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STRANGE DUALITY AND THE HITCHIN/WZW
CONNECTION

PRAKASH BELKALE

Abstract

For a compact Riemann surface X of positive genus, the space
of sections of a certain theta bundle on moduli of bundles of rank
r and level k£ admits a natural map to (the dual of) a similar space
of sections of rank k and level r (the strange duality isomorphism).
Both sides of the isomorphism carry projective connections as X
varies in a family. We prove that this map is (projectively) flat.

1. Introduction

Let X be a connected smooth projective curve of genus g over C.
Assume for simplicity that g > 2 (see Section 1.3). Let SUx (r) be the
moduli space of semi-stable vector bundles of rank r with trivial de-
terminant over X. For any line bundle L of degree ¢ — 1 on X define
Or = {E € SUx(r),h°(E ® L) > 1}. This turns out be a non-zero
Cartier divisor whose associated line bundle £ = O(©r) does not de-
pend upon L. By the work of Drezet and Narasimhan [11], it is known
that £ generates the Picard group of SUx (r).

Let Ux (k) be the moduli space of semi-stable rank k£ and degree
k(g — 1) bundles on X. Recall that on Uy (k) there is a canonical non-
zero theta (Cartier) divisor ©; whose underlying set is

{F € Ux(k) | h°(X, F) # 0}.

Put M = O(Oy,). It is known that h°(U% (k), M) =1 (see [6]).
Consider the natural map 7 : SUx(r) x Ux (k) — Uk (kr) given by
tensor product. From the theorem of the square, it follows that 7* M is
isomorphic to £F X M". The canonical element Oy, € H°(U% (kr), M)
and the Kunneth theorem gives a map well defined up to scalars:
(L1) HO(SUx (1), £5)* 28 HOU% (k), M7).
Let X — S be a relative (smooth curve) curve with S affine. Let
X, = X, for s € S. For convenience let J(X,) = Jacd 1 (X,)(= Uk, (1))
which parameterizes line bundles of degree g — 1 on Xj.
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Assume for simplicity that the relative moduli schemes over S (see
Section 4.2) carry line bundles which restrict fiber-wise (up to isomor-
phism) to the line bundles described above. This can always be achieved
locally in S by passing to open covers in the étale topology. In fact by
passing to open étale covers,

e The spaces H(SUx,(r), £*) and HO(Uj(S(k),MT’) organize into
vector bundles V and W over S with projectively flat connections.
The Hitchin/Wess-Zumino-Witten(WZW) theory gives a connec-
tion on V, and we will define the connection on W by using the
Galois cover SUx, (k) x J(X,) — Ux_(k).

e The map SD extends to a map of sheaves over S, which agrees
fiber-wise with the description given above.

The following is the main theorem of this paper:

Theorem 1.1. The map SD : V* — W is a projectively flat map of
vector bundles on S.

Analogues of the above flatness assertion are implicit in the physics
papers on strange duality (e.g. the reference to the braid group in
the paper [26] where duality statements for P! with insertions, are dis-
cussed). I learned from M.S. Narasimhan that the question of flatness
of SD in the form stated above has been around for a while. It also
appears in Laszlo’s paper [20], as a question suggested by Beauville.

The map SD is known to be an isomorphism. This was proved by
the author [8] for a generic curve by finding an enumerative problem
with the same number of solutions as the dimension of the vector spaces
that appear in SD, and then studying the implications of transversality
in the enumerative problem. Subsequently, and building on ideas and
strategies from [8] (see the review article of Popa [29]), Marian and
Oprea [23] proved that SD is an isomorphism for all curves.

The flatness statement implies that the projective monodromy groups,
over the moduli-stack of genus g curves coincide. It also gives an new
proof of the strange duality for all curves, from the case of generic curves,
see Lemma A.1.

1.1. Formulations of the main statements. There are (at least) two
equivalent ways of getting a projective connection on H°(SUx, (r), £¥)
(i.e. the sheafon S with these fibers). The first one is due to Hitchin [15].
Given the identification of conformal blocks with non-abelian theta func-
tions [33, 4, 12, 19] (which we will refer to as the Verlinde isomorphism)
we have a second way due to Tsuchiya-Ueno-Yamada, which a priori
works over the moduli of pointed curves [32] (but in fact descends to
the moduli stack of curves). This second connection is called the WZW
connection. Laszlo [21] showed that these projective connections are
the same. But to impose a projective connection on HO(Uj(S(k),MT’)
we cannot use either of these approaches directly. We will define the
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projective connection on H O(U}}s(k’),/\/lr) by using the Galois cover
SUx, (k) x J(Xs) — Uk, (k). Therefore, we need to replace Uy (k)
by SUx, (k) x J(Xs) (and keep track of the action of the covering group
which is the group of k-torsion points in the Jacobian of Xj).

For ease of notation let X = X which we will think of as a moving
curve parameterized by s € S. We begin by analyzing the objects using
the diagram (1.2) (see the Appendix for the definition and properties of
projective connections).

(1.2)
SUX >< SUX

\ /

Uk (kr)

SUx (kr) x J(X ) x Ux (k)

(A) View Oy, as giving a natural element (defined upto scalars)
(1.3) 0(r,k) € H(SUx(r), L") @ H(SUx (k), L") @ H°(J(X), M*")

induced from the natural map SUx (r)x SUx (k)x J(X) — U (kr)
which factors through SUx (r) x Ux (k).

