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ARNOLD DIFFUSION IN HAMILTONIAN SYSTEMS:

A PRIORI UNSTABLE CASE

Chong-Qing Cheng & Jun Yan

Abstract

By using variational method and under generic condition, we
show that Arnold diffusion exists in a priori hyperbolic and time-
periodic Hamiltonian systems with multiple degrees of freedom.

1. Introduction

In this paper we consider a priori hyperbolic and time-periodic Hamil-
tonian system with arbitrary n+1 degrees of freedom. The Hamiltonian
has the form

(1.1) H(u, v, t) = h1(p) + h2(x, y) + P (u, v, t)

where u = (q, x), v = (p, y), (p, q) ∈ R×T, (x, y) ∈ Tn×Rn, P is a time-
1-periodic small perturbation. H ∈ Cr (r = 3, 4, · · · ,∞) is assumed to
satisfy the following hypothesis:

H1, h1+h2 is a convex function in v, i.e., Hessian matrix ∂2
vv(h1+h2)

is positive definite. It is finite everywhere and has superlinear growth
in v, i.e., (h1 + h2)/‖v‖ → ∞ as ‖v‖ → ∞.

H2, it is a priori hyperbolic in the sense that the Hamiltonian flow
Φt
h2

, determined by h2, has a non-degenerate hyperbolic fixed point
(x, y) = (0, 0) and the function h2(x, 0) : Tn → R attains its strict
maximum at x = 0 mod 2π. We set h2(0, 0) = 0.

Here, we do not assume the condition on the hyperbolic fixed point
that its stable manifold coincides with its unstable manifold.

Let Bǫ,K denote a ball in the function space Cr({(u, v, t) ∈ Tn+1 ×
Rn+1×T : ‖v‖ ≤ K} → R), centered at the origin with radius of ǫ. Now
we can state the main result of this paper, it is a higher dimensional
version of the theorem formulated by Arnold in [Ar1] where it was
assumed that n = 1.
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Theorem 1.1. Let A < B be two arbitrarily given numbers and

assume H satisfies the hypotheses H1 and H2. There exist a small

number ǫ > 0, a large number K > 0 and a residual set Sǫ,K ⊂ Bǫ,K
such that for each P ∈ Sǫ,K there exist orbits of the Hamiltonian flow

which connect the region with p < A to the region with p > B.

Remark: From the proof we can see the following. For each P ∈ Sǫ,K ,
there is an orbit which drifts from {p ≤ A} to {p ≥ B} in finite time.
The smooth dependence of solutions of ODE’s on parameters implies
that the theorem holds if perturbation is in a small neighborhood of
that residual set, i.e. the set Sǫ,K can be open and dense.

The main result of this paper can be extended to more general case:

(1.2) H(u, v, t) = h(x, v) + P (u, v, t)

where u = (q, x), v = (p, y), (p, q) ∈ R × T, (x, y) ∈ Tn × Rn, P is
a time-1-periodic small perturbation, H ∈ Cr (r = 3, 4, · · · ,∞). We
assume that h satisfies the following three hypothesis:

H1’: h is a convex function in v, i.e. the Hessian matrix ∂2
vvh is

positive definite. It is finite everywhere and has super-linear growth in
v, i.e., h/‖v‖ → ∞ as ‖v‖ → ∞.

Under this hypothesis, there exists a function y = f(x, p) such that
the equation ∂h

∂y (x, p, f(x, p)) = 0 holds. Although h is not integrable

in general, the Hamiltonian flow Φt
h, determined by h, has a family of

invariant circles {q ∈ T, p = const., x = x(p), y = f(x(p), p)} where x(p)
represents the critical point of h(x, p, f(x, p)), as the function of x ∈ Tn.

H2’: For each p, if x(p) is a maximum point of h(x, p, f(x, p)), then
it is also the maximum point of the function h(x, p, f(x(p), p)). There is
a locally finite set P = {pj} ⊂ R, for each p ∈ R\P there exists a unique
x(p) ∈ Tn such that h(x, p, f(x, p)) attains its global maximum at x(p);
for each p ∈ P, h(x, p, f(x, p)) has exactly two global maximum points
x(p) and x′(p). For p ∈ P, we also assume that ∂ph|x(p) 6= ∂ph|x′(p).

Under the hypothesis H2’, if h(x, p, f(x, p)) has two maximum points
at x(p) and x′(p), then we have f(x′(p), p) = f(x(p), p). That follows
from the positive definite condition of h in y and from the condition
that ∂yh(x, p, f(x, p)) = 0. So we can define y(p) = f(x(p), p).

H3’: h is a priori hyperbolic in the sense that the Hessian of h(x, p, y)

in x at its maximum point, ∂2h
∂x2 is negative definite.

Let c = (p, y(p)) ∈ Rn+1. The hypothesis H2’ is assumed so that
the c-minimal measure has its support on the invariant circle {T ×
(x(p), p, y(p))} for each p ∈ R\P, the support is on two circles for each
p ∈ P. The hypothesis H3’ guarantees that these invariant circles are
normally hyperbolic.
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The motivation for us to study such kind of a priori hyperbolic sys-
tems mainly comes from the problem of Arnold diffusion in nearly inte-
grable Hamiltonian systems of KAM type:

H(u, v, t) = h(v) + ǫP (u, v, t, ǫ), u ∈ Tn, v ∈ Rn, t ∈ T.

