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LIMIT LEAVES OF AN H LAMINATION ARE STABLE

William H. Meeks III, Joaqúın Pérez & Antonio Ros

Abstract

Suppose L is a lamination of a Riemannian manifold by hyper-
surfaces with the same constant mean curvatureH . We prove that
every limit leaf of L is stable for the Jacobi operator. A simple
but important consequence of this result is that the set of stable
leaves of L has the structure of a lamination.

1. Introduction.

In this paper we prove that given a codimension one lamination L
in a Riemannian manifold N , whose leaves have a fixed constant mean
curvature H (minimality is included), then every limit leaf L of L is
stable with respect to the Jacobi operator. Our result is motivated by
a partial result of Meeks and Rosenberg in Lemma A.1 in [8], where
they proved the stability of L under the constraint that the holonomy
representation on any compact subdomain ∆ ⊂ L has subexponential

growth (i.e., the covering space ∆̃ of ∆ corresponding to the kernel of
the holonomy representation has subexponential area growth). In gen-

eral, if we assume stability for a covering space M̃ of a constant mean
curvature (CMC) hypersurface M in N and for any connected compact

domain ∆ ⊂ M the related restricted covering ∆̃ → ∆ has subexpo-
nential area growth, then M is also stable, see Lemma 6.2 in [5] for a
proof using cutoff functions. However, if the area growth of the covering
is exponential over some compact domain in M , then the stability of

M̃ does not imply the stability of M , as can be seen in the example
described in the next paragraph, which is due to R. Schoen. The exis-
tence of this example makes it clear that the application in [8] of cutoff
functions used to prove the stability of a limit leaf L with holonomy of
subexponential growth cannot be applied to case when the holonomy
representation of L has exponential growth.
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Consider a compact surface Σ of genus at least two endowed with a
metric g of constant curvature −1, and a smooth function f : R → (0, 1]
with f(0) = 1 and −1

8 < f ′′(0) < 0. Then in the warped product metric

f2 g+ dt2 on Σ×R, each slice Mc = Σ×{c} is a CMC surface of mean

curvature − f ′(c)
f(c) oriented by the unit vector field ∂

∂t , and the stability

operator on the totally geodesic (hence minimal) surface M0 = Σ×{0}
is L = ∆ + Ric( ∂

∂t) = ∆ − 2f ′′(0), where ∆ is the laplacian on M0

with respect to the induced metric f(0)2g = g and Ric denotes the
Ricci curvature of f2 g+ dt2. The first eigenvalue of L in the (compact)
surface M0 is 2f ′′(0), hence M0 is unstable as a minimal surface. On

the other hand, the universal cover M̃0 of M0 is the hyperbolic plane.
Since the first eigenvalue of the Dirichlet problem for the laplacian in

M̃0 is 1
4 , we deduce that the first eigenvalue of the Dirichlet problem

for the Jacobi operator on M̃0 is 1
4 + 2f ′′(0) > 0. Thus, M̃0 is an

immersed stable minimal surface. Similarly, for c sufficiently small, the
CMC surface Mc is unstable but its related universal cover is stable.

2. The statement and proof of the main theorem.

In order to help understand the results described in this paper, we
make the following definitions.

Definition 1. Let M be a complete, embedded hypersurface in a
manifold N . A point p ∈ N is a limit point of M if there exists a
sequence {pn}n ⊂ M which diverges to infinity on M with respect to
the intrinsic Riemannian topology on M but converges in N to p as
n → ∞. Let L(M) denote the set of all limit points of M in N . In
particular, L(M) is a closed subset of N and M −M ⊂ L(M), where
M denotes the closure of M .

Definition 2. A codimension one lamination of a Riemannian man-
ifold Nn+1 is the union of a collection of pairwise disjoint, connected,
injectively immersed hypersurfaces, with a certain local product struc-
ture. More precisely, it is a pair (L,A) satisfying:

1) L is a closed subset of N ;
2) A = {ϕβ : D

n × (0, 1) → Uβ}β is a collection of coordinate charts
of N (here D

n is the open unit ball in R
n, (0, 1) the open unit

interval and Uβ an open subset of N);
3) For each β, there exists a closed subset Cβ of (0, 1) such that

ϕ−1
β (Uβ ∩ L) = D

n × Cβ.

