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ARNOLD DIFFUSION IN HAMILTONIAN SYSTEMS:
A PRIORI UNSTABLE CASE

CHONG-QING CHENG & JUN YAN

Abstract

By using variational method and under generic condition, we
show that Arnold diffusion exists in a priori hyperbolic and time-
periodic Hamiltonian systems with multiple degrees of freedom.

1. Introduction

In this paper we consider a priori hyperbolic and time-periodic Hamil-
tonian system with arbitrary n+ 1 degrees of freedom. The Hamiltonian
has the form

(1.1) H(u,v,t) = hi(p) + ha(z,y) + P(u,v,t)
where u = (¢,x), v = (p,y), (p,q) € RxT, (z,y) € T"xR", P is a time-
1-periodic small perturbation. H € C" (r = 3,4,--- ,00) is assumed to

satisfy the following hypothesis:

H1, hy +hs is a convex function in v, i.e., Hessian matrix 92, (hy+ hs)
is positive definite. It is finite everywhere and has superlinear growth
in v, i.e., (h1 + h2)/||v|| — oo as ||v]| — oc.

H2, it is a priori hyperbolic in the sense that the Hamiltonian flow

¢  determined by ho, has a non-degenerate hyperbolic fixed point
(z,y) = (0,0) and the function hg(z,0) : T" — R attains its strict
maximum at z = 0 mod 27w. We set hy(0,0) = 0.

Here, we do not assume the condition on the hyperbolic fixed point
that its stable manifold coincides with its unstable manifold.

Let B x denote a ball in the function space C"({(u,v,t) € T x
R x T : ||v]| < K} — R), centered at the origin with radius of e. Now
we can state the main result of this paper, it is a higher dimensional
version of the theorem formulated by Arnold in [Arl]| where it was
assumed that n = 1.
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Theorem 1.1. Let A < B be two arbitrarily given numbers and
assume H satisfies the hypotheses H1 and H2. There exist a small
number € > 0, a large number K > 0 and a residual set Sc x C Be i
such that for each P € S i there exist orbits of the Hamiltonian flow
which connect the region with p < A to the region with p > B.

Remark: From the proof we can see the following. For each P € S, i,
there is an orbit which drifts from {p < A} to {p > B} in finite time.
The smooth dependence of solutions of ODE’s on parameters implies
that the theorem holds if perturbation is in a small neighborhood of
that residual set, i.e. the set S x can be open and dense.

The main result of this paper can be extended to more general case:

(1.2) H(u,v,t) = h(z,v) + P(u,v,t)

where u = (¢,z), v = (p,y), (p,q) € Rx T, (z,y) € T" x R", P is
a time-1-periodic small perturbation, H € C" (r = 3,4,--- ,00). We
assume that h satisfies the following three hypothesis:

H1’: h is a convex function in v, i.e. the Hessian matrix 02 h is
positive definite. It is finite everywhere and has super-linear growth in
v, i.e., h/||v|]| — oo as ||v]| — oc.

Under this hypothesis, there exists a function y = f(x,p) such that
the equation g—;‘(az,p, f(x,p)) = 0 holds. Although h is not integrable

in general, the Hamiltonian flow ®!, determined by h, has a family of
invariant circles {¢ € T, p = const.,z = z(p),y = f(z(p),p)} where z(p)
represents the critical point of h(x, p, f(x,p)), as the function of z € T™.

H2’: For each p, if z(p) is a maximum point of h(x,p, f(z,p)), then
it is also the maximum point of the function h(z,p, f(z(p),p)). There is
a locally finite set P = {p;} C R, for each p € R\P there exists a unique
x(p) € T™ such that h(x,p, f(z,p)) attains its global maximum at z(p);
for each p € P, h(z,p, f(x,p)) has exactly two global maximum points
x(p) and 2’ (p). For p € P, we also assume that dph|yp) 7 Ophlypp)-

Under the hypothesis H2’, if h(x, p, f(z,p)) has two maximum points
at z(p) and 2/(p), then we have f(z'(p),p) = f(z(p),p). That follows
from the positive definite condition of h in y and from the condition
that 0yh(x,p, f(x,p)) = 0. So we can define y(p) = f(x(p),p).

H3’: his a priori hyperbolic in the sense that the Hessian of h(x, p,y)
in z at its maximum point, % is negative definite.

Let ¢ = (p,y(p)) € R™!. The hypothesis H2’ is assumed so that
the c-minimal measure has its support on the invariant circle {T x
(z(p),p,y(p))} for each p € R\P, the support is on two circles for each
p € P. The hypothesis H3’ guarantees that these invariant circles are
normally hyperbolic.
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The motivation for us to study such kind of a priori hyperbolic sys-
tems mainly comes from the problem of Arnold diffusion in nearly inte-
grable Hamiltonian systems of KAM type:

H(u,v,t) = h(v) + €P(u,v,t,¢€), ueT", veR" teT.

Let I' be a curve in the action variable space where the frequencies
satisfy at least n — 1 resonant conditions, i.e. there are n — 1 linearly

independent integer vectors (k;,l;) € Z"*1, (i = 1,2,--- ,n — 1), such
that
oh
<%,ki>+li:0, YVvel CcR™
v

For v € T', the n + 1-dimensional torus v = const. admits a foliation
of 2-dimensional invariant tori o for ®. Taking the average over these
tori

—

h (0 8), v, ¢) = / Plu,v,t,¢)do,

we obtain an equivalent system

—

H(u,v,t) = h(v) + €hy((u,t),v,€) + €Py(u,v,t,€);

here (u,t) is clearly an (n — 1)-dimensional variable. If the frequencies
of the flow on these two dimensional tori are not strongly resonant, by
one step of KAM iteration one can set

lePy (u, v, t,€)| = O(e), k> 0.

By introducing a canonical coordinate transformation we can write the
system in the form

H(g,x,p,y,t) = ho(p,y) + €h1(z,p,y,€) + O(' ™),

where ¢ € T, € T" ', p € R and y € R* L. In this case, the
hypotheses H1°~3’ are satisfied if h; satisfies some generic conditions.
To see that, we let h = hy + €hy, let f(x,p) be the function such that
Oyh(z,p, f(z,p)) = 0 and let z(p) be the maximum point of the function
h(z,p, f(x,p)). Since hy is independent of x, for all {z,p, f(z,p) : x €
T?~1} we have

a2 € 0z?

Ph_ Ph 5Pl (9°h\ T 0Py
Oxdy \ Oy? Oyox’

where we use % to denote the derivative of the function h(x,p,y) in z

and use % to denote the derivative of the function h(z,p, f(x,p)) in x.
It follows that x(p) is at least a local maximum point of the function

h(z,p, f(x(p),p)) and the invariant circle {T x (z(p),p, f(x(p),p))} is
normally hyperbolic if h; is non-degenerate at its maximum point and



232 C.-Q. CHENG & J. YAN

if € is sufficiently small. In fact, since the total variation of the function
Var e f(z,p) = O(e), we have

max h(z,p, f (x(p),p)) — h(x(p),p, f (2(p).p)) < O(e).

It follows that x(p) is a maximum point of the function h(x, p, f(z(p),p))
if we perturb the function h(z,p,y) by a small function e2h(x,p). We
may think e2i~1(az, p) as a higher order perturbation. Thus, the invariant
circle {T x (x(p), p, f(z(p),p))} is the support of the c-minimal measure
for the Lagrange action determined by hg + €¢hy if h; has some non-
degenerate property, where ¢ = (p, f(z(p),p)). For the system (1.2) the
theorem 1.1 also holds:

Theorem 1.2. Let A < B be two arbitrarily given numbers and
assume H = h + P satisfies the hypotheses (H1’ ~ 3°). There exist a
small number € > 0, a large number K > 0 and a residual set S x C
Be i such that for each P € S i there exist orbits of the Hamiltonian
flow which connect the region with p < A to the region with p > B.

In his celebrated paper [Arl], Arnold constructed an example of
nearly integrable Hamiltonian system with two and half degrees of free-
dom, in which there are some unstable orbits in the sense that the action
undergoes substantial variation along these orbits. Such orbits are usu-
ally called diffusion orbits. Although this example does not have generic
property, Arnold still asked whether there is such a phenomenon for a
“typical” small perturbation (cf. [Ar2],[Ar3]).

Variational method has its advantage in the study of Arnold dif-
fusion problem, it needs less geometrical structure information of the
system. The pioneer work of Mather in [Mal] and in [Ma2] provides
a variational principle for time-periodically dependent positive definite
Lagrangian systems. In our previous paper [CY], by using the varia-
tional method, we have shown that the diffusion orbits exist in generic
a priori unstable time-periodic Hamiltonian systems with two degrees
of freedom, this result was announced by Xia six years earlier ([Xial).
Using geometrical method, some substantial progresses has been made
in [DLS] as well as in [Tr] that diffusion orbits exist in some types
of a priori unstable and time-periodic Hamiltonian systems with two
degrees of freedom. For a priori stable case, the only announcement
was made by Mather in [Ma3] for systems with two degrees of freedom
in time-periodic case, or with three degrees of freedom in autonomous
case, under so-called cusp residual condition.

In this paper we still use variational arguments to construct diffu-
sion orbits. In order to use variational method, we put the problem of
consideration into Lagrangian formalism. Let M be a closed manifold,
H:T*M x T — R be a smooth Hamiltonian which is positive definite
on each cotangent fiber. Using Legendre transformation .* : H — L
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we obtain the Lagrangian

L(u,u,t) = m;ix{(v,m — H(u,v,t)}.

Here @ = 4(u,v,t) is implicitly determined by @ = %—Ig. We denote by
Z ¢ (u,v,t) — (u,u,t) the coordinate transformation determined by
the Hamiltonian H.

In the Lagrangian formalism, the Hamiltonian equation (1.1) is equiv-
alent to the Lagrange equation

d (0L oL

This equation corresponds to the critical point of the functional

Adly) = / (L — 1) (v, ),

where 1. = (1.(q), 4), n.(q) denotes a closed 1-form (n.(q), dq) evaluated
at ¢, and its de-Rham cohomology [(n.(¢),dq)] = ¢ € H*(M,R). For
convenience and without danger of confusion, we call 7, closed 1-form
also.

To apply the Mather theory directly, we introduce a modified La-
grangian

(14) L = Lo(i)p() + (1 — p(i)) L(u, i, 1),

in which Lg(4) is strictly convex in % and has super-linear growth in
|lall; p(@) = 1 when |ju|| > 2K, p(d) = 0 when ||a]| < K. Clearly,
we can choose some p(i) so that L is convex in @ also. This system
is integrable near infinity, so each solution is defined for all ¢ € R.
We choose sufficiently large K so that the diffusion orbits we search for
remain in the region {||@|| < K} where the Lagrangian L and L generate
the same phase flow. So, we can assume that the Lagrangian L satisfies
the conditions:

POSITIVE DEFINITENESS. For each (u,t) € M x T, the Lagrangian func-
tion is strictly convex in velocity: the Hessian Ly, is positive definite;

SUPER-LINEAR GROWTH. We suppose that L has fiber-wise super-linear
growth: for each (u,t) € M x T, we have L/|4| — oo as ||i| — oo.

CoMPLETENESS. All solutions of the Lagrangian equations are well
defined for all ¢ € R.

Let I = [a,b] be a compact interval of time. A curve v € C(I, M)
is called a c-minimizer or a c-minimal curve if it minimizes the action
among all curves ¢ € C1(I, M) which satisfy the same boundary condi-
tions:

£(a)="(a)
£(b)=(b)

b
) = min [ (L= node(e)
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If J is a non compact interval, the curve v € C'(J, M) is said a c-
minimizer if 7|7 is c-minimal for any compact interval I C J. Let ¢} be
the flow determined by the Lagrangian L, an orbit z(t) of ¢} is called
c-minimizing if the curve wo X is c-minimizing, where the operator  is
the standard projection from tangent bundle to the underling manifold
along the fibers, a point (z,s) € TM X R is c-minimizing if its orbit
¢h (2, 5) is c-minimizing. We use Gr.(c) € TM x R to denote the set of
minimal orbits of L — 7, (the c-minimal orbits of L). We shall drop the
subscript L when it is clear which Lagrangian is under consideration.
It is not necessary to assume the periodicity of L in ¢ for the definition
of G. When it is periodic in ¢, G (¢) C TM x R is a nonempty compact
subset of TM x T, invariant for ¢! .

The definition of action along a C'-curve can be extended to the
action on a probability measure. Let 9 be the set of Borel probability
measures on TM x T, invariant for ¢! . For each v € M, the action
A.(v) is defined as the following:

) = [(L =i

Mather has proved in [Mal] that for each first de Rham cohomology
class c there is an invariant probability measure p which minimizes the
actions over IM
Ac(p) = nf [ (L —ne)dv.
We use M(c) to denote the support of the measure and call it Mather
set. a(c) = —Aq(p) : H'(M,R) — R is called a-function. Its Legendre
transformation §: Hi(M,R) — R is called S-function. Both functions
are convex, finite everywhere and have super-linear growth.
To define Aubry set and Mané set we let

tl
he((m,8), (m',#)) = min / (L — ne)(dy(s), s)ds + (¢ — t)a(e),
yecl(t,t'],M) J¢
y(t)=m,y(t')=m'

F.((m,s),(m',s)) = inf  he((m,t),(m 1))
t=s mod 1
t'=s’ mod 1

tI—t>1

hlg(m7m,) = hc((m7 0)7 (m,7 k))7
hzo(m’m/) = hzo((m’o)’ (m',O)),
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It was showed in [Ma2] that d. is a pseudo-metric on the set {z €
M : h(z,x) = 0}. A curve v € CY(R, M) is called c-semi-static if

Ac(’Y‘[a,b]) + a(c)(b - CL) = Fc(’Y(a% fY(b)a amod 1, bmod 1)
for each [a,b] C R. A curvey € CY(R, M) is called c-static if, in addition
Ac(Vap) + (e)(b = a) = =Fe(v(b),~(a),bmod 1,amod 1)

for each [a,b] C R with b —a > 1. An orbit X(t) = (dy(t),t mod 2m)
is called c-static (semi-static) if v is c-static (semi-static). We call the
Maiié set N(c) the union of global c-semi-static orbits, and call the
Aubry set A(c) the union of c-static orbits. We can also define cor-
responding Aubry sets and Maifié sets for some covering manifold M
respectively. Obviously, the c-static (semi-static) orbits for M is not
necessarily c-static (semi-static) for M.