Let Γ be a curve in the action variable space where the frequencies
satisfy at least n − 1 resonant conditions, i.e. there are n − 1 linearly
independent integer vectors (ki, li) ∈ Zn+1, (i = 1, 2, · · · , n − 1), such
that

〈

∂h(v)

∂v
, ki

〉

+ li = 0, ∀ v ∈ Γ ⊂ Rn.

For v ∈ Γ, the n + 1-dimensional torus v = const. admits a foliation
of 2-dimensional invariant tori σ for Φt

h. Taking the average over these
tori

h1((̂u, t), v, ǫ) =

∫

σ
P (u, v, t, ǫ)dσ,

we obtain an equivalent system

H(u, v, t) = h(v) + ǫh1((̂u, t), v, ǫ) + ǫP1(u, v, t, ǫ);

here (̂u, t) is clearly an (n − 1)-dimensional variable. If the frequencies
of the flow on these two dimensional tori are not strongly resonant, by
one step of KAM iteration one can set

|ǫP1(u, v, t, ǫ)| = O(ǫ1+κ), κ > 0.

By introducing a canonical coordinate transformation we can write the
system in the form

H(q, x, p, y, t) = h0(p, y) + ǫh1(x, p, y, ǫ) +O(ǫ1+κ),

where q ∈ T, x ∈ Tn−1, p ∈ R and y ∈ Rn−1. In this case, the
hypotheses H1’∼3’ are satisfied if h1 satisfies some generic conditions.
To see that, we let h = h0 + ǫh1, let f(x, p) be the function such that
∂yh(x, p, f(x, p)) = 0 and let x(p) be the maximum point of the function
h(x, p, f(x, p)). Since h0 is independent of x, for all {x, p, f(x, p) : x ∈
Tn−1} we have

d2h

dx2
= ǫ

∂2h1

∂x2
− ǫ2

∂2h1

∂x∂y

(

∂2h

∂y2

)−1
∂2h1

∂y∂x
,

where we use ∂
∂x to denote the derivative of the function h(x, p, y) in x

and use d
dx to denote the derivative of the function h(x, p, f(x, p)) in x.

It follows that x(p) is at least a local maximum point of the function
h(x, p, f(x(p), p)) and the invariant circle {T × (x(p), p, f(x(p), p))} is
normally hyperbolic if h1 is non-degenerate at its maximum point and
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if ǫ is sufficiently small. In fact, since the total variation of the function
Varx∈Tnf(x, p) = O(ǫ), we have

max
x

h(x, p, f(x(p), p)) − h(x(p), p, f(x(p), p)) ≤ O(ǫ2).

It follows that x(p) is a maximum point of the function h(x, p, f(x(p), p))

if we perturb the function h(x, p, y) by a small function ǫ2h̃(x, p). We

may think ǫ2h̃(x, p) as a higher order perturbation. Thus, the invariant
circle {T× (x(p), p, f(x(p), p))} is the support of the c-minimal measure
for the Lagrange action determined by h0 + ǫh1 if h1 has some non-
degenerate property, where c = (p, f(x(p), p)). For the system (1.2) the
theorem 1.1 also holds:

Theorem 1.2. Let A < B be two arbitrarily given numbers and

assume H = h + P satisfies the hypotheses (H1’ ∼ 3’). There exist a

small number ǫ > 0, a large number K > 0 and a residual set Sǫ,K ⊂
Bǫ,K such that for each P ∈ Sǫ,K there exist orbits of the Hamiltonian

flow which connect the region with p < A to the region with p > B.

In his celebrated paper [Ar1], Arnold constructed an example of
nearly integrable Hamiltonian system with two and half degrees of free-
dom, in which there are some unstable orbits in the sense that the action
undergoes substantial variation along these orbits. Such orbits are usu-
ally called diffusion orbits. Although this example does not have generic
property, Arnold still asked whether there is such a phenomenon for a
“typical” small perturbation (cf. [Ar2],[Ar3]).

Variational method has its advantage in the study of Arnold dif-
fusion problem, it needs less geometrical structure information of the
system. The pioneer work of Mather in [Ma1] and in [Ma2] provides
a variational principle for time-periodically dependent positive definite
Lagrangian systems. In our previous paper [CY], by using the varia-
tional method, we have shown that the diffusion orbits exist in generic
a priori unstable time-periodic Hamiltonian systems with two degrees
of freedom, this result was announced by Xia six years earlier ([Xia]).
Using geometrical method, some substantial progresses has been made
in [DLS] as well as in [Tr] that diffusion orbits exist in some types
of a priori unstable and time-periodic Hamiltonian systems with two
degrees of freedom. For a priori stable case, the only announcement
was made by Mather in [Ma3] for systems with two degrees of freedom
in time-periodic case, or with three degrees of freedom in autonomous
case, under so-called cusp residual condition.

