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STRONG UNIQUENESS OF THE RICCI FLOW

Bing-Long Chen

Abstract

In this paper, we derive some local a priori estimates for the
Ricci flow. This gives rise to some strong uniqueness theorems.
As a corollary, let g(t) be a smooth complete solution to the Ricci
flow on R

3, with the canonical Euclidean metric E as initial data,
then g(t) is trivial, i.e. g(t) ≡ E.

1. Introduction

The Ricci flow ∂
∂t

gij(x, t) = −2Rij(x, t), was introduced by Hamilton
in [7]. The major application of this equation to lower dimensional
topology has had a great impact in modern mathematics (see [7], [8],
[9] [12], [13]). The power of these geometric applications grew out of
the fundamental PDE theory of the equation. These two aspects had
been intertwined all the time since the foundation of the Ricci flow.

In this paper, we go back to some fundamental PDE problems of this
equation.

Let’s look at one heuristic analogue, the standard heat equation
(

∂
∂t

−△
)

u = 0 on R
n. If u grows slower than the function ea|x|2 for

some a > 0, then u is unique for all such solutions with the same initial

data. Moreover, if |u| |t=0≤ Cea|x|2, it is not hard to see the short time
existence (of solutions of same type) from the heat kernel convolution.
For the Ricci flow, the Ricci curvature behaves like twice derivative of
logarithmic of the metric. So bounded curvature condition for the Ricci

flow resembles growth ea|x|2 for the standard heat equation. Actually,
the fundamental work [14] showed that on complete manifolds with
bounded curvature, the Ricci flow always admits short time solutions
of bounded curvature. X.P. Zhu and the author recently [3] proved
that the uniqueness theorem holds for solutions in the class of bounded
curvature. For an interesting application of this theorem to the theory
of Ricci flow with surgery, we refer the readers to see [4] or relevant
discussions in [1][10][11].
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10831008.
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However, if one don’t impose any growth conditions, the solutions to
the heat equation

(

∂
∂t

−△
)

u = 0 are no longer unique. For instance,
when n = 1, the famous Tychonoff’s example

u(x, t) =
∞
∑

k=0

x2k

(2k)!

dk

dtk
e
− 1

t2 ,

is a smooth nontrivial solution to the heat equation with 0 initial data.
The purpose of this paper is to investigate the analogous problem for the
Ricci flow. Nevertheless, the Ricci flow, as the most natural intrinsic
heat deformation of metrics, has quite complicated nonlinearity. We
attempt to show that, in certain extent, the above phenomenon will not
happen for geometrically reasonable solutions in dimension 3.

Now, we formulate one of the main results of this paper as following

Theorem 1.1. Let (M,g(x)) be a complete noncompact three dimen-
sional manifold with bounded and nonnegative sectional curvature 0 ≤
Rm ≤ K0, for some fixed constant K0. Let g1(x, t), g2(x, t), t ∈ [0, T ],
be two smooth complete solutions to the Ricci flow with initial data g(x).

Then we have g1(t) ≡ g2(t), for 0 ≤ t < min
{

T, 1
4K0

}

.

A simple example is the Euclidean space R
3 :

Corollary 1.2. Let g(t), t ∈ [0, T ], be a smooth complete solution to
the Ricci flow on R

3, starting with the canonical Euclidean metric E,
then g(t) ≡ E.

The most important feature of these uniqueness theorems, is that we
do not require any extra growth conditions on the solutions except the
geodesic completeness.

Theorem 1.1 may be viewed as a generalization of [3], and we call it
a strong uniqueness theorem (see the extrinsic version in [5]).

In views of [3], the whole issue is reduced to the curvature estimates.
In this paper, we will derive some local curvature estimates in dimen-
sion 3 (or 2), which have their own interest from PDE point of view.
Our strategy is the following. The singularities of ancient type occur
naturally, once the desired estimate fails. Through the great works of
Hamilton and Perelman, the structures of singularities in dimension 3
have already been well-understood nowadays. One crucial reason why
Ricci flow works in dimension 3 in the classical theory is that we have
Hamilton-Ivey’s curvature pinching estimate, which guarantees the sin-
gularities are always nonnegative curved. Recall these estimates were
proved by maximum principle. In the classical setting, this principle
can only be applied on manifolds or (Ricci flow) solutions with bounded
or suitable growth curvature. Remember the curvature estimate is just
the goal we want to achieve. To go around this difficulty, in this paper,
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we will derive some pinching estimates of similar type, but in a purely
local way (see section 2)

In this regard, let us recall the so-called pseudolocality theorem of
Perelman [12]. The point we should mention here, is that the pseu-
dolocality theorem of Perelman [12] is basically proved for compact
manifolds. Since the justification of integration by parts on the whole
manifold is also ultimately related to the geometry of the solution, this
makes the situation very complicated (see the proof in section 10 in
[12]). Actually, it is still an open problem if the pseudolocality theo-
rem holds for any complete solutions to the Ricci flow. Recently, in
[2], by assuming the solution has bounded curvature, the pseudolocal-
ity theorem of Perelman has been generalized to complete manifolds.
As mentioned above, the key point for our strong uniqueness is just
the curvature bound. In this paper, we will adopt a totally different
approach.

We remark that in dimension 2, we even have a better strong unique-
ness theorem, i.e. nonnegative curvature assumption can be removed
(see Theorem 3.10).

The paper is organized as follows. In section 2, we derive a pure local
pinching estimate for 3 dimensional Ricci flow. In section 3, we will
show various local a priori curvature estimates, which may give rise to
the proof of the uniqueness theorems. In section 4, we will discuss some
further open problems.

Acknowledgements. The author is grateful to Professor X.P. Zhu
for many stimulating discussions. The author is also thankful to Pro-
fessors D. Burago, X. C. Rong and some others for the discussions on
the injectivity radius assumption in the previous version of the paper.
Finally, M. Simon told the author that he had similar interior estimates
(provided the curvature of the solution has been controlled by K

t
) as in

our Theorem 3.1 in his habilitation thesis [15].

2. Local pinching estimate

Hamilton-Ivey’s pinching estimate plays a substantial role in the ap-
plication of the Ricci flow to the geometrization conjecture in dimension
3. As a matter of fact, this is one main reason why this theory works
in this very dimension. As we mentioned in the introduction, the proof
of this estimate is by maximum principle for compact or complete so-
lutions with bounded curvature. Because the curvature bound on the
whole manifold is just the goal we want to achieve, this becomes an
obstacle for us. Fortunately, we find that the equation has certain good
nonlinearity, which enables us to localize all the estimates.