We use M(c), A(c), N(c) and G(c) to denote the standard projection
of M(c), A(c), N'(c) and G(c) from TM x T to M x T respectively. We
have the following inclusions ([Be2])

M(c) € A(e) € N(c) C G(c).

It was showed in [Ma2] that the inverse of the projection is Lipschitz
when it is restricted to A(c) and M(c).

In the following we use the symbol N,(c) = N(c)|i=s to denote the
time s-section of a Mané set, and so on. We use @y to denote the
time-1-map of ®%;|,—1, and use ¢, to denote the time-1-map of ¢ |;—1
respectively.

This paper is organized as follows. In the section 2 we introduce
so-called pseudo connecting orbit set and establish the upper semi-
continuity of these sets. Such property is used to show the existence
of local minimal orbits connecting some Mané set to another Mané set
nearby. In the section 3, we investigate the topological structure of
the Mané sets and the pseudo connecting orbit sets, they correspond
to those cohomology classes through which the diffusion orbits is con-
structed. The Maifié sets for a finite covering of the manifold M may
have very different structure from those for M. In the section 4, by
making use of the upper semi-continuity of Mané sets, the existence of
local connecting orbits is established if the Mané set has some kind of
topological triviality. The section 5 is devoted to the construction of dif-
fusion orbits if there is a so-called generalized transition chain along the
corresponding path in the first de-Rham cohomology space. To show
the generic condition we establish some Holder continuity of the barrier
functions in the section 6, with which the generic property is proved in
the last section.
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2. Upper semi-continuity

The variational construction of diffusion orbits depends on the upper
semi-continuity of some set functions.

Lemma 2.1. We assume L € C"(TM x R,R) (r > 2) satisfies the
positive definite, superlinear-growth and completeness conditions, where
M is a compact, connected Riemanian manifold. Considered as the
function of t, L is assumed periodic for t € (—o0,0] and fort € [1,00).
Then the map L — G, C TM x R is upper semi-continuous. As an
immediate consequence, the map ¢ — ,C’;(c) s upper semi-continuous if
L is periodic in t.

The proof of this lemma was provided in [Be2] and [CY]. We can
consider ¢ is defined on (T V [0,1] V T)/ ~, where ~ is defined by
identifying {0} € [0,1] with some point on one circle and identifying
{1} € [0,1] with some point on another circle. Let Uy = {((,q,t) :
(0:8) € M X (TV [0,V T)/ ~, [C]l € b}, U2,Uy = TM x R. Let
L; € C"(TM x T,R). We say L; converges to L if for each ¢ > 0 and
each Uy there exists 4o such that ||[L — Li|lcr, r) < € if i > o,

To establish some connection between two Mané sets ' (c) and N (¢'),
we consider a modified Lagrangian

Lypyw=L—-—n—p—1

where 7 is a closed 1-form on M such that [n] = ¢, p is a 1-form de-
pending on ¢ in the way that the restriction of g on {t < 0} is 0, the
restriction on {t > 1} is a closed 1-form i on M with [a] = ¢ —¢. Usu-
ally, this p is called U-step 1-form ([Be2]). ¢ is a function on M x R,
(-, t) =0 for all t € (—00,0] U [1,00). Let m,m’ € M, we define

T

) = in /Tgmﬂmwﬁﬁ+%M®+ﬂM&.
v(=To)=m J_T,

A (Ty)=m’
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Clearly 3 m* € M and some constants C, C9, independent of Ty, 17,
such that
gt (s m') < W (m, ) - (') + Cy
< (Cs.

Thus its limit infimum is bounded

o (m,m') = liminf pIoT (o m!) < Oy

To,T1—00 1,0
Let {Té}z‘ez+ and {17 }iez, be the sequence of positive integers such
that T} — oo (j = 0,1) as ¢ — oo and the following limit exists

. Ti,T?
leglo i (') = B (my ')

Let v;(t,m,m/): [-T3,Tj{] — M be a minimizer connecting m and m’

1 ;

0

BT (g, ) = / Ly s (@), )t + Tia(c) + Tia(c).
It is not difficult to see that for any compact interval [a, b], the set {~;}
is pre-compact in C1([a, b], M).

Lemma 2.2. Let v: R — M be an accumulation point of {~;}. If
s > 1 then

2.1)
T1
ALn,M»w (’7’[87 T]) = rlriean7—1>s/ LT],H,dJ(d’y* (t)a t)dt + (Tl - T)Oé(C/);
Y
¥ (r)=3()
if T <0 then
(2:2) Apy, Ollsr) = int [ Lyldy (0.0 (51~ 9)ae)
T e
F* (r)=7(7)
if s <0 and T > 1 then
T1
@3)  Ap Ol = i / Ly (A (8), 1)t
s$1—S€L, T1—TELJ s
5150, 7121
¥ (51)=1(5)
¥ (r1)=3()

— (51 — s)a(e) + (11 — T)a(d).

Proof. : Let us suppose the contrary, for instance, (2.2) does not
hold. Thus there would exist A >0, s <7<0,8 <7<0,81—s€Z
and a curve v*: [s1,7] — M with v*(s1) = v(s), v*(7) = 7(7) such that

AL (s ) 2 / " Lpo(dy (), )t — (51— $)a(e) + AL

S1
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Let e = %A. By the definition of limit infimum there exist ToiO > (0 and
T7° > 0 such that

(24) hg‘?ﬁ?;};(m()vml) > hr]uq/;(m(]vml) -6 v TO > Téoa Tl > T1iO7

and there exist subsequences T;’“ (j=0,1,k=0,1,2,---) such that for
all k >0

(2.5) Ty —Tp0 > s — s1,

TH", Ty

(2'6) XY

(mo,m1) — b, (mo,ma)| <e.

By taking a subsequence further we can assume ;, — . In this case,
we can choose sufficiently large k such that ~;, (s) and ~;, (1) are so
close to y(s) and +(7) respectively that we can construct a curve ~; :
[s1,7] — M which has the same endpoints as v;.: 7 (s1) = 7i(s),
v (1) = ~i(7) and satisfies the following

(27) Ar,,, (i lls,7]) > / Lyl (6, 0t — (51— $)a(e) + 34,

S1

Let T} = Ty* + (s — s1), if we extend i to R — M such that

Vi (t S1 + S) t < sq,
Vi = 75 (D), 51 <t <,
Vi, (1) t>,
then we obtain from (2.6) and (2.7) that

T’,Tik « . .
howg (mo,ma) < Ag, (i =T, T1*)) — Ti* (') — Toe(c)

ix i i it 3
< A, i |- 1)) — Ti*a(d) — Tykale) — ZA

< hoo (mo,ml) — 2e.

UNIRY

but this contradicts (2.4) since Tj) > T¢° and Tli’“ > T, guaranteed by
(2.5). (2.1) and (2.3) can be proved in the same way.
q.e.d.

With this lemma it is natural to define
Coppw =1{dy €Gr, ¢ (2.1), (2.2) and (2.3) hold }.

Although the elements in this set are not necessarily the orbits of the
Lagrangian flow determined by L, the a-limit set of each element in
this set is contained in N(c), the w-limit set is contained in N(¢).
Due to this reason, we call it pseudo connecting orbit set. Obviously
Cnoo = N(c). For convenience we may drop the subscript ¢ in the
symbol when it is equal to zero, i.e. CNWL = C~7W,0.

1,7
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Lemma 2.3. The map (n, p, ) — CN,W’#, 1S upper semi-continuous.

Cnoo = N([n)). Consequently, the map ¢ — N(c) is upper semi-
continuous too.

Proof. : Let n; — n, p; — p and ¥; — ¥, let v € CN,]Z.MM and
let v be an accumulation point of the set {v; € Cy, ; 4, }icz+- Clearly,
v € Cppuw- Iy & Cpuy there would be two point y(s),y(7) € M such
that one of the following three possible cases takes place. Either v(s)
and (1) € M can be connected by another curve v*: [s + n,7] — M
with smaller action
ALy (v|[s, 7)) < ALn,u,w(’Y*HS +n,7]) — na(c)

in the case 7 < 0; or there would a curve v*: [s,7 4+ n] — M such that

ALy (v|[s, 7)) < ALn,u,w(’Y*H& 7 +n]) — na(cd)
in the case s > 1, or when s < 0 and 7 > 1 there would be a curve v*:
[s +n1, T + ng] — M such that
Ap, (s, 7)) < Ap,,  (¥7I[s + 11, 7+ n2]) — niale) — naa(c)
where s +n1 < 0, 7 +ne > 1. Since  is an accumulation point of
%i, for any small € > 0, there would be sufficiently large ¢ such that
|7 = villers,g <€ it follows that v; & Cy, 4, 4, but that is absurd.

Let us consider the case that y =0 and ¢ = 0. In this case, L —n is
periodic in ¢. If some orbit v € Cp0,0: R — M is not semi-static, then
there exist s <7 € R, n € Z, A > 0 and a curve v*: [s,7+n|] > M
such that v*(s) = v(s), v*(7 +n) = () and

ALy ooV, 7]) 2 AL, 00 (Y7]ls, 7 4 1)) — nafc) + A.
We can extend +* to [s1,71 + n] — M such that s; < min{s,0},
min{7, 7 +n} > 1, 71 > 7 and
W(t)7 s1 <t < S,
=971, s <t <7+,
y(t—n), TH+n<t<T+n.
Since L — 7 is periodic in ¢, we would have
ALy 000[s1,71]) 2 AL, 00 (T79[s1, 71 + 1)) — na(e) + A.
but this contradicts to (2.3). q.e.d.

3. Structure of some N(c) and C,, .y

It is natural to study the topological structure of the Mané sets if we
want to construct the connecting orbits between them.

Let L be the Lagrangian obtained from H in (1.2) by the Legendre
transformation, it has the form as follows:

(3.1) L(u,a,t) = 0(¢,x, &) + Ly (u,,t),
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here ¢ = £*(h), Ly is a small perturbation. The perturbation term of
the Lagrangian L; and the perturbation term of the Hamiltonian P is
related by an operator A.Z* induced by the Legendre transformation
Ly =AZ*(P)=2L*(h+ P)—£*(h). We also denote by B, k the ball
in C"({(u,1,t) € TF x RF? x T : |lu|| < K} — R), centered at the
origin with radius of €. Obviously, there exist ¢ > 0 and large K’ > 0
such that
AL (Be i) C Bye -

Let ¢ = (¢, ¢;) denote a cohomology class in H'(T**" R) where ¢, € R*
and ¢, € R, let p(p) = (pg(1), pz (1)) denote the rotation vector of the
minimal measure y. Let
gc(q.a z, ‘T) = €(q, z, ‘T) - <q7 Cq> - <x7 Cx>.

When ¢ = (p,y(p)), the function /. attains its global minimum at some
circle { %, (z(p),q,p,y(p)) : ¢ € T} which is clearly invariant to the
flow ¢,. Here we use %, : (u,v) — (u,%) to denote the Legendre
transformation determined by h. By the hypothesis H2’ we find that
there is only one action minimizing circle when p ¢ P and there are
two action minimizing circles, i.e. {%,(x(p),q,p,y(p)) : ¢ € T} and
{%(2'(p),q,p,y(p)) : ¢ € T}. Obviously, there exists an n-dimensional
convex disk D(cy) C R™ such that ¢, = y(cq) is in its interior and for
each ¢ € {c;} X D(cq) the support of the c-minimal measure of ¢ is on
these invariant circles.

To obtain the result of this paper we choose k& = 1, but the demon-
stration in the following sections 3, 4 and 5 applies for arbitrary k.
Recall & is the dimension of rotator.

Lemma 3.1. Given large number K > 0 and a small number § > 0.
There exists a small number € = €(0) > 0, if ¢q € {maxi<;<i |cg,| < K}
and if P € Be i, then there exists an n-dimensional convex disk D(cq)
which contains the set {c = (cq, cz) : ¢g = 3, [[ca—y(ch)|| < Cq} (Cq > 0)
such that

1, for each ¢ € {||cz — y(cq)|| < Cy}, if ¢ is not close to P the Mané
set N(c) C {l|lz — z(cy)|| < 8}; if ¢ is close to some point p; € P,
then the Aubry set A(c) C {||z — x(cy)|| < 0} U{||lz — 2/(cy)|| < &}. If
Ale) N {llz — z(cy)ll_< 6} # @ and A(c) N {llz — 2'(c))|| < 0} # 2,
then the Mané set N(c) contains some orbit dy: R — TM such that
a(dy) C {llz = z(cy)l] < 6} and w(dy) C {llz —2'(cy)|| < 0}, it also
contain some orbit dy': R — TM such that a(dy') C {||lz—2'(cq)| < 8}
and w(dy') C {[lz — z(cy)|| < 6}

2, for each ¢ € int(D(cy)), if ¢q is not close to P, the Mather set
M(c) C {|lz — z(cy)|| < 8}, if ¢q is close to some point p; € P, then the
Mather set M(c) C {||z — z(cy)|| < 6} U {||x — 2/(cy)|| < 6}; for each
¢ € {cy = constant }\D(¢,) and each c-minimal measure p, py(p) # 0;
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3, if for each c € int(D(cy)), the c-minimal measure is uniquely er-
godic then N (c) C {||lx — z(cq)|| < 8} for each c € int(D(cy,)).