We will simply denote laminations by L, omitting the charts ϕβ in A. A
lamination L is said to be a foliation of N if L = N . Every lamination
L naturally decomposes into a collection of disjoint connected hyper-
surfaces, called the leaves of L. As usual, the regularity of L requires
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the corresponding regularity on the change of coordinate charts. Note
that if ∆ ⊂ L is any collection of leaves of L, then the closure of the
union of these leaves has the structure of a lamination within L, which
we will call a sublamination.

Definition 3. For H ∈ R, an H-hypersurface M in a Riemannian
manifold N is a codimension one submanifold of constant mean cur-
vature H. A codimension one H-lamination L of N is a collection of
immersed (not necessarily injectively) H-hypersurfaces {Lα}α∈I , called
the leaves of L, satisfying the following properties.

1) L =
⋃

α∈I{Lα} is a closed subset of N .
2) If H = 0, then L is a lamination of N . In this case, we also call L

a minimal lamination.

3) If H 6= 0, then given a leaf Lα of L and given a small disk ∆ ⊂
Lα, there exists an ε > 0 such that if (q, t) denote the normal
coordinates for expq(tηq) (here exp is the exponential map of N
and η is the unit normal vector field to Lα pointing to the mean
convex side of Lα), then:
a) The exponential map exp: U(∆, ε) = {(q, t) | q ∈ Int(∆), t ∈

(−ε, ε)} is a submersion.
b) The inverse image exp−1(L) ∩ {q ∈ Int(∆), t ∈ [0, ε)} is a lam-

ination of U(∆, ε).

The reader not familiar with the subject of minimal or H-laminations
should think about a geodesic γ on a Riemannian surface. If γ is com-
plete and embedded (a one-to-one immersion), then its closure is a ge-
odesic lamination L of the surface. When the geodesic γ has no ac-
cumulation points, then it is proper. Otherwise, there pass complete
embedded geodesics in L through the accumulation points of γ forming
the leaves of L. A similar result is true for a complete, embedded H-
hypersurface of locally bounded second fundamental form (bounded in
compact extrinsic balls) in a Riemannian manifold N , i.e., the closure of
a complete, embedded H-hypersurface of locally bounded second fun-
damental form has the structure of an H-lamination of N . For the sake
of completeness, we now give the proof of this elementary fact in the
case H 6= 0 (see the beginning of Section 1 in [7] for the proof in the
minimal case).

Consider a complete, embedded H-hypersurface M with locally
bounded second fundamental form in a manifold N . Choose a limit
point p of M (if there are no such limit points, then M is proper and it
is an H-lamination of N by itself), i.e., p is the limit in N of a sequence
of divergent points pn in M . Since M has bounded second fundamental
form near p and M is embedded, then for some small ε > 0, a sub-
sequence of the intrinsic ε-balls BM (pn, ε) converges to an embedded
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H-ball B(p, ε) ⊂ N of intrinsic radius ε centered at p. Since M is em-
bedded, any two such limit balls, say B(p, ε), B′(p, ε), do not intersect
transversally. By the maximum principle for H-hypersurfaces, we con-
clude that if a second ball B′(p, ε) exists, then B(p, ε), B′(p, ε) are the
only such limit balls and they are oppositely oriented at p.

Now consider any sequence of embedded balls En of the form B(qn,
ε
4 )

such that qn converges to a point in B(p, ε2) and such that En locally
lies on the mean convex side of B(p, ε). For ε sufficiently small and for
n, m large, En and Em must be graphs over domains in B(p, ε) such
that when oriented as graphs, they have the same mean curvature. By
the maximum principle, the graphs En and Em are disjoint or equal. It
follows that near p and on the mean convex side of B(p, ε), M has the
structure of a lamination with leaves of the same constant mean curva-
ture as M . This proves that M has the structure of an H-lamination of
codimension one.

Definition 4. Let L be a codimension one H-lamination of a mani-
fold N and L be a leaf of L. We say that L is a limit leaf if L is contained
in the closure of L − L.

We claim that a leaf L of a codimension one H-lamination L is a
limit leaf if and only if for any point p ∈ L and any sufficiently small
intrinsic ball B ⊂ L centered at p, there exists a sequence of pairwise
disjoint balls Bn in leaves Ln of L which converges to B in N as n→ ∞,
such that each Bn is disjoint from B. Furthermore, we also claim that
the leaves Ln can be chosen different from L for all n. The implication
where one assumes that L is a limit leaf of L is clear. For the converse,
it suffices to pick a point p ∈ L and prove that p lies in the closure of
L−L. By hypothesis, there exists a small intrinsic ball B ⊂ L centered
at p which is the limit in N of pairwise disjoint balls Bn in leaves Ln of
L, as n → ∞. If Ln 6= L for all n ∈ N, then we have done. Arguing by
contradiction and after extracting a subsequence, assume Ln = L for
all n ∈ N. Choosing points pn ∈ Bn and repeating the argument above
with pn instead of p, one finds pairwise disjoint balls Bn,m ⊂ L which
converge in N to Bn as m→ ∞. Note that for (n1,m1) 6= (n2,m2), the
related balls Bn1,m1

, Bn2,m2
are disjoint. Iterating this process, we find

an uncountable number of such disjoint balls on L, which contradicts
that L admits a countable basis for its intrinsic topology.