In this paper we still use variational arguments to construct diffu-
sion orbits. In order to use variational method, we put the problem of
consideration into Lagrangian formalism. Let M be a closed manifold,
H : T ∗M × T → R be a smooth Hamiltonian which is positive definite
on each cotangent fiber. Using Legendre transformation L ∗ : H → L
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we obtain the Lagrangian

L(u, u̇, t) = max
v

{〈v, u̇〉 −H(u, v, t)}.

Here u̇ = u̇(u, v, t) is implicitly determined by u̇ = ∂H
∂v . We denote by

L : (u, v, t) → (u, u̇, t) the coordinate transformation determined by
the Hamiltonian H.

In the Lagrangian formalism, the Hamiltonian equation (1.1) is equiv-
alent to the Lagrange equation

(1.3)
d

dt

(

∂L

∂u̇

)

− ∂L

∂u
= 0.

This equation corresponds to the critical point of the functional

Ac(γ) =

∫

(L− ηc)(γ, γ̇, t)dt,

where ηc = 〈ηc(q), q̇〉, ηc(q) denotes a closed 1-form 〈ηc(q), dq〉 evaluated
at q, and its de-Rham cohomology [〈ηc(q), dq〉] = c ∈ H1(M,R). For
convenience and without danger of confusion, we call ηc closed 1-form
also.

To apply the Mather theory directly, we introduce a modified La-
grangian

(1.4) L̃ = L0(u̇)ρ(u̇) + (1 − ρ(u̇))L(u, u̇, t),

in which L0(u̇) is strictly convex in u̇ and has super-linear growth in
‖u̇‖; ρ(u̇) = 1 when ‖u̇‖ ≥ 2K, ρ(u̇) = 0 when ‖u̇‖ ≤ K. Clearly,

we can choose some ρ(u̇) so that L̃ is convex in u̇ also. This system
is integrable near infinity, so each solution is defined for all t ∈ R.
We choose sufficiently large K so that the diffusion orbits we search for
remain in the region {‖u̇‖ ≤ K} where the Lagrangian L̃ and L generate
the same phase flow. So, we can assume that the Lagrangian L satisfies
the conditions:

Positive definiteness. For each (u, t) ∈M×T, the Lagrangian func-
tion is strictly convex in velocity: the Hessian Lu̇u̇ is positive definite;

Super-linear growth. We suppose that L has fiber-wise super-linear
growth: for each (u, t) ∈M × T, we have L/‖u̇‖ → ∞ as ‖u̇‖ → ∞.

Completeness. All solutions of the Lagrangian equations are well
defined for all t ∈ R.

Let I = [a, b] be a compact interval of time. A curve γ ∈ C1(I,M)
is called a c-minimizer or a c-minimal curve if it minimizes the action
among all curves ξ ∈ C1(I,M) which satisfy the same boundary condi-
tions:

Ac(γ) = min
ξ(a)=γ(a)
ξ(b)=γ(b)

∫ b

a
(L− ηc)(dξ(t), t)dt.
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If J is a non compact interval, the curve γ ∈ C1(J,M) is said a c-
minimizer if γ|I is c-minimal for any compact interval I ⊂ J . Let φtL be
the flow determined by the Lagrangian L, an orbit x(t) of φtL is called
c-minimizing if the curve π ◦X is c-minimizing, where the operator π is
the standard projection from tangent bundle to the underling manifold
along the fibers, a point (z, s) ∈ TM × R is c-minimizing if its orbit

φtL(z, s) is c-minimizing. We use G̃L(c) ⊂ TM × R to denote the set of
minimal orbits of L− ηc (the c-minimal orbits of L). We shall drop the
subscript L when it is clear which Lagrangian is under consideration.
It is not necessary to assume the periodicity of L in t for the definition
of G̃. When it is periodic in t, G̃(c) ⊂ TM × R is a nonempty compact
subset of TM × T, invariant for φtL.

The definition of action along a C1-curve can be extended to the
action on a probability measure. Let M be the set of Borel probability
measures on TM × T, invariant for φtL. For each ν ∈ M, the action
Ac(ν) is defined as the following:

Ac(ν) =

∫

(L− ηc)dν.

Mather has proved in [Ma1] that for each first de Rham cohomology
class c there is an invariant probability measure µ which minimizes the
actions over M

Ac(µ) = inf
ν∈M

∫

(L− ηc)dν.

We use M̃(c) to denote the support of the measure and call it Mather
set. α(c) = −Ac(µ) : H1(M,R) → R is called α-function. Its Legendre
transformation β: H1(M,R) → R is called β-function. Both functions
are convex, finite everywhere and have super-linear growth.