We start with the local estimate of scalar curvature, which is dimen-
sionally free.



366 B. L. CHEN

Proposition 2.1. For any 0 < δ < 2
n
, there is C = C(δ, n) > 0

satisfying the following property. Suppose we have a smooth solution
gij(x, t) to the Ricci flow on an n dimensional manifold M , such that
for any t ∈ [0, T ], Bt(x0, Ar0) are compactly contained in M and assume
that Ric(x, t) ≤ (n − 1)r0

−2 for x ∈ Bt(x0, r0), t ∈ [0, T ] and R ≥ −K

(K ≥ 0) on B0(x0, Ar0) at t = 0. Then we have

(i) R(x, t) ≥ min
{

− 1
( 2

n
−δ)t+ 1

K

,− C
Ar2

0

}

, if A ≥ 2;

(ii) R(x, t) ≥ min
{

− 1
( 2

n
−δ)t+ n

K

,− C
A2r2

0

}

, if A ≥ 40
3 (n − 1)r−2

0 T + 2,

whenever x ∈ Bt

(

x0,
3A
4 r0

)

, t ∈ [0, T ].

Proof. By [12], we have

(2.1)

(

∂

∂t
−△

)

dt(x0, x) ≥ −5(n − 1)

3
r−1
0 ,

whenever dt(x, x0) > r0, in the sense of support functions.
We divide the discussion into two cases.

Case(a): A ≥ 40
3 (n − 1)r−2

0 T + 2.

We consider the function

u = ϕ





dt(x0, ·) +
5(n−1)r−1

0 t

3

Ar0



R,

where ϕ is a fixed smooth nonnegative non-increasing function such that
ϕ = 1 on

(

−∞, 7
8

]

, and ϕ = 0 on [1,∞).
It is clear that

(

∂

∂t
−△

)

u =ϕ′R
1

Ar0

[(

∂

∂t
−△

)

dt(x0, x) +
5

3
(n − 1)r−1

0

]

− ϕ′′ 1

(Ar0)2
R + 2ϕ|Ric|2 − 2∇ϕ · ∇R,

(2.2)

at smooth points of distance function.
Let umin(t) = minM u(·, t). If umin(t0) ≤ 0 and umin(t0) is achieved

at some point x1, then ϕ′R(x1, t0) ≥ 0. Hence, by (2.1), the first term
in the right hand side of (2.2) is nonnegative. Now by applying the
maximum principle and standard support function technique, we have
for any small δ > 0

d−

dt
umin |t=t0 := lim inf

△tց0

umin(t0 + △t) − umin(t0)

△t

≥ 2

n
ϕR2 +

1

(Ar0)2

(

2ϕ′2

ϕ
− ϕ′′

)

R

≥
(

2

n
− δ

)

umin(t0)
2 +

δ

2

(

umin(t0)
2 − C2

(Ar0)4

)

.

(2.3)



STRONG UNIQUENESS OF THE RICCI FLOW 367

provided umin(t0) ≤ 0, where we have used
∣

∣

∣

2ϕ′2

ϕ
− ϕ′′

∣

∣

∣
≤ C

√
ϕ and

Cauchy-Schwartz
∣

∣

∣

1
(Ar0)2

(2ϕ′2

ϕ
− ϕ′′)R

∣

∣

∣
≤ δ

2ϕR2 + C
(Ar0)4

.

By integrating the inequality (2.3), we get

umin(t) ≥ min

{

− 1

( 2
n
− δ)t + 1

K

,− C

(Ar0)2

}

.

This implies

R(x, t) ≥ min

{

− 1

( 2
n
− δ)t + 1

K

,− C(δ)

(Ar0)2

}

,

whenever x ∈ Bt

(

x0,
3A
4 r0

)

.

Case(b): A ≤ 40
3 (n − 1)Tr−2

0 + 2.

Consider the function u = ϕ
(

dt(x0,·)
Ar0

)

R, the similar argument yields

umin(t) ≥ min

{

− 1

( 2
n
− δ)t + 1

K

,−C(δ)

Ar2
0

}

.

The proof is completed. q.e.d.

In dimension 3, in terms of moving frames [8], the curvature operator,
Mij = Rgij − 2Rij , has the following evolution equation

∂

∂t
M = △M + M2 + M ♯,

where M ♯ is the lie algebra adjoint of M. Let λ ≥ µ ≥ ν be the eigen-
values of M , the same eigenvectors also diagnolize M2 +M ♯ with eigen-
values λ2 + µν, µ2 + λν, ν2 + λµ. The following estimate may be viewed
as a local version of Hamilton-Ivey pinching estimate.

Proposition 2.2. For any k ∈ Z+, there is Ck depending only on
k satisfying the following property. Suppose we have a smooth solution
gij(x, t) to the Ricci flow on a three manifold M , such that for any
t ∈ [0, T ], Bt(x0, Ar0) are compactly contained in M and assume that
Ric(x, t) ≤ (n − 1)r−2

0 for x ∈ Bt(x0, r0), t ∈ [0, T ]; and λ + µ + kν ≥
−Kk(Kk ≥ 0) on B0(x0, Ar0) at time 0. Then we have

(i) λ + µ + kν ≥ min

{

− Ck

t+ 1
Kk

,− Ck

Ar2
0

}

, if A ≥ 2;

(ii) λ + µ + kν ≥ min

{

− Ck

t+ 1
Kk

,− Ck

A2r2
0

}

, if A ≥ 40(n−1)k
3 r−2

0 T + 2,

whenever x ∈ Bt

(

x0,
A
2 r0

)

, t ∈ [0, T ].
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Proof. We only prove the general case (i). We will argue by induction

on k ∈ Z+ to prove the estimate holds on ball of radius
(

1
2 + 1

2k0+1

)

Ar0.

The k = 1 case follows from Proposition 2.1, and radius of the ball is
3A
4 r0. Suppose we have proved the result for k = k0 ∈ Z+, that is to

say, there is constant Ck0 such that

(2.4) λ + µ + k0ν ≥ min

{

− Ck0

t + 1
Kk0

,−Ck0

Ar2
0

}

,

whenever x ∈ Bt

(

x0,
(

1
2 + 1

2k0+1

)

Ar0

)

, t ∈ [0, T ]. We are going to

prove the result for k = k0 + 1 on ball of radius
(

1
2 + 1

2k0+2

)

Ar0.

