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CALABI-YAU COMPONENTS IN GENERAL TYPE

HYPERSURFACES

Naichung Conan Leung & Tom Y.H. Wan

Abstract

For a one-parameter family (V, {Ωi}pg

i=1
) of general type hyper-

surfaces with bases of holomorphic n-forms, we construct open
covers V =

⋃pg

i=1
Ui using tropical geometry. We show that after

normalization, each Ωi is approximately supported on a unique Ui

and such a pair approximates a Calabi-Yau hypersurface together
with its holomorphic n-form as the parameter becomes large. We
also show that the Lagrangian fibers in the fibration constructed
by Mikhalkin [9] are asymptotically special Lagrangian. As the
holomorphic n-form plays an important role in mirror symmetry
for Calabi-Yau manifolds, our results is a step toward understand-
ing mirror symmetry for general type manifolds.

1. Introduction

Calabi-Yau manifolds are Kähler manifolds with zero first Chern
class. By Yau’s theorem [14], they admit Ricci flat Kähler metrics.
They play important roles in String theory as internal spaces. Up
to a scalar multiple, there exists a unique holomorphic volume form
Ω ∈ Hn,0 (Y ) on any Calabi-Yau manifold Y . In the SYZ proposal [12]
for the Mirror Symmetry conjecture, Strominger, Yau and Zaslow con-
jectured that mirror symmetry is a generalization of the Fourier-Mukai
transformation along dual special Lagrangian torus fibrations on mirror
Calabi-Yau manifolds and it is called the “SYZ transformation”. Recall
that a Lagrangian submanifold L in Y is called special if Im Ω|L = 0.
It is not easy to construct special Lagrangian fibrations on Calabi-Yau
manifolds. Nevertheless, Lagrangian fibrations do exist on Calabi-Yau
hypersurfaces in CP

n+1, or other toric varieties, by the work of Gross
[7], Ruan [11] and others.

There are generalizations of the Mirror Symmetry conjecture for Fano
manifolds (i.e. positive first Chern class) and also recently for general
type manifolds (e.g. negative first Chern class). There are many Fano
manifolds which are toric varieties and therefore they admit natural
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Lagrangian torus fibrations. They have canonical holomorphic volume
forms Ω outside singular fibers which make the toric fibrations special.
The SYZ transformation along these special Lagrangian fibrations on
Fano toric manifolds was studied by Chan and the first author in [1].

This paper is an initial step in our studies of the SYZ mirror trans-
formation for general type manifolds. In dimension one, for every g ≥ 2,
there is a family of genus g Riemann surfaces Vt which degenerate to
a connected sum of g copies of elliptic curves as t goes to infinity, i.e.,
V∞ = Y1∪· · ·∪Yg with each Yi a smooth elliptic curve. Furthermore, we
can find a base Ω1,t, . . . ,Ωg,t of H1,0(Vt) such that for each i ∈ {1, . . . , g},
Ωi,t converges to a holomorphic volume form on Yi as t goes to infinity
(see subsection §3.2).

In higher dimensions, we cannot expect to have a connected sum
decomposition for general type manifolds Vt into Calabi-Yau mani-
folds. Instead, we will show in our main theorem that there is a basis
{Ω1,t . . . ,Ωpg,t} of Hn,0(Vt) and a decomposition

Vt =

pg⋃

i=1

Ui,t

such that each Ωi,t is roughly supported on corresponding Ui,t and
(Ui,t,Ωi,t) approximates a Calabi-Yau manifold Yi,t together with its
holomorphic volume form ΩYi,t

as t goes to infinity. This is not a con-
nected sum decomposition as different Ui,t’s can have large overlaps.
However, it still enables us to have a proper notion of special Lagrangian
fibrations on Vt and study the SYZ transformation along them.

If Vt is a family of general type hypersurfaces in CP
n+1, i.e. the

common degree d of the family of defining polynomials of Vt is bigger
than n + 2, then its geometric genus

pg (Vt) = dimHn,0 (Vt) =

(
d − 1

n + 1

)
≥ 2.

In fact pg (Vt) equals to the number of interior lattice points in △d,
the standard simplex in Rn+1 spanned by de1 . . . den+1 and the origin,
where {eα}n+1

α=1 is the standard basis of Rn+1. That is, if we denote the
set of interior lattice points of △d by △0

d,Z, then

pg (Vt) = #△0
d,Z.

The analog formula for pg holds true for smooth hypersurfaces in toric
varieties [4]. In this article, we prove the following

Theorem (Main Theorem). For any positive integers n and d with
d ≥ n + 2, there exists a family of smooth hypersurfaces Vt ⊂ CPn+1 of
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degree d such that Vt can be written as

Vt =
⋃

i∈△0
d,Z

Ui,t

where Ui,t is a family of open subsets Ui,t ⊂ Vt such that after the
normalization Ht : (C∗)n+1 → (C∗)n+1 defined by

Ht(z1, . . . , zn+1) =

(
|z1|

1
log t

z1

|z1|
, . . . , |zn+1|

1
log t

zn+1

|zn+1|

)
,

1) Ui,t is close in Hausdorff distance on (C∗)n+1 to an open subset of
a Calabi-Yau hypersurface Yi,t in CPn+1;

2) there exists a basis {Ωi,t}i∈△0
d,Z

of Hn,0(Vt) such that for each

i ∈ △0
d,Z, Ωi,t is non-vanishing and close to the holomorphic vol-

ume form ΩYi,t
of Yi,t on Ui,t with respect to the pull-back metric

H∗
t (g0) of the invariant toric metric g0 on (C∗)n+1;

3) for any compact subset B ⊂ (C∗)n+1 \ Ui,t, Ωi,t tends to zero in
Vt ∩ B uniformly with respect to H∗

t (g0).

Figure 1

Our proof is based on the results of Mikhalkin [9]. In his paper,
Mikhalkin constructed torus fibrations on general type hypersurfaces
V in CP

n+1 and he showed that some of these fibers are Lagrangian.
The technique he employed is tropical geometry. He constructed a de-
generating family Vt of hypersurfaces to decompose Vt into union of
pairs-of-pants and also his fibration can be seen from this tropical de-
generation. We are going to make use of his decomposition to construct
our open sets Ui,t in the main theorem.

Roughly speaking, the main theorem says that as t approaches infin-
ity, Vt decomposes into pg different Calabi-Yau manifolds Yi,t and each
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support a holomorphic n-form ΩYi,t
on Vt. (In here, we abused the no-

tion of “decomposition” since the open sets Ui,t that we obtained in the
“decomposition” do overlap even as t → +∞.) Therefore we can speak
of special Lagrangian submanifolds in Vt.

Definition 1.1. Let Lt ⊂ Vt be a smooth family of Lagrangian sub-
manifolds. We call it asymptotically special Lagrangian of phase θ with
respect to the decomposition if for any ǫ > 0 we have∣∣∣∣Im

(
e
√
−1θΩi,t

)∣∣∣
Lt∩Ui,t

∣∣∣∣ < ε

for any i ∈ △0
d,Z for sufficiently large t.

If Lt ⊂ Ui,t for some i ∈ △0
d,Z and Im

(
e
√
−1θΩi,t

)
|Lt = 0 then we

call Lt a special Lagrangian submanifold in Vt.

In section §3.1 we show that the Lagrangian fibers in the torus fibra-
tion on Vt constructed by Mikhalkin in [9] are asymptotically special
Lagrangians.

We start our proof with some preliminaries on the tropical geom-
etry, especially on the theorems of Einsiedler-Kapranov-Lind [3] and
Mikhalkin [9]. The main results and their proofs will be stated in sec-
tion §3 and §4.

Acknowledgements. The authors thank the valuable discussions
with Mark Gross and Wei Dong Ruan. We also would like to thank
Miss Suki Chan and Pauline Chan for their helps in making the figures.

2. Preliminaries

2.1. Amoebas and Viro’s patchworking. Let V o be a smooth hy-
persurface in (C∗)n+1 ⊂ CPn+1 or other toric varieties defined by a
Laurent polynomial

f(z) =
∑

j

ajz
j ,

where j = (j1, . . . , jn+1) ∈ Zn+1 are multi-indices. Recall that the
Newton polyhedron △ ⊂ Rn+1 of f , or of V o, is the convex hull in Rn+1

of all j ∈ Zn+1 such that aj 6= 0. According to [5], the amoeba of V o is
the image

Log(V o) ⊂ R
n+1

under the map Log : (z1, . . . , zn+1) 7→ (log |z1|, . . . , log |zn+1|).
In this paper, we are looking for deformation of complex structures

on V o together with corresponding basis of holomorphic n-forms satis-
fying a special limiting property. This leads us to consider deformation
of the polynomial f used by the Viro’s patchworking [13] and non-
Archimedean amoeba.
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Let v : △Z → R, where △Z = △∩ Zn+1, be any function and f(z) =∑

j∈△Z

ajz
j , aj 6= 0 for any j ∈ △Z, be any polynomial. The patchworking

polynomial is defined for all t > 0 by

f v
t (z) =

∑

j∈△Z

ajt
−v(j)zj .

