2

H6
− 2

|∇Å|2
H4

− 4
〈∇H ⊗∇H, Å〉

H3
.

We claim that, given ε > 0, we can find a constant C = C(ε0, ε, r0 −
r0,m) so that

dαt

dt
≤ ∆αt

H2
+ 4αt

(
αt −

1

2
+ ε

)
+ C exp(−6r0 − 3t) +Q

and

Q(p) ≤ 4
|∇H|2
H4

(
(1 + ε)αt(p)−

1

4
+ ε

)
+ C exp(−6r0 − 3t),

whenever p is a critical point of αt.
The first inequality follows easily from Cauchy’s inequalities combined

with properties (4) and (5). Denote by {v1, v2} an eigenbasis for Å at p
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and assume without loss of generality that Å(v1, v1) ≥ 0. Because p is
a critical point of αt the following identities hold at p

∇|Å|2 = 2|Å|2H−1∇H
and

|Å|H−1∇H =
√
2∇Å(v1, v1) = −

√
2∇Å(v2, v2).

As a result, we obtain that

|∇Å|2 = |Å|2 |∇H|2
H2

+ 2|∇Å(v1, v2)|2 = α2
t |∇H|2 + 2|∇Å(v1, v2)|2

and

2|∇Å(v1, v2)|2

= 2|∇v2A(v1, v1) +Rc(ν, v2)|2 + 2|∇v1A(v2, v2) +Rc(ν, v1)|2

≤ 2|∇v2A(v1, v1)|2 + 2|∇v1A(v2, v2)|2

+ (
√
αt|∇H|+ |∇H|)O(exp(−3r)) +O(exp(−6r))

= 2

∣∣∣∣∇v2Å(v1, v1) +
〈∇H, v2〉

2

∣∣∣∣
2

+ 2

∣∣∣∣∇v1Å(v2, v2) +
〈∇H, v1〉

2

∣∣∣∣
2

+ (
√
αt|∇H|+ |∇H|)O(exp(−3r)) +O(exp(−6r))

= 2|〈∇H, v2〉|2
(
αt√
2
+

1

2

)2

+ 2|〈∇H, v1〉|2
(
αt√
2
− 1

2

)2

+ (
√
αt|∇H|+ |∇H|)O(exp(−3r)) +O(exp(−6r))

= α2
t |∇H|2 + |∇H|2/2− 2

〈∇H ⊗∇H, Å〉
H

+ (
√
αt|∇H|+ |∇H|)O(exp(−3r)) +O(exp(−6r)).

Moreover, we also have that at the point p

4〈∇H,∇|Å|2〉 = 8αt
|∇H|2
H

and thus

Q(p) = 4
|∇H|2
H4

(
αt(p)−

1

4

)

+ (
√
αt|∇H|+ |∇H|)O(exp(−3r))

H4
+
O(exp(−6r))

H4
.

The claim follows from Cauchy’s inequalities combined with properties
(4) and (5).

As a result, there is a constant C1 = C1(ε0, ε, r0 − r0,m) for which if
we set

βt := αt + C1 exp(−6r0 − 3t),
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then

(7)
dβt
dt

≤ ∆βt
H2

+ 4αt

(
αt −

1

2
+ ε

)
+Q

and

Q(p) ≤ 4
|∇H|2
H4

(
(1 + ε)αt(p)−

1

4
+ ε

)

whenever p is a critical point of βt.
Chose ε < δ0/4 so that

(1 + ε)

(
1

4
− δ0

4

)
− 1

4
+ ε ≤ 0

and chose r so that C1 exp(−6r) ≤ δ0/4. Thus β0 ≤ 1/4 − 3δ0/4 and

βt(x) ≤ 1/4 − δ0/2 =⇒ αt(x) ≤ 1/4 − δ0/4.

Therefore we can apply the maximum principle to βt and conclude that

αt ≤ supα0 + C1 exp(−6r0)

while the solution exists. This implies that

αt −
1

2
+ ε ≤ −1/4− δ0/8

and so we obtain from equation (7) that

αt ≤ (supα0 + C exp(−6r0)) exp(−(1 + 2δ0)t)

for some C = C(ε0, δ0, r0 − r0,m). As a result,

α2
t ≤ C(supα2

0 + exp(−12r0)) exp(−2t− 4δ0t),√
αt exp(3r) ≤ C(supα0 + exp(−6r0)) exp(−2t− δ0t)

for some C = C(ε0, δ0, r0 − r0,m). Using this bounds in equation (6)
we obtain

αt

dt
≤ ∆αt

H2
− (2 +C exp(−3t/2))αt

+ C(supα0 + exp(−6r0)) exp(−(2 + δ0)t) + C exp(−6r0 − 3t) +Q

for some C = C(ε0, δ0, r0 − r0,m) and hence

|Å|2 ≤ C

(
sup
Σ0

|Å|2 + exp(−6r0)

)
exp(−2t).

The evolution equation for H2 is given by (see [8, Section 1])

dH2

dt
=

∆H2

H2
− 6|∇H|2

|H|2 − 2|Å|2 −H2 − 2Rc(ν, ν)

and thus, if we set φt := exp(t)(H2 − 4), we obtain that

dφt
dt

=
∆φt
H2

− 3〈∇φt,∇H〉
H2

− 2|Å|2 exp(t)− exp(t)(4 + 2Rc(ν, ν))
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From the upper bound derived for |Å| and the bounds given in (4) and
(5) we have that

dφt
dt

≥ ∆φt
H2

− 3〈∇φt,∇H〉
H2

− C

(
sup
Σ0

|Å|2 + exp(−6r0)

)
exp(−t)− C exp(−t/2− 3r0)

where C = C(ε0, δ0, r0 − r0,m). The maximum principle implies that

H2 ≥ 4− C

(
sup
Σ0

(|H2 − 4|+ |Å|2) + exp(−3r0)

)
exp(−t).