Without loss of generality, we may assume K1 ≤ K2 ≤ K3 ≤ · · · .

Define a function Ck0(t) := max

{

Ck0

t+ 1
Kk0

,
Ck0

Ar2
0

}

.

Let

Nij = Rgij + k0Mij , Pij = ϕ

(

dt(x, x0)

Ar0

)

(Rgij + k0Mij),

where ϕ is a smooth nonnegative decreasing function, which is 1 on
(

−∞, 1
2 + 1

2k0+2

]

and 0 on
[

1
2 + 1

2k0+1 ,∞
)

. Note that the least eigen-

value of Nij is λ + µ + (k0 + 1)ν. Let V be the corresponding (time
dependent) unit eigenvector of Nij.

By direct computation, we have
(

∂

∂t
−△

)

Pij = −2∇lϕ∇lNij + Qij

where Qij satisfies

Q(V, V ) = ϕ(λ2 + µ2 + (k0 + 1)ν2 + µν + λν + (k0 + 1)λµ)

+

[

ϕ′ 1

Ar0

[(

∂

∂t
−△

)

dt(x0, x)

]

− ϕ′′ 1

(Ar0)2

]

(λ + µ + (k0 + 1)ν).

Let

u(t) := min
x∈M

(λ + µ + (k0 + 1)ν)ϕ(x, t).

For fixed t0 ∈ [0, T ], assume (λ + µ + (k0 + 1)ν)ϕ(x′
0, t0) = u(t0) <

−2Ck0(t0). Otherwise, we have the estimate at time t0.

Combining with (2.4), we have (λ + µ + (k0 − 1)ν)(x′
0, t0) ≥ 0. Note

that ν(x′
0, t0) is negative, otherwise (λ+µ+(k0+1)ν)(x′

0, t0) ≥ 0. Hence
(λ + µ)ϕ(x′

0, t0) ≥ 0.
We compute
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Q(V, V )(x′
0, t0) = ϕ(λ2 + µ2 + (k0 + 1)ν2 + (λ + µ)ν + (k0 + 1)λµ)

+

[

ϕ′

ϕ

1

Ar0

(

∂

∂t
−△

)

dt(x0, x) − ϕ′′

ϕ

1

(Ar0)2

]

u(t0)

= ϕ
(λ + µ + (k0 + 1)ν)2

(k0 + 1)
− λ + µ

k0 + 1
ϕ(λ + µ + (k0 + 1)ν)

+ ϕ(λ2 + µ2 + (k0 + 1)λµ)

+

[

ϕ′

ϕ

1

Ar0

(

∂

∂t
−△

)

dt(x0, x) − ϕ′′

ϕ

1

(Ar0)2

]

u(t0)

= I + II + III + IV.

Since (λ + µ)ϕ(x′
0, t0) ≥ 0 and u(t0) < 0, we have II ≥ 0. To deal

with term III, we divide into two cases.

Case (α): µ(x′
0, t0) < −λ(x′

0,t0)
k0+1 .

By (2.4), (λ + µ + k0ν)(x0, t0) ≥ −Ck0(t0), we have −ν(x′
0, t0) ≤

λ(x′

0,t0)
k0+1 +

Ck0
(t0)

k0
. Hence at (x′

0, t0), we have

λ2 + µ2+(k0 + 1)λµ

≥ λ2 +

(

λ

k0 + 1

)2

− (k0 + 1)λ

(

λ

k0 + 1
+

Ck0(t0)

k0

)

≥
(

λ

k0 + 1

)2

− (k0 + 1)
Ck0(t0)

k0
λ ≥ −(k0 + 1)4Ck0(t0)

2

4k2
0

.

Case (β): µ(x′
0, t0) ≥ −λ(x′

0,t0)
k0+1 .

In this case, (λ2 + µ2 + (k0 + 1)λµ)(x′
0, t0) ≥ 0 holds trivially.

Hence in either case, we have

λ2 + µ2 + (k0 + 1)λµ ≥ −
(k0 + 1)4C2

k0
(t0)

4k2
0

.

Therefore,

Q(V, V )(x′
0, t0) ≥ ϕ

(λ + µ + (k0 + 1)ν)2

(k0 + 1)
− (k0 + 1)4Ck0(t0)

2

4k2
0

ϕ

+

[

ϕ′

ϕ

1

Ar0

[(

∂

∂t
−△

)

dt(x0, x)

]

− ϕ′′

ϕ

1

A2r2
0

]

u(t0)

≥ 1

(k0 + 1)ϕ

[

u2 −
(

5(n − 1)ϕ′

3Ar2
0

+
k0 + 1

A2r2
0

ϕ′′
)

u

]

−
(k0 + 1)4C2

k0
(t0)

4k2
0

.
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Since |ϕ′| ≤ C2k0, |ϕ′′| + ϕ′2

ϕ
≤ C22k0, by applying maximum principle,

we have

d−

dt
|t=t0 u ≥ Q(V, V )(x′

0, t0) +
2

(Ar0)2
ϕ′2

ϕ2
u(t0)

≥ 1

2(k0 + 1)
u2

provided |u|(t0) ≥ max
{

CCk0(t0)k0
3
2 , C 22k0k0

Ar2
0

}

, where C is some uni-

versal constant. By integrating the above differential inequality, we get
estimate:

u(t) ≥ min

{

1
1

u(0) −
t

2(k0+1)

,−CCk0(t)k0
3
2 ,−C

22k0k0

Ar2
0

}

.

By the definition of Ck0(t), noting −Kk0 ≥ −Kk0+1, clearly, there is
a Ck0+1 such that

u(t) ≥ min

{

− Ck0+1

t + 1
Kk0+1

,−Ck0+1

Ar2
0

}

.

The proof of case (ii) is similar. We use cut-off function

ϕ





dt(x0, ·) +
5(n−1)r−1

0 t

3

Ar0



 ,

where ϕ is a suitably chosen function which depends on k0 in the in-
ductive step. q.e.d.