The family f v
t can be treated as a single polynomial in (K∗)n+1, where

K∗ = K \ {0} and K is the field of Puiseux series with complex coeffi-
cients in t. In order to match the notation in the literatures, for instance
[3], we set τ = t−1 and let

C((τ q)) =

{
g(τ q) =

∞∑

k=m

gm(τ q)k

}

be the field of formal (semi-finite) Laurent series in τ q. Then the field
of Puiseux series is

K =
⋃

m≥1

C((τ
1
m )).

The field K is algebraically closed [2] and has a valuation defined by

valK


∑

q∈Λb

bqτ
q


 = minΛb.

for b =
∑

q∈Λb

bqτ
q ∈ K, (bq 6= 0). It is then easy to see that the field K

can also be represented by the field of Puiseux series

b̃ =
∑

p∈Λ̃b

b̃pt
p

with max Λ̃p < +∞ and valuation valK(b̃) = −max Λ̃b.

Since e−valK defines a norm ‖ · ‖K on K, we can define LogK on
(K∗)n+1 analog to Log on (C∗)n+1 by

LogK(a1, . . . , an+1) = (log ‖a1‖K , . . . , log ‖an+1‖K)

= −(valK(a1), . . . , valK(an+1)).

Then for VK ⊂ (K∗)n+1, the closure AK of the image set LogK(VK)
in Rn+1 is called accordingly the (non-Archimedean) amoeba of VK .
Since C is algebraically close, AK = LogK(VK). It is clear that AK =
−T (VK), where T (VK) is the tropical variety of VK which is defined as
the closure of valK(VK) in Rn+1 [3].

Note that for our family f v
t (z) =

∑

j∈△Z

ajt
−v(j)zj , the coefficient of zj

is ajt
−v(j) ∈ K which has valuation valK(ajt

−v(j)) = v(j). This match
the convention in [9].
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Following the construction of [9], for a finite set A in Zn+1 and a
real valued function v : A → R on A, one defines Πv to be the set of
non-smooth points (called corner locus in [9]) of the Legendre transform
Lv : Rn+1 → R of v. Here Lv(x) is defined by

Lv(x) = max
i∈A

lv,i(x),

where lv,i(x) = 〈x, i〉 − v(i) with 〈· , ·〉 is the standard inner product on
Rn+1. In particular, the interior of a top dimensional face of Πv is given
by

F(j(1), j(2))=
{
x ∈ R

n+1 : lv,j(1)(x) = lv,j(2)(x) > lv,j(x), ∀ j 6= j(1), j(2)
}
.

It was proved in [9] that Πv is a balanced polyhedral complex dual to
certain lattice subdivision of the convex hull △ of A in Rn+1. We refer
the reader to [9] or the appendix for the definition of a balanced polyhe-
dral complex. We have the following result of Einsiedler-Kapranov-Lind
[3].

Theorem 2.1. If VK ⊂ (K∗)n+1 is a hypersurface given by a poly-

nomial f =
∑

j∈△Z

ajz
j, aj ∈ K∗. Then the (non-Archimedean) amoeba

AK of VK is the balanced polyhedral complex Πv corresponding to the
function v(j) = valK(aj) defined on the lattice points of the Newton
polyhedron △.

Note that the theorem in [3] is originally stated for the tropical variety
T (VK) instead of AK .

Now we can describe the limiting behavior of the family of varieties
V o

t = {f v
t = 0} in (C∗)n+1 as t → +∞. For each t > 0, we define the

amoeba of V o
t with respect to t by

At = Logt(V
o
t ) ⊂ R

n+1,

where Logt(z1, . . . , zn+1) = (logt |z1|, . . . logt |zn+1|) on (C∗)n+1, where
logt τ = log τ/ log t for τ > 0. If we denote accordingly AK = LogK(VK)
the non-Archimedean amoeba of the family f v

t regarded as a single poly-
nomial in the field K of Puiseux series. Then, we have the following
theorem of Mikhalkin [9] which is needed in the proofs of our assertions.

Theorem 2.2. The amoebas At converge in the Hausdorff distance
on Rn+1 to the non-Archimedean amoeba AK as t → +∞.

Recall that the Hausdorff distance between two closed subsets A and
B in Rn+1 is given by

dH(A,B) = max

{
sup
a∈A

dRn+1(a,B), sup
b∈B

dRn+1(A, b)

}
.
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2.2. Maximal dual complex. As we mentioned, it was proved in [9]
that Πv is a balanced polyhedral complex dual to certain lattice subdi-
vision of the convex hull △ of A in Rn+1. In general, any n-dimensional
balanced polyhedral complex Π in Rn+1 determines a convex lattice
polyhedron △ ⊂ Rn+1 and a lattice subdivision of △. We call Π a max-
imal polyhedral complex if the elements of the subdivision are simplices
of volume 1

(n+1)! , i.e, the corresponding subdivision is a unimodular

lattice triangulation. Note that not all convex lattice polyhedron ad-
mit unimodular lattice triangulation. Therefore, not all convex lattice
polyhedron admit maximal dual complex. If it does, then we have the
following result of [9].

Proposition 2.3. If Π is a maximal dual △-complex, then Π is ho-
motopy equivalent to the bouquet of #△0

Z
copies of Sn, where △0

Z
=

(Int△) ∩ Zn+1 is the set of interior lattice points of △.

However, the converse of the proposition is not true. A non-maximal
dual △-complex may still have the homotopy type stated in the propo-
sition.

It was also shown in [9] that on each maximal complex Π ⊂ Rn+1,
there is a canonical choice of cutting locus Ξ such that each connected
component Uk, (k = 1, . . . , l) called primitive piece, of Π \ Ξ is equiv-
alent to an open neighborhood of the vertex in the primitive com-
plex Σn ⊂ Rn+1 which is the set of non-smooth points of the func-
tion H(x1, . . . , xn+1) = max{0, x1, . . . , xn+1}. That is, there exists
Mk ∈ ASLn+1(Z) = SLn+1(Z) ⋉ Zn such that Mk(Uk) is an open
set of Σn containing the vertex. Furthermore, these open sets are
parametrized by the vertices of Π. Since Π is dual to the lattice sub-
division of △ with simplices of volume 1

(n+1)! , we must have exactly

(n + 1)!vol(△) distinct Uk, i.e. l = (n + 1)!vol(△).

Figure 2: The primitive complex Σ2 and the amoeba of 1 + z1 + z2 = 0.
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2.3. Pairs-of-pants decomposition and stratified fibration. In
this subsection, we state the pairs-of-pants decomposition and existence
of stratified fibration theorem of Mikhalkin [9] which is the main in-
gredient of the proof of our results. We start with the definition of
pair-of-pants and stratified fibration given in [9].

As in [9], we denote by H a union of n + 2 generic hyperplanes in
CPn and U the union of the corresponding ǫ-neighborhoods for a small
ǫ > 0. Then Pn = CPn \ U is called the n-dimensional pair-of-pants
while Pn = CPn \ H the n-dimensional open pair-of-pants. It is clear
that P1 is diffeomorphic to a 2-sphere with three punctures and P1 is
diffeomorphic to a 2-sphere with three holes, or equivalently, a closed
disk with two holes. That is, the definition is a generalization of the
classical pair-of-pants in one complex dimension.

If V and F are smooth manifolds, and Π is a maximal dual △-complex
of a lattice polyhedron △ of full dimension in Rn+1, then a smooth map
λ : V → Π is a stratified F -fibration if it satisfies

1) the restriction of λ over each open n-cell e ⊂ Π is a trivial fibration
with fiber F ;

2) for each pair of integers (l, k) with 0 ≤ k ≤ l ≤ n, there exists a
smooth “model” map depending only on l and k, λl,k : Vl,k → Πl,k

with Πl,k diffeomorphic to Rk × Σl−k × [0,+∞)n−l such that any
(l, k)-point of Π has a neighborhood U such that

λ|U : λ−1(U) → U

is diffeomorphic to the model map.