In order to show the existence of some C = C(ε0, δ0, r0 − r0,m) for
which

H2 ≤ 4 + C

(
sup
Σ0

(|H2 − 4|+ |Å|2) + exp(−3r0)

)
exp(−t)

it is enough to note that

dH2

dt
≤ ∆H2

H2
+ 4−H2 + C exp(−3r0 − 3t/2).

q.e.d.

Fix some r for which Lemma 3.3 holds. Note that in this case we
have a uniform bound for |A|2 and so standard estimates can be used to
show that the solution (Σt)t≥0 exists for all time. Nonetheless, we need
shaper estimates on all the derivatives of A and this will occupy most
of the rest of the proof. What we have done so far proves Theorem 3.1
(i). The next lemma will be useful in proving Theorem 3.1 (iii).

Lemma 3.4. There is a constant C = C(Q0, ε0, δ0, r0 − r0,m) such

that

1− 〈∂r, ν〉 ≤ C

(
sup
Σ0

(1− 〈∂r, ν〉) + exp(−3r0)

)
exp(−t)

for all t and thus

|Σ0||∇r|2 ≤ C exp(−t)
for some other constant C = C(Q0, Q1, ε0, δ0, r0 − r0,m).

Proof. We denote by Λ any geometric quantity defined on Σt for
which we can find a constant C = C(ε0, δ0, r0 − r0,m) such that

|Λ| ≤ C(|H − 2|+ |Å|+ exp(−2r))

For every vector Y we have that

DY ∂r = φ′(r)/φ(r) (Y − 〈Y, ∂r〉∂r) .
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Therefore

d〈∂r, ν〉
dt

= 〈D∂t∂r, ν〉+ 〈∂r,D∂tν〉

=
φ′

φ

1

H
− φ′

φ

〈∂r, ν〉2
H

+
〈∂r,∇H〉
H2

.

For every tangent vectors Z and W we have

〈∇〈∂r, ν〉, Z〉 = −φ′/φ〈∂r, ν〉〈∂r, Z〉+A(Z, ∂⊤r )

and

〈∇Z∂
⊤
r ,W 〉 = φ′/φ〈Z,W 〉 − φ′/φ〈Z, ∂r〉〈W,∂r〉 − 〈∂r, ν〉A(Z,W ),

where ∂⊤r denotes the tangential projection of ∂r. These identities com-
bined with Lemma 3.3 and with

φ′

φ
= 1 +O(exp(−2r))

imply that

div

(
−φ

′

φ
〈∂r, ν〉∂⊤r

)
= 2

(
φ′

φ

)2

〈∂r, ν〉(|∂⊤r |2 − 1) +
φ′

φ
〈∂r, ν〉2H

−
(
φ′

φ

)′

|∂⊤r |2〈∂r, ν〉 −
φ′

φ
〈∂r, ν〉A(∂⊤r , ∂⊤r )

= −2

(
φ′

φ

)2

〈∂r, ν〉+ 〈∂r, ν〉|∂⊤r |2

+
φ′

φ
〈∂r, ν〉2H + |∂⊤r |2Λ

and

div(A(·, ∂⊤r )) = 〈∇H, ∂r〉+Rc(ν, ∂⊤r )+
φ′

φ
H−φ

′

φ
A(∂⊤r , ∂

⊤
r )−|A|2〈∂r, ν〉

= 〈∇H, ∂r〉+
φ′

φ
H − |∂⊤r |2 −

H2

2
〈∂r, ν〉 − |Å|2〈∂r, ν〉

+ |∂⊤r |2Λ+O(exp(−3r)).

As a result we get
d〈∂r, ν〉
dt

=
∆〈∂r, ν〉
H2

+Q,

where

H2Q = 2

(
φ′

φ

)2

〈∂r, ν〉−〈∂r, ν〉|∂⊤r |2−2
φ′

φ
〈∂r, ν〉2H+|∂⊤r |2+

H2

2
〈∂r, ν〉

+ |Å|2〈∂r, ν〉+ |∂⊤r |2Λ+O(exp(−3r)).
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Setting αt := 〈∂r, ν〉 − 1, we obtain from (5) and Lemma 3.3 that

Q = 2H−2

(
H2

4
−H

φ′

φ
+

(
φ′

φ

)2
)

+
αt

4
(α2

t − 2αt − 4)

+ |Å|2〈∂r, ν〉+ αtΛ+O(exp(−3r))

≥ αt

4
(α2

t − 2αt − 4) + αtΛ+O(exp(−3r))

≥ −αt(1− Λ) +O(exp(−3r)),

where the last inequality follows from 0 ≥ αt ≥ −1. There is

C = C(Q0, ε0, δ0, r0 − r0,m)

for which
|Λ| ≤ C exp(−t)

and hence
dαt

dt
≥ ∆αt

H2
− (1 + C exp(−t))αt + C exp(−3t/2 − 3r0)

for some other C = C(Q0, ε0, δ0, r0 − r0,m). This equation implies the
desired result. q.e.d.