We remark that by following the constants in the proof, the constant
Ck may be chosen to be CkCk for some universal constant C. The fac-
tor 1

2 in the radius 1
2Ar0 is not important, it may be replaced by any

constant in (0, 1).

Corollary 2.3. Suppose we have a complete smooth solution gij(x, t)
to the Ricci flow on M × [0, T ], then whenever t ∈ [0, T ] we have

(i) if R ≥ −K for 0 ≤ K ≤ ∞ at t = 0, then

R(·, t) ≥ − n

2t + n
K

;

(ii) if dim M=3, then for any k > 0, there is Ck > 0 depending only
on k such that if at t = 0, λ + µ + kν ≥ −Kk for some 0 ≤ Kk ≤ ∞,
then

λ + µ + kν ≥ − Ck

t + 1
Kk

.



STRONG UNIQUENESS OF THE RICCI FLOW 371

Proof. For fixed x0 ∈ M, since the solution is smooth, there is a small
r0 > 0 such that whenever t ∈ [0, T ], x ∈ Bt(x0, r0), we have

|Rm|(x, t) ≤ r−2
0 .

For the proof of (i), let A → ∞, δ → 0 in the Proposition 2.1, we get
the desired estimate. Case (ii) follows from Proposition 2.2 by letting
A → ∞. q.e.d.

In particular, in dimension 3, if the sectional curvature is nonnegative
at t = 0, then this property is preserved for t > 0 for any complete
solutions.

Furthermore, for complete ancient solution, for any fixed t ∈ (−∞, 0],

by Corollary 2.3 (ii) , we have (λ+µ+kν)(t) ≥ − Ck

t−(−T ) for any T > 0.

Since Ck depends only on k, we have (λ+µ+kν)(t) ≥ 0 for any k ∈ Z+.

This implies ν ≥ 0, i.e. the sectional curvature is nonnegative.

Corollary 2.4. Any ancient smooth complete solution to the Ricci
flow (not necessarily having bounded curvature) on three manifold must
have nonnegative sectional curvature.

Corollary 2.5. Any ancient smooth complete solution to the Ricci
flow (not necessarily having bounded curvature) must have nonnegative
scalar curvature.

3. A priori estimates

3.1. We will prove the following preliminary interior estimate, which
holds for any dimension.

Theorem 3.1. There is a constant C = C(n) with the following
property. Suppose we have a smooth solution to the Ricci flow (gij)t =
−2Rij , 0 ≤ t ≤ T, on an n-manifold M such that Bt(x0, r0), 0 ≤ t ≤ T,

is compactly contained in M and

(i) |Rm| ≤ r−2
0 on B0(x0, r0) at t = 0;

(ii) |Rm|(x, t) ≤ K
t

where K ≥ 1, dt(x, t) = distt(x0, x) < r0, when-
ever 0 ≤ t ≤ T.

Then we have

|Rm|(x, t) ≤ eCK(r0 − dt(x0, x))−2

whenever 0 ≤ t ≤ T, dt(x, t) = distt(x0, x) < r0.

Proof. By scaling, we may assume r0 = 1 .
Since the result holds trivially by assumption when t ≥ 1. Without

loss of generality, we may assume T ≤ 1.
We argue by contradiction. Suppose we have a sequence of δ → 0, and

a sequence of solutions satisfying the assumptions in Theorem 3.1. But
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|Rm|(x1, t1) > e
K

δ ε−2 holds for some point (x1, t1), dt1(x1, x0) < 1 − ε,
t1 ∈ [0, T ].

For any fixed B ≥ 1, by a point-picking technique of Perelman [12],
we can choose another point (x̄, t̄), x̄ ∈ Bt̄

(

x0, 1 − ε
2

)

, t̄ ∈ (0, t1] such

that Q̄ = |Rm|(x̄, t̄) ≥ e
K

δ ε−2 and

(3.1) |Rm|(x, t) ≤ 2Q̄

whenever dt(x0, x) ≤ dt̄(x̄, x0) + 10BKQ̄− 1
2 , 0 ≤ t ≤ t̄.

At the end of the proof, it turns out that we only need to choose

B = 2eC(n)K−1
K

.

Actually (x̄, t̄) can be constructed as the limit of a finite sequence
(xi, ti) satisfying 0 ≤ tk ≤ tk−1, dtk(x0, xk) ≤ dtk−1

(x0, xk−1) + 10BK

|Rm|(xk−1, tk−1)
− 1

2 , |Rm|(xk, tk) ≥ 2|Rm|(xk−1, tk−1). Since

|Rm|(xk, tk) ≥ 2k−1|Rm|(x1, t1) ≥ 2k−1e
K

δ ε−2, we have

dtk(x0, xk) ≤ dt1(x0, x1) + 10BK

∞
∑

i=1

(2i−1|Rm|(x1, t1))
− 1

2

≤ 1 − ε + 40BKe−
K

2δ ε ≤ 1 − ε

2
.

Clearly, if we choose B = 2eC(n)K−1
K

, the last inequality is guaranteed

by e(C(n)− 1
2δ

)K ≤ 1
160 , which holds trivially since K ≥ 1 and δ → 0.

Since the solution is smooth, this sequence must be finite and the last
element is what we want.

From this construction, we know dt̄(x̄, x0) + 10BKQ̄− 1
2 ≤ 1 − ε

2 .

We denote by C(n) various universal big constants depending only
upon the dimension. In the following argument, it may vary line by
line.

Now let ϕ be a fixed smooth nonnegative non-increasing cut-off func-

tion such that ϕ = 1 on
(

−∞, dt̄(x̄, x0) + BKQ̄− 1
2

]

, ϕ = 0 on
[

dt̄(x̄, x0)

+ 10BKQ̄− 1
2 ,∞

)

. Clearly, we have

(3.2) |ϕ′| ≤ C
Q̄

1
2

BK
, |ϕ′′| + |ϕ′|2

ϕ
≤ C

Q̄

(BK)2
.

Consider the function u = ϕ(dt(x0, x))|Rm|(x, t)2, it is clear that
(

∂

∂t
−△

)

u ≤ ϕ′|Rm|2
(

∂

∂t
−△

)

dt(x0, x) − 2ϕ|∇Rm|2

− ϕ′′|Rm|2 + C(n)ϕ|Rm|3 − 2∇ϕ · ∇|Rm|2.