Now, we can state the pairs-of-pants decomposition and existence of
stratified fibration theorem of Mikhalkin [9].

Theorem 2.4. Let V be a smooth hypersurface in CPn+1 defined
by a polynomial with Newton polyhedron △d. Then for every maximal
dual △d-complex Π, there exists a stratified Tn-fibration λ : V → Π
satisfying

1) the induced map λ∗ : Hn(Π, Z) ≈ Zpg → Hn(V, Z) is injective,
where pg = hn,0(V ) is the geometric genus of V ;

2) for each primitive piece Uk of Π, λ−1(Uk) is diffeomeorphic to an
open pair-of-pants Pn;

3) for each n-cell e of Π, there exists a point x ∈ e such that the fiber
λ−1(x) is a Lagrangian n-torus Tn ⊂ V ;

4) there exists Lagrangian embedding φi : Sn → V , i = 1, . . . , pg such
that the cycles λ ◦ φi(S

n) form a basis of Hn(Π).



CALABI-YAU COMPONENTS IN GENERAL TYPE HYPERSURFACES 51

Figure 3: Illustration of some pairs-of-pants Uk.

2.4. Key lemma. To prove the main theorem, we need to show the
existence of a real valued function v : △d,Z → R, where △d,Z = △d ∩
Zn+1 and d ≥ n + 2, such that the corresponding lattice subdivision of
△d dual to the balanced polyhedral complex Πv satisfies some special
properties which are needed to obtain the “decomposition” into Calabi-
Yau pieces claimed in our main result. The special properties that we
need are the property (2) in the following lemma. Existence of function
v with property (1) only is well-known.

Lemma 2.5. Let △d, d ≥ n+2, be the simplex in Rn+1 with vertices
{0, de1, . . . , den+1}, where {e1, . . . , en+1} is the standard basis of Rn+1,
and the function v : △d,Z → R be defined by

v(j1, . . . , jn+1) =
n+1∑

α=1

j2
α +

(
n+1∑

α=1

jα

)2

.

Then

1) the balanced polyhedral complex Πv corresponding to v is a maximal
dual complex of △d;

2) the corresponding subdivision of △d has the property that for each
point i = (i1, . . . , in+1) ∈ △0

d,Z, the lattice subdivision restricts to
a lattice subdivision of the translated simplex i − ı + △n+2, where
ı = (1, . . . , 1) ∈ Zn+1.
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Figure 4: A maximal dual △4 complex with the required property.

Note that we do not claim that the subdivision is translational in-
variant which probably is not true. We only claim that for each interior
lattice point, one can find a union of simplexes which form a standard
simplex with exactly one interior lattice point. This clearly corresponds
to the Calabi-Yau situation. The proof of this lemma will be given in
the last section of this article.

3. Proof of the main theorem

In this section, we give the proof of the main theorem. Recall that we
are free to use any hypersurface defined by a homogeneous polynomial of
degree d of n+1 variables to replace V in order to describe V as a smooth
manifold or as a symplectic manifold. The idea of tropical geometry
leads us to consider the submanifold V o = V ∩(C∗)n+1. Since all smooth
hypersurfaces with the same Newton polyhedron are isotopic, we are free
to choose the non-zero coefficients. In particular, we may take aj = 1
for all j ∈ △Z. Therefore, a deformation of complex structures on V

can be given by a patchworking polynomial ft(z) =
∑

j∈△Z

t−v(j)zj , t > 0

in z ∈ (C∗)n+1. We assume ft(z) is generic with Newton polyhedron
△ = △d and v(j) < ∞ for all j ∈ △d,Z. That is, ft(z) contains all
possible monomials of degree less than or equal to d.
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The result of Einsiedler-Kapranov-Lind in the previous section states
that the amoebas At = Logt(V

o
t ) converge in the Hausdorff distance

on Rn+1 to the non-Archimedean amoeba AK = Πv as t → +∞. By
construction, the top dimensional faces are given by two maximal terms
in ft(z) as t → +∞. To be precise, we note that the highest exponent
of t for the term t−v(j)zj in the polynomial ft is given by

lv,j(x) = 〈j, x〉 − v(j),

where x = lim
t→+∞

Logt(z) = lim
t→+∞

(logt |z1|, . . . , logt |zn+1|) ∈ R
n+1.

Then, the interior of a top dimensional face of AK = Πv associated to

the terms t−v(j(1))zj(1)
and t−v(j(2))zj(2)

is

F(j(1), j(2))=
{
x ∈ R

n+1 : lv,j(1)(x) = lv,j(2)(x) > lv,j(x),∀ j 6= j(1), j(2)
}
.

By the results of tropical geometry [9], the generators of the n-
dimensional homology of the amoeba are exactly given by the limit of
the boundaries of the domains on which a term corresponds to an inte-
rior lattice point of the Newton polyhedron is maximal. Recall that the

set of interior lattice points of △d is exactly equal to pg =

(
d − 1
n + 1

)

(see for instance [4]) and note that F(i, j) 6= ∅ only when i and j is
connected by an edge in the lattice subdivision of △d dual to Πv. Then
for each i ∈ △0

d,Z, C∧
i =

⋃
j F(i, j) forms an n-cycle representing an

element of Hn(Πv, Z). It is clear from Mikhalkin’s results mentioned in
the previous section that the classes {[C∧

i ]}i∈△0
d,Z

are the generators of

Hn(Πv, Z). Since Πv = AK , this gives the generators of Hn(AK , Z) and
hence Hn(At, Z) for large t. From this observation, we first prove the
following result which gives partial results of the main theorem.

Theorem 3.1. Let v : △d,Z → R be a real valued function such
that the set Πv of non-smooth points of the Legendre transform of v

is a maximal dual △d-complex, d ≥ n + 2. Let ft =
∑

j∈△d,Z

t−v(j)zj

(t > 0) be the patchworking polynomial of degree d defined by v with
non-Archimedean amoeba AK = Πv. Denote Vt = {ft = 0} ⊂ CPn+1.
Then for all t > 0, there exists a basis {Ωi,t}i∈△0

d,Z
of Hn,0(Vt), and

open subsets U∧
i,t ⊂ Vt ∩ (C∗)n+1 such that for each i ∈ △0

d,Z,

1) Logt(U
∧
i,t) tends to an n-cycle C∧

i such that {[C∧
i ]}i∈△0

d,Z
forms a

basis of Hn(AK(V )),
2) Ωi,t is nonvanishing on U∧

i,t for large t, and

3) for any compact subset B ⊂ CPn+1 \ U∧
i,t, Ωi,t tends to zero in

V o
t ∩B uniformly with respect to the metric induced from the pull-

back metric H∗
t (g0) of the invariant metric of the torus (C∗)n+1.
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Figure 5: Illustration of an open set U
∧
i,t.

Proof. By the above observation, we consider for each i ∈ △0
d,Z, the

cycle C∧
i =

⋃
j F(i, j). Denote the 1/t-neighborhood of C∧

i in Πv (not

in Rn+1) by C∧
i,t. (In fact, one can take any function of t instead, as

long as it tends to 0 as t → +∞.) Choose δ > 0 in such a way that Πv

is a deformation retract of the δ-tubular neighborhood Tδ of Πv. Then
for any t > 0 such that LogtVt ⊂ Tδ, we define the open set

U∧
i,t = λ−1

(
C∧

i,t

)
,

where λ : Vt → Πv is the stratified Tn-fibration given by Mikhalkin [9].
Then it is clear that condition (1) is satisfied, namely Logt(U

∧
i,t) tends

to C∧
i in Hausdorff distance as t → ∞. This proves the first statement.

Figure 6: The construction of the neighborhood C
∧
i,t.
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To see the other two statements, we use the well-known fact [6] that
on the variety Vt, the Poincaré residues of f−1

t dz1 ∧ · · · ∧ dzn+1 define a
holomorphic n-form on Vt; and all elements in Hn,0(Vt) are of the form

Ω = P (z)Res
dz1 ∧ · · · ∧ dzn+1

ft(z)
,

where P (z) is a polynomial of degree at most d − (n + 2). To simplify
notation, we omit the subscribe t in the following calculations.

For any α ∈ {1, . . . , n + 1}, in the region where fzα = ∂f
∂zα

6= 0, the

residue Ωo of f(z)−1dz1 ∧ · · · ∧ dzn+1 is given by

Ωo = (−1)α−1 dz1 ∧ · · · d̂zα · · · ∧ dzn+1

fzα

.

Now, for each interior lattice point i ∈ △0
d,Z, we define

Ωi = (log t)−n t−v(i)zi

z1 · · · zn+1
Ωo.