For the rest of the proof, C will denote any constant with dependence

C = C((Qj)j∈N, ε0, δ0, r0 − r0,m).

Set r̂t to be such that |Σt| = 4π sinh2 r̂t and we remark that r̂t−t/2 is
uniformly bounded. An immediate consequence of the previous lemma
is that Σt can be written as the graph of a function ft over the coordinate
sphere {|x| = r̂t} with

|ft| ≤ C and |Σ0||∇ft|2 ≤ C exp(−t)
for some constant C. Furthermore, Lemma 3.3 and Proposition 2.1
imply the existence of some constant C for which

|Σ0|2|∇2ft|2 ≤ C exp(−2t).

The next lemma is an adaptation of what was done in [7, Section 6].
Given two tensors P and S we denote by S∗T any linear combination

of tensors formed by contracting over S and T .

Lemma 3.5. There is r = r((Qj)j∈N, ε0, δ0, r0 − r0,m) so that if

r0 ≥ r the following property holds.

For every n ≥ 0 there is a constant C such that

|Σ0|n|∇nft|2 ≤ C exp(−nt)
for all t. Equivalently, for all n ≥ 1 there is a constant C for which

|Σ0|n+2|∇nA|2 ≤ C exp(−(n + 2)t).

Proof. We start by showing that it is enough to bound ∇nÅ.
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Lemma 3.6. There exists a constant C for which

|Σ0|3|∇A| ≤ C|Σ0|3|∇Å|+ C exp(−3t/2)

and

|Σ0|4|∇2A| ≤ C|Σ0|4|∇2Å|+ C exp(−2t).

Moreover, if we can find a constant E for which

|Σ0|k+2|∇kÅ|2 ≤ E exp(−(k + 2)t) for all k = 1, . . . n− 1,

then

|Σ0|n+3|∇n+1A|2 ≤ C1|Σ0|n+3|∇n+1Å|2 + C1 exp(−(n+ 3)t).

for some constant C1 = C1(E, (Qj)j∈N, ε0, δ0, r0 − r0,m).

Proof. On each Σt consider the 1-form

B(X) = Rc(X, ν).

First we estimate the derivatives of B. In local coordinates (x1, x2), B
can be written as

Bj = Fj(r,∇r), j = 1, 2,

where Fj(r, q1, q2) is defined on R
3 and

|DkFj | ≤ Sk exp(−3r) j = 1, 2

for some constant Sk, provided (q1, q2) lie on a fixed compact set.
We denote by P any tensor on Σt for which |P | = O(exp(−3r)) and

by Q any tensor for which |Q| = O(exp(−3r)) and

∇Q = ∇r ∗ P +∇2r ∗ P.
Using this notation we have

∇B = ∇r ∗Q+∇2r ∗Q
and so we can estimate

|Σ0|3|B|2 ≤ C exp(−3t), and |Σ0|4|∇B|2 ≤ C exp(−4t)

for some constant C.
Let {v1, v2} be an orthonormal basis for Σt. We know that for every

integer p

∇pA(v1, v2) = ∇pÅ(v1, v2)

and

∇pA(v1, v1)−∇pA(v2, v2) = ∇pÅ(v1, v1)−∇pÅ(v2, v2).

Moreover, Codazzi equations imply that for i 6= j

∇p∇viA(vj , vj) = ∇p∇vjA(v1, v2)−∇pBi

and thus
|∇m+1A| ≤ C|∇m+1Å|+ C|∇mB|

for every integer m. This implies the desired result when n = 0, 1.
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To prove the general result we proceed by induction. The inductive
hypothesis implies that

|Σ0|k|∇kr|2 = |Σ0|k|∇kft|2 ≤ C1 exp(−kt) for all k = 1, . . . , n+ 1

for some C1 = C1(E, (Qj)j∈N, ε0, δ0, r0 − r0,m) and thus, using the
expression derived for ∇B, we obtain

|Σ0|k+3|∇kB|2 ≤ C1 exp(−(k + 3)t) for all k = 1, . . . , n

for some C1 = C1(E, (Qj)j∈N, ε0, δ0, r0 − r0,m). Hence, the desired
result follows. q.e.d.

In what follows L1 will denote any tensor that satisfies the following
properties. There exists a constant C for which

|Σ0||L1| ≤ C exp(−t), |Σ0|3|∇L1|2 ≤ C|Σ0|3|∇A|2 + C exp(−3t),

and if there is a constant E such that

|Σ0|k+2|∇kA|2 ≤ E exp(−(k + 2)t) for all k = 1, . . . n− 1,

then

|Σ0|n+2|∇nL1|2 ≤ C1|Σ0|n+2|∇nA|2 + C1 exp(−(n+ 2)t)

for some constant C1 = C1(E, (Qj)j∈N, ε0, δ0, r0 − r0,m). Likewise, L0

will denote any tensor with the same properties of L1 except that we
just require |L0| to be uniformly bounded.