(B) All three vector spaces in (1.3) have projective connections (as X
varies). The first two by Hitchin/WZW and the third from the
theory of Mumford theta groups.

(C) The element (7, k) is the image of the element

0(kr,1) € HO(SUx (kr), L) @ H°(J(X), MFT)
under the map
(1.4) HO(SUx (kr), £) — H(SUx (r), £F) @ H(SUx (k), L")
(tensored with HO(J(X), M*)).

We will prove the following two propositions.
Proposition 1.2. The element
6(m,1) € H*(SUx(m), L) @ H*(J(X), M™)

is projectively flat for any positive integer m (as X wvaries in a family,
see Section 1.3).

We will apply Proposition 1.2 with m = rk.
Proposition 1.3. The map
(1.4) : HY(SUx (kr), L) — H°(SUx (k), L") @ H*(SUx (r), £F)

is projectively flat (as X wvaries in a family).
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Together these propositions imply that 6(r, k) is projectively flat (as
X varies in a family). This will give Theorem 1.1 (see Section 4.4).

We can conclude that SD is an isomorphism for all curves, assuming
it for generic curves, merely from the projective flatness of 6(r, k) as
follows: It is enough to show that

(1L5)  H°(SUx(r),L£")* — (H*(SUx(k), L") @ HO(J(X), M)

is injective (because we know that the image lands inside H(U% (k),
M?")). But (1.5) is a projectively flat map (since 6(r, k) is projec-
tively flat and Proposition A.2), and such maps have constant rank,
see Lemma A.1.

Proposition 1.3 is a special case of a more general flatness result
(Proposition 5.8), which has consequences to Beauville’s symplectic
strange duality conjecture [3] (see Section 6).

1.2. Proofs of the propositions. A genus 0 (with insertions, i.e. par-
abolic) analogue of Proposition 1.3 for conformal blocks is noted with
proof in Nakanishi-Tsuchiya [27]. Given the Verlinde isomorphism, the
proof in [27] generalizes in a straightforward manner to give Proposi-
tion 1.3. One needs to check that the Verlinde isomorphism is suitably
functorial for maps of groups (this was known). The proof of Proposi-
tion 1.3 uses the fact that the embedding of Lie algebras

sl(r) @ sl(k) Csl(rk)

is a conformal embedding at level 1 for sl(rk) (see Section 5 for more
details). Indeed, there is a generalization (Proposition 5.8) of Propo-
sition 1.3 valid for all conformal embeddings (also see [27]). The pa-
per [17] is a good reference for the theory of conformal embeddings.

Proposition 1.2 is not new, although we could not find an adequate
reference. It was explained to us by Popa that the Mumford theta group
which acts irreducibly on H°(J(X), M™) also acts on H°(SUx (m), L)
so that (m, 1) induces an isomorphism

HY(SUx(m), L£)* — H(J(X), M™)

of representations of the Mumford theta group (see [6] where the idea
of applying the theta group already appears). Together with the argu-
ments of Mumford [25] and Welters [34], a proof of Proposition 1.2 is
easily obtained.

An algebro-geometric proof of Proposition 1.3 using only Hitchin’s
definition of the projective connection [15] seems unlikely. The all im-
portant Virasoro central charge obtained via the WZW theory seems to
hide (at least partially) in the projective ambiguity of Hitchin’s connec-
tion.

Note that the map

HO(SUx (kr), £L™) — H°(SUx (r), L™) @ H(SUx (k), L™,
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is not claimed to be projectively flat (in fact very likely false) for m >
1. This is probably related to the discussion of compatibility of heat
operators in Section 2.3.10 of [14].

See e.g. [30], for a list of possible conformal embeddings (see Re-
mark 5.12). Is there interesting enumerative geometry associated to
these?

1.3. Notation and assumptions. For technical reasons, the connec-
tion on HO(SUx (r), LF) for every r and k (as X varies in a family) will
be taken to be the WZW connection (which is a priori defined on the
moduli of pointed curves, but descends to the moduli of curves). Las-
zlo [21] has shown that the WZW connection is the same as Hitchin’s
connection if either g > 2 or g = 2 and r # 2 (in fact Hitchin’s connec-
tion requires these assumptions). Our proof of Proposition 1.2 needs
Laszlo’s theorem and hence we need either ¢ > 2 or m > 2 in that
proposition. But in the proof of the projective flatness of 6(r, k), Propo-
sition 1.2 is invoked for m = rk. Therefore, the morphism (1.5) is flat
unless g = 1 or g = r = 2 and k£ = 1 (in these cases we hope that
it is again flat). Perhaps, using the results of [14], one could show
that Proposition 1.2 holds in the case g = 2 and m = 2, and that the
morphism (1.5) is flat for g > 1.

We will permit ourselves to (sometimes) abuse notation in statements
of projective flatness. For example, in Proposition 1.2 what we have
in mind is the following: Start with any family of (smooth connected
projective) curves X — S. Replacing S by an open cover in the étale
topology, the spaces H(SUx,(m), £)® H°(J(Xs), M™) form the fibers
of a vector bundle & on S, which is equipped with a projective connec-
tion . There is a natural section 6 of S (which is well defined locally on
S up to scalars in OF). Proposition 1.2 asserts that € is a projectively
flat section of S.