)
The interior of D(¢,) is in the sense that we think D(c,) as a set in
R™. We denote the rotation vector of u by p(u) = (pg(), pu(pt))-

Proof. : Let ¢* = (cq,y(cq)) and let us consider the case that ¢, is
not close to P first. The c* minimal measure of ¢ has its support at
the invariant circle I'c, = {¢ = we,, & = 0,2 = x(cy)}. Let ay be the
a-function of ¢, then

ap(c) = —Llex

By the hypothesis (H3”) and the convex property of £ in 4, there exists
Eq > 0 such that

(u,u)€T >

Lo (dy (1)) + ag(c?) > Byd?
if v(t) ¢ {llz — z(cq)|| < d}. To each absolutely continuous curve v =
(Vs Yz) * [to, 1] — Tk x T™ we associate a number

Ve ljto,0]]l = ZW% (t1) — 3z (to)|

where 7, denotes the lift of ~, to the universal covering R™. If y(t) ¢
{llz — z(cq)|| < A6} for all t € (to,t1) and if there is some t* € (o, 1)
such that (t*) ¢ {|lz — xz(cq)|| < 0} then there exists Ep > 0 further
such that
(3.2)
t1
/t (L (dy(1)) + au(c*))dt > ExN2 82 (81 — to) + Ea(8” + | [Yalr—0.]1):
0
Here, we have made use of the super-linear growth in u also. Let £ :
[to,t1] — T*+™ (t; —ty > 1) be a minimal curve of £ joining two points in
{llx — z(cq)|| < A6}. Note that any vector w € R™ can be approximated
by some rational vector J2t, (m € Z", mg € Z) such that [lw— 2| < n}bg

we can choose properly large t; — tg such that

(3.3) /t (0 () + cp(c*))dt < B (3252 +

0

11 —t())‘

Let ¢,z : [0,1] — T**+" be the c-minimal curves of £ and L respectively.
Clearly, there exist £4 > 0 and © > 0 such that

/tl (@c(d@(t)) + Oég(c))dt § E4,

to

/t Loy (t) + ap (@)t < By,

|Cex(1) = G (0)| < O,
|5Lm(1) - ELw(0)| < 0.
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If there is a c-minimal curve v: R — T*™ of L such that (t) ¢
{llx — z(cq)|| < A6} for all ¢ € [tg, 1] and there is some t* € (tg,t1) such
that v(t*) ¢ {||lz —2(c,)| < 6}, then we construct a curve £*: R — TF+n
such that

v(t) t<ty—1,
&o(t) to—1 <t <ty,

£ (t) = ¢ £(t) to <t <ty,
€1(t) t<t<ti+1,
~(t) t>t +1,

where £ is a c-minimal curve of ¢ connecting (g — 1) with some point
mo € {llz — x(cq)|| = A0}, & is a c-minimal curve of ¢ connecting
my € {|lz — z(cqg)|| = A0} with y(¢; + 1), £ is a ¢*-minimal curve of £
connecting mg with mq. We compare the c-action of L along the curve
v with its c-action along &*,

/tt1+1 (Lc(dv(t),t) _ Lc(dﬁ*(t),t)>dt

o—1

t1
2/ (Lo (drelt)) — Lo (dE7 (1)) )
to
— 27 C | [Val [t 1) ]| — 20€(t1 — to) — 4Fy — 40
1 By
> —(EiN\2(t; — Fy)6°% — — 4By —4
_2<1>\(1 to) + 2)5 r— 4 — 46 >0,
if we set
E2 E2 El)\2(52
. <4/ — < —= <
(34) A\ oy 1=9r =Ty 0

and let t1 —tg be sufficiently large. This contradiction verifies our claim.
Therefore, each c-minimal orbit dy must enter the region {|lz—x(c,)| <
Ad} for infinitely many times if (3.4) is satisfied.

Now we assume v = (74,7z) : R — Tk x T" is a c-semi static curve for
L such that (o), y(t1) € {l|lz—=z(cq)|| = Ad}, y(t) & {llz—z(cq)ll < Ad}
for all t € [to,t1], v(t*) ¢ {llx — z(cy)|| < 6} for some t* € (tp,t1). In
this case, we construct a curve & R — T*" such that

v(t) t < to,
() = € &(t) to<t<t;+T,
~(t) t>t,+T

where ¢ is the ¢*-minimal curve of £: [tg,t; + 1] — TF+" joining ~(to)
with ~(t1). T is carefully chosen so that (3.3) holds. Clearly, T is
uniformly bounded for any ~(to),v(t1) € TF*". Note we have |ar(c) —
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ag(c)| < ge and [ag(c) — ayg(c")| < Eslc — | if [ef, || < K,

/ " (udr@),) + ane))dt - /

0 to

t1+T

(Le(ds (). 1) +as(e) )t

> B8t — to) + Ea(6” + | Vel o, ]) — 27Cq et
— E3(N20% + ——— ) — 20€|ty — to| — 0eT
(4 ) -
— lar(c) = ay(c)|T
1 FEs
> (BN (t —t E52>—7—2 T - EBEsC,T—T
> 2(1 (t1 —to) + E» Te o 2 5Cq €
1
> ZE1A252(151 —tg) > 0,
if € is suitably small so that (3.4) as well as the following holds
2 2 28201 _
1 §E25, 6§E25, qg)\é(tl to)‘
T+t —1 4F;5 8oT 4B5T

But this contradicts again the fact that « is ¢c-semi static.

Let us consider the case when ¢, is close to P. In this case, if ||c; —
y(cq)l] < Cy, the c-minimal measure may have some support in {||z —
z(cq)|| < 0}, and have other support in {||z—2'(¢c,)|| < 0} also. It is easy
to see that the Aubry set A(c) C {||z—z(cy)|| < yU{|lz—2'(c,)|| < 6}
If the Aubry set is in a neighborhood of one sub-torus x = const., then
the Mafié set is also in this neighborhood. If both {|lz—z(¢c,)|| < 6} and
{llz — 2'(cq)|| < 0} contains the support of the minimal measure, let us
take & € Mo(c) N {[lx—x(cq)|| < 6}, take ¢ € Mo(c) N {[lz—a"(co)[| < 6}
and calculate the quantity h2°(£,¢). There must be some point m ¢
{llz — z(co) |l < 0} U{[lx — 2'(cy)|| < 6} such that

he(€,¢) = heo (§,m) + b (m, C).

Similarly, there exists m’ ¢ {||z — z(cy)|| < 0} U{||x —2'(cq)|| <} such
that

he?(€,8) = he(Cm/) + he (m', €).
Recall the definition of the barrier function B}:
B (m) = min {he°(§,m) + he(m, ¢) — h*(€,€) = €,¢ € Mo(e)}

we see that the Mané set contains some orbits connecting {||z—z(cq)|| <
8} to {||lz — 2'(¢cq)|| < 6} or vice versa. This proves the first part of the
lemma.

To continue the proof, we define

D(cy) = {c € Hl(’]I'k x T",R) : ¢g = constant,

J e-minimal measure p such that p,(u) = 0}.
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Obviously, it is an n-dimensional convex disk and contains the set {¢, =
constant, |[c; —y(cq)|| < Cy}. In fact, if 4 is a c-minimal measure for
some ¢ € int(D(cy)) then it is also a (¢4, y(cq))-minimal measure. To see
it, let us note a fact:

Proposition 3.1. Let ¢, c* € H'(M,R), i’ and p* be the correspond-
ing minimal measures respectively. If (¢ —c*, p(p')) = (¢ —c*, p(pu*)) =
0, then a(d) = a(c).

Proof. : By the definition of the a-function we find that
~a(e) = [ (L~ no)a

B /(L =1 )dp' + (" =, p('))
> — afch).
In the same way, we have —a(c*) > —a(d). q.e.d.

It follows from this proposition that «(c) = constant for all ¢ € D(¢y).
For each ¢ € int(D(c,)) if there was a c-minimal measure £ such that
pz(p1) # 0, then 3¢ = (¢q,¢,) € int(D(cy)) such that (c; —c, pp (1)) <
0. Thus

—a(c’) = Ae(11)
= Au(p1) + (ex — &y, p(1))
> —a(d).

On the other hand, from the definition of D(¢,) and from the Proposi-
tion 3.1 we obtain that a(d’) = a(c*). The contradiction implies that
pz(p) = 0 for each c-minimal measure when ¢ € int(D(c,)). Conse-
quently, for each c-minimal measure p

/(L —ne)dp = /(L = Neg ) A,

here, e = (1, , 7e, ) is a closed 1-form with [.] = (cq, ¢z) € H(T*, R).
Therefore, supp(p) C {||lx—x(cq)|| < 0} if ¢4 is not close to P, supp(p) C
{l|lx — z(cq)|| < 6} U{|lz — 2'(cq)|] < 0} if ¢4 is close to P. This proves
the second part of the lemma.

Finally, let us consider the case that the c-minimal measure p, is
always uniquely ergodic for each ¢ € int(D(c;)). Obviously, there exists
an invariant measure p such that u = p. for all ¢ € int(D(c,)). Note
N(c) = A(c) in this case. We claim that for each dy € N(c) and each
£ € My(c), if kijj — oo (i =1,2) as j — oo are the two sequences such
that dy(—ki;), dy(ke;) — 7 (&), then

koj

(3.5) lim A ()dt =0, ¥V 1<i<n.
J=00 ) _ky;
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In fact, for any £ € My(c) there exist two sequences k;; — 0o as j — 0o
(i = 1,2) such that dy(—ky;) — 7 1(€) and dy(kg;) — 7 1(&) as j —
00. Since 7 is c-static, it follows that

B (1(=ha), 7(0)) + he® (4(0),1(kay)) = 0.

If (3.5) does not hold, by choosing a subsequence again (we use the same
symbol) there would be some 1 < ¢ < n such that

> 27 > 0.

k‘gj
lim / A, (E)dt

Jj—00 _klj

Under this assumption, let us consider the barrier function B}, where
all other components of ¢ € R¥*™ are the same as those of ¢ except for
the component for ;. Since ¢ — ¢ = (0,---,0,¢4, — ¢.,0,---,0), we
obtain from the Proposition 3.1 that a(cd') = a(c), so

kaj
Bu(7(0) < liminf / (L(dy (1), £) — (¢, 4(8)) + a(c)) dt

J=00 J_ky,
k)zj
< timinf [ (L{dy(t),1) — (e 4(0) + a(e)) dt
J—00 _klj
k)zj
+ (Cwi - Cinl) hm ’7% (t)dt
J=00 J _ky;

< - 2|Cmi - C;ci|7r <0

as we can choose ¢z, > ¢}, or ¢z, < ¢, accordingly. But this is absurd
since barrier function is non-negative.

Let us derive from (3.5) that each c-semi-static orbit d~ is contained
in {||z — 2(c,)|| < d}. In fact, we find that dy € N'((cq,y(cq))). To see
that, we find from (3.5) that the term (c;, ;) has no contribution to
the action along the curve 7|[—k1j,k2j]3

k2 kaj
(3.6) / (L = (eqsTq) — (Czy Vo)) dt — (L = {cq,¥q))dt,

_klj —klj
as j — oo. Ifdy ¢ N((cg,y(cy))), there would exist j' € Z+, k' € Z, E >
0 and a curve (: [—Fkij, koj + k'] — M such that ((—Fki;7) = v(—kij),
C(kajr + k) = v(kay0)

ko
(3.7) / (L(dy(t),t) = {cq,7q) — (W(cq), Ya) + (c))dt

—ky

k2j1+k’ . .
= /—k . (L(dC(t),t) — (cq, Cq) — (y(cq), Ce) + (c))dt + E
> Flogy(eg))(V(=k1jr), v (koj)) + E
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and

k231+k .
(3.9) /
Ky
(3.8) follows from the facts that N'((cq,y(c,))) C {||x —x(cy)|| < 6} and
Y(=kij) — & € Mo((cq,y(cq))) = Mo(c). Let j— 3’ be sufficiently large,
we construct a curve ¢': [—kij, koj + k'] — M such that
Y(t), t € [—kij, —kijl;
¢'(t) =S <), t € [=kijr, ko + K'];
(
)

t| — 0, V1<i<n.

(& — k‘/), t e [k’gj/ + K, k?gj + k‘/]
It follows from (3.5-3.8) that

koj+k .
/ (L(AC' (), 8) — (e, &)t

_klj

kgj
< / (L (t) — {egnAa) — (W(ca)sAn))dt — E

—ky;

ka;
< [ (W)~ e - 5,

—k1;
but this contradicts to the property that dy € N (c). q.e.d.

Remark: The first part of the lemma can be proved by using the
upper-semi continuity of Mané set on Lagrangian functions. But the
dependence on € is not so clear as here (cf (3.4)) if we prove it in that
way.

From the proof of the first part of the Lemma 3.1 we can see

Lemma 3.2. Let ¢ € {[lc; — y(cg)|| < Cq} and b —a > 1. For
small number d > 0 there exits € > 0 and 6 > 0, such that if ||P| < €
and if v: [a,b] — TF" is a c-minimizer connecting points y(a),y(b) €
{llz = z(cg)|| < 0}, then ||vz(t) — x(cq)|| < d for allt € [a,b].

The structure of Mané set and pseudo connecting orbit set depends
on what configuration manifold we choose for our consideration. In the
following, when necessary, we use N'(c, M), C, .,(M) to specify the
manifold on which these sets are defined. We shall omit M in that
symbol when it is clearly defined. We do not intend to consider the
most general case. Instead, let us consider some special case which is
sufficient for the purpose of this paper. B

According to the Lemma 3.1, the Mané set N(c) is contained in
Ns == {]|lx — z(cq)|| < 6} for the cohomology class ¢ = (cq,y(cq)) if ¢4
is not close to P. To each curve v: (a,b) — M such that vy(a) € Nj
and ~y(b) € Ns we can associate an element [y] = ([7]1, V]2, -, [V]n) €
H{(M, Ns,Z). Here, a is a finite number or —oo, b is a finite number or
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oo. From the proof in [Bel] we can see that there exists a homoclinic
orbit dvy such that the first component of its relative homology is not
zero: [v]; # 0. The term “homoclinic” here means that both the a-limit
set and the w-limit set of the orbit are contained in the same Mané set:
aldy) € N(c), w(dy) € N(c). These homoclinic orbits are not in the
Maiié set N'(c) if ¢ € {|lc; — y(cy)|| < Cy}, but some of them are in the
Maiié set A(c, M) for a finite covering space M.

Let M = T* x (2T) x T"~! be the covering space of M = T*F+" et
71 be the covering map M — M:

m1(q1, 5 Qs T1, 0 5 Tn) = (1, 5 Gk [T1], T2, )
where [z1] =z if 1 <27, [11] = 21 — 27 if 270 < zq < A7,
Lemma 3.3. Let ¢ = (cg,ylcy)), M = TF x (2T) x T""L. If dy:
R — TM is a homoclinic orbit to the set N'(¢) C Ns with the property

T
lim inf { / (L = ne)(dy(t), )t + (Tp + Tl)a(c)}

Tp—o0 _
T —o0 To

T
= liminf min { / (L —ne)(d&(t), t)dt + (To + Tl)a(c)},

Top—oo g(—Ty)ENS —T
Ty—o0  ¢(Tp)ENg
[€]17#0

then {dv(t),t} C mN(c, M).