We can see from Lemma 3.2 that the evolution equation for Å can be
written as

dÅ

dt
≈

∆Å

H2
− Å+ L1 ∗ Å+M +∇A ∗ ∇A ∗ L0,

where the tensor M stands for the term(
1

H
+

1

H2

)
O(exp(−3r))

that appears on Lemma 3.2 c). The relevant property of M is that

|Σ0|2|M |2 ≤ C exp(−3t)

and
|Σ0|3|∇M |2 ≤ C exp(−3t)|Σ0|3|∇A|2 + C exp(−4t)

for some constant C. If there is a constant E such that for all t

|Σ0|k+2|∇kA|2 ≤ E exp(−(k + 2)t) for all k = 1, . . . n− 1,

then

|Σ0|n+2|∇nM |2 ≤ C1 exp(−3t)|Σ0|n+2|∇nA|2 + C1 exp(−(n+ 3)t)

for some other constant C1 = C1(E, (Qj)j∈N, ε0, δ0, r0 − r0,m). This
follows from the fact that in local coordinates (x1, x2)

M =

(
1

H
+

1

H2

)
F (r,∇r),
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where F (r, q1, q2) is a matrix-valued function defined on R
3 for which

there is a constant Sk such that, provided (q1, q2) lie on a fixed compact
set,

|DkF | ≤ Sk exp(−3r).

If K denotes the curvature tensor of Σt, then for any tensor T we
know that

∆∇T = ∇∆T +K ∗ ∇T +∇K ∗ T

and

d∇T
dt

= ∇dT

dt
− ∇T

2
+∇T ∗ Å+ T ∗ ∇A

= ∇dT

dt
− ∇T

2
+∇T ∗ L1 + T ∗ ∇L0.

The last identity comes from the fact that, using normal coordinates,

d∇T
dt

(∂1, · · · , ∂n+1) = ∇dT

dt
(∂1, · · · , ∂n+1)−∇T (∂1, · · · , ∂n,D∂t∂n+1)

+ (T ∗ ∇A)(∂1, · · · , ∂n+1).

Therefore,

d∇T
dt

=
∆∇T
H2

− ∇T
2

+∇
(
dT

dt
− ∆T

H2

)
+ T ∗ ∇L1

+∇T ∗ L1 +∇2T ∗ ∇L1 + T ∗ ∇L0.

Proceeding inductively, it can be checked that

d∇nÅ

dt
≈

∆∇nÅ

H2
−
(n
2
+ 1
)
∇nÅ+

n∑

j=0

∇jÅ ∗ ∇n−jL1

+

n−1∑

j=0

∇j+2Å ∗ ∇n−jL1 +∇nM +

n−1∑

j=0

∇jÅ ∗ ∇n−jL0

+
∑

j,k,l≥0,j+k+l=n

∇j+1A ∗ ∇k+1A ∗ ∇lL0
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and thus we can find a constant C for which

d|∇nÅ|2
dt

≤ ∆|∇nÅ|2
H2

− 2
|∇n+1Å|2

H2
− (n + 2)|∇nÅ|2

+ C
n∑

j=0

|∇jÅ||∇n−jL1||∇nÅ|+ C
n−1∑

j=0

|∇j+2Å||∇n−jL1||∇nÅ|

+ C|∇nM ||∇nÅ|+ C
∑

j,k,l≥0,j+k+l=n

|∇j+1A||∇k+1A||∇lL0||∇nÅ|

+ C

n−1∑

j=0

|∇jÅ||∇n−jL0||∇nÅ|.

We now show the desired bound when n = 1. Recall that for some
constant C we have (see Lemma 3.3 and Lemma 3.6)

|∇L0|+ |∇L1|+ |∇A| ≤ C(|∇Å|+ exp(−3t/2)|Σ0|−3/2),

|∇2A| ≤ C(|∇2Å|+ exp(−2t)|Σ0|−2), and |Σ0|2|Å|2 ≤ C exp(−2t).

In this case, we can find ε > 0 such that

d|∇Å|2
dt

≤ ∆|∇Å|2
H2

− (3− C exp(−εt))|∇Å|2 +C|∇Å|4

+ C exp(−(3 + ε)t)|Σ0|−3.

Hence, if we set

αt := |Σ0|3|∇Å|2 + exp(−3t),

then

dαt

dt
≤ ∆αt

H2
− (3− C exp(−εt))αt + Cα2

t + C exp(−(3 + ε)t)

for some other constant C. Moreover, from Lemma 3.2 d) and Lemma
3.3, we can find some positive constant

C̄ = C̄((Qj)j∈N, ε0, δ0, r0 − r0,m),

so that

d|Å|2
dt

≤ ∆|Å|2
H2

+ (C̄|Σ0|−1 − 1/2)|∇Å|2 + (C̄|Σ0|−1 − 1)|Å|2

+ C̄ exp(−3t)|Σ0|−3.

Choose r so that

r0 ≥ r =⇒ C̄|Σ0|−1 ≤ 1/4.

Set

ψt :=
logα2

t

2
+K|Σ0|3|Å|2,
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where the constant K will be chosen later. Note that

dψt

dt
≤ ∆ψt

H2
− (3− C exp(−εt)) + (C −K/4)|Σ0|3|∇Å|2

+
|∇ log α2

t |2
4

+ C exp(−3t)

for some constant C. Choose K such that K > 4C + 4. If p is a
maximum of ψt, then at p

|∇ log α2
t |2

4
= K2|∇|Å|2|2 ≤ 2K2|∇Å|2|Å|2 ≤ CK2|Σ0|−2|∇Å|2.

We can now chose r so that for al r0 ≥ r we have

−|Σ0|3|∇Å|2(p) +
|∇ logα2

t |2(p)
4

≤ 0.