1.4. Acknowledgements. I thank S. Kumar, I. Mencattini and M.
Popa for useful discussions. I am grateful to Igor Mencattini for explain-
ing to me the theory of Mumford theta groups and geometric quantiza-
tion, and to Shrawan Kumar for help on the Kac-Moody theory.

2. Mumford theta groups

Let X be a smooth projective and connected curve of genus g. Let
J(X) = Jac®(X), and J(X) = Jac"!}(X) as in the introduction. For
a € J(X) we have a natural translation map T, : J(X) — J(X). The
Mumford theta group Gx(m) is defined to be the collection of pairs
(a,v) where a € J(X) and ¢ an isomorphism M™ — TIM™ (M is
the line bundle on J(X) defined in the introduction). The canonical
reference for theta groups is the series of papers of Mumford [25].
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Clearly, Gx(m) is a central extension:
(2.1) 1—-C"—Gx(m)— Hx(m)—0

where Hx(m) C J(X) as a subgroup. Since M is a principal polariza-
tion, Hy (m) is the group of m-torsion points in J(X).

Now, consider the map 7 : SUx(m) x J(X) — Ux(m) and fix an iso-
morphism 7% M 2, LKM™. Define an action of Gx(m)on (SUx(m), L)
and (Ux(m), M) as follows: The element (Lg,v) € Gx(m) acts as fol-
lows:

1) The action on (Ux (m), M) is trivial.

2) The action on SUx(m) is by tensoring with L. The action on

L is obtained as follows: At E € SUx(m) and L € J(X), we have
a map

Lp® My — £E®L51 ® M?@LO,

because both sides are identified with the fiber of M at F® L €
U%(m). The isomorphism 1 therefore gives us an isomorphism

Lp— £E®L51

which may a priori depend upon L, but does not, because oth-
erwise (fixing E) we would get a non-constant function on J(X)
with values in a one dimensional vector space.

Notice that changing § (by scale) does not change the action of Gx(m)
on (SUx(m),L). The action of Gx(m) clearly extends to an action on
the pairs (SUx (m), £¥) and (J(X), M*™), and a trivial action on the
pair (U%(m), M*). The following follows from results in [6],

Lemma 2.1. 1) H°(J(X), M™) and H°(SUx(m), L) are dual ir-
reducible representations of the theta group Gx(m).

2) (H(SUx(m), L") ® HO(J(X), M™)) X = 5O(U% (m), M7)
with the isomorphism depending on the choice of 0, in a one di-

mensional space. B
3) Gx(m) C Gx(mr) with compatible actions on (J(X), M™").

Proof. By [6], H(J(X),M™) and H%(SUx (m), L) are vector spaces
of the same dimension. By Mumford’s theory, H°(J(X), M™) is an
irreducible representation of Gx(m). Therefore, the non-zero element
©,, in

(HO(SUx (m), £) @ HO(J(X), M™) ™) = HO(U% (m), M)

gives a non-zero Gy (m)-equivariant map from H®(SUx(m), L) to the
dual of H°(J(X), M™) which is necessarily an isomorphism of repre-
sentations of Gx(m). This proves (1). The assertions (2) and (3) are
clear. q.e.d.
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3. Welters’s deformation theory

Let us recall some aspects of Welters’s deformation theory of pairs
(see [34], and [21], Section 6). Let M be a smooth variety and L a line
bundle on M.

By the classical Kodaira-Spencer theory, the deformations of M over
SpecCle]/(€?) are classified by elements in H'(M,Tys). The deforma-
tion of pairs (M, L) over SpecCle]/(¢?) are classified by elements in
HY(M, D'(L)), where D(L) is the sheaf of differential operators of or-
der < i on L. The natural (“symbol”) map D'(L) — Ty on H' gives
the map from deformations of pairs (M, L) to deformations of M.

Let s be a global section of L over M. Let d's denote the complex
D¥(L) % L with D*(L) in degree 0 and L in degree 1. According to [34],
the deformations of the triple (M, L, s) are classified by elements of the
hypercohomology group H'(M, d's).

Now let A € H?(S?T)s). Welters considers the exact sequence of
complexes obtained from the symbol map

0—d's— d’s— STy — 0

to produce an element in H' (M, d's). Therefore, elements of H°(S%Ty)
deform all triples (M, L, s).

3.1. Compatibility under automorphisms. Let M, be a smooth
over D, = SpecCle]/(¢?), and L. a line bundle over it. Assume that
H°(M.,0p.) = Op,.

Let A be a global section of S?T); (where M is the fiber over 0). The
deformation (M., L) produces a class in H'(M, D'(L)). The element
A also produces a class in the same group H'(M, D'(L)). Assume that
these two classes agree.

Now suppose in addition that we have an automorphism . of (M, L)
over D, and a section s of L over M. By Welters’s theory, A induces a
deformation of the section s as well. That is, A induces a global section
se¢ of L which restricts to s. The resulting s, is unique up to automor-
phisms of L. which are trivial over the central fiber (= 1 + €¢C in the
case at hand).

Lemma 3.1. Let v = ¢y and suppose that ,A = A. Then, s =
(1s)e (mod 1+ €C)

Proof. Consult (all) diagrams on page 16 of [34]. q.e.d.