To define Aubry set and Mañé set we let

hc((m, t), (m
′, t′)) = min

γ∈C1([t,t′],M)

γ(t)=m,γ(t′)=m′

∫ t′

t
(L− ηc)(dγ(s), s)ds + (t′ − t)α(c),

Fc((m, s), (m
′, s′)) = inf

t=s mod 1
t′=s′ mod 1
t′−t≥1

hc((m, t), (m
′, t′))

h∞c ((m, s), (m′, s′)) = lim inf
s=t mod 1
t′=s′ mod 1
t′−t→∞

hc((m, t), (m
′, t′)),

hkc (m,m
′) = hc((m, 0), (m

′, k)),

h∞c (m,m′) = h∞c ((m, 0), (m′, 0)),

Fc(m,m
′) = Fc((m, 0), (m

′, 0))

dc(m,m
′) = h∞c (m,m′) + h∞c (m′,m).
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It was showed in [Ma2] that dc is a pseudo-metric on the set {x ∈
M : h∞c (x, x) = 0}. A curve γ ∈ C1(R,M) is called c-semi-static if

Ac(γ|[a,b]) + α(c)(b − a) = Fc(γ(a), γ(b), amod 1, bmod 1)

for each [a, b] ⊂ R. A curve γ ∈ C1(R,M) is called c-static if, in addition

Ac(γ|[a,b]) + α(c)(b − a) = −Fc(γ(b), γ(a), bmod 1, amod 1)

for each [a, b] ⊂ R with b − a ≥ 1. An orbit X(t) = (dγ(t), tmod 2π)
is called c-static (semi-static) if γ is c-static (semi-static). We call the

Mañé set Ñ (c) the union of global c-semi-static orbits, and call the

Aubry set Ã(c) the union of c-static orbits. We can also define cor-

responding Aubry sets and Mañé sets for some covering manifold M̃
respectively. Obviously, the c-static (semi-static) orbits for M̃ is not
necessarily c-static (semi-static) for M .

We use M(c), A(c), N (c) and G(c) to denote the standard projection

of M̃(c), Ã(c), Ñ (c) and G̃(c) from TM ×T to M ×T respectively. We
have the following inclusions ([Be2])

M̃(c) ⊆ Ã(c) ⊆ Ñ (c) ⊆ G̃(c).

It was showed in [Ma2] that the inverse of the projection is Lipschitz
when it is restricted to A(c) and M(c).

In the following we use the symbol Ñs(c) = Ñ (c)|t=s to denote the
time s-section of a Mañé set, and so on. We use ΦH to denote the
time-1-map of Φt

H |t=1, and use φL to denote the time-1-map of φtL|t=1

respectively.
This paper is organized as follows. In the section 2 we introduce

so-called pseudo connecting orbit set and establish the upper semi-
continuity of these sets. Such property is used to show the existence
of local minimal orbits connecting some Mañé set to another Mañé set
nearby. In the section 3, we investigate the topological structure of
the Mañé sets and the pseudo connecting orbit sets, they correspond
to those cohomology classes through which the diffusion orbits is con-
structed. The Mañé sets for a finite covering of the manifold M̃ may
have very different structure from those for M . In the section 4, by
making use of the upper semi-continuity of Mañé sets, the existence of
local connecting orbits is established if the Mañé set has some kind of
topological triviality. The section 5 is devoted to the construction of dif-
fusion orbits if there is a so-called generalized transition chain along the
corresponding path in the first de-Rham cohomology space. To show
the generic condition we establish some Hölder continuity of the barrier
functions in the section 6, with which the generic property is proved in
the last section.
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2. Upper semi-continuity

The variational construction of diffusion orbits depends on the upper
semi-continuity of some set functions.

Lemma 2.1. We assume L ∈ Cr(TM × R,R) (r ≥ 2) satisfies the

positive definite, superlinear-growth and completeness conditions, where

M is a compact, connected Riemanian manifold. Considered as the

function of t, L is assumed periodic for t ∈ (−∞, 0] and for t ∈ [1,∞).

Then the map L → G̃L ⊂ TM × R is upper semi-continuous. As an

immediate consequence, the map c → G̃(c) is upper semi-continuous if

L is periodic in t.

The proof of this lemma was provided in [Be2] and [CY]. We can
consider t is defined on (T ∨ [0, 1] ∨ T)/ ∼, where ∼ is defined by
identifying {0} ∈ [0, 1] with some point on one circle and identifying
{1} ∈ [0, 1] with some point on another circle. Let Uk = {(ζ, q, t) :
(q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ζ‖ ≤ k, }, ∪∞

k=1Uk = TM × R. Let
Li ∈ Cr(TM × T,R). We say Li converges to L if for each ǫ > 0 and
each Uk there exists i0 such that ‖L− Li‖Cr(Uk,R) ≤ ǫ if i ≥ i0.

To establish some connection between two Mañé sets Ñ (c) and Ñ (c′),
we consider a modified Lagrangian

Lη,µ,ψ = L− η − µ− ψ

where η is a closed 1-form on M such that [η] = c, µ is a 1-form de-
pending on t in the way that the restriction of µ on {t ≤ 0} is 0, the
restriction on {t ≥ 1} is a closed 1-form µ̄ on M with [µ̄] = c′ − c. Usu-
ally, this µ is called U -step 1-form ([Be2]). ψ is a function on M × R,
ψ(·, t) = 0 for all t ∈ (−∞, 0] ∪ [1,∞). Let m,m′ ∈M , we define

hT0,T1

η,µ,ψ(m,m′) = inf
γ(−T0)=m

γ(T1)=m′

∫ T1

−T0

Lη,µ,ψ(dγ(t), t)dt + T0α(c) + T1α(c′).
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Clearly ∃ m∗ ∈ M and some constants C1, C2, independent of T0, T1,
such that

hT0,T1

η,µ,ψ (m,m′) ≤ hT0
c (m,m∗) + hT2

c′ (m∗,m′) + C1

≤ C2.