Note that i belongs to △0
d,Z implies iα ≥ 1 for all α = 1, . . . , n + 1.

This shows that t−v(i)zi/z1 · · · zn+1 is a polynomial of degree less than
or equal to d− 1− (n + 1) = d− (n + 2) and hence Ωi is a holomorphic
n-form on Vt. It is also clear from the construction that Ωi, i ∈ △0

d,Z,

form a basis of Hn,0(Vt). Explicitly, in the region with fzα 6= 0,

Ωi = (−1)α−1(log t)−n t−v(i)zi

z1 · · · zn+1

dz1 ∧ · · · d̂zα · · · ∧ dzn+1

fzα

= (−1)α−1(log t)−n t−v(i)zi

∑
j jαt−v(j)zj

dz1

z1
∧ · · ·

(̂
dzα

zα

)
· · · ∧ dzn+1

zn+1
.

Now each (non-empty) face F(i, j(1)) of the n-cycle C∧
i of AK corre-

sponding to i is given by

lv,i(x) = lv,j(1)(x) > lv,j(x), j 6= i, j(1),

where j(1) ∈ (△d,Z \ {i}). Namely, t−v(i)zi and t−v(j(1))zj(1)
are the

two maximal terms of ft(z) determining the face as t → +∞. There-

fore for any compact subset R ⋐ Int(F(i, j(1))) the terms t−v(i)zi and

t−v(j(1))zj(1)
dominate other terms of ft in a neighborhood of λ−1(R) ⊂

Vt ∩ (C∗)n+1 in (C∗)n+1 as t → +∞.
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For each α ∈ {1, . . . , n+1}, the definition of ft(z) gives (omitting the
subscribe t)

zαfzα =
∑

j

jαt−v(j)zj

= iαt−v(i)zi + j(1)
α t−v(j(1))zj(1)

+ · · ·
= iα

(
t−v(i)zi + t−v(j(1))zj(1)

)
+
(
j(1)
α − iα

)
t−v(j(1))zj(1)

+ · · ·

= iα (f + · · · ) +
(
j(1)
α − iα

)
t−v(j(1))zj(1)

+ · · ·
where “· · · ” denotes the terms in f , up to multiple of a constant, other

than t−v(i)zi and t−v(j(1))zj(1)
, and iα and j

(1)
α are the α-components of

i and j(1) respectively.

Since j(1) 6= i, there is an index α ∈ {1, . . . , n+1} such that j
(1)
α 6= iα.

Therefore, for this α and sufficiently large t, fzα 6= 0 in a neighborhood
of λ−1(R) for any compact subset R ⋐ Int(F(i, j(1))) of the interior of

the face F(i, j(1)). Putting the above expression into the definition of
Ωi and using f = 0 on Vt, we have

Ωi= (log t)−n

[
(−1)α−1t−v(i)zi

(j
(1)
α − iα)t−v(j(1))zj(1)

+ · · ·

]
dz1

z1
∧· · ·

(̂
dzα

zα

)
· · ·∧dzn+1

zn+1
.

Let ξ = Ht(z) =
(
|z1|

1
log t z1

|z1| , . . . , |zn+1|
1

log t
zn+1

|zn+1|

)
be the normalization

mentioned in (2) of the main theorem. Then Log|ξ| = Logt|z| and

(log t)−1 dzβ

zβ
=

d|ξβ |
|ξβ|

+
√
−1(log t)−1d arg zβ.

Therefore, by using t−v(j(1))zj(1)
+ t−v(i)zi + · · · = f(z) = 0, as t → +∞

Ωi →
[

(−1)α−1

iα − j
(1)
α

]
d|ξ1|
|ξ1|

∧ · · · ∧
̂
(

d|ξα|
|ξα|

)
∧ · · · ∧ d|ξn+1|

|ξn+1|
locally, with respect to the metric induced from the pull-back H∗

t (g0) of

the invariant toric metric g0 = 1
2
√
−1

∑ |ξα|−2dξα ∧ dξ̄α on (C∗)n+1, in

the neighborhood with image sufficiently near R under the map Logt.
Next we work on a neighborhood of an vertex x ∈ C∧

i . Near this
point, there are (n + 1) terms

t−v(j(1))zj(1)
, . . . , t−v(j(n+1))zj(n+1)

,

of f that are comparable to t−v(i)zi and dominating other terms as

t → +∞. Denote j(0) = i and ζp = t−v(j(p))zj(p)
for p = 0, . . . , n + 1.

Then

0 = f(z) =
n+1∑

p=0

ζp + · · · ,
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and

zαfzα =
∑

j

jαt−v(j)zj

=

n+1∑

p=0

j(p)
α ζp + · · ·

= j(0)
α




n+1∑

p=0

ζp


+

n+1∑

p=1

(j(p)
α − j(0)

α )ζp + · · ·

= j(0)
α (f + · · · ) +

n+1∑

p=1

(j(p)
α − j(0)

α )ζp + · · ·

where “· · · ” denotes the terms in f , up to multiple of a constant, other

than t−v(j(p))zj(p)
, p = 0, . . . , n + 1. Note that for α = 1, . . . , n + 1,

zα = txαbα + · · ·

with certain leading coefficients b = (b1, . . . , bn+1), where xα’s are the
coordinates of the vertex x ∈ C∧

i . Hence

ζp = t
l
v,j(p)(x)

bj(p)
+ · · · ,

where lv,j(p)(x) = 〈x, j(p)〉−v(j(p)). We claim that for any b, there exists

α ∈ {1, . . . , n + 1} such that

lim
t→+∞

n+1∑

p=1

(j(p)
α − j(0)

α )
ζp

ζ0
6= 0.

In fact, if it is not true, then by taking t → +∞, we have for all α,

lim
t→+∞

n+1∑

p=1

(j(p)
α − j(0)

α )
ζp

ζ0
=

n+1∑

p=1

(j(p)
α − j(0)

α )
bj(p)

bj(0)
= 0.

By using 0 = f(z) =
∑

ζp + · · · , we also have

1 +

n+1∑

p=1

bj(p)

bj(0)
= 0.

Then, by comparing with the polynomial 1 + z1 + · · · + zn+1, it is easy

to see that M = (j
(p)
α − j

(0)
α )α,p=1,...,n+1 is the matrix of the affine trans-

formation that maps the neighborhood of the vertex x to the primitive
complex Σn. Since Πv is a maximal dual complex, M is invertible. This

implies bj(p)

bj(0)
= 0 for all p which is a contradiction.
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Using the claim, we see that for large t and each z in the neighbor-
hood, fzα 6= 0 for some α. And

Ωi →
(−1)α−1bj(0)

∑n+1
p=1 (j

(p)
α − j

(0)
α )bj(p)

d|ξ1|
|ξ1|

∧ · · ·
̂
(

d|ξα|
|ξα|

)
· · · ∧ d|ξn+1|

|ξn+1|
.

This shows that Ωi is non-vanishing near a vertex for large t. Similarly,
we can prove that Ωi is non-vanishing near any face with dimension
between 1 and n. This completes the proof of the second statement.

Finally for the last statement of the theorem, we observe that on any
compact subset B ⊂ CPn+1 \ U∧

i,t, t−v(i)zi is no longer a dominating
term near Vt ∩ B and hence Ωi → 0 locally in B as t → +∞ by the
above local expression of Ωi. This completes the proof of the theorem.

q.e.d.

Remark: In his preprint [10], Mikhalkin defined a version of “regular
1-form” on tropical curves. From the proof of the theorem 3.1, we see
that in this case (n = 1), for each i ∈ △0

d,Z, the holomorphic 1-form Ωi,t

tends to a limit of the form

(−1)α−1

iα − j
(1)
α

dx1 ∧ · · · ∧ d̂xα ∧ · · · ∧ dx2,

where xα = lim
t→+∞

Logt|z| = lim
t→+∞

Log|ξ|. And this limit is in fact a

“regular 1-form” on the tropical variety AK(V ) = Πv in the sense of
Mikhalkin and dual to the 1-cycle C∧

i = lim
t→∞

Logt(U
∧
i,t).