Definition 5. A minimal hypersurface M ⊂ N of dimension n is
said to be stable if for every compactly supported normal variation of
M , the second variation of area is non-negative. IfM has constant mean
curvatureH, thenM is said to be stable if the same variational property
holds for the functional A− nHV , where A denotes area and V stands
for oriented volume. A Jacobi function f : M → R is a solution of the
equation ∆f + |A|2f + Ric(η)f = 0 on M ; if M is two-sided, then the
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stability ofM is equivalent to the existence of a positive Jacobi function
on M (see Fischer-Colbrie [2]).

The proof of the next theorem is motivated by a well-known applica-
tion of the divergence theorem to prove that every compact domain in a
leaf of an oriented, codimension one minimal foliation in a Riemannian
manifold is area-minimizing in its relative Z-homology class. For other
related applications of the divergence theorem, see [11].

Although we have not mentioned it previously, throughout this paper
we are assuming some regularity on an H-lamination; we will need this
regularity in the proof of the next theorem. The minimum regularity
that we require is Lipschitz regularity from which C1,1 regularity can be
shown. However, in dimension 3, C1,1 regularity of a C0 lamination fol-
lows from the one-sided curvature estimate of Colding and Minicozzi [1]
when H = 0 and for H > 0, it follows from the work of Meeks and
Tinaglia [9]. C1,1 regularity for a codimension one minimal foliation
holds in any dimension by work of Solomon [13].

Theorem 1. The limit leaves of a codimension one H-lamination of

a Riemannian manifold are stable.

Proof. We will assume that the dimension of the ambient manifold
N is three in this proof; the arguments below can be easily adapted to
the n-dimensional setting. The first step in the proof is the following
result.

Assertion 1. Suppose D(p, r) is a compact, embedded H-disk in N
with constant mean curvature H (possibly negative), intrinsic diameter
r > 0 and center p, such that there exist global normal coordinates (q, t)
based at points q ∈ D(p, r), with t ∈ [0, ε]. Suppose that T ⊂ [0, ε] is
a closed disconnected set with zero as a limit point and for each t ∈ T ,
there exists a function ft : D(p, r) → [0, ε] such that the normal graphs
q 7→ expq(ft(q)η(q)) define pairwise disjoint H-surfaces with ft(p) = t,

where η stands for the oriented unit normal vector field to D(p, r).
For each component (tα, sα) of [0, ε] − T with sα < ε, consider the
interpolating graphs q 7→ expq(ft(q)η(q)), t ∈ [tα, sα], where

ft = ftα + (t− tα)
fsα − ftα
sα − tα

.

(See Figure 1). Then, the mean curvature functions Ht of the graphs of
ft satisfy

lim
t→0+

Ht(q)−H

t
= 0 for all q ∈ D(p, ε/2).

Proof of Assertion 1. Reasoning by contradiction, suppose there ex-
ists a sequence tn ∈ [0, ε] − T , tn ց 0, and points qn ∈ D(p, r/2), such
that |Htn(qn) − H| > Ctn for some constant C > 0. Let (tαn

, sαn
) be
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Figure 1. The interpolating graph of ft between the
H-graphs of ftα , fsα .

the component of [0, ε]−T which contains tn. Then, we can rewrite ftn
as

ftn = tn

[
tαn

tn

ftαn

tαn

+

(
1−

tαn

tn

)
fsαn

− ftαn

sαn
− tαn

]
.