Thus its limit infimum is bounded

h∞η,µ,ψ(m,m′) = lim inf
T0,T1→∞

hT0,T1

η,µ,ψ (m,m′) ≤ C2.

Let {T i0}i∈Z+ and {T i1}i∈Z+ be the sequence of positive integers such

that T ij → ∞ (j = 0, 1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i0 ,T

i
1

η,µ,ψ (m,m′) = h∞η,µ,ψ(m,m′).

Let γi(t,m,m
′): [−T i0, T i1] →M be a minimizer connecting m and m′

h
T i0 ,T

i
1

η,µ,ψ (m,m′) =

∫ T i1

−T i0

Lη,µ,ψ(dγi(t), t)dt + T i0α(c) + T i1α(c′).

It is not difficult to see that for any compact interval [a, b], the set {γi}
is pre-compact in C1([a, b],M).

Lemma 2.2. Let γ: R → M be an accumulation point of {γi}. If

s ≥ 1 then

(2.1)

ALη,µ,ψ(γ|[s, τ ]) = inf
τ1−τ∈Z,τ1>s

γ∗(s)=γ(s)

γ∗(τ1)=γ(τ)

∫ τ1

s
Lη,µ,ψ(dγ∗(t), t)dt + (τ1 − τ)α(c′);

if τ ≤ 0 then

(2.2) ALη,µ,ψ(γ|[s, τ ]) = inf
s1−s∈Z,s1<τ

γ∗(s1)=γ(s)

γ∗(τ)=γ(τ)

∫ τ

s1

Lη,µ,ψ(dγ∗(t), t)dt−(s1−s)α(c);

if s ≤ 0 and τ ≥ 1 then

ALη,µ,ψ(γ|[s, τ ]) = inf
s1−s∈Z, τ1−τ∈Z

s1≤0, τ1≥1

γ∗(s1)=γ(s)

γ∗(τ1)=γ(τ)

∫ τ1

s1

Lη,µ,ψ(dγ∗(t), t)dt(2.3)

− (s1 − s)α(c) + (τ1 − τ)α(c′).

Proof. : Let us suppose the contrary, for instance, (2.2) does not
hold. Thus there would exist ∆ > 0, s < τ ≤ 0, s1 < τ ≤ 0, s1 − s ∈ Z
and a curve γ∗: [s1, τ ] →M with γ∗(s1) = γ(s), γ∗(τ) = γ(τ) such that

ALη,µ,ψ(γ|[s, τ ]) ≥
∫ τ

s1

Lη,µ,ψ(dγ∗(t), t)dt − (s1 − s)α(c) + ∆.
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Let ǫ = 1
4∆. By the definition of limit infimum there exist T i00 > 0 and

T i01 > 0 such that

(2.4) hT0,T1

η,µ,ψ (m0,m1) ≥ h∞η,µ,ψ(m0,m1) − ǫ, ∀ T0 ≥ T i00 , T1 ≥ T i01 ,

and there exist subsequences T ikj (j = 0, 1, k = 0, 1, 2, · · · ) such that for
all k > 0

(2.5) T ik0 − T i00 ≥ s− s1,

(2.6)

∣

∣

∣

∣

h
T
ik
0 ,T

ik
1

η,µ,ψ (m0,m1) − h∞η,µ,ψ(m0,m1)

∣

∣

∣

∣

< ǫ.

By taking a subsequence further we can assume γik → γ. In this case,
we can choose sufficiently large k such that γik(s) and γik(τ) are so
close to γ(s) and γ(τ) respectively that we can construct a curve γ∗ik :

[s1, τ ] → M which has the same endpoints as γik : γ∗i (s1) = γi(s),
γ∗i (τ) = γi(τ) and satisfies the following

(2.7) ALη,µ,ψ(γik |[s, τ ]) ≥
∫ τ

s1

Lη,µ,ψ(dγ∗ik(t), t)dt − (s1 − s)α(c) +
3

4
∆.

Let T ′
0 = T ik0 + (s− s1), if we extend γ∗ik to R →M such that

γ∗ik =











γik(t− s1 + s), t ≤ s1,

γ∗ik(t), s1 ≤ t ≤ τ,

γik(t), t ≥ τ,

then we obtain from (2.6) and (2.7) that

h
T ′
0,T

ik
1

η,µ,ψ (m0,m1) ≤ ALη,µ,ψ (γ∗ik |[−T
′
0, T

ik
1 ]) − T ik1 α(c′) − T ′

0α(c)

≤ ALη,µ,ψ (γik |[−T ik0 , T ik1 ]) − T ik1 α(c′) − T ik0 α(c) − 3

4
∆

≤ h∞η,µ,ψ(m0,m1) − 2ǫ.

but this contradicts (2.4) since T ′
0 ≥ T i00 and T ik1 ≥ T i01 , guaranteed by

(2.5). (2.1) and (2.3) can be proved in the same way.
q.e.d.