Since by (3.1),
(

∂
∂t

−△
)

dt(x0, x) ≥ −C(n)Q̄
1
2 whenever Q̄− 1

2 <

dt(x0, x). Then by the maximum principle, and (3.1)(3.2), it is clear
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that at the maximum point,

d+

dt
umax ≤ C(n)

BK
|Rm|2Q̄ + Cϕ|Rm|3

≤ C(n)

BK
Q̄3 + C(n)Q̄umax(t).

Integrating this inequality, noting umax(0) ≤ 1 by assumption, we get

e−C(n)Q̄tumax(t) |t=t̄
t=0≤ − Q̄2

BK
e−C(n)Q̄t |t=t̄

t=0,

and

umax(t̄) ≤ eC(n)Q̄t̄ +
1

BK

(

eC(n)Q̄t̄ − 1
)

Q̄2.

Since umax(t̄) ≥ u(x̄, t̄) = Q̄2, and Q̄t̄ ≤ K, we have
(

1 − eC(n)K − 1

BK

)

Q̄2 ≤ eC(n)K .

Therefore, if we choose B = 2(eC(n)K−1)
K

, then we have

Q̄ ≤ eC(n)K

which is a contradiction with Q̄ ≥ e
K

δ ε−2 as δ → 0.
This completes the proof of the Theorem 3.1. q.e.d.

Corollary 3.2. Suppose we have a smooth solution to the Ricci flow
(gij)t = −2Rij, 0 ≤ t ≤ T , such that at t = 0 we have |Rm| ≤ r−2

0 on
B0(x0, r0); and

|Rm|(x, t) ≤ K

t
whenever 0 < t ≤ T, d0(x, t) = dist0(x0, x) < r0. Here we assume
B0(x0, r0) is compactly contained in the manifold M . Then there is
a constant C depending only on the dimension such that the following
estimate

|Rm|(x, t) ≤ eCK(r0 − d0(x0, x))−2

holds for all (x, t) ∈ B0(x0, r0) × [0, T ].

Proof. By [12], for any fixed p ∈ B0(x0, r0), as long as the minimal
geodesic γt at time t ∈

[

0, r2
0

]

connecting p and x0 lies in B0(x0, r0), we
have

d

dt
dt(x0, p) ≥ −C(n)

√

K

t
.

For any fixed p ∈ B0(x0, r0), let [0, T ′) be the largest interval such that
any minimal geodesic γt at time t ∈ [0, T ′] connecting x0 and p lies in
B0(x0, r0) entirely. By integrating the above inequality, we get

d0(x0, p) ≤ dt(x0, p) + C(n)
√

K
√

T ′.
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This implies Bt

(

x0,
r0
4

)

⊂ B0

(

x0,
r0
2

)

, for any t ∈
[

0,
r2
0

C(n)K

]

. By ap-

plying Theorem 3.1 with T =
r2
0

C(n)K <
(

r0
4

)2
, there is a constant C(n)

depending only on the dimension, such that |Rm| ≤ eC(n)Kr−2
0 when-

ever 0 < t <
r2
0

C(n)K , dt(x, t) = distt(x0, x) < 1
8r0. On the other hand,

for d0(x0, x) < r0 and t ∈
[

r2
0

C(n)K , r2
0

]

, by assumption, we always have

|Rm|(x, t) ≤ K

t
≤ eC(n)Kr−2

0 .

This in particular implies |Rm|(x0, t) ≤ eC(n)Kr−2
0 , for any t ∈ [0, T ].

For any x ∈ B0(x0, r0), apply the above estimate on ball B0(x, r0 −
d0(x0, x)) again, we know |Rm|(x, t) ≤ eC(n)K(r0 − d0(x0, x))−2 for any
t ∈

[

0, (r0 − d0(x0, x))2
]

. For t > (r0 − d0(x0, x))2, we have

|Rm|(x, t) ≤ K

t
≤ K

(r0 − d0(x0, x))2
≤ eC(n)K(r0 − d0(x0, x))−2.

The proof is completed. q.e.d.

3.2. We say that a solution to the Ricci flow is ancient if it exists at
least on a half infinite time interval (−∞, T ) for some finite number T.

Ancient solution appears naturally in the blow up argument of singular-
ity analysis of Ricci flow. The following lemma will be used frequently
in the a priori estimates of this section.

Lemma 3.3. Let gij(x, t), t ∈ (−∞, T ) be a complete smooth non-
flat ancient solution to the Ricci flow on an n−dimensional manifold
M , with bounded and nonnegative curvature operator. Then for any
t ∈ (−∞, T ), the asymptotic volume ratio satisfies

νM (t) := lim
r→∞

volt(Bt(x, r))

rn
= 0.

This lemma was proved by [12].

Theorem 3.4. For any C > 0, there exists K > 0 with the follow-
ing properties. Suppose we have a three dimensional smooth complete
solution to the Ricci flow (gij)t = −2Rij, 0 ≤ t ≤ T, on a manifold

M, and assume that at t = 0 we have |Rm|(x, 0) ≤ r−2
0 on B0(x0, r0),

and R(x, 0) ≥ −r−2
0 on M. If gij(x, t) ≥ 1

C
gij(x, 0) for x ∈ B0(x0, r0),

t ∈
[

0, r2
0

]

, then we have

|Rm|(x, t) ≤ 2r−2
0

whenever 0 ≤ t ≤ min
{

1
K

r2
0, T

}

, distt(x0, x) < 1
K

r0.

Proof. By scaling, let r0 = 1. By assumption gij(x, t) ≥ 1
C

gij(x, 0),
we have

(3.3) Bt

(

x0,
1√
C

)

⊆ B0(x0, 1).
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Let T0 be the largest time such that |Rm|(x, t) ≤ 2 whenever x ∈
Bt

(

x0,
1

2
√

C

)

, t ∈ [0, T0]. We may assume T0 < min{1, T}. Other-

wise, there is nothing to show. Hence there is a (x1, t1) such that

|Rm|(x1, t1) = 2, x1 ∈ Bt1

(

x0,
1

2
√

C

)

and t1 ≤ T0.