After extracting a subsequence, we may assume that as n → ∞, the
sequence of numbers tαn

tn
converges to some A ∈ [0, 1], and the se-

quences of functions
ftαn

tαn

,
fsαn

−ftαn

sαn
−tαn

converge smoothly to Jacobi func-

tions F1, F2 on D(p, r/2), respectively. Now consider the normal varia-
tion of D(p, r/2) given by

ψ̃t(q) = expq (t[AF1 + (1−A)F2](q)η(q)) ,

for t > 0 small. Since AF1 + (1 − A)F2 is a Jacobi function, the mean

curvature H̃t of ψ̃t is H̃t = H+O(t2), where O(t2) stands for a function
satisfying tO(t2) → 0 as t → 0+. On the other hand, the normal
graphs of ftn and of tn(AF1 + (1 − A)F2) over D(p, r/2) can be taken
arbitrarily close in the C4-norm for n large enough, which implies that

their mean curvatures Htn , H̃tn are C2-close. This is a contradiction
with the assumed decay of Htn at qn. q.e.d.

We now continue the proof of the theorem. Let L be a limit leaf
of an H-lamination L of a manifold N by hypersurfaces. If L is one-

sided, then we consider the two-sided 2:1 cover L̃ → L and pullback the

H-lamination L to a small neighborhood of the zero section L̃0 of the

normal bundle L̃⊥ to L̃ (L̃0 can be identified with L̃ itself). In this case,
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Figure 2. The shaded region between Dx and D(p, δ)
corresponds to U(p, δ).

we will prove that L̃0 is stable, which in particular implies stability for
L, see Remark 1. Hence, in the sequel we will assume L is two-sided.

Arguing by contradiction, suppose there exists an unstable compact
subdomain ∆ ⊂ L with non-empty smooth boundary ∂∆. Given a
subset A ⊂ ∆ and ε > 0 sufficiently small, we define

A⊥,ε = {expq(tη(q)) | q ∈ A, t ∈ [0, ε]}

to be the one-sided vertical ε-neighborhood of A, written in normal
coordinates (q, t) (here we have picked the unit normal η to L such
that L is a limit of leaves of L at the side η points into). Since L is
a lamination and ∆ is compact, there exists δ ∈ (0, ε) such that the
following property holds:

(⋆) Given an intrinsic disk D(p, δ) ⊂ L centered at a point p ∈ ∆

with radius δ, and given a point x ∈ L which lies in D(p, δ)⊥,ε/2, then
there passes a disk Dx ⊂ L through x, which is entirely contained in
D(p, δ)⊥,ε, and Dx is a normal graph over D(p, δ).

Fix a point p ∈ ∆ and let x ∈ L ∩ {p}⊥,ε/2 be the point above p
with greatest t-coordinate. Consider the disk Dx given by property (⋆),
which is the normal graph of a function fx over D(p, δ). Since ∆ is
compact, ε can be assumed to be small enough so that the closed region
given in normal coordinates by U(p, δ) = {(q, t) | q ∈ D(p, δ), 0 ≤ t ≤
fx(q)} intersects L in a closed collection of disks {D(t) | t ∈ T}, each of
which is the normal graph over D(p, δ) of a function ft : D(p, δ) → [0, ε)
with ft(p) = t, and T is a closed subset of [0, ε/2], see Figure 2. We
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now foliate the region U(p, δ)−
⋃

t∈T D(t) by interpolating the graphing
functions as we did in Assertion 1. Consider the union of all these locally
defined foliations Fp with p varying in ∆. Since ∆ is compact, we find

ε1 ∈ (0, ε/2) such that the one-sided normal neighborhood ∆⊥,ε1 ⊂⋃
p∈∆Fp of ∆ is foliated by surfaces which are portions of disks in the

locally defined foliations Fp. Let F(ε1) denote this foliation of ∆⊥,ε1. By
Assertion 1, the mean curvature function of the foliation F(ε1) viewed
locally as a function H(p, t) with p ∈ ∆ and t ∈ [0, ε1], satisfies

(1) lim
t→0+

H(p, t)−H

t
= 0, for all p ∈ ∆.

On the other hand since ∆ is unstable, the first eigenvalue λ1 of the
Jacobi operator J for the Dirichlet problem on ∆, is negative. Consider
a positive eigenfunction h of J on ∆ (note that h = 0 on ∂∆). For t ≥ 0
small and q ∈ ∆, expq(th(q)η(q)) defines a family of surfaces {∆(t)}t

with ∆(t) ⊂ ∆⊥,ε and the mean curvature Ĥt of ∆(t) satisfies

(2)
d

dt

∣∣∣∣
t=0

Ĥt = Jh = −λ1h > 0 on the interior of ∆.

Let Ω(t) be the compact region of N bounded by ∆∪∆(t) and foliated
away from ∂∆ by the surfaces ∆(s), 0 ≤ s ≤ t. Consider the smooth unit
vector field V defined at any point x ∈ Ω(t)−∂∆ to be the unit normal
vector to the unique leaf ∆(s) which passes through x, see Figure 3.