4. Hitchin’s connection

Consider a E € SU%(m) (the set of regularly stable points). The
tangent space to SU%(m) at E is H'(X,Endy(E)), where Endy(E)
is the sheaf of trace 0 endomorphisms of E. The cotangent space is
therefore, by Serre duality, equal to H(X, Endo(E )®Q§() Infinitesimal
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deformations of X are parameterized by elements t € H*(X, Ty ). Given
such a t, one obtains a map

H°(X,Endy(F) ® Q') @ H°(X,Endy(F) ® Q') — C

by taking the Killing form (which is the trace of the product) of the
pair of endomorphisms and contracting the product of the two one-
forms with ¢ at the level of Cech cochains, and finally taking the trace
(which is a map H'(X, Q%) — C). We thus obtain an element 7(t) €
S? (TSU% (m))- The following is immediate:

Lemma 4.1. Let Ly be an m-torsion line bundle on X. Then the
automorphism of SU%(m) obtained as tensoring with Ly preserves the
quadratic vector field T(t).

4.1. Properties of Hitchin’s connection. Let X — S be a family
of curves, as before X = X, with s € S, and £ € T'S;. We have a family
of moduli-spaces (SU§_(m), £). Base change this to the corresponding
family over S = SpecCle]/(€?).

The element ¢ produces an element ¢t € H'(X,Tx), which through
—7(t)/(2m + 2k) brings about a deformation in the pair (SU$ (m), £F).
This deformation agrees with the geometric deformation of the previ-
ous paragraph (see [21]). The deformation in triples (SU%(m), £¥, s)
produced by —7(t)/(2m + 2k) is the Hitchin connection (the projective
ambiguity arises out of automorphisms of L. that are trivial over the
central fiber): the (first-order) parallel transport of s along t is the
deformed section s..

By codimension considerations (see [21]),

H(SUx,(m), £F) = HO(SU%, (), £*)

4.2. Theta group schemes. Let X — S be a smooth curve. For
simplicity (by passing to étale covers) assume that the sheaf of m-torsion
points in the Jacobian of the curves X is trivial on S.

Assume that we have relative pairs (J, M), (U*(m), M) and (SU(m),
L) of (schemes, line bundles) over S with fibers (J(Xy), M), (U, (m),
M) and (SUx,(m), L) over s € S, such that the line bundles M and £
are isomorphic to the line bundles defined in the introduction. One can
always replace S by a cover in the étale topology to ensure this. The
line bundles on the relative moduli schemes are unique up to tensoring
with line bundles from S.

We can form a group scheme G(m) over S whose fiber over s € S is
the group scheme Gx_(m) from Section 2 (see [34]). All constructions
in Section 2 carry over to this situation. In particular there is an action
of G(m) on p,LF and ¢, M™ (for any k) where p and ¢ denote the maps
SU(m) — S and .J — S respectively.

Fix b € S. Replace S by a connected étale neighborhood U of b such
that there is an isomorphism of group schemes A : G(m) — Gx, (m) xcU
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inducing the identity over b and commuting with the projection to the
sheaf of m-torsion points in the Jacobian.

We will keep this notation and assumption fixed for the rest of Sec-
tion 4. Therefore, elements of the fixed group Gx, (m) act on the sheaves
p*ék and ¢.M™ on S.

From Lemmas 3.1 and 4.1, we conclude:

Corollary 4.2. The action of the group Gx,(m) on p LF preserves
Hitchin’s connection V: That is, for every h € Gx,(m), there exists a
one-form wy, such that

(4.1) hV (v) = V(hv) = wpho
for all sections v of pLF.

Proof. Indeed, by Lemmas 3.1, 4.1 and A.5 applied to V and h~'Vh,
there exists an one-form wy, on S such that equation (4.1) holds. q.e.d.

4.3. Proof of Proposition 1.2. Let us recall how one obtains a (pro-
jective) connection on ¢.M™ through the theory of Mumford theta
groups (for more details see [34]). The representation H%(J(X,), M™)
is the wnique irreducible representation of Gy (m) on which the cen-
tral C* acts by the basic character (z € C* acts by multiplication by
z). Since the group scheme G(m) is trivialized over the base S, we can
identify any H°(J(Xs), M™) (the fiber of g, M™ at s) with this basic
representation (up to scalars). The parallel transport is immediate and
hence the (projective) connection. It follows from [34] that Gx, (m) acts
in a projectively flat manner on ¢, M™.

It now follows from Propositions 4.2 and A.3 that the subsheaf (p,L®
q*Mm)gxb m) ig preserved by the product connection on p,L ® q.M™.
It is clear that (poL ® qM™)9%™) can be calculated fiber-wise (see
Remark A.4), and we find that it is a one dimensional Og module.
Any local generator of it gives a projectively flat section. This gives
Proposition 1.2.