The maximum principle implies that

ψt ≤ −3t+ C

for some constant C and so

|Σ0|3|∇Å|2 ≤ C exp(−3t)

for some other constant C.
For n > 1 we argue by induction. Thus, assume that

|Σ0|k+2|∇kA|2 ≤ C exp(−(k + 2)t) for all k = 1, . . . n− 1

for some constant C. Then, we can find another constant C for which

|∇jL0|2 + |∇jL1|2 ≤ C|Σ0|−j−2 exp(−(j + 2)t) if 1 ≤ j ≤ n− 1,

|∇nL0|2 + |∇nL1|2 ≤ C|∇nÅ|2 + C|Σ0|−n−2 exp(−(n+ 2)t),

|∇n+1A|2 ≤ C|∇n+1Å|2 + C|Σ0|−n−3 exp(−(n+ 3)t),

|∇nA|2 ≤ C|∇nÅ|2 + C|Σ0|−n−2 exp(−(n+ 2)t),

and

|∇nM |2 ≤ C exp(−3t)|∇nÅ|2 + C|Σ0|−n−2 exp(−(n + 3)t).

Looking at the evolution equation of |∇nÅ|2, we see that we can find
ε > 0 and a constant C such that

d|∇nÅ|2
dt

≤ ∆|∇nÅ|2
H2

− ((n+ 2)− C exp(−εt))|∇nÅ|2

+ C|Σ0|−n−2 exp(−(n + 2 + ε)t)

and the maximum principle implies the desired result. q.e.d.
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In what follows, C continues to denote any constant with dependence

C = C((Qj)j∈N, ε0, δ0, r0 − r0,m).

One immediate consequence of this lemma is that if we denote by ∇0

the connection determined by g0 (the round metric on S2), then for
every n ≥ 0

|∇n
0ft| ≤ C

for some constant C. Moreover,

dr̂t
dt

=
sinh r̂t
2 cosh r̂t

and thus, combining Lemma 3.3 with Lemma 3.4, we have
∣∣∣∣
dft
dt

∣∣∣∣ =
∣∣∣∣
1

H
− sinh r̂t

2 cosh r̂t
+ (〈∂r, ν〉 − 1)H−1

∣∣∣∣
≤ C(|H − 2|+ exp(−2r0 − 2t) + |〈∂r, ν〉 − 1|)

≤ C

(
sup
Σ0

(|H2 − 4|+ |Å|2 + |〈∂r, ν〉 − 1|) + exp(−2r0)

)
exp(−2t),

for some other constant C. As a result, we get that the functions ft
converge to a smooth function f∞ on S2 and so this proves Theorem
3.1 (iii).

We will now argue that for all integers k ≥ 1 and n ≥ 0 there is a
constant C such that

|Σ0|n|∂kt ∇nft|2 ≤ C exp(−nt) for n ≥ 1, |∂kt ft| ≤ C exp(−t),
and

|Σ0|n+2|∂kt ∇nA|2 ≤ C exp(−(n+ 2)t).

This estimates finish the proof of the theorem.
We start with the case k = 1. Using normal coordinates, we have

that

〈∂t∇ft, ∂i〉 = ∂t(∂ift)− 〈∇ft,D∂t∂i〉
= ∂i(〈∂r, ν〉)H−1 − 〈∂r, ν〉〈∇H, ∂i〉H−2 −A(∇ft, ∂i)H−1

= −φ
′

φ
〈∂r, ν〉〈∇ft, ∂i〉H−1 − 〈∂r, ν〉〈∇H, ∂i〉H−2

and this implies that

|Σ0||∂t ∇ft|2 ≤ C exp(−t).
The same type of computations shows that for every n ≥ 1 we can find
C such that

|Σ0|n|∂t∇nft|2 ≤ C exp(−nt).
This implies that, for each n ≥ 1,

|Σ0|n+2|∂t∇nA|2 ≤ C exp(−(n+ 2)t)
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for some constant C. Having this estimates one can then show that

|∂2t ft| ≤ C exp(−t)
and, for each n ≥ 1,

|Σ0|n|∂2t ∇nft|2 ≤ C exp(−nt).
Repeating this process gives the desired estimates.

q.e.d.

4. A modified Shi-Tam flow

In this section Σ0 denotes a sphere satisfying hypothesis (H) and
(Σt)t≥0 is a solution to inverse mean curvature flow for which Theorem
3.1 holds. Consider the manifold

N :=
⋃

t≥0

Σt

where the metric gm can be written as

gm =
dt2

H2
+ gt.

The metric ḡ is defined to be

ḡ :=
u2

H2
dt2 + gt,

where function u satisfies (12).

Lemma 4.1. The metric ḡ has R(ḡ) = −6.

Proof. The mean curvature and the exterior normal vector of Σt com-
puted with respect to ḡ equal

H̄(Σt) = H(Σt)/u and ν̄ = ν/u

respectively. Thus
ν̄

H̄
=

ν

H
and this implies that (Σt)t≥0 is indeed a solution to inverse mean cur-
vature flow for the new metric with H̄(Σ0) = 2.

We now check that the scalar curvature of ḡ is −6. According to
formula (1.10) of [14], given metrics

h0 := dt2 + gt and h1 = v2dt2 + gt,

the scalar curvature R0 of h0 and R1 of h1 are related by

(8) H0 ∂v

∂t
= v2∆tv +

1

2
(v − v3)Rt −

1

2
uR0 +

u3

2
R1,

where H0 denotes the mean curvature of Σt with respect to h0.
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Let g0 be the metric dt2 + gt. Because the scalar curvature of gm is
−6, we obtain from combining (8) (setting v = H−1) both with Gauss
equations and with

dH−1

dt
=

∆H−1

H2
+

|A|2 +Rc(ν, ν)

H3

that the scalar curvature of g0 is given by

R(g0) = Rt − 1− |A|2
H2

.