Note that the set of n-cycles {C∧
i }i∈△0

d,Z
, constructed in the theorem

3.1 does not cover Πv. Hence {U∧
i,t}i∈△0

d,Z
cannot cover Vt. In order

to obtain an open covering {Ui,t}i∈△0
d,Z

of Vt, we need to enlarge U∧
i,t

suitably. In the case of our interest, we have the following

Theorem 3.2. Let v : △d,Z → R be a function satisfying the condi-

tion of lemma 2.5, ft =
∑

j∈△d,Z

t−v(j)zj (t > 0) be the patchworking poly-

nomial of degree d defined by v with non-Archimedean amoeba AK = Πv.
Denote Vt = {ft = 0} ⊂ CPn+1. Then for all t > 0, there exists a basis
{Ωi,t}i∈△0

d,Z
of Hn,0(Vt), and open subsets Ui,t ⊂ Vt such that for each

i ∈ △0
d,Z,

1) Logt(Ui,t) tends to an n-cycle Ci such that Πv =
⋃

i∈△0
d,Z

Ci and

{[Ci]}i∈△0
d,Z

forms a basis of Hn(AK(V )),

2) for any compact subset B ⊂ CPn+1 \ Ui,t, Ωi,t tends to zero in
V o

t ∩ B uniformly with respect to H∗
t (g0).

Proof. By the pair-of-pants decomposition theorem 2.4, Vt is a union
of pairs-of-pants Pn’s. And the set of pair-of-pants Pn are in one-one
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correspondence to the set of vertices of Πv . Hence each Pn corresponds
to a simplex in the lattice subdivision of △d and vice versa. Moreover,
if the pair-of-pants Pn(s) corresponds to the simplex σs of the lattice
subdivision of △d, then Pn(s) is the closure of the preimage λ−1(Us) of
the primitive piece Us dual to the simplex σs.

Now, for each i ∈ △0
d,Z, conditions of lemma 2.5 says that the lattice

subdivision of △d corresponding to v restricts to a lattice subdivision of
i − ı + △n+2. Let {σs} be the set of simplices of the lattice subdivision
of i− ı +△n+2. Let Λi be the set of s such that for all j ∈ △0

d,Z \ {i}, j
is not a vertex of σs. We define

Ci = C∧
i

⋃

⋃

s∈Λi

Us


 ,

where Us is the primitive piece dual to the simplex σs.

Figure 7: Illustration of the sets C
∧
i and Ci.
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Then we clearly have

Πv =
⋃

i∈△0
d,Z

Ci

and [Ci] = [C∧
i ] in Hn(Πv). For these Ci, we define their 1/t-neighbor-

hood Ci,t in Πv similar to those for C∧
i,t and define the preimages to be

our enlarged open sets

Ui,t = λ−1 (Ci,t) .

Then it is clear that Ui,t ⊃ U∧
i,t for all i ∈ △0

d,Z and

Vt =
⋃

i∈△0
d,Z

Ui,t.

Finally, as U∧
i,t ⊂ Ui,t, the second statement of the theorem follows

trivially from the corresponding statement in theorem 3.1. The proof is
completed. q.e.d.

Figure 8: Illustration of an open set Ui,t.

Proof of the main theorem. By theorems 3.1 and 3.2, we remain to
show the following

1) Ui,t is close to an open subset of a Calabi-Yau hypersurface Yi,t

after normalization Ht,
2) Ωi,t is close to a scalar multiple of the unique holomorphic volume

form ΩYi,t
of Yi,t on Ui,t,

3) Ωi,t is non-vanishing on the whole Ui,t.

Note that the last item is needed because we have no information of
Ωi,t at the points in Ui,t∩

(
CPn+1 \ (C∗)n+1

)
and the theorem 3.1 shows

that Ωi,t tends to 0 as t → +∞ in Ui,t \U∧
i,t. We need to show that even
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they are tending to 0, Ωi,t is still non-vanishing on the whole Ui,t for
large but finite t.

To complete the proof of the main theorem, we take v to be the

function given in the lemma 2.5, ft =
∑

j∈△d,Z

t−v(j)zj be the patchworking

polynomial defined by v and Vt = {ft = 0}. Recall that the lemma 2.5
implies that the subdivision corresponding to v restricts to a lattice
subdivision of i − ı + △n+2. Consider the truncated polynomial fi,t =∑

j∈i−ı+△n+2

t−v(j)zj . This truncated polynomial fi,t factorizes as

fi,t = zi−ı
∑

j∈△n+2

t−v(j+i−ı)zj.

So the variety {fi,t = 0} ∩ (C∗)n+1 can be regarded as an open sub-

set of the Calabi-Yau variety Yi,t defined by the polynomial fCY
i,t =∑

j∈△n+2

t−v(j+i−ı)zj .

In [9], it was shown that the normalized varieties Ht(Vt) converge
in the Hausdorff metric to the lift W (AK) of the corresponding non-
Archimedean amoeba AK , where the lift W (AK) is the image of AK

under the map W : (K∗)n+1 → (C∗)n+1 defined as

W (b1, . . . , bn+1) =
(
e−valK (b1)+i arg(bm

1 ), . . . , e−valK (bn+1)+i arg(bm
n+1)

)
,

where bm
α ∈ C is the coefficient of t−valK (bα), i.e, the leading coefficient of

bα. For simplicity, we call arg(bm
1 ), . . . , arg(bm

n+1) the leading arguments
of b ∈ K. It was shown that W (AK) depends only on the leading
arguments of the coefficients of the defining polynomial f .

We can define similarly the lift W (Ci,t) for each i ∈ △0
d,Z. Then

the proof in [9] applies directly to show that W (Ci,t) depends only on
the leading arguments of the coefficients of the terms that determines
Ci,t and the normalized open set Ht(Ui,t) is close to W (Ci,t). Since
ft and the truncated polynomial fi,t have the same coefficients corre-
sponding to Ci,t, we see immediately that Ht(Ui,t) is close to Ht(U

CY
i,t )

in Hausdorff distance, where UCY
i,t is the preimage of the neighborhood

CCY
i,t corresponding to Ci,t in the lattice subdivision of i − ı + △n+2.

Therefore, Ui,t is close to an open set of a Calabi-Yau manifold Yi,t after
normalization Ht. This proves the first statement.

To see the other two statements, we observe that the limiting behavior
of Ωi,t shows that Ωi,t is close to the corresponding holomorphic n-form
ΩYi,t

of the Calabi-Yau hypersurface {fCY
i,t = 0} = Yi,t ⊂ CPn+1. In
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fact, since fCY
i,t = 0 on the hypersurface {fi,t = 0}, we have

ΩYi,t
= (log t)−n

[
(−1)α−1t−v(i)zı

zα(fCY
i,t )zα

]
dz1

z1
∧ · · ·

(̂
dzα

zα

)
· · · ∧ dzn+1

zn+1

= (log t)−n

[
(−1)α−1t−v(i)zi

zαzi−ı(fCY
i,t )zα

]
dz1

z1
∧ · · ·

(̂
dzα

zα

)
· · · ∧ dzn+1

zn+1

= (log t)−n

[
(−1)α−1t−v(i)zi

zα(zi−ıfCY
i,t )zα

]
dz1

z1
∧ · · ·

(̂
dzα

zα

)
· · · ∧ dzn+1

zn+1

= (log t)−n

[
(−1)α−1t−v(i)zi

zα(fi,t)zα

]
dz1

z1
∧ · · ·

(̂
dzα

zα

)
· · · ∧ dzn+1

zn+1
.

Therefore using the fact that f and fi,t contain the same dominating
terms on Ui,t, we see that Ωi,t is close to ΩYi,t

in the sense described in
theorem 3.1.

In this local coordinate, the ratio

Ωi,t

ΩYi,t

=
zα(fi,t)zα

zαfzα

is a holomorphic function. Note that fi,t and f contain the same dom-
inating terms in the neighborhoods corresponding to faces of Ci,t and
CCY

i,t respectively. In a neighborhood of Ui,t ∩
(
CPn+1 \ (C∗)n+1

)
, we

consider those open subsets correspond to top dimensional faces. In
these open subsets, the polynomial f and fi,t are dominated by exactly

two terms tj
1
zj(1)

and tj
2
zj(2)

. Then

Ωi,t

ΩYi,t

=
zα(fi,t)zα

zαfzα

=
zα

(
tj

1
zj(1)

+ tj
2
zj(2)

+ · · ·
)

zα

zα

(
tj

1
zj(1)

+ tj
2
zj(2)

+ · · ·
)
zα

+ zα (f − fi,t)zα

=
j
(1)
α tj

1
zj(1)

+ j
(2)
α tj

2
zj(2)

+ · · ·
j
(1)
α tj1zj(1)

+ j
(2)
α tj2zj(2)

+ · · ·

=

(
j
(1)
α − j

(2)
α

)
tj

1
zj(1)

+ j
(2)
α (fi,t + · · · ) + · · ·

(
j
(1)
α − j

(2)
α

)
tj1zj(1)

+ j
(2)
α (f + · · · ) + · · ·

.