4.4. Proof of Theorem 1.1 assuming Proposition 1.3. We can
view O(r, k) as a projectively flat element of the sheaf on S with fibers
(recall that b is a fixed point of .S)

H(SUx, (), £4) ® (HO(SUx, (k), £7) ® HO(J(X,), MF7)) 7% ®)

The group Gx, (k) acts in a projectively flat manner on the sheaves on
S with fibers HO(SUx, (k),£") and HY(J(X), M*") (see Section 4.3),
and the space

(HO(SU, (k). £7) @ HO(T(X,), M*r)) P

of invariants is canonically H O(U}S (k), M"). This will impose a projec-
tive connection on H O(U}"(S(k),./\/lr) such that SD is projectively flat,
see Lemmas A.3 and A.2.
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5. Conformal blocks and the WZW connection

5.1. Conformal blocks. Let us begin with the case of a fixed curve X,
a semi-simple simply connected complex algebraic group G, and state
the Verlinde isomorphism comparing conformal blocks and non-abelian
G-theta functions [4, 12, 19]. We find the stack theoretic treatment
given in [4, 22, 5] suitable for our purposes.

Fix p € X and a local parameter z at p. Let K = C((z)) (formal
meromorphic Laurent series) and O = C[[z]] and Ax = O(X — p). Let
LG = G(K),LTG = G(0), Lx(G) = G(Ax). Factorize G = [[F_, G;
into a product of simple groups.

Let § denote the Kac-Moody Lie algebra of G' which equals ©F_, g;
where each g; is a central extension of g; ® K by Cc;. There is an
embedding of Lie algebras g ® Ax — §. Given £ = (f1,...,4) € Z&,,
denote by V; the fundamental (irreducible) representation of g at level
£. Tt is known that VZg is a tensor product of representations of the
groups g;:

Ve =,V

Let Mg = M¢g(X) denote the moduli-stack of principal G-bundles
on X and Qg = LG/LTG the infinite Grassmannian (an ind-scheme).

The uniformization theorem of Beauville and Laszlo gives a canonical
isomorphism of stacks:

LxG\Qg — M¢a(X)

The Picard group of Mg equals @leZ. Given ¢ = (01,...,0l) € Z’;O
let £(¢) denote the corresponding line bundle on Mg. The space of
sections of the pull back of the line bundle £(I) to Q¢ equals the dual
of (V,2)*. Upon identification of the pull back of £(I) to Qg, this is a
consequence of a theorem of Kumar [18] and Mathieu [24].

According to the Verlinde isomorphism, for £ € Z’;O, the vector space
of G-theta functions H°(Mg, L£(¥)) is canonically isomorphic, up to
scalars to

(5.1) (V&) = (¢ e (VE)| ¢(Mv) =0,¥ M € g Ax,v € VF}

The vector space (5.1) is called the space of conformal blocks, associated
to the data (X,p,z). We will call H(Mg, L(¢)) the space of non-
abelian G-theta functions on X.

Now assume that G — H is a morphism of algebraic groups where
H is a simple, simply connected, complex algebraic group. In this situ-
ation, there is a Dynkin index d = (dy,...,dy) € Z’;O so that

1) The generating line bundle in My pulls back to the line bundle
with indices (dy,...,dx) on Mg.
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2) There is an induced map g — b which maps ¢; to d; times the
generating central element in 6 (here ¢; is the generating central
element of g;).

Now given a level b > 0, consider the fundamental representation Vbb
of h with highest weight vector v. It is easy to see that there is an
unique g representation with highest weight vector v inside Vbb which is

canonically (up to scalars) isomorphic to the fundamental representation
V2 of g at level £ = (bds, ..., bdy).

Remark 5.1. Note that we do not assume G — H to be compat-
ible with the Borel subgroups, because we are in the case where the
corresponding representations of the ordinary Lie algebras are trivial.

The following proposition studies the functoriality of the Verlinde
isomorphism.

Proposition 5.2. Let L be the generator of the Picard group of Mpr.
The following diagram commutes (up to scalars), where the vertical map

on the right hand side is induced by the inclusion VZg C Vbb described
above:

(5.2) HO(MH, Eb) . ((Vbh)*)f)@JAx
HO(Ma, £(0) — ((V2))***
Proof. Consider the (2-commutative in the sense of stacks) diagram

Q¢ —— Mg

L

Oy —= My

Therefore, we have to show that the map
H(Qp, " LP) — H(Qg, "L (L))

is projectively identified with (Vbh)* — (V2)*. But this follows from the
following commutative diagram of ind-schemes

Qc —=P(Vf)

|
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and the identifications v;O(1) = L£(¢) (similarly for v;,) and H(P(Vf9),
O(1)) = (V})* (similarly for IP’(Vbh)). Here ~, is the map that takes g €
LG to [gv] and ~y, takes h € LH to [hv] (note that LG acts projectively
on V! and LH on Vbb).

5.2. Representations of Virasoro algebras. Recall that Vgg is an
irreducible representation of the Kac-Moody Lie algebra g. We will now
describe the action of the Lie algebra of continuous derivations of C((z))
(called the Virasoro algebra) on V! (see Remark 5.4). We will define
such an action for any reasonable representation of g following [17].

5.2.1. Virasoro algebras. Let S,, = —z”“d% for n € Z , as vector
fields. It is easy to see that [S},Sk] = (j — k)Sj4x. The Virasoro
algebra Vir is a complex Lie algebra with basis {¢,d;,j € Z} and the
commutation relations
. 1 ‘ - -
[dj, di] = (7 — k)djir + 5(33 = 5)3j—k€, [dj,¢] =0.