Since the divergence of V at x ∈ ∆(s) ⊂ Ω(t) equals −2Ĥs where Ĥs is
the mean curvature of ∆(s) at x, then (2) gives

div(V ) = −2Ĥs = −2H + 2λ1sh+O(s2) on ∆(s)

for s > 0 small. It follows that there exists a positive constant C such
that for t small,
(3)∫

Ω(t)
div(V ) = −2HVol(Ω(t))+2λ1

∫

Ω(t)
sh+O(t2) < −2HVol(Ω(t))−Ct.

Since the foliation F(ε1) has smooth leaves with uniformly bounded
second fundamental form, then the unit normal vector field W to the
leaves of F(ε1) is Lipschitz on ∆⊥,ε1 and hence, it is Lipschitz on Ω(t).
Since W is Lipschitz, its divergence is defined almost everywhere in
Ω(t) and the divergence theorem holds in this setting. Note that the
divergence ofW is smooth in the regions of the form U(p, δ)−

⋃
t∈T D(t)

where it is equal to −2 times the mean curvature of the leaves of Fp.
Also, the mean curvature function of the foliation is continuous on F(ε1)
(see Assertion 1). Hence, the divergence of W can be seen to be a
continuous function on Ω(t) which equals −2H on the leaves D(t), and
by Assertion 1, div(W ) converges to the constant −2H as t→ 0 to first
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Figure 3. The divergence theorem is applied in the
shaded region Ω(t) between ∆ and ∆(t).

order. Hence,

(4)

∫

Ω(t)
div(W ) > −2HVol(Ω(t))− Ct,

for any t > 0 sufficiently small.
Applying the divergence theorem to V and W in Ω(t) (note that

W = V on ∆), we obtain the following two inequalities:
∫

Ω(t)
div(V ) =

∫

∆(t)
〈V, η(t)〉 −

∫

∆
〈V, η〉 = Area(∆(t))−Area(∆),

∫

Ω(t)
div(W ) =

∫

∆(t)
〈W,η(t)〉 −

∫

∆
〈V, η〉 < Area(∆(t))−Area(∆),

where η(t) is the exterior unit vector field to Ω(t) on ∆(t). Hence,∫
Ω(t) div(W ) <

∫
Ω(t) div(V ). On the other hand, choosing t sufficiently

small such that both inequalities (3) and (4) hold, we have
∫
Ω(t) div(W )

>
∫
Ω(t) div(V ). This contradiction completes the proof of the theorem.

q.e.d.

Remark 1. The proof of the theorem shows that given any two-

sided cover L̃ of a limit leaf L of L as described in the statement of the
theorem, then L̃ is stable. This follows by lifting L to a neighborhood

U(L̃) of L̃ in its normal bundle, considered to be the zero section in

U(L̃). In the case of non-zero constant mean curvature hypersurfaces,
L is already two-sided and then stability is equivalent to the existence
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of a positive Jacobi function. However, in the minimal case where a
hypersurface L may be one-sided, this observation concerning stability

of L̃ is generally a stronger property; for example, the projective plane
contained in projective three-space is a totally geodesic surface which
is area minimizing in its Z2-homology class but its oriented two-sided
cover is unstable, see Ross [12] and also Ritoré and Ros [10].

Next we give a useful and immediate consequence of Theorem 1. Let
L be a codimension one H-lamination of a manifold N . We will denote
by Stab(L), Lim(L) the collections of stable leaves and limit leaves of
L, respectively. Note that Lim(L) is a closed set of leaves and so, it is
a sublamination of L.

Corollary 1. Suppose that N is a not necessarily complete Riemann-

ian manifold and L is an H-lamination of N with leaves of codimen-

sion one. Then, the closure of any collection of its stable leaves has

the structure of a sublamination of L, all of whose leaves are stable.

Hence, Stab(L) has the structure of a minimal lamination of N and

Lim(L) ⊂ Stab(L) is a sublamination.

Remark 2. Theorem 1 and Corollary 1 have many useful applica-
tions to the geometry of embedded minimal and constant mean curva-
ture hypersurfaces in Riemannian manifolds. We refer the interested
reader to the survey [3] by the first two authors and to our joint papers
in [4] and [6] for some of these applications.
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[4] W. H. Meeks III, J. Pérez & A. Ros. Local removable singularity theorems

for minimal and H-laminations. Preprint, available at http://www.ugr.es/lo-
cal/jperez/papers/papers.htm.
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