With this lemma it is natural to define

C̃η,µ,ψ = {dγ ∈ G̃Lη,µ,ψ : (2.1), (2.2) and (2.3) hold }.
Although the elements in this set are not necessarily the orbits of the
Lagrangian flow determined by L, the α-limit set of each element in
this set is contained in Ñ (c), the ω-limit set is contained in Ñ (c′).
Due to this reason, we call it pseudo connecting orbit set. Obviously
C̃η,0,0 = Ñ (c). For convenience we may drop the subscript ψ in the

symbol when it is equal to zero, i.e. C̃η,µ := C̃η,µ,0.
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Lemma 2.3. The map (η, µ, ψ) → C̃η,µ,ψ is upper semi-continuous.

C̃η,0,0 = Ñ ([η]). Consequently, the map c → Ñ (c) is upper semi-

continuous too.

Proof. : Let ηi → η, µi → µ and ψi → ψ, let γi ∈ C̃ηi,µi,ψi and

let γ be an accumulation point of the set {γi ∈ C̃ηi,µi,ψi}i∈Z+ . Clearly,

γ ∈ C̃η,µ,ψ. If γ /∈ C̃η,µ,ψ there would be two point γ(s),γ(τ) ∈ M such
that one of the following three possible cases takes place. Either γ(s)
and γ(τ) ∈ M can be connected by another curve γ∗: [s + n, τ ] → M
with smaller action

ALη,µ,ψ(γ|[s, τ ]) < ALη,µ,ψ(γ∗|[s+ n, τ ]) − nα(c)

in the case τ < 0; or there would a curve γ∗: [s, τ + n] →M such that

ALη,µ,ψ(γ|[s, τ ]) < ALη,µ,ψ(γ∗|[s, τ + n]) − nα(c′)

in the case s ≥ 1, or when s ≤ 0 and τ ≥ 1 there would be a curve γ∗:
[s+ n1, τ + n2] →M such that

ALη,µ,ψ(γ|[s, τ ]) < ALη,µ,ψ (γ∗|[s+ n1, τ + n2]) − n1α(c) − n2α(c′)

where s + n1 ≤ 0, τ + n2 ≥ 1. Since γ is an accumulation point of
γi, for any small ǫ > 0, there would be sufficiently large i such that
‖γ − γi‖C1[s,t] < ǫ, it follows that γi /∈ C̃ηi,µi,ψi but that is absurd.

Let us consider the case that µ = 0 and ψ = 0. In this case, L− η is
periodic in t. If some orbit γ ∈ C̃η,0,0: R → M is not semi-static, then
there exist s < τ ∈ R, n ∈ Z, ∆ > 0 and a curve γ∗: [s, τ + n] → M
such that γ∗(s) = γ(s), γ∗(τ + n) = γ(τ) and

ALη,0,0(γ|[s, τ ]) ≥ ALη,0,0(γ
∗|[s, τ + n]) − nα(c) + ∆.

We can extend γ∗ to [s1, τ1 + n] → M such that s1 ≤ min{s, 0},
min{τ1, τ1 + n} ≥ 1, τ1 ≥ τ and

γ∗ =











γ(t), s1 ≤ t ≤ s,

γ∗(t), s ≤ t ≤ τ + n,

γ(t− n), τ + n ≤ t ≤ τ1 + n.

Since L− η is periodic in t, we would have

ALη,0,0(γ|[s1, τ1]) ≥ ALη,0,0(τ
∗γ|[s1, τ1 + n]) − nα(c) + ∆.

but this contradicts to (2.3). q.e.d.

3. Structure of some Ñ (c) and C̃η,µ,ψ
It is natural to study the topological structure of the Mañé sets if we

want to construct the connecting orbits between them.
Let L be the Lagrangian obtained from H in (1.2) by the Legendre

transformation, it has the form as follows:

(3.1) L(u, u̇, t) = ℓ(q̇, x, ẋ) + L1(u, u̇, t),
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here ℓ = L ∗(h), L1 is a small perturbation. The perturbation term of
the Lagrangian L1 and the perturbation term of the Hamiltonian P is
related by an operator ∆L ∗ induced by the Legendre transformation
L1 = ∆L ∗(P ) = L ∗(h+P )−L ∗(h). We also denote by Bǫ,K the ball

in Cr({(u, u̇, t) ∈ Tk+n × Rk+n × T : ‖u̇‖ ≤ K} → R), centered at the
origin with radius of ǫ. Obviously, there exist ̺ > 0 and large K ′ > 0
such that

∆L
∗(Bǫ,K) ⊂ B̺ǫ,K ′.