Here we also use m: TM — TM to denote the standard projection,
1 (’LL, ’LL) = (7T1’LL, ’LL)

Proof. : If we think M as the configuration manifold, Ns has two
lifts denoted by Nj and N;. In this case, the minimal measure has at
least two ergodic components, the support of one component is in N,
another one is in Nj. The lift of the homoclinic orbit founded in [Bel]
is just an orbit joining the lift of the support of the minimal measure in
Ny with another lift in Nj. Recall the definition of the barrier function
introduced by Mather in [Ma2)]

B (m) = min{hc®(§,m) + he* (m, ) — he(€,¢) 1V €,¢ € Mo(0)},

we obtain the result immediately. q.e.d.

Mané announced in [Mel] that all c-static classes should be topo-
logically transitive, it has been partially proved in [CP]. Mané’s an-
nouncement is true when there are finitely many Aubry classes, which
is proved a generic property for all cohomology classes in [BC].
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We can also define the Maiié set N (¢, M) from another point of view.
Let ¢ = (¢q,y(cq)), mo € Ns, my € Nj, we define

k
BE. (movmi) = inf / (L — no)(dr(t), t)dt + ka(c),
0

7(0)=mq
vy(k)=mq
(71170

ko
h'g}e’f? (mo,&,mp) = inf / (L — ne)(dy(t), t)dt + (k1 + ka)a(e),

v(=ky)=mq J —k;
~7(0)=¢

v(kg)=m1
[v]1#0

hZ%, (mo,my) = lim inf hE . (€,0),
hz}el (mo, &, ml) = hkm inf h]cile’lkz (mo, &, ml),
kéﬂoo
By, (&) = inf{hc, (mo, &, m1) — hoy, (mo,m1) @ mo,m1 € Mo(c)}-

Recall we have introduced a modified Lagrangian Ly, , = L —n —
w—1. Let Ty € Zy, Ty € Z4, we define

T
To,T . /
BT (mo,mi) = inf / Ly (dy(8),1) + Toae) + Tral(),
§(=Tg)=mg J —Ty
&(T1)=mq
[€]1#0

Ty
hg?llelf,el (m07 §, ml) = inf / Ln,u,df (d’Y(t% t) + T()Oé(C) + Tla(c,)7

e} s . TO7T1
hsper (Mo 1) = W inf fy By o (mo, ma),

Ty —o0
he (mo, &, my) = liminf K20 (mg, &, my)
nuu,,zp,el (P 1) — T)— o0 n’u’d},el 0,9 1)-
Ty — o0

Clearly, we have
Lemma 3.4. Assume L has the form of (3.1), ¢ = (¢cq,y(cq)), then
WlNQ(C,M) ={B: :O}U{B: =0},

771/\/0(67 M)\NO(Cv M) 7£ 9.

For C,,,.»(M), we have the similar result:

/

Lemma 3.5. Let ¢ = (cq,y(cq)), ¢ = (cjyy(cy)), ] = c and p is a
U-step 1-form with [a] = ¢ —c. If N(¢) C Ns, ||[¢]|co is suitably small
and supp(v)) N Ny = &, then

7T1C777M7¢(M)\C777M71/1(M) #* 2.
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Proof. : For mg, my € Ns, positive integers Té, Ti € Zy, let v;(t, mo,
mi,e1): =15, T{] — M be a minimal curve joining mg and m; such
that [v;]1 # 0 and

o T
Tl,Tl 1 . .
P rer (05 111) = /—Ti Ly (di(t), t)dt + Toa(e) + Tia(c).

0

Let {T{}iez, and {T{}icz, be the sequence of positive integers such
that T; — 00 (7 =0,1) as i — oo and the following limit exists
T}

ey (moymn) = Tminf h0id o (mo,my) = hs, 0, (mo,mu).

lim 78
im ’
; TQ,T1—>OO 777H7¢761

i—oo hH
Let 4; be the lift of 4; in the covering space M, it is a M-minimal curve.
Clearly, the set of accumulation points of the set {~;} contains a curve
v: R — M with [y]; # 0.

On the other hand, if ||¢)||co is suitably small and mg, m; € Ns, the
hyperbolic structure of ¢5 guarantees that

hogas (M0, M) < By o, (Mo, ma).
In other words, these M-minimal curves {;} are not M-minimal curve.
Consequently, v is not a M-minimal curve. This completes the proof.
q.e.d.

Lemma 3.6. Assume that Ao(c) C ({||z—=zo|| < }U{||lx—z1] < I}),
Mo(e)n{|lz—zo|| < 0} # @ and Mo(c)N{||lx—z1|| < 0} # @ (zo # =1).

Then, for suitably small § we have
No(\({llz = zoll < 0} U{llz — 21]| < 0}) # @.

Proof. : Let mg € Mo N {||lx —zo| <}, m1 € MoN{||lz —z1]] <}
and consider the function h*(mg, my). q.e.d.

4. Existence of local connecting orbits

To begin with, let us consider the construction of diffusion orbits in
Arnold’s example from the variational point of view. There, each Mané
set under consideration properly contains the corresponding Mather set
if we study the problem in a covering manifold M = 2T x T™. Under the
small perturbation the stable manifold of each invariant circle transver-
sally intersects the unstable manifold of the same invariant circle. It
implies that the set m1Ny(c, M)\(Mo(c, M) + §) is non-empty but its
first homology is trivial for each ¢ under consideration, here we use A+4§
to denote the d-neighborhood of A. The main goal of this section is to
show that if the Mané set Ny(c) has some kind of topological triviality,
then for all ¢ sufficiently close to ¢, N can be connected with N, by
some local minimal orbits.
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Definition 4.1. Let ¢ = (cq,y(cq)), ¢ = (cj,y(cy)), Ns = {llz —
z(cy)|| < 6}. We assume that N'(c) C int(N;) and N(¢/) C int(Nj).
Let v: R — M be an absolutely continuous curve such that v(t) € Ns
when |t| > T, and such that [y]; # 0 where [y] = ([v]1,--,[7]n) €
H{(M,Ns,Z). We say dry is a local minimal orbit of L of the first type
that connects N'(c) to N'(¢) if

1, dvy(t) is the solution of the Euler-Lagrange equation (1.3), the a-
and w-limit sets of dy are in N(c) and N(¢/) respectively;

2, There exist a closed 1-form n with [n] = ¢, a U-step 1-form p with
(] = ¢ — ¢ and a bump function 1 such that dy(t) € C, ,,.,(t) is a local
minimal curve of the Lagrangian L, , ., in the following sense: there

exist two open balls Vp, Vi and two positive integers Tp,T; such that
Vo C Ns\Mo(c), Vi C Ns\Mo(c), v(=Tp) € Vo, 7(T1) € V1 and

(42)  min {RST (o, ma) + he®(€,mo) + hF(m1, )

§ € Mo(e) N (a(dy)li=o), ¢ € Mo(¢) N m(w(d)lizo) }

T/
—liminf, /TI, Ly, (dy(t), 6)dt — Tya(c) — Tia(d) >0

T] —o0 0
holds for any (mg,my) € 9(Vy x V7).

Since m(w(dy)) C N () € Ns and w(a(dy)) € N(c) C Ny, [Y|1y <t<oo)
and [Y|_co<ct<—m] are well defined. Indeed, recall the Lemma 3.2, we
can see |7 <t<oo) = 0 and [y|_oo<t<—7,] = 0. That is why we can use
h° (&, mo) and hY (my, ¢) in this definition. We do not intend to discuss
local minimal curves in the most general case, the above definition is
introduced for the special purpose of this paper.

Obviously, (4.1) is equivalent to that

(4.2) BT (o, my) + B (€, mo) + h3P (m1, )

T
- / Ly, (dy(t), £)dt — Tya(c) — Tia(c)

—Ty
— h(§,7(=T0)) — hZ (v(T1),¢) >0
for each & € Mo(c) N7(a(dy)|i=o) and each ¢ € Mo(c) N7 (w(dy)|t=0)-

Lemma 4.1. If No(c, M) C N5 and w1.Ao(c, M)\Ns is totally discon-
nected, then there exist e > 0, a U-step form u, a bump function ¥, a
small number ty and an open disk O such that if [u] = ¢, || —¢|| < €1,
then

(4.3) & # {m1Chuis WD\ (M)} €O

0<t<tp

and each dy(t) € Cp 1y (M)\Cppup(M)]y determines a minimal orbit of
L of first type which connecting N with N .
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Proof. - Since mNy(c, M)\ Ny is totally disconnected, there exist an
open, connected set O which can shrink to one point by continuous
deformation, and a small positive number ¢tg > 0 such that

on 7T1./\/(c, M)’ogtgto\Né # 9,
ONNs =0, 80(77T1./\/(C,M)’0§t§t0 =a.

Clearly, we can find a small §; > 0 and define a non-negative function
f € C"(M,R) such that

=0 (¢,7) € NsU <7TIN(67 M)|o<t<to \(O + 51)),
fle,x)§=1 (q,z) € O,
<1 elsewhere.

We choose a C"-function p : R — [0, 1] such that p=0ont € (—o0,0]U
[to,0), 0 < p<1lonte(0ty). Let A >0 be a positive number,

U(g, z,t) = Ap(t) f (g, @),
By the upper semi-continuity of the set function (n, u,9) — Cn,u,w(M )
we see that Cy 0.4(M)|o<i<t, 100 = @ if X > 0 is suitably small. By
the choice of v, we have C;,0(M) = N (¢, M). Consequently, by using
the similar argument to prove the Lemma 3.5 we find

%) 75 {7T1€,770’¢(M)\CT77O7Q(M)}0 c O.

<t<to

Since O is homotopically trivial, for any cohomology class ¢, there exists
a closed 1-form fi such that [i] = ¢ — ¢ and supp(p) N O = &. Let
p1 € C"(R,[0,1]) such that p; = 0 on (—00,0], 0 < p; < 1 on (0,ty) and
p1 = 1on [tg,0), let u = p1(t)i and set
Lypy=L—n—pn—1.

By using the upper semi-continuity and the similar argument to prove
the Lemma 3.5 again we obtain (4.3) if ||g|| is suitably small. Let dvy €
7T16~777M71/1(M)\C~777M71/1(M)‘ Note that f = 1 in O, supp(p) N O = &,
dy: TM — R is obviously a solution of the Euler-Lagrange equation,
a(dy) € N(c) and w(dy) C N(c).

Since we have assumed that 7;Co(c, M)\Nj is totally disconnected
in O, by the upper semi-continuity, there obviously are two open and
connected sets Vy and Vi such that Vo C Ns\Mo(c), Vi C Ns\My(c)
and (4.1) holds. q.e.d.

Let us compare 71Cy, 0.(M)\Cy.0. (M) with TN (e, M)\N (¢, M). If
~4(t) is a minimal curve in N (¢, M)\N (¢, M), then its time k trans-
lation (¢t 4+ k) is also a minimal curve for each k € Z. By the choice
of the open set O and the function 1, we see that each orbit dvy in
TN (¢, M)\N (¢, M) might be an orbit of the Euler-Lagrange equation
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determined by L — % still, but only those curves remain to be minimal
if they pass through O when t € [0, ¢g].

We now consider some c-minimal measure which has more than one
ergodic components.

Lemma 4.2. Let T' : [—¢,6] — HY(M,R) be a continuous curve.
We assume that for each —e < s < 0, No(I'(s)) C {||Jx — zo| < 6},
for each 0 < s < e, No(T'(s)) C {|lz — z1]] < 8} while Ayp(T'(0)) C
({llz = zoll < 0} U{llz — 2]l < d}), Mo(I'(0)) N{llz — ol <} # @
and My(T(0))N{||lx —z1|| < 6} # @. We also assume No(T'(0))\({||x—
xol| < 0} U{||x — z1|| < &}) is totally disconnected. Then, there exists
0 <& <eg, for each sg € (—€’,0) and each s; € (0,€"), there are two
closed 1-forms vy, v1 with [vg] = T'(0) — T'(so), [v1] = T'(s1) — T'(0), a
U-step 1-form p with [a] = T'(s1) — ['(sg) and a bump function ¢ such
that each orbits dvy(t) € én_,,mwz,(t) is an orbit of the Lagrange flow
determined by L and

(4.4) @ # Cop—vo s (M)o<i<t, € O.

Proof. : According to the Lemma 3.6, No(T'(0))\({|lz — zo|| < 6} U
{l|lx — x1]] < 0} is non-empty. In this case we do not need to lift M to
its finite covering. Since No(T'(0))\({||lz — zo|| < §} U {||]z — =1]| < &}
is totally disconnected, there is a shrinkable open set O and a small
positive number tg > 0 such that

O NN(T(0)|o<e<to \({llz — wol| < 6} U{llz — z1]| < 6} # &,
90 N N(T(0))lo<t<t, = 9,
ON{llz —zo|l <0} U{llz — 21| < 9}) = 2.

Remaining argument for the proof is similar to the proof of the Lemma
4.1. q.e.d.

The orbits in C~n_,,07u7¢ has some local minimal property as the orbits
of the first type have. For each dvy € C,_,, 4, there exist two open

balls Vp and V4 such that Vo C {||x — x| < 0}, Vi C {||lz — 21| < 6},
v(=Tb) € Vo, v(T1) € V1 and

(4.5) oot (moyma) + Bty (§,mo) + hiY, y (m1, ¢)

T
- / Ly s (dr(8), 0t — Tha(e) — Tla(d) > 0
—40
holds for each (mg,m1) € 9(Vp x V1), each & € Mo(c) N w(a(dy)|i=o)
and each ¢ € Mo(c') N m(w(dy)|i=0). In this case, we call the element
of Cy—yy,u,y local minimal orbits of the second type.
We consider another type of local minimal orbits which connects N (c)

with N(¢).
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Lemma 4.3. If there is an open neighborhood V' of Ny(c) such that
H{(V,R) =0, then there exists small e > 0, for each ¢ with || —¢|| < e
there exist a closed 1-form n and a U-step 1-form p such that [n] = c,
i = c — c and each orbit in CN,W 18 an orbit of the Lagrange flow of L.