Consider the function v := u/H. Using (8) with h0 = g0 and h1 = ḡ,
the condition that R(ḡ) = −6 is equivalent to

∂v

∂t
= v2∆tv +

1

2
(v − v3)Rt −

1

2
vR(g0)− 3v3.

The evolution equation for u follows from the above equation, Gauss
equations, and the evolution equation for H−1.

q.e.d.

Using the identification of Σt with S
2 via

Σt =
{
(r̂t + ft(θ), θ) | θ ∈ S2

}
,

the function ut can be identified with a function on S2 which we still
denote by ut. Recall that the normalized metrics ĝt (defined on Lemma
5.1) converge to a smooth metric on S2. The main purpose of this
section is to prove

Theorem 4.2. Assume that Σ0 satisfies H(Σ0) > 0 and that on Σt

we have

Rt + 6− 2H∆tH
−1 > 0

for all t.
Equation (12) admits a smooth solution u with initial condition uΣ0

=
H(Σ0)/2 and satisfying the following properties.

(i) If we denote by ut the restriction of u to Σt, then the functions

wt := 2 exp(3t/2)|Σ0|(ut − 1)/(4π)

converge smoothly to a function w∞ defined on S2.

(ii) For every integer n and k we can find

Λ = Λ((Qj)j∈N, ε0, δ0, r0, r0,m)

such that

|∇nwt|2 ≤ Λexp(−nt) and |∂kt ∇nwt| ≤ Λexp(−(n+ 2)t);
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(iii) The metric ḡ is asymptotically hyperbolic. More precisely, we can

find a coordinate system (s, θ) and a symmetric 2-tensor Q such

that

ḡ = ds2 + sinh2 sg0 +

(
m+ (|Σ0|/(4π))1/2 exp(3f∞)w∞

3 sinh s

)
g0 +Q

and

|Q|+ |DQ|+ |D2Q|+ |D3Q| ≤ Λexp(−4r)

for some Λ = Λ((Qj)j∈N, ε0, δ0, r0, r0,m).

Except for property (iii), this theorem was essentially proven in [15,
Theorem 2.1] when the deformation vector of the foliation (Σt)t≥0 equals
the unit normal vector. In light of Theorem 3.1 the same techniques
apply with no modification (see also [14]). Nonetheless, we need to
make sure that some estimates are independent of r0 and so we sketch
its proof. During the proof Λ will denote any constant with dependence

Λ = Λ((Qj)j∈N, ε0, δ0, r0, r0,m).

Proof. Set

h+(t) = sup
Σt

(
Rt + 6− 2H∆tH

−1

2H2

)

and h−(t) = h+(t) if inf u0 ≤ 1 or, in case inf u0 > 1,

h−(t) = inf
Σt

(
Rt + 6− 2H∆tH

−1

2H2

)
.

Moreover, define

W+ = 1−
(
sup
Σ0

u0

)−2

, W− = 1−
(
inf
Σ0

u0

)−2

,

and

γ±(t) =

(
1−W± exp

(
−
∫ t

0
2h±(s)ds

))−1/2

.

From [14, Lemma 2.2] (see also [15, Section 2.2]) we have that compar-
ison with the ODE

dγ

dt
= h±(t)(γ − γ3),

implies

(9) γ−(t) ≤ ut ≤ γ+(t)

while the solution exists. Moreover, we know from Theorem 3.1 that

|h±(t)− 3/4| ≤ Λexp(−t) and |w0| ≤ Λ.

for some constant Λ. Therefore, the inequalities in (9) imply that, while
the solution exists,

|wt| ≤ Λ
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for some other constant Λ.
Performing the change of variable

s = −4π|Σt|−1 = −4π|Σ0|−1 exp(−t),
the evolution equation for wt becomes (see also [15, Theorem 2.1])

(10)
dws

ds
=

u2

H2
∆̂tws + 2u2H−1ĝt

(
∇̂wt, ∇̂H−1

)

+ ws(4π)
−1|Σt|

(
3

2
+ u(u+ 1)

(
∆tH

−1

H
− Rt + 6

2H2

))
,

where the operators ∆̂t and ∇̂ are computed with respect to the nor-
malized metric ĝt and the range os s is −4π|Σ0|−1 ≤ s < 0.

In order to use the standard theory for quasilienar parabolic equa-
tions, we need to make some remarks regarding the last term on the
right-hand side of equation (10). Direct computation shows that

u(u+ 1) = 2 + 3

√
|Σ0|
16π

(−s)3/2ws −
|Σ0|
16π

s3w2
s .

Thus the term

(11) (4π)−1|Σt|
(
3

2
+ u(u+ 1)

(
∆tH

−1

H
− Rt + 6

2H2

))

can be decomposed as

−3|Σ0|
164π

s2w2
s − 9

√
|Σ0|
164π

√
−sws + u(u+ 1)Ft,

where

Ft = (4π)−1|Σt|
(
∆tH

−1

H
+

6(H2 − 4)− 4Rt

8H2

)
.

Therefore, we obtain from Theorem 3.1 that the term in (11) is bounded
by some constant Λ.