A Lie algebra representation V' of Vir is said to have central charge
m if ¢ acts by multiplication by m on V. We will represent such a
representation by ({4, | n € Z},m) where A, is the endomorphism of
V given by the action of d,, and m is the central charge.

5.2.2. Vir-representations from the Segal-Sugawara construc-
tion. For z € g and d € Z, let z(d) = 2 ® x € §. Now let V be any
(not necessarily irreducible) representation of g which satisfies

(C1) For all v € V and = € g, x(d)v = 0 for d sufficiently large.
(C2) The central elements ¢; in g act as positive scalars m; on V.

Case g simple: We will first define the action of Vir on V assuming that
g is simple. Assume that the central element ¢ in g acts on V by a
positive scalar m.

Normalize the Killing form by requiring that (6,6) = 2. Let g be the
dual Coxeter number of the simple Lie algebra g. Choose an orthonor-
mal basis X7, Xo,... of g and put (see [17], page 43)

i 1 ‘ .
Ly = Am+g) ZZ t X () Xi(n =)
JEZ i

Here : X (a)X(b) : stands for X (a)X (b) if a < b and X (b)X (a) if a > b.
It is known that defining the action of ¢ as multiplication by z, =
(dimg)m/(g + m), and the action of d,, by L,, gives an action of Vir on
V' of central charge z,,. ) A

Case g arbitrary: We set L), = Zle L7. We obtain a representation
of Vir on V of central charge
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where g; is the dual Coxeter number of g;.

Definition 5.3. For t = Y .y t,S, € C((2))4, define the follow-
ing operator on V:
T(t) = > t,L8
n>—N
(this is a finite sum when applied to any element of V).

Remark 5.4. It is known that for z € g, [T9(t), z] = t.x as operators
on V. The (continuous) derivations ¢ of C((z)), thus lift to operators
T9(t) on V, compatible with the action of ¢ on g.

5.2.3. Coset Virasoro representations. Let g C h be an embedding
of semi-simple Lie algebras with b simple. There is an induced homo-
morphism g — 6 Assume that g = >, g; and that ¢; map to d;c. Let V
be a representation of b that satisfies (C1) and (C2) such that the center
of 6 acts by multiplication by b. Then, considered as a representation
g, V satisfies (C1) and (C2) as well. The central element ¢; in g acts by
multiplication by bd;.

Therefore, we have two representations of Vir on V' represented by
({8}, a5) and ({Lf},a;). Here

k .
a5 — Z (dim g;)bd;

izl g; + bdl

and
(dim b)b
Ay = —~57
g9(h) +b
where g(h) is the dual Coxeter number of b.
Now there is a remarkable “difference” representation of Vir [13]

(also see [17] and [16], chapter 12) on V. This representation of Vir

represented by ({L9 — L8}, aj — ag), is called the coset representation
of Vir. X

If V' is the fundamental representation at level b > 0 of b, then this
coset Vir-representation has been studied closely (see [17], page 200).
We need one aspect of this beautiful theory: If the central charge of the
coset representation of Vir is zero, then the coset Vir representation is
trivial ([16], Proposition 11.12 and [17], Proposition 3.2 (c)). Hence,
we obtain the following:

Proposition 5.5. If ag = s then L) = L% as operators on V' for
alln € Z.

Remark 5.6. In [17], for ease of calculation, one works with repre-
sentations of the Lie algebra h 4+ Cd where d brackets with b as zd% and
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commutes with the center. It is easy to see that the representation Vbb
of h extends to h 4 Cd. (See [17], Section 1.5 and the introduction).

Definition 5.7. An embedding g C § of Lie algebras is said to con-
formal at a level b > 0 if ag = a for the basic representation V = Vbb

of 6

Curiously, conformal embeddings (with b simple and g C h) always
have b = 1. Therefore, the condition on b is usually omitted. The first
case when this happens, crucial for strange duality is sl(r) @ sl(k) C

sl(rk), and V the fundamental representation at level 1 of si(rk), in
this case (dy,d2) = (k,r) and the central charges are

aA_(Tk)z_l
bk +1
2Dk (K®-1
Gl VN U
k+r r+k

which are easily seen to be the same.

Another case which corresponds to the symplectic strange duality is
sp(2r) & sp(2k) C so(4mn) and V' the fundamental representation at
level 1 of so(4mn), in this case (dy,d2) = (k,r) and the central charges
e 2rk(4rk — 1)

DT Tk —2+1
r(2r+ 1)k  kQ2k+ 1)r
T kel T rrk+L
which are again equal. The complete list of conformal embeddings ap-
pears in [30].

5.3. The WZW connection. Let 7 : X — S be a smooth relative
curve over a smooth base S of arbitrary fiber genus. Suppose that we
are given a section o : § — X of m and a formal coordinate along the
fibers of 7 along the section o (so that o is identified with z = 0):

Ox.s = Osll]]

Let s € S and 7 € T'S;. Pick a formal vector field ¢ € (C((z))diz that
corresponds to 7. (More precisely, we choose a local section of the map
T on page 15 in [31].)

We will describe the connections on the sheaf of dual of conformal
blocks on S. This sheaf is a quotient of VZg ® Og, and the fiber over any
s € Sis the space V! /(g® Ax, )V} (note that it is a basic property that
conformal blocks base change “correctly”).