We call dv in such CN,L u local minimal orbit of the third type. Another
version of the Lemma 4.3 was formulated by Mather in [Ma2].

Proof. : Since V is topologically trivial, for any ¢ € H'(M,R) there
exists a closed 1-form p such that suppu NV = @. We take the U-step
1-form in the way such that ;4 = 0 when ¢t < 0 and u = g when t > tg
where tp > 0 is suitably small. By the upper-semi continuity of the
map (1, u) — Cp pu, we find that dy(t) (0 <t <tp)isin Vifdy e,y
and if ||¢ — ¢|| is sufficiently small. Therefore, dv is a solution of the
Euler-Lagrangian equation determined by L. q.e.d.

5. Comnstruction of global connecting orbits

_The goal of this section is to construct some orbits which connect
N(e) with NV (¢) if ¢ and ¢ are connected by a generalized transition
chain in H'(T* x T, R).

Definition 5.1. Let M be a finite covering of a compact manifold
M and let ¢, ¢ be two cohomolgy classes in H'(M,R). We say that c is
joined with ¢ by a generalized transition chain if there is a continuous
curve I': [0,1] — H'(M,R) such that I'(0) = ¢, I'(1) = ¢ and for each
7 € [0, 1] at least one of the following cases takes place:

(I), there is small §, > 0 such that 73 No(T'(7), M)\ (Ao (L' (1), M)+5,)
is non-empty and totally disconnected;

(IT), No(T'(7), M) is homologically trivial, i.e. it has a neighborhood
U such that the inclusion map H;(U;,R) — H;i(M,R) is the zero map.

In this paper, we do not intend to establish a theorem of the existence
of connecting orbits between two cohomology classes in the most general
case when they are joined by a generalized transition chain. Instead, we
restrict ourselves to a special case:

Theorem 5.1. Let M = Tk x T, M = Tk x 2T x T" !, the La-
grangian L be given by (3.1). Let x : [0,1] — T™ be a piecewise con-
tinuous curve, not continuous only at | points 7; (0 < 71 < -+ <
m < 1) where its left and right limit exvist x; = limTéij x(1) #

. ot )
lim___+ (7)== z]. We assume:

J
i, the two first cohomology classes ¢ = (cq,y(cq)) and ¢ = (¢, y(cy))
are joined by a generalized transition chainT': [0,1] — HY(M,R)N{c, =

yleq)}s
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ii, for each 7 € (1j_1,75), No(I'(7)) C {|lz — z;(7)| < o}, T'(7)-
minimal measure is uniquely ergodic when No(T'(7), M) is not homolog-
ically trivial;

iil, when 7 =7; for 1 <j <1, Ag(I'(75)) C ({llz — 2 [| <}t U {[|z —
af || < 6}), Mo(D(y) N {llz — a5 || < 8} # @ and Mo(T (7)) N {|lz —
a;;rH <0} # 2.

Then there exists an orbit of the Euler-Lagrange equation (1.3) dry:
R — TM that has the property: a(dy) C N(¢) and w(dy) € N(c).

Proof. : According to the Lemma 4.2, there exist two numbers 7 <

Tj < Tj+ for each 0 < j < [ such that \Tji — 7| is small and ./\N/'(F(Tj_))
is connected to N (P(Tj_)) by some local minimal orbits of the second
type.

Since the map ¢ — N(¢, M) is upper semi-continuous, there are
finitely many open intervals {.J; }o<i<m such that

1, UJ; O [0, 1], JiNJiy1 # @ and J; N Jipo = &;

2, each J; is defined in this way: if for all 7 € J; the case (I) happens,
then for all 7 € J;_1 U J; 41 the case (II) happens.

By the assumptions, there exists a finite sequence {s;}o<i<i,, such
that s; € J; for each integer i € [i;_1,i;] (0 < j < m), N(T(s;)) is
connected to N(I'(si41) by some local minimal orbit dv; of L. dn; is
of the first or second type when i € [0,41) U [i2,i3) U - U [im—1,%m)
and of the third type when i € [i1,i2) U -+ U [ip—2,im—1). We choose
these {s;} such that if N()(P(T;t)) is homologically trivial, then 3 some
$i =T;, Sit1 = Tj+. Let ¢; = T'(s;), we define I = {i} be the index set
that NV (¢;) is connected to N(ci41) by some local minimal orbits of the
second type if i € 1.

More precisely, for each integer i € [0,41) U [ig,i3) U - U [iyy—1,m):

1, There exists a local minimal orbit of the first type or of the second
type dv;: R — TM such that it solves the Euler-Lagrange equation
determined by L, a(dy) € N(¢;) and w(dy) € N(cit1);

2, Given a small number ); there is a non-negative function ;(q, x, t)
such that ¢ < A;, ¥; = 0 when t € (—00,0] U [1,00). For each fixed ¢,
the support of 1; is contained in a small neighborhood of the open disk
O and v; = constant when it is restricted in O;. If i ¢ I

O; N (N (ei, M)|o<i<to \Nis) # 2,
00; NN (¢, M)fogtgto = g,
O;NNjs =2
where N;s = {||Jx — x(s;)]| < }; If i € I, O; satisfies the following
O; N (N (ci, M)|o<t<ty \(Nis U Niip1ys) # 9,
00; NN (¢iy, M)|o<i<t, = 9,
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Oﬂ( zéUN(2+1)) g.

3, There exist a closed 1-forms n; with [n;] = ¢; and a U step 1-form
w; such that the restriction on {t > tp} is a closed 1-form p; on M
with [f1;] = ¢;+1 — ¢;. The support of p; is disjoint With~ 0O;. ForNi ¢ I,
according to the Lemma 4.1, we can see that the set C,, ,, 4, (M) has
the property:

(5.1) D 7 T1Cpui (M)\Cnivﬂiv¢i(M)|0<t<t0 C O,
each orbit dvy(t) € CNm s by (M y )\C~m7m7¢z( )|+ determines a local minimal

orbit of L of the first type, which connects N(c¢;) to N(cit1). Conse-
quently, there exist two open (k+n)-dimensional disks VZ+ and V,__; with

V+ C Nis\Mo(ci), Vi1 C Niy1)s\Mo(cit1), two positive integers TZ-O,
Ti1 and a positive small number € > 0 such that

(5.2) min {hgj(g, mo) + hml ;lszz e, (Mo, m1) + 1 (ma, Q)

(mo,m1) € (V;+ x VZ+1)}

> min {hgj(g, mo) + hml,;;szz e, (Mo;m1) + hey, (ma, Q)
(mo,m1) € V¥ x Vig, |+ 5¢;

where £ € My(¢;),( € Mo(ci+1). For i € I, according to the Lemma
4.2 we find that

(5.3) @ # Cm—l/i—wi(M)’0<t<to cO;

and each orbit dv(t) € C~ mi—vi—; (M)|¢ determines a local minimal orbit
of L of the second type which connects O(c;) to N'(cit1). Consequently,
there exist two open (k + n)-dimensional disks V;* and V, 1, with Vtc
Nis\Moy(c;), ‘7211 C N(it1ys \Mo(cit1), two positive integers Tio, Til and
a positive small number €; > 0 such that

(5.4) min {hif(i,mo) hnf ;Lf (mo,m1) + hey, (ma, Q) :

(mo,m1) € OV x Vi) }

1
> min {02 (€,m0) + by 'y, (o, ma) + S, (1, )

(mo,m1) € V" x Vih} + 5¢;,

where £ € Mq(¢;),¢ € Mo(citr1). Note (5.2) and (5.4) are independent
of the choice of £ and ( since the ergodicity of ¢;-minimal measure is
assumed for each 1.

For each integer i € [i1,i2) U+ U [im—2,%m—1), there exist two closed
1-forms n;, fi; defined on M, a U-step 1-form p; defined on (u,t) € M xR
and an open set U; C M such that [1;] = ¢;, p; is closed on U; x [0, to],
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i =0 when t <0, u; = fi; when t >ty > 0, [fi;] = ¢;41 — ¢; and there
is a small number §; > 0 such that
(5.5) Cm,m (t) +6; C U, when t € [0, t(]].
All orbits in CN,?Z.,M are the local minimal orbits of the third type of L,
they connect N(¢;) to N(cit1).

By the compactness of the manifold M, for a small €] > 0 there exists
(T0,1) = (19, T})(&}) € (Z*, Z+) such that
(5.6) hioTt (mo, my) > hy? .
holds for all Ty > T2, Ty > T} and for all (mg, m1) € M x M. Obviously,
given (mg, m) there are infinitely many 7 > TZ-0 and 177 > TZ-1 such that

(5.7) |h%197’3;1 (mo, ml) - h;‘;m

*
7 :
(mo, m1) — €

(mo,my)| < €.

Let ~;(t, mg, m1, Ty, Th) : [~To,T1] — M be the minimizer of h%?,’;;cl (my,
my), it follows from the Lemma 2.2 that if €/ > 0 is sufficiently small,
Ty > T? and Ty > T} are chosen sufficiently large so that (5.7) holds,
then

(5.8) d%-(t,mo,ml,To,Tl) S C~77i”ui(t) + &, VOo<t<lI.

l*jrom the %ipschitz property of 5137:9,’3;1 (mg,m1) in (mg, m) there exist
T2(ex) > TP(er) and T} (€f) > TH(e}) so that for each (mg,m1) there
are T; = T;(mo,my) with T7(¢X) < Tj < TV(ef) (j = 0,1) such that
both (5.7) and (5.8) hold. Note that for different (mg,m1) we may need
different 7; > 77 (j = 0,1).

Before we go back to consider those integers i € [0,41) U [ig,i3)U---U
[im—1,%m), let us observe some facts. We can define the set of forward
and backward semi-static curves:

N*te)={(z,5) € TM xT: 7o ¢}z, $)|j0,4-00) 18 c-semi-static},
N7(c)={(z,8) € TM xT: 7o ¢}z, 8)|(—o0,0 18 c-semi-static}.

Proposition 5.1. If the c-minimal measure is uniquely ergodic, u €
Ao(c), then there exists a unique v € T,M such that (u,v) € N (c) (or
Ny (¢)). Moreover, (u,v) € Ay(c).

. Proof. : Let us suppose the contrary. Then there would exist (u,v) €
Ap(c) and a forward c-semi-static curve 4 (t) with v4(0) = u and
4+(0) # v. In this case, for any u; € My(c) there exist two sequences
k;, ki — oo such that o ¢]Z" (u,v) = w1, y4+(k}) — uy and

ki
h(u,u1) = lim (L — ne) (% (u,v), t)dt + kialc)

ki
= lim (L — ne)(dy4(t), t)dt + kia(c).
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Thus, we obtain that
hgo(ﬂ- o qbzl(u’ U)7 ul)
= F.(mo (bzl(u, v),u) + h (u,uy)

k;

= Fc(ﬂ- o ¢21(U, U)7 u) + klgnoo 0 (L - nc)(d7+(t)v t)dt

> h(mo ¢! (u,v),u1)

where the last inequality follows from the facts that 44 (0) # v and the
minimizer must be a C'-curve. But this is absurd. q.e.d.

Proposition 5.2. Assume the c-minimal measure is uniquely er-
godic, then for all ¢ € M(c) and all mg, my € M, we have

he®(mo, ¢) + he”(C,ma) = he®(mo, ma).
Proof. : By definition,
he®(mo, €) + het (¢, ma) = he®(mo,ma)
for all mg,m1,{ € M. Let yp: [0,7] — M be a c-minimal curve
connecting mg with my. As the c-minimal measure is uniquely ergodic,
for any € > 0, there exists a positive integer T'(¢) such that for each

integer T' > T'(¢) there is T1 < T with the property vr(T1) € M(c) +e.
Let Ty =T — T7. In this case, we have

he (mo,m1) = A (mo,vr(Th)) + he? (yr(Th), ma)
We claim that 77 — oo and T — 17 — oo as € — 0. Indeed, if T7 is
bounded by some finite number, then there would be a point u € My(c)
and a vector v € T, M such that ¢! (u,v) is a forward c-semi-static orbit
as t — oo with (u,v) ¢ A(c). But this contradicts to the Proposition
5.1. Clearly, there exist ( € M(c) and a subsequence {T;} such that
vr,(Th) — ¢ as T; — oo. It implies that

hzo(m(b C) + hgo(Caml) < hgo(m())ml)‘
As the c-minimal measure is uniquely ergodic, for any £ € Ag(c)
he”(mo, §) + heo(§,ma)

= hzo(m(h C) + th(C7m1)

This completes the proof. q.e.d.

Let mg,my € M, let yp: [0,T7] — M be a c-minimizer connecting my
with my. For each integer i € [0,i1] U [ig, i3] U+ U[ipm—1 — im), in view
of the Proposition 5.2, there exists T,(ej ) > 0, independent of mg and
myq, such that
(5.9)

hE (mo,ma) > B2 (mo, ) + b2 (C,ma) — €, Y T > Ti(€}), ¢ € M(c)
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and there exists Tj(e*) > Tj(e¥) such that for each (mg,m;) € M x M
we have some integers T' between Tj(e*) and Tj(e¥) so that

(5.10) ‘hg_(mo,ml) — B (mo,¢) — hX((,ma)| <€, V(€ M(c).

We define 7; inductively for 0 < i < 4,,. We let 79 = 0, for i €
[0,41) U [ig,i3) U+ -+ U [im—1,%m) we choose 7; such that

5.11) Ti+T 4T <7—7mia < T+ T} + 17

(
(cf. (5.2) for the definition of T}' | and TP). For i € [i1,ip) U--- U
[im—2,9m—1) we choose those 7; such that

(5.12) max{T2, T} | +1} < 7 — 71 < max{T?, T}, + 1}

To consider the case that ¢ = 71 we note that both Til and Tg can be
taken large enough such that for any mq, my € M there exist T'(mq, m1),
To(mg, m1) with

max{ i 21} < T(mg,my), To(mog,my) < max{ i1 Zl}

such that (5.7) holds provided we set Ty = Ty(mg, m1); (5.10) holds
provided we set T' = T(mg,mq1); and (5.6) and (5.9) hold for each
To, T > max{T;,, T }. Thus, we choose

(5.13) T}y +max{T;,, T} <7, — 73,1 < T}y + max{T},, 17 }.