As before, “· · · ” means a linear combination of the terms other than

tj
1
zj(1)

and tj
2
zj(2)

. Therefore Ωi,t/ΩYi,t
is non-vanishing in these open

subsets. Taking closure of these open subsets in the neighborhood, we
conclude that Ωi,t/ΩYi,t

is non-vanishing on Ui,t ∩
(
CPn+1 \ (C∗)n+1

)
.

Since ΩYi,t
is the holomorphic volume of the Calabi-Yau hypersurface
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Yi,t, it is non-vanishing and hence Ωi,t is also non-vanishing on the whole
Ui,t.

Finally, as Ui,t ⊃ U∧
i,t, the last statement follows immediately from

the last statement of the theorem 3.1 This completes the proof of the
main theorem.

3.1. Asymptotically special Lagrangian fibers. From the fibration
λ given in [9], for each n-cell e of Πv, there exists a point x ∈ e such
that the fiber λ−1(x) is a Lagrangian n-torus Tn ⊂ V which is actually
given by {z ∈ Vt : Logt|z| = x}. Therefore, when restricted to this fiber

Ωi|λ−1(x) =

(√
−1

log t

)n
[

(−1)α−1t−v(i)zi

(iα − j
(1)
α )t−v(i)zi + · · ·

]
dθ1∧· · · d̂θα · · ·∧dθn+1.

where θα = arg zα for α = 1, . . . , n + 1. So we have

Theorem 3.3. Let Vt be the family of smooth hypersurfaces in CPn+1

of degree d, Ui,t be the open sets and Ωi,t be the holomorphic n-forms in
the main theorem. Let λ : Vt → Πv be the stratified Tn-fibration given
by Mikhalkin [9]. Then for any i ∈ △0

d,Z and any n-cell e of C∧
i,t used

in the proof of the main theorem, there exists x ∈ e, independent of t,
such that for all j ∈ △0

d,Z,

lim
t→+∞

Im
(
e

nπ
√

−1
2 Ωj,t

)∣∣∣
λ−1(x)

= 0 and

lim
t→+∞

Re
(
e

nπ
√

−1
2 Ωj,t

)∣∣∣
λ−1(x)

is non-vanishing.

In particular, the Lagrangian fibers given by Mikhalkin are in fact
“asymptotically special Lagrangian of phase nπ/2” with respect to the
holomorphic n-form Ωi,t constructed in the main theorem.

3.2. Hypersurfaces in other toric varieties; the case of curves.

It is clear from the works of Mikhalkin [9], our result can be modified
to include other toric varieties such as CPm × CPn. In particular, if we
apply our method to curves in CP1×CP1 instead of CP2, we will obtain
stronger results for Riemann surfaces. It applies to Riemann surfaces of

all genus, not just for g = (d−1)(d−2)
2 . And the Calabi-Yau components

actually form a connected sum decomposition of the curve. This is a
fact which is probably not true in higher dimensions. The key issue is
that in this case, one can obtain a subdivision with dual complex Πv

with 1-cycles {Ci} such that Ci ∩ Cj = ∅ for i 6= j. In summary, we
have

Theorem 3.4. For any integer g ≥ 1, there is a family of smooth
genus g curves Vt of bi-degree (g + 1, 2) in CP1 × CP1, such that Vt can
be written as

Vt =

g⋃

i=1

Ui,t
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where {Ui,t} is a family of closed subsets Ui,t ⊂ Vt such that topologically
Vt = U1,t# · · ·#Ug,t, the connected sum of Ui,t, i = 1, . . . , g and after
normalization Ht : (C∗)2 → (C∗)2 defined by

Ht(z1, z2) =

(
|z1|

1
log t

z1

|z1|
, |z2|

1
log t

z2

|z2|

)
,

1) Ui,t is close in Hausdorff distance on (C∗)2 to an open subset of
an elliptic curves Yi,t in CP1 × CP1;

2) there exists a basis {Ωi,t}g
i=1 of H1,0(Vt) such that for each i =

1, . . . , g, Ωi,t is nonvanishing and ǫ-closed to the holomorphic 1-
form ΩYi,t

of Yi,t on Ui,t with respect to the metric induced from
the pull-back H∗

t (g0);
3) for any compact subset B ⊂ (C∗)2 \ Ui,t ⊂ CP1 × CP1, Ωi,t tends

to zero in Vt ∩ B uniformly with respect to H∗
t (g0).

Proof. All the steps in the proof of the main theorem apply and give
all results concerning the family Ui,t except the assertion about the
connected-sum. To see this, we need the existence of certain maximal
lattice subdivision of the Newton polytope △ = [0, g + 1] × [0, 2] of a
generic curves of bi-degree (g + 1, 2) such that the set of vertices ver(σ)
of each simplex σ contains at most one interior lattice points of △. For
this kind of subdivisions, each primitive piece associated to at most
one interior lattice point. Then any two cycles C∧

i and C∧
j must have

empty intersection for i 6= j. As demonstrated in the following figure,
the existence of such subdivision is easy to see. In fact, one shows that
there exists a function v : △Z → R such that Πv is a maximal dual
complex of △ giving the required subdivision.

Figure 9: A maximal dual △ complex with the required properties.

As in the proof of the main theorem, we can construct open subsets
Ui,t and holomorphic 1-form Ωi,t corresponding to each cycles Ci, where
i = 1, . . . , g is in one-one corresponding with the set of interior lattice
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points of △ = [0, g + 1] × [0, 2]. This gives all the assertions except the
part of the connected sum.

Note that in this case, two cycles C∧
i and C∧

j of Πv corresponding to
different interior lattice points of △ do not intersect. In fact, they are,
at least, separated by an edge e of Πv. Therefore, either Ci ∩Cj = ∅ or
Ci∩Cj = {x} where x ∈ e is the common boundary of the corresponding
primitive pieces. It is now clear that Vt are just all Ui,t gluing along
the circles λ−1(x) of these x’s. So Vt = U1,t# · · ·#Ug,t and proof is
completed. q.e.d.

We would like to remark that in this complex one dimensional case,
special Lagrangian submanifolds of Ωi,t always exists. Namely, they are
given by the horizontal or vertical trajectories of the quadratic differen-
tial Ω2

i,t. Therefore, we have

Theorem 3.5. Let Vt be the family of smooth curves in CP1×CP1 of
degree g + 1, Ωi,t be the holomorphic 1-forms in the theorem 3.4. Then
for any i = 1, . . . , g, there exists special Lagrangain fibration of Ωi,t.

4. Proof of the key lemma

In this section, we prove the lemma 2.5 concerning the dual complex
Πv given by the function v : △d,Z → R defined by

v(j) =

n+1∑

α=1

j2
α +

(
n+1∑

α=1

jα

)2

for j = (j1, . . . , jn+1) ∈ △d,Z. To simplify notation, we will write j0 =
n+1∑

α=1

jα. Then v(j) =
n+1∑

α=0

j2
α. We start with

Lemma 4.1. Let i ∈ △d,Z and j ∈ Zn+1 \
(
{0} ∪ {±eα}n+1

α=1 ∪ {eα −
eβ}α6=β

)
such that i + j ∈ △d,Z. Then there exists no x ∈ Rn+1 such

that

〈i, x〉 − v(i) = 〈i + j, x〉 − v(i + j)

> 〈r, x〉 − v(r), r ∈ △d,Z \ {i, i + j}.
Proof. We separate the proof into several steps.

Step 1: If i is an interior lattice point of △d, then for all x ∈ Rn+1

satisfying the condition in the lemma, we have
{
|xα − 2(iα + i0)| < 2, ∀α = 1, . . . , n + 1

|xα − xβ − 2(iα − iβ)| < 2, ∀α 6= β = 1, . . . , n + 1.

Proof of Step 1: Since i ∈ △0
d,Z, the points i± eα, i + eβ − eα belong to

△d,Z, for all α and β 6= α. By assumption, j 6= ±eα, ei − ej, we have
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the following strict inequalities from the condition of the lemma
{
〈i ± eα, x〉 − v(i ± eα) < 〈i, x〉 − v(i)

〈i + eβ − eα, x〉 − v(i + eβ − eα) < 〈i, x〉 − v(i).

Using the definition of v, we have
{
±xα − [(±2iα + 1) + (±2i0 + 1)] < 0

xβ − xα − [(2iβ + 1) + (−2iα + 1)] < 0.