The WZW connection V on the sheaf of conformal blocks arises as
follows: Let u € V;’ and f € Og. Then

Vo(u®f)=u@r.f + (T*)u) @ f (mod u® f).
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This operation descends to the sheaf of dual conformal blocks and
hence to its dual, the sheaf of conformal blocks. We thus obtain a
projective connection on the sheaf of G-nonabelian theta functions on
S as well, which is independent of the choice of the section ¢ and the
formal coordinate on the fibers along o (e.g. as a consequence of Laszlo’s
comparison theorem [21]).

Proposition 5.8. Assume that g C b is a conformal embedding at
level b. Let G — H be the associated map of simply connected com-
plex algebraic groups, and X — S a smooth relative curve. Then the
map HO (Mg (X,),L0) — HO(Mg(X,), L(£)) is projectively flat for the
WZW connection.

Proof. We can assume that we have a section of X — S (by passing to
a cover of S in the étale topology) and fix a formal coordinate along the
section to verify the given assertion. Given the Verlinde isomorphism,
it is enough to show that under the inclusion VZg - Vbb, there is an

equality of Sugawara operators 79 = Th (as operators on Vzg). But this
is immediate from Proposition 5.5. q.e.d.

Remark 5.9. Proposition 5.8 extends in an obvious way to the
situation where b is allowed to be semi-simple. Note however, that
the equality of central charges will not hold for a diagonal embedding
g C gdg. The multiplication map on G-theta functions is therefore not
claimed to be projectively flat.

Note that if G; and G5 are two groups, then there is a 1-isomorphism
of stacks Mg, (X) x Mg,(X) — Mg, xg,(X). Therefore, Proposi-
tion 5.8 yields Proposition 1.3. (In the setting of Proposition 1.3, we
need to pass from the moduli-stack to the moduli space, but this is
known from [4].)

Let us apply Proposition 5.8 to the example of symplectic strange du-
ality. Under the map Mgp2m) X Msp2n) — Mspin(amn), the generating
line bundle P of the stack Mgpinamn) pulls back to L K L™, where £
denotes the generating line bundle of the moduli stack Mgy (2, (and of

MSp(2n))'

Proposition 5.10. The map
HO(MSpin(4mn) (X)v P) - HO (MSp(2m) (X)7 £n) X HO(MSp(2n) (X)v Em)
is projectively flat (as X waries in a family).

In the above proposition we may replace H O(Msp(Qm) (X),L™) and
H°(Mgp(2n)(X), L™), by global sections over the moduli spaces (of suit-
able line bundles: the line bundle £ descends to the moduli space). We
cannot replace Mgpin(amn)(X) by the corresponding moduli space (but
we can do so if we replace Mgpin(amn) (X) by the regularly stable part
of the moduli-space).
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Let us now consider an exotic example: the embedding so,, C sl,, at
level 1. The Dynkin index is 2 and the central charges are (2(m? — m)/2)
/(m —2+2) and (m? — 1)/(m + 1) which are equal. We conclude:

Proposition 5.11. The map
HO(Msp,m) (X), £) — H*(Mgpin(m) (X), P?)

is projectively flat (as X waries in a family) where £ and P are pos-
itive generators of the Picard groups of Mgy m)(X) and Mgpiy(m)(X)
respectively.

Remark 5.12. The physics papers (see e.g. [30] and the references
therein), contain a more general definition of the notion of conformal
pairs. Does the (conformal) embedding gi(m) C so(2m) in [30], imply
that a certain map of non-abelian theta functions is projectively flat?

6. The Symplectic strange duality

Consider the moduli stack Mg (2,9, of Spin(2r)-bundles on a smooth
projective curve X. There is a natural map

p: MSpin(Qr) - MSO(ZT) (0)
(Here Mgo(2,)(0) is a connected component of the moduli-stack Mg 2,y
see [22, 5])

A line bundle x on X is said to be a theta characteristic if £®2 is
isomorphic to the canonical bundle K x. The set of theta characteristics
0(X) forms a torsor for the 2-torsion Jo(X) in the Jacobian of X, and
hence |0(X)| = 2%.

For each theta-characteristic x on X there is a line bundle P on
Mso(2r)(0) with a canonical section s, (see the Pfaffian construction in
[22, 5]). The various  give non-isomorphic line bundles on Mg (2, (0),
but their pull backs to Mgy, (2, are isomorphic (see [22]). Denote this
line bundle on Mg, (2, by P. The line bundle P is the positive gener-
ator of the Picard group of the stack Mgpin(2,). It comes equipped with
sections s, for each theta characteristic x, coming from the identification
p*P. = P (s, are well defined up to scalars).

Let m : X — S be a smooth projective relative curve. Assume by
passing to an étale cover that the sheaf of theta-characteristics on the
fibers of 7 is trivialized (as well as the sheaf of 2-torsion in the Jacobians
of the fibers of 7). It has been proved by Pauly and Ramanan (see
Proposition 8.2 in [28]), that the sections s,,x € 0(X) form a basis.
Here we ask a more refined question:

Question 6.1. Do the sections s, k € 0(X), form a projectively flat
basis of HO(MSpin(gr)(Xs), P)?

A positive answer to this question, together with Proposition 5.10,
would imply that the symplectic strange duality considered in [3] is
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projectively flat. This is because (see [22]) the pull back of s, to the
product of moduli spaces Mgy, (2, (Xs) X Mgp(2,)(Xs) has the zero locus

(as a divisor) A where
A={(E,F): i (E®F ® k) #0}.