The case for ¢ = i3, 145, - , %, can be treated in the same way.
. Similarly, we can choose suitably large T;, and Tll2 and set the range
Or Ty

(5'14) max{ 12— 17T12}+ <TZz Tig— 1<max{ 12— 17TZz}+

The case for i = iy4,1¢, - ,%m_1 can also be treated in the same way.
We define an index set for 7= (71,72, -+ , Tis—2, Tis—1)"

A= {F € Zi+ 1 (5.11 ~ 5.14) hold}.

Consider 7 as the time translation T*(;S(q ,t) = ¢(q,z,t + 7) on
M x R, let ¢; = 0 for i € [ig,i2) U -+ U [zm 2,im—1), we define a
modified Lagrangian

im—1
(5.15) L=L-no— Y (—7)"(pi + i)

i=0
Let V=Vi" x V7 x--- x V7 xVFEx...xV*_ x V. For (m,m') e
M x M, Z = (2,272, 72';;—172'2‘_172'2‘—2721'_2“7”' ,zi‘tn_l,zi;) ev
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we define

KK’ K'+7ip, -1 -
hz ™ (mo,ma, Z,7) = inf / L(d~(t),t)dt

y(=K)=mq -K

V(K 7y, 1)=my
w(‘riffio):z?»

Hr+TH =274
ltes; 1170

i€l

im—1

+ X (= riotafe) + Kaleo) + K'alci,)

where K’ = K’+Ti1m_1—|—ﬁ-m, Ji = [mi—T%, 7+ T} and T = NN ([O,il)U
[ia,i3) U -+ U [z’m_l,z’m)\l).

KK’ o KK’ - .
Let 7" (mg, m1) be the minimizer of hs (mg, mq, Z,T) over V in

z and over A in 7 respectively:

KK’ . KK’ .
(516) hi (m()vml) = ?GHAI,IZDGV hi (m07m17 ZaT)v

let K;, K J/ — 00 be the subsequence such that

iK'
5.17 lim b (mgymy) = £ R (mo, my),
GIn) g o ma) = N inthg " (mo, m)

and let v(t; K, K}, mo, m1) be the minimal curve, we claim that
dy(t; Kj, K}, mo, my)

is a solution of the Euler-Lagrange equation determined by L if K; and
K ]’ are sufficiently large. Indeed,
1, for each i € [i1,i2) U+ U [im—2,im—1), we have

(5.18) (—Ti)*’y(t; Kj,Kj/») S Cm,m(t)—kéi C Ui, when 7 <t<T+1.

To see that, let us choose m; = y(ri—1 + 1), m} = ~(7i+1). Since

v(t; K, K , Mo, mq) is the minimizer of hlg’K/(mo, mq, Z,T) over A, thus
Ap (=) it ) + (1 — o1 + D) + (i1 — i) e(cir)

T
= inf / (L —n; — p)(dE(t), t)dt + Toa(e;) + Tha(citr).
§(=Tp)=m; J =Tp
&(Ty)=m/
o<1y < TP
Tl<m <7}

Thus we obtain (5.18) from this formula, (5.5), (5.8) and (5.12). Con-
sequently, v(t; K, K})|r,<t<r+1 falls into the region where (—7;)*s; is
closed. So, dvy(t; K;, K ]’) is the solution of the Euler-Lagrange equation
determined by L when 7; <t < 7; + 1;
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2, for i € [0,41) U [i2,93) U -+ U [im—1,%m), we claim that
(5.19) (=7)" v (B)lo<t<t, € int(0;).

It is actually the consequence of (5.1). In fact, if

dy € Cpyop s (M) \Copy (M)

then v must pass through O; during the time interval [0, ¢y]. We note
that the function L, ,, 4, is not time-periodic, the translate of dv; is no
longer a minimizer of the same kind if d; € 71Cp, ;. (M)\Crp i (M),
dvyi(k) & m1Ch, i (M )|¢=o for each k € Z\{0}.

By the condition of the Theorem 5.1, both ¢;- and ¢;1-minimal mea-
sure are uniquely ergodic. For any m; € Mg(¢;), mi+1 € Mo(civ1) and
any smooth curve dy € Cp, i (M)\Coyy s (M), if Zt 5 TF — 00 and
Z* 3 TF — oo (as k — o0) are two sequences such that y(—TF) — m;
and y(TF) — mji1, then

Tf
lim Ly, s (dy (8), 1)t + Ty a(es) + T alciga)
k—oo _Téc

= h;il"iywhel (mi7 mi—‘,—l)-

Let (: R — M be an absolutely continuous curve such that [¢]; # 0,
C(t") ¢ int(O;) for some ' € [0,t0], C(=TF) — my, ((TF) — miq1 as
k — oo. Since éni7ui,wi |t=constant 18 closed, there exists a positive number
d > 0 such that

Ty
lim inf Loy s (dC(8), 0)dt + TFa(e;) + TFa(cir)
Téc—m)o —T(;c

= hgiﬂmwz',el (mi’ mit1) +d.

Recall the construction of the modified Lagrangian L (see (5.15))
and ~ is the minimizer of hIg’K,(mo, my, Z,7) over V in z and over A in
T respectively. Given any small number € > 0, by choosing sufficiently
large Ti—f}, we can see that there are sufficiently large K, , K Z+ € Z with
the properties that TZ-_1+TZ-1_1+KZ-_ —|—KZ.+ = TZ'—TZ-O, T, < K; —|—KZ.+ <T
and

HV(Ti ~ TP~ K) —m

<o |

Yol + T} + K )~ mi—i—l” <e.
If there was t' € [0, ] such that

(=7:)"y(t') ¢ int(Os),
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from the Lipschitz continuity of h® (m,m’) in (m,m’) we would

obtain

NiskisPisel

TZ—‘rT +KZ+1
/ - Lm,um% (dV(t)’ t)dt
i —TO— K

+ (T + K a(e) + (T + Ky alei)

3
2 P i sser (M Mi1) + 7d-

On the other hand, there is suitably large K'Z-_ , I_(:r € 7 with the prop-
erties that T} < f(i_ + f(;r < T, and

‘ ’ ‘

Because dv;(t') € Cp; i, |t=t7, We have

TZ—‘rT +KZ+1
/ S Lm,umwi (d%(t)’ t)dt
i —TO— K"

+ (T + K a(e) + (T + Ky alei)

1
(mi, mit1) + Zd

vilr =17 — K) -

i(ri + T} + K, — mz+1H <e.

= h%i#u%m
if € is sufficiently small. It implies that v is not a minimizer. This
contradiction verifies our claim.

The formula (5.19) implies that dvy(¢; K, K}) is the solution of the
Euler-Lagrange equation determined by L when 7; < t < 7, + 1 for
1€ [O,il) @] [ig,ig) y---u [im_l,im);

3, We claim that the curve « does not touch the boundary of VJr at
the time t = 7, — Tio and does not touch the boundary of V| at the
time t = 7; + Til for each integer ¢ € [0,41) U [i2,43) U -+ U [imn—1, im)-
If (v(ry — Tio),’y(n + Tll)) = (m;,m}) € (‘9(‘/;r X VZ+1) for some i ¢ I,
let mi_; = v(ri-1 + TL ;) and miy1 = (701 — T}hy), from (5.1) w
can see that there exist (m;,m}) € V;" x V3| such that for £ € ./\/lo(cz)
¢ € Mo(citr):

7071

Tz 174
h ( m;_ 17ml)+h7h,m,¢i761(

(mi,mz) + e, (mi; €)

mg,m ) + hczlill (m7,7 m2+1)

> hoo(g’ mz) + hnuﬂhwz €1

+hoo< m;_q, ) cl+1 Caml+1)_2€

(
= he (& ma) + hnf,itiwm( ) + he?, (M ©)
(€

+ 0 (mi—1,€) + Cymiy1) + 3¢

C 41
> BTl mg) + BT (g het! :
= ' (m2—17 ml) + Nis i, Pi,e1 (m7«7 ) + Ci+1 (m27 m2+1) +e
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where Tj, Ti1, T}, T}, satisfy the condition TJ < T;,T; < T] (j =
i—1,4). In above arguments, (5.9) and (5.10) are used to obtain the first
and the third inequality, (5.2) is used to obtain the second inequality.
But this contradicts to the fact that ~y is a minimal curve of L on V and
A. The case for i € I can be treated in the same way. Therefore, the
minimizer ~y is differentiable at the time t = 7; — Tio and t =T7; + Til for
each i.

Let K;, K ]’ — 00, denote by 75: R — M an accumulation point of
{v(t, K, K7)}. Obviously, a(dye) C N(e) and w(dys) € N(¢'). This
completes the proof. g.e.d.

6. Holder continuity

The task in this section is to build up some Hoélder continuous de-
pendence of h2° on some parameters if we set k = 1. These properties
will be used to show that there is a generic set for perturbation where
the conditions for the Theorem 5.1 are satisfied.

Let @, be the Hamiltonian flow determined by H, it is a small
perturbation of <I>§L. Let ®y and & be their time-1-maps. Accord-
ing to the hypothesis H2” and H3’, there are several cylinders E? =
T x {pj—1 —26 <p <p;+ 20} x{(z,y) = (z;(p),y(p)} (L <j <)
which are normally hyperbolic and invariant to the map ®j,, here § > 0
is small. When p increases from p; — 0 to p; + J, the global maxi-
mum point of h(z,p,y(p)) jumps from x;(p) to z;41(p). It follows from
the fundamental theorem of normally hyperbolic invariant manifold (cf.
[HPS]) that there is € = €¢(A, B,0) > 0 such that if ||P||cr < € on the
region {||(p,v)|| < max(|A|,|B]|) + 1} the map @?k (keZ,0<s<1)
also has several C™~! invariant manifold ¥;(s) = T x {pj_1 — 6 <p <
pi+o}x{(z,y) = (zj(p,q),y;(p,q))}, provided that r > 2. These mani-
folds are the small deformation of the manifolds E?\ pj_1—b6<p<p;+o- Lhus,
they are also normally hyperbolic and time-1-periodic. Let ¥; = ¥;(0),
it can be considered as the image of a map ¢ from the standard cylin-
der ¥ = T xR x {(z,y) = (0,0)} to ¥; = {g € T,pj-1 —0 <p <
pj + 6, (z,y) = (x;(p,q),yj(p,¢))}. This map induces a 2-form ¥jw on
3

"~ (i, yji)
Viw=[1+) —LYY Vdpad
’ < ; a(p, q) ) red

and ¥iw = dp/Adg when P = 0. Since the second de Rham co-homology
group of X is trivial, by using Moser’s argument on the isotopy of
symplectic forms [Mo], we find that, on ¥{|,|<max(|a,|B|)+1}> there exists
a diffeomorphism ¥ such that

(Wjo0W)'w=dpAdg.
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Since X is invariant for ®5 and ®3;w = w, we have
((qu o W) Loy o (T, 0 \11)) dp A dg = dp A dg

ie. (U;00)"Lodpyo (P, 0W) preserves the standard area. Clearly, it
is exact and twist since it is a small perturbation of ®;. In this sense,
we say that the restriction of ®y on 3; is obviously area-preserving
and twist. If » > 4 there are many invariant homotopically non-trivial
curves, including many KAM curves. All these curves are Lipschitz.
Given p € R there is an Aubry-Mather set with rotation number p,
which is either an invariant circle, or a Denjoy set if p € R\Q, or periodic
orbits if p € Q. Under the generic condition we can assume there
is no homotopically non-trivial invariant curves with rational rotation
number for x5 ;» instead, there is only one minimal periodic orbit on
3 for each rational rotation number.

Let us consider the Legendre transformation .. By abuse of termi-
nology we continue to denote 3;(s) and its image under the Legendre
transformation by the same symbol. Let

5= )9,
seT

which has the normal hyperbolicity as well. Under the Legendre trans-
formation those Aubry-Mather sets (invariant curves, Denjoy sets or
minimal periodic orbits) on ¥ correspond to the support of some c-
minimal measures.

To continue the study, let us first consider the case when there is only
one cylinder 3. In this case, P = &. Consequently, N (¢) C Ns and the
lemma 3.1 has the following form (k=1)

Proposition 6.1. Given some large number K > 0 and a small
number § > 0 there exists a small number € = €(0), if L1 € Bex and if
lcq| < K then there exists an n-dimensional convex set D(cq) which con-
tains a neighborhood of (cq,y(cq)) NR™ such that for each ¢ € int(D(cy))
the Marié set N'(c) C X, the Mather set Mo(c) is the Aubry-Mather set
for the twist map. If the rotation number is irrational, then M(c) is
uniquely ergodic.

Proof. : The normal hyperbolicity guarantees that the invariant set
in Ng must be in the invariant cylinder. The time-1-map restricted on
the cylinder is then an area-preserving twist map. q.e.d.

Consider a cohomology class ¢ = (¢, y(c,)) € HY(M,R) such that
it corresponds to an invariant circle I' in ¥ with irrational rotation
number. In the Hamiltonian formalism, I' = {(p,q,z,y) € R" x
T+ (p,z,y) = (p,2,%)(q),q € T}. Based on each point on this circle,
there is a C"!-stable fiber as well as a C"!-unstable fiber. These
stable (unstable) fibers C"~2-depends on the base point and make up



264 C.-Q. CHENG & J. YAN

the local stable (unstable) manifold of that circle which are the graph
of a Lipschitz function in a small neighborhood of the circle, i.e.

Wil (T) = {(q,w, (p,y)"*(g, %)) : (¢, ) € N5 C T"+1}

where (p,y)(q,x) is a Lipschitz function of (g, z).
We use C*2 to denote those functions whose k-th derivative is of
a-Holder.

Lemma 6.1. There exists a CY' function S5*: N5 — R and a
constant vector ¢ € R™™ such that W,>*(T') = {(¢,),dS*"(¢q,z) + ¢ :
(q,ﬂj‘) € N5}

Proof. : Let us consider the stable manifold. By the condition there
is a Lipschitz function (p,y): Ns — R such that

Wiee(T) = {(g:z, (p,y)° (¢, 7)) : (¢, ) € Ns}.