Standard theory for quasilinear parabolic equations [11, Section VI,
Theorem 6.33] gives a uniform C0,α-bound in space-time for ws, i.e., for
all θ, θ′ ∈ S2 and −4π|Σ0|−1 ≤ s, s′ < 0

|ws(θ)−ws(θ
′)|

dist(θ, θ′)2α
+

|ws(θ)− ws′(θ)|
|s− s′|α ≤ Λ

for some constant Λ.
The term in (11) has a uniform C0,α-bound and so standard Schauder

estimates imply that ∇̂ws and ∇̂2ws are uniformly C0,α-bounded in
space-time. Bootstrapping implies the existence of a solution ws for all
s with

|∇̂nws|+ |∂s∇̂nws| ≤ Λ
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for every integer n. Rewriting the equation for wt in terms of the variable
t and differentiating it with respect to time we obtain that, for every
integer n and k,

|∇nwt|2 ≤ Λexp(−nt) and |∂kt ∇nwt|2 ≤ Λexp(−(n+ 2)t).

As a result, wt converges smoothly to a smooth function w∞ defined on
S2.

Finally, we show that the metric ḡ satisfies the definition of asymp-
totic hyperbolicity given in the Introduction. The manifold N defined in
the beginning of this section is diffeomorphic to S2 × [0,+∞) and thus,
besides polar coordinates (r, θ), admits also coordinates (t, θ) where
r = ft+ r̂t. In what follows we will use these coordinate systems, Theo-
rem 3.1, and the previous estimates for the function u without further
mention. Let

h := w∞ exp(3f∞)|Σ0|1/2(4π)−1/2

and denote by Q any 2-tensor that satisfies

|Q|+ |DQ|+ |D2Q|+ |D3Q| = O(exp(−4r)).

Then

ḡ = gm +
u2 − 1

H2
dt2 = gm +

u− 1

2
dt2 +Q

= gm + 2(u− 1)dr2 +Q.

Due to the fact that

|Σt| = 4π sinh2(r − ft),

we get that

ḡ = gm +
2(u− 1) exp(3t/2)|Σ0|3/2

(4π)3/2 sinh3(r − ft)
dr2 +Q

= gm +
8h

exp(3r)
dr2 +Q

= (1 + 4h exp(−3r))2 dr2 + (sinh2 r +m/(3 sinh r))g0 +Q.

Thus, if we set

s := r − 4/3h exp(−3r),

we obtain that

ḡ = ds2 + (sinh2 s+ (h+m)/(3 sinh s))g0 +Q

and this implies that ḡ is asymptotic hyperbolic if one uses the coordi-
nate system (s, θ). q.e.d.
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5. Proof of the main theorem

We now prove the main theorem.

Proof of Theorem 1.2. Consider the ambient manifold to be Anti–de
Sitter–Schwarzschild (S2 × [t0,+∞), gm) with positive mass. Set f to
be a smooth function on S2 with∫

S2

exp(2f)dµ0 = 1

that is invariant under reflection with respect to the three coordinate
planes and consider

Σ(r0) = {(r0 + f(θ), θ) | θ ∈ S2} ⊂ S2 × [t0,+∞).

According to Proposition 2.1 e) we know that

lim
r0→∞

mH(Σ(r0)) =
m

2

∫

S2

exp(−f)dµ0 >
m

2
,

where the last inequality is a consequence of Hölder’s inequality.
Choose r0 sufficiently large such that Σ(r0) satisfies hypothesis (H)

of Section 3 and
mH(Σ(r0)) >

m

2
.

This is possible because, due to Proposition 2.1, we know that

lim
r0→∞

H = 2 and lim
r0→∞

|Å|2 = 0.

Therefore, we can apply Theorem 3.1 and conclude the existence of
a smooth solution (Σt)t≥0 to inverse mean curvature flow where, by
monotonicity of Hawking mass,

m

2
< mH(Σ(r0)) ≤ lim

t→∞
mH(Σt).

Denote the induced metric on Σt by gt. The above inequality implies

Lemma 5.1. The Gaussian curvature K̂t of Σt with respect to the

normalized metric

ĝt := (4π)|Σt|−1gt

does not converge to one when t goes to infinity.

Proof. From Theorem 3.1 (iii) we know that

Σt =
{
(r̂t + ft(θ), θ) | θ ∈ S2

}
,

where r̂t is such that
|Σt| = 4π sinh2 r̂t

and the functions ft converge to a smooth function f∞ defined on S2.
Moreover, Proposition 2.1 (more precisely, identity (1)) implies that the
metric ĝt converges to ĝ = exp(2f∞)g0. Note that the ambient metric is
preserved by reflections with respect to the coordinate planes and thus
the metric ĝ also shares these symmetries.
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Suppose that K̂t converges to one. Then ĝ is a constant scalar curva-
ture metric which is symmetric under reflection on the coordinate planes
and so f∞ must be identically zero. If this were true, it would follow
from Proposition 2.1 e) that

lim
t→∞

mH(Σt) =
m

2

and this is impossible. q.e.d.

Outside Σ(r0), i.e., on the region

N :=
⋃

t≥0

Σt,

the metric gm can be written as

gm =
dt2

H2
+ gt.

We want to find a new asymptotically hyperbolic metric ḡ with R(ḡ) =
−6 such that, with respect to this new metric, the mean curvature of
Σ0 is 2, (Σt)t≥0 is a solution to inverse mean curvature flow, and the
induced metric on Σt by ḡ coincides with gt. This would finish the proof
for the following two reasons.

First, because (Σt)t≥0 is a smooth solution to inverse mean curvature
flow for ḡ, N is foliated by a family of spheres with positive mean
curvature and thus Σ(r0) is outer-minimizing.