Interchanging the β and α gives the required inequalities
{
|xα − 2(iα + i0)| < 2, ∀α = 1, . . . , n + 1

|xβ − xα − 2(iβ − iα)| < 2, ∀ β 6= α = 1, . . . , n + 1.

Step 2: Either i or i + j belong to boundary of △d.
Proof of Step 2: Suppose not, then both i and i + j ∈ △0

d,Z. Applying
Step 1 to i and i + j, we have the following inequalities

{
|xα − 2(iα + i0)| < 2, ∀α = 1, . . . , n + 1

|xβ − xα − 2(iβ − iα)| < 2, ∀ β 6= α = 1, . . . , n + 1.

and
{
|xα − 2(iα + jα + i0 + j0)| < 2, ∀α = 1, . . . , n + 1

|xβ − xα − 2(iβ + jβ − iα − jα)| < 2, ∀ β 6= α = 1, . . . , n + 1.

Therefore, {
|jα + j0| < 2, ∀α = 1, . . . , n + 1

|jβ − jα| < 2, ∀ β 6= α = 1, . . . , n + 1.

As jβ are integers, the first inequality above implies for all α = 1, . . . , n+
1,

−1 ≤ jα + j0 ≤ 1.

Recalling j0 =
n+1∑

β=1

jβ and summing over α, we have

−(n + 1) ≤ (n + 2)j0 ≤ n + 1.

Hence j0 =
n+1∑

β=1

jβ = 0. On the other hand, the second inequality

above implies that either jβ ≥ 0 for all β = 1, . . . , n + 1 or jβ ≤ 0
for all β = 1, . . . , n + 1. Therefore, we must have j = 0 which is a
contradiction. Step 2 is proved.

Step 3: Both i and i + j belong to the boundary of △d.
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Proof of Step 3: Suppose this is not true. We may assume i belongs to
the interior and i+ j belongs to the boundary. Then we can apply Step
1 to i and get

{
|xα − 2(iα + i0)| < 2, ∀α = 1, . . . , n + 1

|xβ − xα − 2(iβ − iα)| < 2, ∀ β 6= α = 1, . . . , n + 1.

However, we do not have all the inequalities as at least one of the points
i + j ± eα, i + j + eβ − eα lies outside △d.

Case 1: i0 + j0 =

n+1∑

β=1

(iβ + jβ) ≤ d − 1.

In this case, we still have
{
|xα − 2(iα + jα + i0 + j0)| < 2, ∀α, iα + jα ≥ 1

|xβ − xα − 2(iβ + jβ − iα − jα)| < 2, ∀ β 6= α, iβ + jβ , iα + jα ≥ 1.

And for those α with iα + jα = 0, we only have the one-sided inequality

xα − 2(iα + jα + i0 + j0) < 2.

Hence for α with iα + jα ≥ 1, we still have

|jα + j0| < 2.

However, for α with iα + jα = 0, we only have

−2 < iα + j0.

Since i + j ∈ ∂△d and we are assuming i0 + j0 =
n+1∑

β=1

(iβ + jβ) ≤ d − 1

in this case, there exists αo such that iαo + jαo = 0. For this αo, we get

−2 < jαo + j0 = −iαo + j0.

As i ∈ △0
d,Z, we have iαo ≥ 1, and hence j0 ≥ 0.

If i + j 6= 0, then there also exists α such that iα + jα ≥ 1. For all
these α, i + j + eαo − eα ∈ △d,Z and we can apply the condition of the
lemma to get the strict inequality

〈i + j + eαo − eα, x〉 − v(i + j + eαo − eα) < 〈i + j, x〉 − v(i + j).

Using iαo + jαo = 0, this gives

xαo − xα + 2(iα + jα) < 2.

Together with |xαo − xα − 2(iαo − iα)| < 2, we arrive at

−2 < 2 (1 − (iα + jα)) − 2(iαo − iα),

which implies

jα < 2 − iαo ≤ 1.
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Therefore, iα ≤ 0 for those α with iα + jα ≥ 1. Putting these into

0 ≤ j0 =
n+1∑

β=1

jβ , we have

0 ≤
∑

{αo : iαo+jαo=0}
jαo = −

∑

{αo : iαo+jαo=0}
iαo < 0,

which is a contradiction. So we must have i + j = 0, that is iα + jα = 0
for all α. Then for all α, i + j + eα = eα ∈ △d,Z. The condition of the
lemma implies

〈i + j + eα, x〉 − v(i + j + eα) < 〈i + j, x〉 − v(i + j).

So xα < v(eα) = 2 for all α. On the other hand, the condition of the
lemma gives the equality

〈i + j, x〉 − v(i + j) = 〈i, x〉 − v(i),

which is
n+1∑

β=0

i2β = 〈i, x〉.

Using xα < 2 and iα ≥ 1, we have

n+1∑

β=0

i2β < 2

n+1∑

β=1

iβ = 2i0.

Hence,
n+1∑

β=1

i2β + (i0 − 1)2 < 1.

This is a contradiction as iα ≥ 1 for all α. So we have proved that the
case 1 with assumption i0 + j0 ≤ d− 1 is impossible and hence we must
be in the situation of the following
Case 2: i0 + j0 = d.

In this case, for any α with iα + jα ≥ 1, we have i + j − eα ∈ △d,Z.
Therefore, the following strict inequality is satisfied

〈i + j − eα, x〉 − v(i + j − eα) < 〈i + j, x〉 − v(i + j).

Using i0 + j0 = d, we get

−2 < xα − 2(iα + jα + d)

provided iα + jα ≥ 1. One also have i + j + eγ − eα ∈ △d,Z for any
γ 6= α. Similar argument implies

xγ − xα − 2(iγ + jγ − iα − jα) < 2

provided iα + jα ≥ 1 and γ 6= α.
The second inequality together with

|xγ − xα − 2(iγ − iα)| < 2
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imply

−2 < xγ − xα − 2(iγ − iα) < 2 + 2(jγ − jα).

That is

jα < 2 + jγ

for α with iα + jα ≥ 1 and γ 6= α.
Suppose there is an γo such that iγo + jγo = 0, then jγo 6= j and hence

jα < 2 + jγo = 2 − iγo < 1

since i ∈ △0
d,Z. So jα ≤ 0 for any α with iα + jα ≥ 1. It is trivial that

jα ≤ 0 for those α with iα + jα = 0, we have jα ≤ 0 for all α which

in turn implies that i0 = d − j0 = d −
n+1∑

β=1

jβ ≥ d. This is impossible

as i is in the interior of △d. Therefore, we cannot have γo such that
iγo + jγo = 0. That is, iα + jα ≥ 1 for all α.

Now the other two inequalities must be satisfied, i.e.

|xα − 2(iα + i0)| < 2;

−2 < xα − 2(iα + jα + d).

Combining these, we have

−2 < xα − 2iα − 2jα − 2d < 2 + 2i0 − 2jα − 2d.

Hence

jα + d < 2 + i0 = 2 + d − j0,

i.e.

jα + j0 < 2.

Summing over α, we have (n + 2)j0 < 2(n + 1) which implies j0 ≤ 1.
As i0 + j0 = d and i0 ≤ d − 1, we see that j0 = 1 (and i0 = d − 1).
Putting it back into the inequality, we have jα < 1, hence, jα ≤ 0 for
all α. Summing over to get the contradiction that j0 ≤ 0. This proved
the Case 2 and the proof of Step 3 is completed.

Step 4: Either j ∈ {y ∈ Rn+1 : yβ = 0} ∩ ∂△d ∩ Zn+1 for some β and
i + j ∈ {y ∈ Rn+1 : yα = 0} ∩ ∂△d ∩ Zn+1 for some α.
Proof of Step 4: Since Step 3 shows that both i and i + j belong to
∂△d ∩ Zn+1, if Step 4 is not true, then either i or i + j belongs to the
interior of the face {y ∈ Rn+1 :

∑
yβ = d} ∩ ∂△d.

Let first assume that both i and i+j belong to the interior of the face
{y ∈ Rn+1 :

∑
yβ = d}∩∂△d. Then both i+ eβ − eα and i+ j + eβ − eα

belong to △d,Z, we have the inequalities

|xβ − xα − 2(iβ − iα)| < 2,

|xβ − xα − 2(iβ + jβ − iα − jα)| < 2.
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Hence |jβ − jα| < 2. This implies jα ≥ 0 for all α or jα ≤ 0 for all α.
Together with

j0 =

n+1∑

β=1

jβ =

n+1∑

β=1

(iβ + jβ) −
n+1∑

β=1

iβ = d − d = 0,

we have j = 0 which is a contradiction.
Now we may assume that i + j belongs to the interior of the face

{y ∈ Rn+1 :
∑

yβ = d} ∩ ∂△d but p ∈ {y ∈ Rn+1 : yβ = 0} ∩ ∂△d for
some β. Then we have





iβ = 0,

iα + jα ≥ 1, ∀α

i0 + j0 = 0.