Let o be an 2-dimensional disk in W}? . Since o is in the stable mani-
fold, ®%(do) approaches uniformly to I, i.e. ®% (9c) is such a closed
curve going from a point to another point and returning back along al-
most the same path when k is sufficiently large. As ®y is a symplectic
diffeomorphism we have

// <dp Ndg + En: dy; N dwi) = jé (pdq + z": yidxi)
7 i=1 a7 i=1
= ]i o (pdq +> yidxi)

i=1
=0.

Note the function (p,y)*(q,x) is Lipschitz, it is differentiable almost
everywhere in Ny. As o is arbitrarily chosen, for almost (¢, z) € Ny the
following holds:

I _ Oy i _ Oy;
ox; 0q’ ox;  Ox;’

(6.1) V1<ij<n.

Consequently, there exists a C11-function S¢ and ¢ = (¢4, y(c,)) € R* ™!
such that (p,y)® = dSS + c. In the same way, we obtain a C'»!-function
S¢ and ¢ = (¢, y(c,)) € R"*! such that (p,y)" = dS¥ + ¢. Since W,

intersects W}, on the whole I, ¢ = c.
q.e.d.

Indeed, for almost all initial points (¢, z, (p,y)*(q,z)) € W*, (p,y)*
is differentiable at all <I>’}_I(q, z,(p,y)%(q,z)) for all k € Z*. To see that,
let O C Ng be an open set, for each k there is a full Lebesgue measure
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set O C 7(®%{0, (p,y)*(0)}) where (p,y)* is differentiable. Since ®p
is a diffeomorphism, the set

0" = () (10w, (r.*(00))

k=0

is a full Lebesgue measure subset of O. For any point (¢,z) € O*, (p,y)*
is differentiable at the points 7(®%{(g,z), (p,y)*(q,z)} for all k € Z7.

Let us consider the Hamiltonian flow. The local stable (unstable)
manifold is a graph of some function

I/T/lf;g = {(Q7$7t)7 (p7 y)s’u(q7gj7t> : (q,x,t) € N(5 X T}

Obviously, we have ((p,y)**,t)*Q = 0 in M x T, where Q = > dx; A
dy; + dg A dp — dH A dt. Thus, in the covering space R"*? there ex-
ists a Cll-function S:“(q,z,t) such that dS:" = (p,y)*“(q,z,t) —
H((p,y)*"(q,z,t),q,z,t)dt. Consequently, there exist a cohomology
class ¢ = (cq,y(cq)) and a function S“(q,z,t) € C1H(Ns x T,R) such
that

L3 = L — cy(g + 0,55%) — (9,85, &) — S5

attains its minimum at ZW** as the function of (¢, ). Note Lf&“ﬂb) -
D(qe)Se" is Lipschitz, dL‘(i’jui) /dt and L‘(i’]uz) exist almost everywhere.
Since ZW** is a manifold made up by the trajectories of the Euler-

Lagrange flow, it follows from Euler-Lagrange equation dLg ;/dt = Lg
and (6.1) that L .| owge = 0 almost everywhere. The absolute conti-

nuity of L implies that L*"| LW is a function of ¢ alone. So, by adding
some function of t to S¢™, L] yyysu = —a(c).

Lemma 6.2. Let ¢ = (cq,y(cq)). If T' is an invariant circle in
the cylinder, the Aubry-Mather set is uniquely ergodic, then 3 So" €
CH1(Ns,R) such that

(6.2)  h(§,m) = 5! (m) = SL(E),  h(m, &) = SE(E) — Se(m)
hold for each & € w(I') and each m € Ns.

Proof. : Since there are the local stable manifold W*(T") and the
unstable manifold W*(T") to the invariant circle I', for each point m € Ny
there is a unique c-minimal orbit v*"(t) such that 4*%“(0) = m and
v (k) — w(l') as Z > k — +oo. Let £ € My(c), there is an integer
subsequence k] — £00 as i — oo such that y*“ (k") — £ as i — oo.
It means that
lim bt (m, (k) = h(m. &), Jim he'™ (7 (k¥), m) = h®(&,m).

1—00 1— 00
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Since L¥" 4+ a(c) = 0 on W5 we have

0
| (L) = st ) + ale)) dt =S"(2(0) = "G R,

u
7

b
/0 (L(dra(ke) = (e 2 (k) + ale) ) dt =S (33 (k1)) = $°(32(0)).

That implies that (6.2) holds for each m € N; and each & € My(c).
To see that (6.2) holds for each { € =w(I'), let us recall that, for a
twist map, the sufficient and necessary condition for the existence of an
invariant circle is that the Peierl’s barrier function is identically equal to
zero. Consequently, passing each ¢ € 7(I") there is a regular c-minimal
configuration (---,m;,---) such that ( = mg. Since we have assumed
the unique ergodicity of the minimal measure, d.(¢,£) = 0 for each
¢ € m(I') and each £ € My(c). Thus, (6.2) holds for each § € 7(T').
q.e.d.

Obviously, S¥(&) = S5(€) for all £ € w(I'). Thus, in this case we have
(6.3) he®(m,m') = S¥(m’) — S5 (m), V' m,m € Ns.

We now consider the local stable and unstable manifolds of all in-
variant circles. Different invariant circle determines different stable and
unstable manifolds, i.e. we have a family of these local stable and un-
stable manifolds. We claim that this family of local stable (unstable)
manifolds can be parameterized by some parameter o so that both S¥
and S have %-Hélder continuity in ¢. Indeed we choose one circle and
denote it I'g and parameterize another circle I', by the algebraic area
between I', and Iy,

1
(6.4) o= /0 (T'(q) — To(q))da.

This integration is in the sense that we pull it back to the standard
cylinder by W o ¥y € diff(Xg, X). Let 0 = A’ correspond to an invariant
circle where the action p < A, let 0 = B’ correspond to an invariant
circle where the action p > B, in the way of (6.4) we obtain an one-
parameter family curves I': T x S — ¥ in which S C [A4’, B'] is a closed
set. Clearly, for each o € S, there is only one ¢; = ¢4(0) such that
Iy = Mo(c) where ¢ = (¢,,0) € H'(M,R). Clearly, ¢, is continuous in
o on S. We can think I', as a map to function space C° equipped with
supremum norm I': S — C°(T,R),

[To; — T, || = max|I'(q,01) — I'(q, 02)].
q€eT

Straight-forward calculation shows

1

2
o1 — 09| > 2, <glg%\F(q,01) - F(qm)!) ;
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where C}, is the Lipschitz constant for the twist map, it follows that
1
”an - PJzH < Cs,o'l - 0’2‘5
where Cy = /2C},. Since both the stable and the unstable fibers have

C"2-smoothness on their base points on ¥, r > 3, (p,y)5" is also %—

Hoélder continuous in 0. Because we can choose suitably small Ny such
that it can be covered by the stable as well as the unstable manifold of
the invariant curve Ty, (W (') D Nj. Let S5 = S;Z), we have

Lemma 6.3. Restricted in Ns the functions S5(m), S&(m) are %-
Hélder continuous in o € S.

The Lemma 6.3 is not enough for the proof, because we need to
consider the regularity of barrier function defined on the whole config-
uration manifold. Next, let us consider the dependence of the barrier
function on o € S and on ¢. Recall the cohomology classes ¢ = (¢gq, y(¢q))
under our consideration is in the set

H' = {(cq,y(cq)) + |eq| < max{|Al B[} +1}.

Let us remember A(c) C Ns. For each ¢ = (cq,y(cq)), each m €
M\ N5 and each £ € Ny there exist m,m_ € Ns and k', k. € Z" such
that

B (€m) = h3P(&mE) + b (mf,m),

he®(m, €) = hge (m,mg) + h(mg ,€).
Clearly, there exists a uniform upper bound K € Z such that for each
¢ = (cq,y(cy)) € H, each m € M\Nj and each £ € Ns we have k7 < K,
k: <K.

Let v : [0,kF] — M, with 7.(0) = m} and 7.(k}") = m, be the curve
which realizes the quantity

BES (mis,m) = /kc+ Ly (dye(t),t)dt + bl a(c).
Obviously, we have that ’
her(§,m) < /kc+ Ly, (dye(t), t)dt + kS o)
+0 her (€,m{)

holds for any other ¢’. Note L, — Ly, = (1 — 1e, ¢), we find

kd
| talneto). o+ iate) = 1 ng )
0

kd
:A (e = en et + k7 () — ()

9e(0) = Fe(=k)l" — | + & (alc) — ale)),

IN
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where 7. denotes the lift of 4. to the universal covering R.
Since ¢ and ¢ are considered in the bounded set H!, there exists
Cy > 0 such that

la(c) — a(d)] < Cyle —{|, Ve d eHY,
and there exists C, > 0 such that
9:(0) — 7e (k)| < K, ¥V ceH.

Note there is a subset in H! such that o € S has one to one correspon-
dence to this subset, we can write ¢ = ¢(o) when ¢ is in this subset.
Since m{ € Ns, we obtain from the Lemma 6.3 and above estimate
that

ha'(§;m) — he(§,m)

kd
< / Ly, (dve(t),t)dt + kFa(d) — hf‘j (mt,m)
0

+he (& ml) = he(€,m)

< C3(V]o — o'l +|e(0) — e(o)])

where C3 > 0 is a positive number depending on max{|A|, |B|}, C, and
C,. By exchanging ¢ with ¢/, in the same way we obtain

he2(§m) = h (§,m) < Cs(V]o = o’| + |e(o) — e(a")]).

Recall the Lemma 3.2. For each ¢ = (¢g, ¢;) with [|c; — y(cq)|| < Cy
(Cq > 0), the Mané set keeps the same. Thus, we can assume that
y = y(cq) is smooth in ¢;. Therefore, from the Lemma 6.3 and the
formula (6.3) we obtain

Lemma 6.4. Assume 0,0’ € S. Let ¢ = (o), ¢ = ¢(o’), m € M\Ns
and £ € Ns. Then

hZE’U)(S,m) - 5?0/)(5,771)‘ < 03(\/m+ e — ),
hz?o-)(mvg) - S?U/)(m,g)‘ < 03(\/m_|_ |C—Cl|).

The function hg?o), defined on o € S, can be extended to a function h,

defined in a neighborhood of the continuous curve {o,c,(0)} C R? such

that hg?g) = heSle=c(o) and the above formulas hold for hS,.

Remark: We do not know whether the function o — ¢(o) has some
Hoélder continuity in o.

Let us consider the case when there are several pieces of invariant
cylinder. Under such condition, the barrier function may be not contin-
uous at finitely many points if we consider the continuity along the path
{e = (cq,y(cq)) : A—1 < p < B+1}. In fact, restricted on each cylinder
¥;, @ is an area-preserving and twist map. According to the hypothe-
sis (H2?), Ophly=s,(p) # Ophla=z,,,(p)> Wwe find that there exists a unique
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Cq = ¢ with pj —0 < < pj + 0 such that the c-minimal measure is
uniquely supported on an Aubry-Mather set in ¥; if cg_l <cg < cé and
it has exactly two ergodic components when ¢, = cé. One component
corresponds to an Aubry-Mather set in Y, another one corresponds
to an Aubry-Mather set in ;1. When ¢ = (ch,y(c))), the Maiié set
contains these two Aubry-Mather sets and the minimal orbits connect-
ing them. Due to the non-degenerate condition (H2’), the normally
hyperbolic cylinder YJ; is long enough so that it’s interior contains all
Aubry-Mather set for those ¢ with cg_l < < cé.

7. Generic property

In this section we also assume that £ = 1. The task in this section
is to show that there is a residual set in B i such that if P is in this
set then there is a generalized transition chain {¢ € HY(M,R) : ¢ =
(cq:y(cq)); A—1 < ¢y < B+ 1}. Since there are finitely many invariant
cylinders {¥;}, it is sufficient to verify the generic property for one of
these cylinders.

Let us consider this issue from the Hamiltonian dynamics point of
view. Since the system is positive definite in action variable v = (p,y),
it has a generating function G(u,v’) (u = (¢, z))

1
Gua)= ot [ L0(s)(),0)ds

vect((o,a].rnt1) Jo

¥(0)=u,y(1)=u'
where u,u’ are in the universal covering space R"*!. Clearly, G(u +
2km,u' + 2km) = G(u,u) for each k € Z"*'. The map ®p: (u,v) —
(u',v") is given by

v = 0,G(u,u), v =—0,G(u,u),
let 7y be the standard projection from Rt — T7*! let ¢ € R**! and
Ge(u,u') = Gu,u') — {e,u — u)

then
he(m,m') = min G.(u,u’) + a(c).