Second, the intrinsic geometry of Σt is maintained and so we know
from Lemma 5.1 that the Gaussian curvature of Σt with respect to the
normalized metric does not converge to one. Proposition 2.1 f) implies
that no matter the coordinate system we choose we will always have

lim inf
t→∞

(st − st) > 0.

The construction of the metric ḡ is inspired by the work of Shi and
Tam [14]. Consider smooth positive functions u defined on N such that

uΣ0
:= H(Σ0)/2

and
(12)

2H2 ∂u

∂t
= 2u2∆tu+ 4u2H〈∇u,∇H−1〉+ (u− u3)(Rt + 6− 2H∆tH

−1),

where the Laplacian and gradient term are computed with respect to the
metric gt and Rt is the scalar curvature of Σt. Having such a function
u, the new metric is defined to be

ḡ :=
u2

H2
dt2 + gt
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and it has scalar curvature −6 by Lemma 4.1. Note that the intrinsic
geometry of Σt is preserved and the mean curvature and exterior normal
vector of Σt computed with respect to ḡ equal

H̄(Σt) = H(Σt)/u and ν̄ = ν/u

respectively. Thus
ν̄

H̄
=

ν

H
and this implies that (Σt)t≥0 is indeed a solution to inverse mean cur-
vature flow for the new metric with H̄(Σ0) = 2.

We are only left to check that equation (12) has a solution. Note that,
provided we choose r0 sufficiently large, Proposition 2.1 and Theorem
3.1 imply that

Rt + 6− 2H∆tH
−1 > 0

for all t. It is important to remark that this estimate holds because the
constants on Theorem 3.1 do not depend on r0 but only on r0 − r0.
Therefore, Theorem 4.2 implies that equation (12) admits a solution
and that the metric ḡ is asymptotically hyperbolic.

q.e.d.

Remark 5.2. To extend our argument to the case Λ = −3, i..e, the
case where the initial condition for the flow is a minimal surface, the
obvious modification would be to consider a family of metrics

gε :=
u2

H2
dt2 + gt

having

R = −6 and uΣ0
:= H(Σ0)/ε.

In this case, the sphere Σ0 would have mean curvature H = ε with
respect to gε and (Σ)t≥0 would still be a solution to inverse mean curva-
ture with respect to gε. One would then need to show that the metrics
gε converge when ε goes to zero. We remark that if Σ0 is a coordinate
sphere, then each gε is an Anti–De Sitter–Schwarschild and they indeed
converge when ε goes to zero.

5.1. A nontrivial consequence of the Penrose inequality. Assum-
ing that the Penrose inequality holds as conjectured by Xiadong Wang,
we will argue that for every smooth function f defined on S2 with

∫

S2

exp(2f)dµ0 = 1

we have
(∫

S2

Kf exp(3f)dµ0

)2

−
3∑

i=1

(∫

S2

Kf exp(3f)xidµ0

)2

≥ 1,
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where Kf denotes the Gaussian curvature of exp(2f)g0. A simple com-
putation shows that an equality is attained if exp(2f)g0 has constant
scalar curvature. Moreover, if we denote

I(f) =

(∫

S2

Kf exp(3f)dµ0

)2

−
3∑

i=1

(∫

S2

Kf exp(3f)xidµ0

)2

and consider T to be a conformal transformation of S2 such that

T ∗ (g0) = exp(2u)g0,

then I(f) = I(f ◦ T + u). One could check this directly or note, as
we shall see next, that I(f) can be obtained as the limit of masses of
sequence of metrics and so I(f) = I(f ◦T+u) because they are the limit
of masses for the same sequence of metrics but written with different
coordinate systems.

In what follows we use the same notation as in the proof of Theorem
1.2. Set f to be a smooth function on S2 with

∫

S2

exp(2f)dµ0 = 1

and consider

Σ(r0) =
{
(r0 + f(θ), θ) | θ ∈ S2

}
⊂ S2 × [t0,+∞).

Denote by M(r0) the mass of the metric ḡ constructed in the proof
of Theorem 1.2. It is not hard to see that, by choosing r0 sufficiently
large, we can have f∞ (defined in Theorem 3.1 (iii)) and w∞ (defined in
Theorem 4.2 (i)) respectively, as close to f and w0 as we want. Moreover,
from Proposition 2.1 d), we have that

2w0 = |Σ0|(H − 2)/(4π) = K̂(Σ(r0)) +O(exp(−r0)),

where the Gaussian curvature is computed with respect to the normal-
ized metric ĝ(r0) := 4π|Σ(r0)|−1gΣ(r0). Therefore, denoting the mass

two tensor of ḡ by h̄, we have that

(16π)1/2h̄|Σ(r0)|−1/2

is well approximated by

(
m16π1/2|Σ(r0)|−1/2 + 2exp(3f)w0

)
g0

=
(
K̂(Σ(r0)) exp(3f) +O(exp(−r0))

)
g0.
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Because the metric ĝ(r0) converges to exp(2f)g0 (Proposition 2.1 a)),
we obtain that

lim
r0→∞

M(r0)
2 16π

|Σ(r0)|

=

(∫

S2

Kf exp(3f)dµ0

)2

−
3∑

i=1

(∫

S2

Kf exp(3f)xidµ0

)2

.

If we assume the Penrose inequality, we know that

M(r0)

(
16π

|Σ(r0)|

)1/2

≥ 1

and so the desired inequality follows.
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