Let c = (cq, cx) denote a cohomology class inH1(Tk+n,R) where cq ∈ Rk

and cx ∈ Rn, let ρ(µ) = (ρq(µ), ρx(µ)) denote the rotation vector of the
minimal measure µ. Let

ℓc(q̇, x, ẋ) = ℓ(q̇, x, ẋ) − 〈q̇, cq〉 − 〈ẋ, cx〉.
When c = (p, y(p)), the function ℓc attains its global minimum at some
circle {Lh(x(p), q, p, y(p)) : q ∈ T} which is clearly invariant to the
flow φtℓ. Here we use Lh : (u, v) → (u, u̇) to denote the Legendre
transformation determined by h. By the hypothesis H2’ we find that
there is only one action minimizing circle when p /∈ P and there are
two action minimizing circles, i.e. {Lh(x(p), q, p, y(p)) : q ∈ T} and
{Lh(x

′(p), q, p, y(p)) : q ∈ T}. Obviously, there exists an n-dimensional
convex disk D(cq) ⊂ Rn such that cx = y(cq) is in its interior and for
each c ∈ {cq} × D(cq) the support of the c-minimal measure of ℓ is on
these invariant circles.

To obtain the result of this paper we choose k = 1, but the demon-
stration in the following sections 3, 4 and 5 applies for arbitrary k.
Recall k is the dimension of rotator.

Lemma 3.1. Given large number K > 0 and a small number δ > 0.
There exists a small number ǫ = ǫ(δ) > 0, if cq ∈ {max1≤i≤k |cqi | ≤ K}
and if P ∈ Bǫ,K , then there exists an n-dimensional convex disk D(cq)
which contains the set {c = (cq, cx) : cq = c0q , ‖cx−y(c0q)‖ < Cq} (Cq > 0)
such that

1, for each c ∈ {‖cx − y(cq)‖ < Cq}, if cq is not close to P the Mañé

set Ñ (c) ⊂ {‖x − x(cq)‖ < δ}; if cq is close to some point pi ∈ P,

then the Aubry set Ã(c) ⊂ {‖x − x(cq)‖ < δ} ∪ {‖x − x′(cq)‖ < δ}. If

Ã(c) ∩ {‖x − x(cq)‖ < δ} 6= ∅ and Ã(c) ∩ {‖x − x′(cq)‖ < δ} 6= ∅,

then the Mañé set Ñ (c) contains some orbit dγ: R → TM such that

α(dγ) ⊂ {‖x − x(cq)‖ ≤ δ} and ω(dγ) ⊂ {‖x − x′(cq)‖ ≤ δ}, it also

contain some orbit dγ′: R → TM such that α(dγ′) ⊂ {‖x−x′(cq)‖ ≤ δ}
and ω(dγ′) ⊂ {‖x− x(cq)‖ ≤ δ};

2, for each c ∈ int(D(cq)), if cq is not close to P, the Mather set

M̃(c) ⊂ {‖x− x(cq)‖ < δ}, if cq is close to some point pi ∈ P, then the

Mather set M̃(c) ⊂ {‖x − x(cq)‖ < δ} ∪ {‖x − x′(cq)‖ < δ}; for each

c ∈ {cq = constant}\D(cq) and each c-minimal measure µ, ρx(µ) 6= 0;
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3, if for each c ∈ int(D(cq)), the c-minimal measure is uniquely er-

godic then Ñ (c) ⊂ {‖x− x(cq)‖ < δ} for each c ∈ int(D(cq)).

The interior of D(cq) is in the sense that we think D(cq) as a set in
Rn. We denote the rotation vector of µ by ρ(µ) = (ρq(µ), ρx(µ)).

Proof. : Let c∗ = (cq, y(cq)) and let us consider the case that cq is
not close to P first. The c∗-minimal measure of ℓ has its support at
the invariant circle Γcq = {q̇ = ωcq , ẋ = 0, x = x(cq)}. Let αℓ be the
α-function of ℓ, then

αℓ(c
∗) = −ℓc∗ |(u,u̇)∈Γ.

By the hypothesis (H3’) and the convex property of ℓ in u̇, there exists
E1 > 0 such that

ℓc∗(dγ(t)) + αℓ(c
∗) ≥ E1d

2

if γ(t) /∈ {‖x − x(cq)‖ ≤ d}. To each absolutely continuous curve γ =

(γq, γx) : [t0, t1] → Tk × Tn we associate a number

|[γx|[t0,t1]]| =
1

2π

n
∑

i=1

|γ̄xi(t1) − γ̄xi(t0)|

where γ̄x denotes the lift of γx to the universal covering Rn. If γ(t) /∈
{‖x − x(cq)‖ < λδ} for all t ∈ (t0, t1) and if there is some t∗ ∈ (t0, t1)
such that γ(t∗) /∈ {‖x − x(cq)‖ < δ} then there exists E2 > 0 further
such that
(3.2)
∫ t1

t0

(ℓc∗(dγ(t)) + αℓ(c
∗))dt ≥ E1λ

2δ2(t1 − t0) + E2(δ
2 + |[γx|[T−0,t1]]|).