7o (u)=m
’ /
mo (u')=m

We consider the change of the function A2° when the generating function
is subject to a small perturbation G — G + G;. Let m € M\Ny,
&€ € Mo(c), ¢ = (cq,y(cq))- Let {k;} be a subsequence such that

lim h¥i(g,m) = lim inf hE(&,m),

let {u; = &, ua,--- ,up, = m} be the minimal configuration, we claim
that there exists b > 0 such that u; ¢ By(m) for each 1 <1i < k; —1, here
By(m) denotes a b-ball centered at m. In fact, there is a positive number
A > 0 such that h¥(m,m) > 24 for each ¢ = (¢4, y(c,)) € H'(M,R),
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for each k € Z* and for m € M\Nj. If not, there exists a subsequence
k; such that

lim A (m,m) = 0.
kj—o0

It implies that m € Ay(c), which contradicts the Lemma 3.1. As
hE(m’,m) is Lipschitz in m,m’, there exists b > 0 such that if m’ €
By(m) then h¥(m’,m) > A for each k € ZT. If there is u; € By(m) for
some i € {k;}, let m’ be an accumulation point of {u;} then there exists
some k € ZT such that

he(€,m) = he(&,m') + he(m',m).
Consequently,
he(€m') < hZ(€m) — A.
On the other hand, from the Lipschitz property we obtain that
he (& m') = h(&,m) — Cpllm — /||

It leads to a contradiction if m’ is sufficiently close to m. The con-
tradiction verifies our claim. Consequently, if the generating function
subjects to a small perturbation G(u,u’) — G(u,u') + G1(u'), where
supp(G1) C By(m), h2° will also undergo the small perturbation:

he(§,m) — hZ(&,m) + Gi(m'),  ¥m' € By(m), § € Mo(c);

while h2°(m/, €) remains the unchanged.
Choose &,¢ € Mo(c), m € M\Ns. The change of hgS, (§,m,() is a
little bit complicated when the generating function undergoes the same

small perturbation as above. Let {k;} be a subsequence such that

Zligé hlgjel (67 m, <) = llkﬂ_l)gf hlz,el (67 m, <)

Let {up =& u1, -+ ,u;;, =m,--- ,u, = (} be the minimal configuration
that realizes the minimal action h¥i, (¢,m,(), denote by v;: [0,k;] — M

the corresponding minimal curve. As the first step, we claim that for
each m € M\Ns, when k; is sufficiently large, there exists b > 0 such
that there is at most one uj, € By(m) for some 1 < j; < k;, ji # ;.
To a curve 7: [0,k] — M with v(0),~v(k) € By(m) we can associate an
element [v] = ([Ylg, Vers [Vaes -+, en) € Hi(M, By(m), Z). 1f there
were two other points uj,, u; € By(m) (without losing of generality we
assume j; < ji < ;), then we would have two alternatives:

1, either [v[jj; jq]e, = 0, or [v]jj11,]e, = 0, or both;

2, both [, jnle; # 0 and [v]jjz 1], # 0.
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In the first case, we can cut off a piece 7|[ji7j{] from the minimal curve
and define a curve v': [0, k; — j/ + ji] — M such that

v(t) t €0, i,
Yt —ji+ji+1) te g+ 1,k — 4+ jil,

where 7: [, ji +1] — M is a minimal curve joining ~(j;) with y(j; +1).
Clearly, [v']4, # 0. Since v(j;) is close to v(j.), by the Lipschitz property
of he(m,m') in m, m’, we have

ki—ji47i . L .
(71) /0 L(d"}/ (t)a t)dt + (kl —Ji +]Z)C¥(C) < hc,lel (67 m, C) —A

To see the absurdity of (7.1), let us observe a simple fact: if some
{fup =&+ ,ug, = ¢} is the minimizing sequence and if u; € By(m),
then j — oo, k; —j — oo as i — oco. It implies that k; — jl + j; — oo.
So (7.1) contradicts the definition of h2° since we choose k; — oo being
such a subsequence that limg, o0 b, (&,m, ) = h3%, (£, m, (). For the
second alternative, by cutting off one piece 7|[j¢,jﬂ or both 7|[j¢,jﬂ and
7I(jz.1,) We can construct a curve 7' such that [y'];, # 0 and (7.1) holds
for 4/. But it is also absurd.

For the second step, let us recall that the support of each ¢ =
(¢g,Y(cq))-minimal measure is in a small é-neighborhood of the circle
Ny if the perturbation is sufficiently small. Let . (¢,m) be the forward
c-semi-static curve such that v (0,m) = m, let 7. (¢,m) be the back-
ward c-semi-static curve such that v, (0,m) = m. Denote by W*"(c)
the stable and unstable set for the support of the c-minimal measure,
which contains forward and backward semi-static orbits respectively, we
define

Sto,tr = U WQSE(U’ ).
uw€ONgp s

(u,u) WY (c)
to<t<ty

If § is suitably small and k is suitably large, then
i, H1(Nsks, Nis, Z) = 0;

ii,
{m;ﬁi(u,u) :V u € ONggs, (u,u) € W%(c), t € [—3,3]} C N3gs\Ngs;

iii, v (t,m), 7o (—t,m) stay in Nays for all ¢ > 0 if m € S_g 5.
Thus, there exists b > 0 such that v (¢,m) does not visit By(m) again
when t > 1, and ~, (t,m) does not visit By(m) again when ¢ < —1.

We assume the c-minimal measure is uniquely ergodic. Given u €
S_2,2, there is a minimizing curve ~(t) for g%, (£, u, () in the sense that

there are two sequence {k; }, {k; }, such that v(k]") — &, v(—k;) — ¢,
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~v(0) = u and

o

hee, (§,2,¢) = lim (Le(dy(t, u)) + alc))dt.
b —oo =k

k. —oo
1

Obviously, v is smooth everywhere except for ¢ = 0, and either {dv(t, z) :
t <0} C Naps or {dy(t,x) : t > 0} C N3k alternatively.

Let m € S_y/31/2- We consider the case that the minimal curve
{7()} of h3%, (&, m, ) returns to a small ball By(m) in the sense that
there is some i € Z\0 such that v(i) € By(m). Without losing generality,
we assume ¢ > 0, the case that ¢ < 0 can be treated similarly. Let us
consider the minimizing curve v, (t) for g%, (£,7(2),¢) and 42(0) = ~(2).

In this case, y2(t) = v(t + 2) for all £ > 0. We claim that ~»(t) does
not return to By(y(2)) if we choose suitably small b > 0. Otherwise,
from the continuity of the solution of ODE on initial value we can see
that the minimal curve 7 shall return again to a small neighborhood of
m at t = 24, but this contradicts to the fact there is at most one point
of the minimal configuration falls into the small ball B,(m). Obviously,
{m(t) : t <0} C N3is in this case.

If for some m € S_5/55/2, the minimizing curve v with v(0) = m
for h2°(&,m, () does not return to Boy(m) for all k& € Z\{0}, then for
m/ suitably close to m and ¢ suitably close to ¢, the minimizing curve
7 (t) for A3 (&, m, () with 7/(0) = m' does not return to Bgy(z) for
all k € ZT\{0} either. Therefore, there is an open set O. C S_33
and a neighborhood for ¢ such that for each m € O, each ¢’ in the
neighborhood of ¢, and each minimizing curve y for h? o (&,m, ) with
7(0) = m, (i) ¢ By(x) for all i € Z\{0}.

Note any minimizing curve v for hce, (§,m,() must pass through
S_1/2,1/2, we have proved

Lemma 7.1. Assume that the c-minimal measure is uniquely ergodic
for each ¢ = (cq,y(cq)) (A < cq < B). There is a small positive number
e=¢€(A,B,k) >0, if |Li||cr <, then:

i) an open sets O, exists such that ¥ dy € N(c, M)\N (¢, M), there
is k € Z such that y(k) € O.;

ii), there is b > 0 such that for each ¢ = (cq,y(cq)) with A < ¢y < B,
if the generating function is subject to a small perturbation Ge(u,u') —
Ge(u,v') + G1(u'), where supp(G1) C By(u) C O, then the barrier
function undergoes a small perturbation:

B, (u) — B, (u) + G1(u) + a small constant.

i), U = Ua<e,<BOc is open in [A,B] x M, U = U C M\Nj, where

7 is a standard projection from [A, B] x M to M.
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The next goal is to show that the density of the set {P € C" : {u €
M\N5 : B; ., (u) = min, B, (u)} is totally disconnected}.

For convenience of notation, we set 29 = ¢. Let Ry(u*) = {u € M :
|z — x| < d,V 0 <i<n} CBy(u*), Seo = B:(U) + G4, we say a
connected set V' is non-trivial for Ry if IL(V N Ry) = {2} —d < z; <
xf+d} for some 0 < i < n. Here II; is the standard projection from T+l
to its i-th component. Let My ,~(S) = {u : S(u) = min,cp, ) S}, we
define a set in the function space §(d,u*) = CO(Ry(u*),R),

3(d, u*) = {5 € §(d, u*) : My,+(S) 2 a set non-trivial for Rd(u*)}.
We define 3; (i = 0,1, ,n):
3; = {S € 3(d,u*) : TL(Myu-(S)) = {af —d < a; < aF + d}}.
Clearly:
3(d,u") = O 3
=0

We claim that for each generating function G € C"(M x M,R)
and each € > 0, there is an open and dense set $(d,u*) of Bc(0) C
C"(Rg(u*),R), for each G7 € H(d,u*), the image of S, from [A’, B'] to
¥ has no intersection with the set 3;.

Obviously, the set 3; is a closed set and has infinite co-dimension in
the following sense, there exists 91;, an infinite dimensional subspace of
§, such that (S+F') ¢ 3; for all S € 3; and F' € 91\{0}. In fact, for each
non constant function F(x;) € C%([z} — d,x} + d],R) with F(z}) = 0
and each S € 3; we have S+ F ¢ 3;. Thus, we can choose

N = C%[e] —d, 2} +d|.R)/R,

which we think as the subspace of C°(R4(u*),R) consisting of those
continuous functions independent of other coordinate components xz;
(J # 1)
Let
S ={B: o€ [A,B]}.

c(o),e1
Clearly, this set is determined by the generating function G. Recall the
Lemma 6.4, we can extend B}, . to a function [4, B] x [A",B'] — §

c(o),e
that has 1-Holder continuity, the image of the continuous curve {o, ¢(o)}
C [A, B] x [A/, B'] is compact and its box dimension is not bigger than
4,

DB (ga) S 4.
Let
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Lemma 7.2. There is an open and dense set " C N such that for
all F € 9t*

(7.2) F+F)N3=0.

Proof. : We show (F, + F) N 3; = @ for each 0 < i < n. The open
property is obvious. If there was no density property, for any k € Z,
there would be a k-dimensional e-ball B, C 91; for some € > 0, for each
I € B, there would exist S € §, such that '+ S € 3;.

For each S € F, there is only one F € B, such that S + F € 3;,
otherwise, there would be F’ # F such that S + F’ € 3;. Since we can
write I/ +S = F/ — F+ F + S where S+ F € 3; and F' — F € 9M;\{0},
this contradicts to the definition of 91;. Given F' € B, there might be
more than one element in Sp = {S € §, : S+ F € 3;}. Given any two
Fy, F, € B, for any S1 € 6, and any Sy € G, we have

(7.3) d(S1,52) = max |Si(u) — So(u)

u€ERg(u*)
> max min  Si(u) — min Sa(u)
\xi—mﬂgd \acjfzc;f\gd \acjfzc;f\gd
i i
= max |Fi(x;) — Fo(x;
e Fi(z) ~ Fife)
= d(FlaFZ)

where d(-,-) denotes the C%-metric. It follows from (7.3) and the defi-
nition of box dimension that

DB(%J) > DB(BE) = k,
but this is absurd if we choose k > 4. q.e.d.

As O is dense in C°, an open and dense set $(d, u*) C C"(Rg(u*),R)
clearly exists such that for each function Gy € $(d,u*), we have

B +G1)N3(du")=2, VoeES,

where by abuse of terminology we continue to denote S, and its restric-
tion to Rg(u*) by the same symbol.
Let U be an open set, My (S) = {u: S(u) = min,ey S} and

3= {S € C%(U,R) : My(S) is totally disconnected }

Given d; > 0, there are finitely many u;; such that U;Rg, (u;;) 2 U.
Thus there exists a sequence d; — 0 and a countable set {u;;} such that
for each G € 0?3:1 S’)(dl,uw)

ga"'_Gl C3C-

Recall the Lemma 3.4, we have the following
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Lemma 7.3. There exists a residual set Sc C B. C C"(U,R) (r =
w,00,0r > 3), for each Gy € S¢

miNy(e(o), M)O\(No(c(o), M) + &) is totally disconnected
when o € S.

Proof. : For r = oo or r = finite, we can write G; = ), G1; where
G1; has its support at Ry, (u) and there exists d} > 0 such that Rg, (u) x
{leg — ci] < d?} € U and U;jRy,(u) x {|c; — ¢;| < df} = U, taking the
intersection of countably many open-dense sets of C"-function space, we
obtain the residual property.

The perturbation to the generating function G can be achieved by
perturbing the Hamiltonian function H — H' = H + 0H. To do that,
let us introduce a differentiable function x: M — R such that 0 < k(u—
u) <1, k(u—u)=1if [lu—u| < Kand k(u—u') = 0if [u—u'| > K+1.
We choose sufficiently large K so that {||v|| < max(|A[,|B]|) + 1} is
contained in the set where |u — /| < K. Let ® be the map determined
by the generating function G + kG7, the symplectic diffeomorphism
U = & o ! is closed to identity. We choose a smooth function p(s)
with p(0) = 0 and p(1) = 1, let @/, be the symplectic map determined
by G + p(s)kG1i, let ¥, = & 0 ®~1. Clearly, ¥, defines a symplectic
isotopy between identity map and W. Thus, there is a unique family of
symplectic vector field X,: T*M — TT*M such that

d%\lls =X,0U,.

By the choice of perturbation, there is a simply connected and compact
domain Dy such that W,|p«pp p, = id. It follows that there is a hamil-
tonian Hj(u,v,s) such that dH1(Y) = dv A du(Xs,Y) holds for any
vector field Y. Re-parameterizing s by ¢ we can make H; smoothly and
periodically depend on t. To see that dH; is also small, let us mention
a theorem of Weinstain [W]. A neighborhood of the identity map in
the symplectic diffeomorphism group of a compact symplectic manifold
M can be identified with a neighborhood of the zero in the vector space
of closed 1-forms on M. Since Hamiltomorphism is a subgroup of sym-
plectic diffeomorphism, there is a function H’, sufficiently close to H,
such that ®p, o D = b, |—1.

The perturbation made to H does not change the dynamics around
the cylinder, it means that the set of invariant circles remains unchanged
if H is subject to the perturbation constructed this way.

In the case of twist map, each co-homology class corresponds to a
unique rotation number. Obviously, for each rotation number p/q € Q,
there is an open and dense set in the space of area-preserving twist
maps such that there is only one minimal (p, ¢)-periodic orbit without
homoclinic loop. Take the intersection of countably open dense sets it
is a generic property that there is only one minimal (p, ¢)-periodic orbit



276 C.-Q. CHENG & J. YAN

without homoclinic loop for all p,q € Z. Recall that the minimal mea-
sure is always uniquely ergodic when the rotation number is irrational,
there is a residual set in B f, such that if Ly is in this set, then there
is a generalized transition chain I': [0,1] — H'(M,R) N {c, = 0} which
connects {¢; < A} with {¢; > B}. For each ¢ in a transition piece,
M(c) is uniquely ergodic, thus the conditions of the Theorem 5.1 are
satisfied. Therefore, there is a residual set of small perturbations in
Be, i, such that the perturbed systems has an orbit connecting {p < A}
to {p > B}.

Therefore, the proof of the Theorem 1.2 is completed. The Theorem
1.1 is a special case of the Theorem 1.2. q.e.d.
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