In the following arguments, we use C̄ to denote various constants
depending only on C. By using Corollary 2.3, we know

R(x, t) ≥ −C̄,

on M×[0, T0]. By evolution equation of the volume element d
dt

log det(g)

= −R, this gives det(g)(t)
det(g)(0) ≤ C̄. Combining with the assumption g(t) ≥

1
C

g(0), we have

(3.4)
1

C̄
g(0) ≤ g(t) ≤ C̄g(0)

on B0(x0, 1) × [0, T0].
Since the curvature on B0(x0, 1) of the initial metric g is bounded by

1, the exponential map (for the initial metric) at x0 is a local diffeomor-
phism from B(0, 1) ⊂ TP M to the geodesic ball B0(x0, 1), and such that
(sin 1)δij ≤ exp∗gij(x, 0) ≤ (sinh 1)δij on B(0, 1). By the above estimate
(3.4), we have

(3.5)
1

C̄
δij ≤ exp∗gij(x, t) ≤ C̄δij

on B(0, 1) × [0, T0]. Let ḡ(·, t) = exp∗ g(·, t), then ḡ(·, t) is a solution to
the Ricci flow on the Euclidean ball B(0, 1), moreover it is κ-noncol-
lapsed for some κ = κ(C) for all scales less than 1 by (3.5).

Now we claim that there is a constant K0 > 0 depending only on C

such that

(3.6) |Rm|(x, t) ≤ K0

as x ∈ Bt

(

0, 3
4
√

C

)

, t ∈ [0, T0].

Actually, suppose (3.6) is not true, then there is a (x2, t2) such that

|Rm|(x2, t2) ≥ K1 → ∞, x2 ∈ Bt2

(

0, 3
4
√

C

)

, 0 < t2 ≤ T0. Now we

can choose another point (x̄, t̄) so that Q̄ = |Rm|(x̄, t̄) ≥ K1,
1

2
√

C
≤

dt̄(x̄, 0) ≤ 7
8
√

C
, 0 < t̄ ≤ t2, and

(3.7) |Rm|(x, t) ≤ 4Q̄

for all dt(0, x) ≤ dt̄(0, x̄) + K
1
4
1 Q̄− 1

2 , 0 ≤ t ≤ t̄.

Since K → ∞, we know

(3.8) dt̄(0, x̄) + K
1
4
1 Q̄− 1

2 ≤ 15

16
√

C
.
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Moreover by [12] and (3.7), it follows

d

dt
dt(0, x̄) ≥ −C̄

√

Q̄

whenever dt(0, x̄) ≤ dt̄(0, x̄) + 1
2K

1
4
1 Q̄− 1

2 . By integrating this inequality,

it is not hard to see dt(0, x̄) ≤ dt̄(0, x̄) + C̄K
1
8
1 Q̄− 1

2 whenever 0 ≤ Q̄(t̄−
t) ≤ min

{

K
1
8 , Q̄t̄

2

}

. Hence, if dt(x̄, x) ≤ K
1
8
1 Q̄− 1

2 , 0 ≤ Q̄(t̄ − t) ≤

min

{

K
1
8
1 , Q̄t̄

2

}

, we have dt(0, x) ≤ dt̄(0, x̄) + C̄K
1
8
1 Q̄− 1

2 . By (3.7), this

gives

(3.9) |Rm|(x, t) ≤ 4Q̄, dt(0, x) ≤ 15√
16C

,

for x ∈ Bt

(

x̄,K
1
8 Q̄− 1

2

)

, and 0 ≤ Q̄(t̄ − t) ≤ min
{

K
1
8 , Q̄t̄

2

}

.

Recall in this region, we always have (3.5) because of (3.9) and (3.3).
Next, we will show

(3.10) Q̄t̄ → ∞,

which guarantees that the limit, which will be extracted from a subse-
quence of the rescaled solutions around (x̄, t̄), is ancient.

Let ϕ be a fixed smooth nonnegative non-increasing cut-off function

such that ϕ = 1 on (−∞, dt̄(0, x̄)], ϕ = 0 on

[

dt̄(0, x̄) + K
1
4
1 Q̄− 1

2 ,∞
)

.

Consider u = ϕ(dt(0, x))|Rm|(x, t)2, by applying the maximum prin-
ciple as before, we have

d+

dt
umax ≤ C̄K

− 1
4

1 Q̄3 + C̄Q̄umax(t).

which gives

Q̄2 ≤ eC̄Q̄t̄ + Q̄2C̄K− 1
4 (eC̄Q̄t̄ − 1).

This implies Q̄t̄ → ∞ because Q̄ ≥ K1 → ∞.

So by rescaling the solution around the point (x̄, t̄) with the factor Q̄

and shifting the time t̄ to 0, and using Hamilton’s compactness theorem
and taking convergent subsequence, we get a smooth limit. Note the
curvature norm at the new origin is 1. This limit is a nontrivial smooth
complete ancient solution to the Ricci flow with bounded curvature
(≤ 4). By Corollary 2.4, this limit has nonnegative curvature. But (3.5)
indicates the asymptotic volume ratio of the limit is strictly positive,
which is a contradiction with Lemma 3.3. So we have proved the claim
(3.6).

Let ϕ be a fixed smooth nonnegative non-increasing cut-off function

such that ϕ = 1 on
(

−∞, 1
2
√

C

]

, ϕ = 0 on
[

3
4
√

C
,∞
)

. Consider the
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function
u(x, t) = ϕ(dt(0, x))|Rm|2(x, t),

and by (3.6) and maximum principle, we obtain

d+

dt
umax ≤ C̄

whenever 0 ≤ t ≤ T0. Recall we have |Rm|(x1, t1) = 2 for some x1 ∈
Bt1

(

x0,
1

2
√

C

)

and t1 ≤ T0. This gives 2 ≤ umax(t1) ≤ 1 + C̄t1. Hence

T0 ≥ 1
C̄

. The proof is completed. q.e.d.

Corollary 3.5. For any C,K0 > 0, there exists a constant K satisfy-
ing the following property. Suppose we have a three dimensional smooth
complete solution to the Ricci flow (gij)t = −2Rij , 0 ≤ t ≤ T, on a
manifold M, and assume that at t = 0 we have |Rm|(·, 0) ≤ K0 on M .
If gij(·, t) ≥ 1

C
gij(·, 0) on M × [0, T ], then we have

|Rm|(·, t) ≤ K

for all 0 ≤ t ≤ T.