If i0 ≤ d − 1. Then i + eα ∈ △d,Z and hence

xα − 2(iα + i0) < 2 ∀α.

Since we also have i + j − eα ∈ △d,Z, we get

−2 < xα − 2(iα + jα + i0 + j0).

These imply

jα + j0 < 2, ∀α.

Summing over α implies j0 < 2. So j0 ≤ 1. On the other hand,
d = i0 + j0 ≤ d − 1 + j0 implies j0 ≥ 1. We must have j0 = 1. But this
in turns implies jα < 2 − j0 = 1. So jα ≤ 0 and they cannot sum up to

get

n+1∑

β=1

jβ = j0 = 1. This contradiction implies i0 = d and hence j0 = 0.

Consider those γ such that iγ ≤ 1. (Such γ always exists as i0 = d
implies i 6= 0.) For any one of these γ and any α 6= γ, i+eα−eγ ∈ △d,Z.
So we have

xα − xγ − 2(iα − iγ) < 2.

Using i + j + eγ − eα ∈ △d,Z for all γ and α, we have

|xγ − xα − 2(iγ − iα) − 2(jγ − jα)| < 2.

Therefore,

jα − jγ < 2.

Applying this inequality to γ1 and γ2 with iγ1 , iγ2 ≥ 1, we obtain

|jγ1 − jγ2 | < 2.

This implies jγ ≥ 0 for all γ with iγ ≤ 1 or jγ ≤ 0 for all γ with iγ ≤ 1.
If jγ ≥ 0 for all γ with iγ ≤ 1, then

0 = j0 =
∑

{γ : iγ≥1}
jγ +

∑

{α : iα=0}
jα ≥

∑

{α : iα=0}
1,
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as jα = iα + jα ≥ 1 for iα = 0. Hence the set {α : iα = 0} is empty.
So for all γ, iγ ≥ 1 which implies jγ ≥ 0. Together with j0 = 0, we
conclude that j = 0 which is a contradiction.

So we must have jγ ≤ 0 for all γ with iγ ≤ 1. Then jα − jγ < 2
implies

jα < 2, ∀α with iα = 0.

Therefore

jα ≤ 1, ∀α with iα = 0.

On the other hand, for these α, jα = iα + jα ≥ 1. Hence jα = 1 for all
these α. Putting this back into the inequality, we have

jγ > −1, ∀ γ with iγ ≥ 1.

Hence,

jγ = 0, ∀ γ with iγ ≥ 1.

as jγ ≤ 0 for these γ. Using j0 = 0, we conclude that the set {α : iα =
0} is empty and obtained a contradiction again. And this completes the
proof of Step 4.

Step 5: There exists β such that both i and i+ j belong to {y ∈ Rn+1 :
yβ = 0} ∩ ∂△d ∩ Zn+1.
Proof of Step 5: By Step 4, there exist β and α such that iβ = 0 and
iα + jα = 0. If we can choose β = α then we are done. If not, then we
have

iβ + jβ ≥ 1 and iα ≥ 1.

These imply i + j − eβ, i + j + eα − eβ , i − eα, and i + eβ − eα ∈ △d,Z

and hence we have




−2 < xβ − 2(iβ + jβ + i0 + j0)

xα − xβ − 2(iα − iβ) − 2(jα − jβ) < 2

−2 < xα − 2(iα + i0)

xβ − xα − 2(iβ − iα) < 2.

Therefore

jβ − jα < 2.

Using iβ = 0, iβ + jβ ≤ 1, and iα + jα = 0, one get

1 + iα ≤ jβ − jα < 2,

and arrive at the contradiction that iα = 0. This proves the Step 5.

Completion of the proof of the lemma: By Step 5, if there exists
x ∈ Rn+1 satisfying the condition of the lemma, then i and i+ j belong
to {y ∈ Rn+1 : yβ = 0} ∩ △d,Z for some β. This reduces the argument
to one lower dimension. Since the proposition is clearly true for 1-
dimension, induction implies the lemma holds. q.e.d.
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Lemma 4.2. For any i ∈ △d,Z, there exists at most n + 1 elements
jγ ∈ {±eβ , eβ−eα}β 6=α with jγ1 +jγ2 6= 0 such that there exists x ∈ Rn+1

satisfying

〈i, x〉 − v(i) = 〈i + jγ , x〉 − v(i + jγ) ∀, γ

> 〈r, x〉 − v(r), r ∈ △d,Z \ {i, i + jγ}.

Proof. We first claim that for any i ∈ △d,Z and j 6= 0 ∈ Zn+1, there
exists no x ∈ Rn+1 such that

〈i, x〉 − v(i) = 〈i + j, x〉 − v(i + j) = 〈i − j, x〉 − v(i − j).

In fact, if such x exists, then we have the equality

v(i + j) − v(i) = v(i) − v(i − j).

This implies j = 0 which is a contradiction.
Secondly, we claim that for any i ∈ △d,Z, there exists no x ∈ Rn+1

such that

〈i, x〉 − v(i) = 〈i + eβ , x〉 − v(i + eβ)

= 〈i + eα, x〉 − v(i + eα)

= 〈i + eβ − eα, x〉 − v(i + eβ − eα),

and also no x ∈ Rn+1 such that

〈i, x〉 − v(i) = 〈i + eβ , x〉 − v(i + eβ)

= 〈i − eα, x〉 − v(i − eα)

= 〈i + eβ − eα, x〉 − v(i + eβ − eα),

The first set of equalities implies




xβ = 2iβ + 2i0 + 2

xα = 2iα + 2i0 + 2

xβ − xα = 2(iβ − iα) + 2,

and the second set implies




xβ = 2iβ + 2i0 + 2

xα = 2iα + 2i0 − 2

xβ − xα = 2(iβ − iα) + 2,

Both are impossible.
By the two claims, we see that if ±eβ is one of the jγ , the ∓eβ

will not appear in the set {jγ}; and if ±eβ and ±eα belong to the set
{jγ}, then ±(eβ − eα) will not appear in the set {jγ}. Therefore, each
β = 1, . . . , n + 1 can appeared once in the set {jγ} and this completes
the proof of the lemma.

q.e.d.
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Proof of the key lemma 2.5: It is clear from the lemmas 4.1 and 4.2,

the balanced polyhedral complex Πv corresponding to v(j) =
n+1∑

β=0

j2
β is a

maximal dual complex of △d which gives (1) of the lemma. To see (2),
we observe that lemma 4.1 implies that any simplex of the subdivision
with an interior point j of the translated simplex i − ı + △n+2 as a
vertex, then all other vertices belong to i − ı + △n+2. Therefore, the
subdivision restrict to a subdivision of i− ı+△n+2. This completes the
proof of the key lemma.

5. Appendix: Definition of balanced polyhedral complex

In this appendix, we state the Mikhalkin’s definition [9] of a balanced
polyhedral complex for reader’s reference.

Definition 5.1. A subset Π ∈ Rn+1 is called a rational polyhedral
complex if it can be represented as a finite union of closed convex poly-
hedra (possibly semi-infinite) called cells in Rn+1 satisfying

1) The slope of the affine span of each cell is rational.
2) If the dimension of the cell is defined to be the dimension of its

affine span and a k-dimensional cell is called a k-cell. Then the
boundary of a k-cell is a union of (k − 1)-cells.

3) Different open cells do not intersect.

Definition 5.2. 1) The maximum of the dimensions of the cells
of a polyhedral complex Π is called the dimension of Π. And Π is
called a polyhedral n-complex if the dimension of Π is n.

2) A polyhedral n-complex is called weighted if there is a weight
w(F ) ∈ N assigned to each of its n-cell F .

Definition 5.3. For each n-cell F of a weighted polyhedral n-complex
in Rn+1 and an co-orientation on F , an integer covector

cF : Z
n+1 → Z

is defined by the following conditions

1) The kernel of cF is parallel to F .
2) The normalized covector 1

w(F )cF is a primitive integer covector.

3) The covector cF compatible with the co-orientation of F .

Definition 5.4. A weighted polyhedral n-complex in Rn+1 is called
balanced if for all (n − 1)-cell G ⊂ Π,

∑

s

cFs = 0,

where Fs are the n-cells adjacent to G with co-orientation given by a
choice of a rotational direction about G.
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