After this paper was submitted, the above question was answered
affirmatively by the author in [9]. Recently, T. Abe [1, 2] proved the
symplectic strange duality for generic curves. Abe’s results (together
with the results in [9]) imply that the symplectic strange duality holds
for all curves.

Appendix A. Generalities on projective connections

Let V' be a vector bundle on a complex analytic manifold S.

e A holomorphic connection on V' is a map
V:V Ve,

so that V(fv) = fV(v) + v ®@df for all functions f and sections v
of V.

The difference of any two such connections V — V' is function linear
and hence an element of Hom(V,V ® Q). We will say that V and V'
are projectively equivalent if

V-V =1d®w
for some 1 form w.

e A projective connection on V is an equivalence class (up to an
obvious equivalence) of collections (U;, V(7)) such that U; form an
open cover of S and V(i) a connection on V restricted to U;, along
with the condition that V(i) and V(j) are projectively equivalent
on U; N Uj.

Suggestively,
V(i)yv = V(i)yv = wi;(Y)v

for all vector fields Y and indices ¢ and j. Herew; j is a 1-form on U;NU;.
Therefore, we can make sense of Vv as an element of (V/Cv) ® QL.

e Amap T : (V,V) — (W, V') preserves projective connections (also
said to be projectively flat) if V/(Tv)—T(Vv) = T'(v) @w for some
1-form w (these are local conditions).

e A section v of V' is projectively flat if Vv = v ® w for some 1-form
w.

The trivial bundle has an obvious projective connection. The pro-
jective flatness of v is clearly equivalent to: The map O — V,1 — v
preserves projective connections.
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ItV and V'’ are connections on V' and W, then there is a connection
V on V ®» W. This comes to life as follows

V(v,w) =Vo@w+v® Vuw

clearly V(fv,w) = V(v, fw) = fV(v,w) + dfv ® w, therefore V gives
a connection on V ®p W. If we replace V by something projectively
equivalent to it, then the resulting V is projectively equivalent to the
old one. Therefore, the tensor product of projective connections is well
defined.

The dual V* of an ordinary connection V on V is defined by

d(v,v*) = (Vou,v*) + (v, V")
If V and V' are projectively equivalent
V-V =Idouw,
then
(vV,v*) @w + (v, (V¥ = V*)u*) = 0.
Hence one concludes that V* — V* = —Id @ w. Therefore the dual of a
projective connection is well defined.

Lemma A.1. Let T : (V,V) — (W, V') be a projectively flat map of
vector bundles with projective connections. Then the rank of T is locally
constant.

Proof. We can immediately reduce to the case of S a small open
neighborhood of 0 in C and V, V' trivial connections on the trivial
bundles V and W. Let T'(e;) = (3 Nij(t) f;) ® dt.

Define f from V'(Tw) — T(Vv) = T(v) ® fdt. So we have S\, ;(t) =
f(t)Xi;. Let g be an antiderivative of f with g(0) = 0. Then

Aii(t) = Cige

for all 4,j where C;; are constants. Hence the determinants of the
minors of the matrix 7" in the basis e;, f; are constant up to exponential
factors. q.e.d.

The following lemma follows from an easy calculation:

Lemma A.2. Let V., W be vector bundles with projective connections
on S and s a projectively flat section of V@ W . Then the resulting map
§5:V* = W is projectively flat. Conversely, if § is projectively flat, then
s is a projectively flat section.

Lemma A.3. Let G be a group of automorphisms of a vector bundle
V on a space S (G acts trivially on S) with a projective connection
V. Assume that G preserves ¥V projectively, VE # 0, and some power
of every g € G acts as a scalar (which must be 1, because there are
invariants). Then, V preserves the subsheaf Ve Cv.



HITCHIN’S CONNECTION & STRANGE DUALITY 463

Proof. Let v be a section of V over a sufficiently small open subset
U of S. We have ¢(Vyv) = Vyg(v) + wy(Y)gv for some 1-form w, on
U. If v € VY, then g(Vyv) = Vyv + wy(Y)v, so for k > 0

" (Vyv) = Vyv + kwy(Y)v.

If we pick k so that ¢* as an endomorphism of V is the identity, we find
that w,(Y)v = 0 and hence Vyv € VC. q.e.d.

Remark A.4. Note that if a reductive group G acts on a vector
bundle V' over a scheme S, V& C V is a subbundle whose fiber over any
se Sis (V,)C.

Proposition A.5. Let V be a vector bundle on a space S, and sup-
pose that V and V' are connections on the vector bundle V', with the
following property: For every s € S, any tangent vector Y at s and any
local section v of V' in a neighborhood of s such that (Vywv)(s) =0, we
have (V'yv)(s) = ¢(X,Y,v)v(s) for some ¢(X,Y,v) € C. Then V and
V' are projectively equivalent.

Proof. Clearly, ¢(X,Y,v) depends just on the point s and the vector
field Y and not upon v (by taking sums and differences of the v’s). The
difference (Vy — V¥,) is function linear as an operator on V' (and also
in Y'), and to find its value at (Y, s), it suffices to evaluate on sections
v such that Vy (v) = 0. q.e.d.
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