Proof. First of all, by Theorem 3.4 we know there is a constant T0

depending only on K0 and C such that

(3.11) |Rm|(·, t) ≤ 2K0

for 0 ≤ t ≤ min{T0, T} for some T0. Without loss of generality, we
assume T0 < T. By Corollary 2.3 and assumption, we have

(3.12)
1

C̄
g(·, 0) ≤ g(·, t) ≤ C̄g(·, 0)

on M × [0, T ].
To prove the result, we will argue by contradiction. Suppose there is a

point (x1, t1) such that |Rm|(x1, t1) ≥ K → ∞. We can choose another
point (x̄, t̄) such that Q̄ = |Rm|(x̄, t̄) ≥ K, t̄ ≤ t1 and |Rm|(x, t) ≤ 4Q̄,

for all dt(x, x̄) ≤ K
1
4 Q̄− 1

2 .

Otherwise, we obtain a sequence of points (xk, tk), such that

t1 ≥ t2 ≥ · · · , |Rm|(xk, tk) ≥ 4k−1|Rm|(x1, t1), and

dtk(xk, x1) ≤ C̄K
1
4

∑

(

4k−1|Rm|(x1, t1)
)− 1

2 ≤ C̄.

Since dtk(xk, x1) ≥ 1
C̄

d0(xk, x1), and the solution is smooth, this pro-
cedure has to stop after a finite number of steps. Now we pull back
the solution locally by using the exponential map (of the initial metric)
at x̄ to the Euclidean ball of some fixed radius as before, and notice

K
1
4 Q̄− 1

2 ≤ C̄K− 1
4 ≪ 1 and (3.12). Then we can rescale the solutions

by the factor Q̄ around (x̄, t̄) and extract a convergent subsequence. By
(3.11), the limit is ancient. The curvature (of the limit) is bounded (by
4). So by Corollary 2.4, the limit has nonnegative sectional curvature.
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It is clear that by (3.12) and the construction, the limit has maximal
volume growth. So this is a contradiction with Lemma 3.3. The proof
is completed.

q.e.d.

3.3.

Theorem 3.6. For any v0 > 0, there is K > 0 depending only on
v0 with the following properties. Let (M,g(x, 0)) be a compete smooth
3-dimensional Riemannian manifold with nonnegative sectional curva-
ture, x0 ∈ M be a fixed point satisfying |Rm| ≤ r−2

0 on B0(x0, r0) and
vol0(B0(x0, r0))) ≥ v0r

3
0, for some r0 > 0.

Let g(x, t), t ∈ [0, T ] be a smooth complete solution to the Ricci flow
with g(x, 0) as initial metric. Then we have

|Rm|(x, t) ≤ 2r−2
0

for all x ∈ Bt

(

x0,
r0
2

)

, 0 ≤ t ≤ min
{

T, 1
K

r2
0

}

.

Proof. First of all, by Corollary 2.3, for any k > 0, there is Ck > 0
depending only on k such that if at t = 0, λ + µ + kν ≥ −Kk for some
0 ≤ Kk ≤ ∞, then for t > 0, we have

λ + µ + kν ≥ − Ck

t + 1
Kk

.

In our case, ν ≥ 0 at t = 0, so we can choose Kk = 0 for all k > 0.
Therefore, λ + µ + kν ≥ 0 for t > 0, for any k > 0. This implies ν ≥ 0,
i.e. curvatures are still nonnegative for t > 0.

By scaling, we assume r0 = 2.
We imitate the proof of Theorem 3.4. For the fixed x0 ∈ M, let T0

be the largest time such that |Rm(x, t)| ≤ 1
2 for all x ∈ Bt(x0, 1) and

t ∈ [0, T0]. Recall by assumption |Rm(x, 0)| ≤ 1
4 on B0(x0, 2). Without

loss of generality, we assume T0 < T. Then there is (x1, t1) such that
t1 ≤ T0, x1 ∈ Bt1(x0, 1), |Rm|(x1, t1) = 1

2 . Our purpose is to estimate
T0 from below by a positive constant depending only on v0.

Now we claim for fixed r > 1 there is a B > 0 depending on v0
r3 , such

that

(3.13) |Rm(x, t)| ≤ B + Bt−1

whenever x ∈ Bt

(

x0,
r
4

)

and t ∈ [0, T0].
We will argue by contradiction. Actually, suppose (3.13) does not

hold, then there is a sequence of solutions such that there is some (x1, t1),
x1 ∈ Bt1

(

x0,
r
4

)

and t1 ∈ [0, T0] satisfying |Rm(x1, t1)| ≥ B+Bt−1
1 with

B → ∞. By a point-picking technique of Perelman [12] (Claim 1 and
Claim 2 in Theorem 10 in [12]), we can choose another (x̄, t̄), with
Q̄ = |Rm|(x̄, t̄) ≥ B

t̄
such that

(3.14) |Rm|(x, t) ≤ 4Q̄
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for all dt(x, x̄) ≤ A
1
2 Q̄− 1

2 , t̄ − AQ̄−1 ≤ t ≤ t̄, where A tends to infinity
with B.

Note that we have volt(Bt(x0, r)) ≥ v0

Cr3 r3, for t ∈ [0, T0]. Since the
curvature is nonnegative for the solution, by volume comparison theo-
rem, the solution is κ = κ

(

v0
r3

)

non-collapsed on Bt(x0, r), for t ≤ T0.

So we can rescale the solution around (x̄, t̄) and extract a subsequence,
finally obtain a nontrivial ancient smooth complete solution to the Ricci
flow, which has maximal volume growth and bounded nonnegative cur-
vature. This is a contradiction with Lemma 3.3. Therefore the claim
(3.13) is proved.

Now by choosing r = 8 and applying Theorem 3.1, we have |Rm(x, t)|
≤ Const on Bt

(

x0,
3
2

)

, t ∈ [0, T0]. Here the constant depends only on
v0.

Consider the evolution equation of ϕ(dt(x0, x))|Rm|(x, t), where ϕ

be a smooth nonnegative decreasing function which is 1 in (−∞, 1] and
0 in

[

3
2 ,∞

)

. As in the proof of Theorem 3.4, by applying maximum
principle to the equation of ϕ(dt(x0, x))|Rm|(x, t), we conclude with
T0 ≥ min

{

T, 1
C

}

. This completes the proof. q.e.d.

Corollary 3.7. Let (M,g(x)) be a complete noncompact 3-dimen-
sional manifold with bounded nonnegative sectional curvature 0 ≤ Rm ≤
K0, for some fixed constants K0. Let g(x, t) be a smooth complete solu-
tion to the Ricci flow on M × [0, T ] with g(x) as initial data. Then we
have

0 ≤ Rm(·, t) ≤ 1
1

K0
− 4t

for all 0 ≤ t < min
{

T, 1
4K0

}

.

Proof. First of all, since we are considering the curvature estimate,
by pulling back the solution gt to the universal cover of the manifold, it
is sufficient to assume the manifold is simply-connected. We claim that
for such simply connected manifold, there is a constant i0 > 0 (may
depend on the initial curvature bound) such that the initial metric has
injectivity radius bounded from below by i0 > 0.

Actually, since the curvature is bounded, by [14], we may deform
the initial metric by the Ricci flow in a short time interval [0, δ] such
that the solution g̃τ (τ ∈ [0, δ]) has bounded and nonnegative curvature
0 ≤ Rm ≤ 2K0. Here the construction of g̃ is from [14], there should
be no ambiguity with the given solution in our theorem. We have two
possibilities. If there is τ > 0 such that the sectional curvature vanishes
somewhere for some directions, then by the strong maximum princi-
ple of Hamilton, the manifold splits as R × Σ or R

3 metrically for all
τ ∈ (0, δ], where Σ is surface with bounded and positive sectional cur-
vature. Another case is for all τ ∈ (0, δ], the sectional curvatures of
the solution are positive everywhere. The following fact is standard:
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the injectivity radius of the manifold is bounded from below by π√
C

, for

simply connected closed even-dimensional manifold with 0 < sec ≤ C

or complete noncompact Riemannian manifold with 0 < sec ≤ C. So we
know the injectivity radius is bounded from below by a uniform positive
constant for any 0 < τ < δ. Then our assertion follows from the fact
that the volume of the unit ball at t = 0 is uniformally bounded (from
below by a positive constant) by the Ricci flow equation.

Note that by Corollary 2.3(ii) the nonnegativity of sectional curvature
is preserved for t > 0. Since we have lower injectivity radius bound at
time t = 0 from above argument, then by applying Theorem 3.6, we
know there is a constant K > 0 depending only on i0 and K0 such
that |Rm|(·, t) ≤ 2K0 for t ∈

[

0,min
{

T, 1
K

}]

. On the other hand, once
the curvature is bounded, we can apply the maximum principle (on
complete manifold with bounded curvature), yielding

(3.15) 0 ≤ Rm(x, t) ≤ 1
1

K0
− 4t

.

Moreover we know the volume of the unit ball is also bounded from
below as long as the curvature is bounded. So we may apply Theorem
3.6 and maximum principle estimate repeatedly. So (3.15) holds for all

0 ≤ t < min
{

T, 1
4K0

}

. q.e.d.

Combining [3] and Corollary 3.7, we complete the proof of Theo-
rem 1.1. The following theorem follows also as a corollary of [3] and
Corollary 3.5.

Theorem 3.8. Let (M,g(0)) be a complete smooth 3 dimensional
Riemannian manifold such that |Rm|(·, 0) ≤ K0 on M . Suppose we
have two smooth complete solutions g1(t) and g2(t) to the Ricci flow
(gij)t = −2Rij, 0 ≤ t ≤ T, on M with g(0) as initial metric, and there

is C > 0 such that gi(·, t) ≥ 1
C

g(·, 0) on M × [0, T ] (i = 1, 2), then we
have g1(t) = g2(t) for all 0 ≤ t ≤ T.

In concluding this section, we discuss the two dimensional case. In
this case, we can obtain purely local a priori estimates.

Proposition 3.9. Let g(x, t), t ∈ [0, T ] be a smooth solution to the
Ricci flow with g(x, 0) as initial metric on a two dimensional Riemann-
ian manifold M , x0 ∈ M . We assume Bt(x0, r0) is compactly contained
in M for any t ∈ [0, T ]; and at t = 0, |R|(x, 0) ≤ r−2

0 on B0(x0, r0) and
vol0(B0(x0, r0)) ≥ v0r

2
0 for some constants r0, v0 > 0. Then there is a

constant K depending only on v0 such that

|R|(x, t) ≤ 2r−2
0

for all x ∈ Bt

(

x0,
r0
2

)

, 0 ≤ t ≤ min
{

T, 1
K

r2
0

}

.
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Proof. The argument is similar to Theorem 3.6. After choosing the
largest time T0 such that curvature norm reaches 2r−2

0 on the balls of
radius r0

2 , by using Proposition 2.1, we have curvature estimate R(x, t) ≥
−Cr−2

0 on balls of radius 3
4r0. Note that the dimension is two, scalar

curvature is the only curvature we have, so this lower curvature bound
enables us to apply the Bishop-Gromov volume comparison theorem.
Therefore, in the rest, we can argue as in the proof of Theorem 3.6 to
derive a lower bound for T0. q.e.d.

The following result is also clearly a corollary of Proposition 3.9.

Theorem 3.10. Let (M,g(0)) be a complete smooth 2 dimensional
Riemannian manifold such that |R| ≤ K0, and vol0(B0(·, 1)) ≥ v0

for some fixed positive constants K0, v0. Suppose we have two smooth
complete solutions g1(t) and g2(t) to the Ricci flow (gij)t = −2Rij ,

0 ≤ t ≤ T, on M with initial metric g(0), then we have g1(t) = g2(t),

for 0 ≤ t ≤ min
{

T, 1
K0

}

.

4. Concluding remarks

It is interesting to know if the pseudolocality theorem of the Ricci
flow holds in a general class of Riemannian manifolds, and the strong
uniqueness theorem holds in general as the corollary. In particular, we
may ask the question for Euclidean space R

n :

Question Does the strong uniqueness of the Ricci flow hold on the
Euclidean space R

n for n ≥ 4?

In the present paper, we have proved the case for n = 2 and 3.
We give remarks for the analogous results on mean curvature flow.

We should mention that for codimension one hypersurfaces in Euclidean
space, the same type estimate was firstly established by Ecker and
Huisken [6]. There are much study for higher codimensional mean cur-
vature flow, see M.T. Wang [16]. A pseudolocality estimate and general
strong uniqueness theorem for mean curvature flow were obtained in [5].
The above question is an intrinsic version of the result in [5].
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