Here, we have made use of the super-linear growth in u̇ also. Let ξ :
[t0, t1] → Tk+n (t1−t0 ≥ 1) be a minimal curve of ℓ joining two points in
{‖x− x(cq)‖ ≤ λδ}. Note that any vector ω ∈ Rn can be approximated
by some rational vector m

m0
, (m ∈ Zn,m0 ∈ Z) such that ‖ω− m

m0
‖ ≤ 1

m2
0
,

we can choose properly large t1 − t0 such that

(3.3)

∫ t1

t0

(ℓc∗(dξ(t)) + αℓ(c
∗))dt ≤ E3

(

λ2δ2 +
1

t1 − t0

)

.

Let ζℓ, ζL : [0, 1] → Tk+n be the c-minimal curves of ℓ and L respectively.
Clearly, there exist E4 > 0 and Θ > 0 such that

∫ t1

t0

(ℓc(dζℓ(t)) + αℓ(c))dt ≤ E4,

∫ t1

t0

(Lc(dζL(t)) + αL(c))dt ≤ E4,

|ζ̄ℓx(1) − ζ̄ℓx(0)| ≤ Θ,

|ζ̄Lx(1) − ζ̄Lx(0)| ≤ Θ.
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If there is a c-minimal curve γ: R → Tk+n of L such that γ(t) /∈
{‖x− x(cq)‖ < λδ} for all t ∈ [t0, t1] and there is some t∗ ∈ (t0, t1) such

that γ(t∗) /∈ {‖x−x(cq)‖ < δ}, then we construct a curve ξ∗: R → Tk+n

such that

ξ∗(t) =































γ(t) t ≤ t0 − 1,

ξ0(t) t0 − 1 ≤ t ≤ t0,

ξ(t) t0 ≤ t ≤ t1,

ξ1(t) t1 ≤ t ≤ t1 + 1,

γ(t) t ≥ t1 + 1,

where ξ0 is a c-minimal curve of ℓ connecting γ(t0 − 1) with some point
m0 ∈ {‖x − x(cq)‖ = λδ}, ξ1 is a c-minimal curve of ℓ connecting
m1 ∈ {‖x − x(cq)‖ = λδ} with γ(t1 + 1), ξ is a c∗-minimal curve of ℓ
connecting m0 with m1. We compare the c-action of L along the curve
γc with its c-action along ξ∗,

∫ t1+1

t0−1

(

Lc(dγ(t), t) − Lc(dξ
∗(t), t)

)

dt

≥
∫ t1

t0

(

ℓc∗(dγc(t)) − ℓc∗(dξ
∗(t))

)

dt

− 2πCq|[γx|[t0,t1]]| − 2̺ǫ(t1 − t0) − 4E4 − 4Θ

≥ 1

2

(

E1λ
2(t1 − t0) + E2

)

δ2 − E3

t1 − t0
− 4E4 − 4Θ > 0,

if we set

(3.4) λ ≤
√

E2

2E3
, Cq ≤

E2

2π
ǫ ≤ E1λ

2δ2

4̺
,

and let t1−t0 be sufficiently large. This contradiction verifies our claim.
Therefore, each c-minimal orbit dγ must enter the region {‖x−x(cq)‖ ≤
λδ} for infinitely many times if (3.4) is satisfied.

Now we assume γ = (γq, γx) : R → Tk×Tn is a c-semi static curve for
L such that γ(t0), γ(t1) ∈ {‖x−x(cq)‖ = λδ}, γ(t) /∈ {‖x−x(cq)‖ < λδ}
for all t ∈ [t0, t1], γ(t

∗) /∈ {‖x − x(cq)‖ < δ} for some t∗ ∈ (t0, t1). In

this case, we construct a curve ξ: R → Tk+n such that

ξ∗(t) =











γ(t) t ≤ t0,

ξ(t) t0 ≤ t ≤ t1 + T,

γ(t) t ≥ t1 + T

where ξ is the c∗-minimal curve of ℓ: [t0, t1 + T ] → Tk+n joining γ(t0)
with γ(t1). T is carefully chosen so that (3.3) holds. Clearly, T is
uniformly bounded for any γ(t0), γ(t1) ∈ Tk+n. Note we have |αL(c) −
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αℓ(c)| ≤ ̺ǫ and |αℓ(c) − αℓ(c
∗)| ≤ E5|c− c∗| if |c|, |c∗| ≤ K,

∫ t1

t0

(

Lc(dγ(t), t) + αL(c)
)

dt−
∫ t1+T

t0

(

Lc(dξ(t), t) + αL(c)
)

dt

≥ E1λ
2δ2(t1 − t0) + E2(δ

2 + |[γx|[t0,t1]]|) − 2πCq|[γx|[t0,t1]]|

− E3

(

λ2δ2 +
1

T + t1 − t0

)

− 2̺ǫ|t1 − t0| − ̺ǫT

− |αL(c) − αℓ(c
∗)|T

≥ 1

2

(

E1λ
2δ2(t1 − t0) + E2δ

2
)

− E3

T + t1 − t0
− 2̺ǫT − E5CqT − Tǫ

≥ 1

4
E1λ

2δ2(t1 − t0) > 0,

if ǫ is suitably small so that (3.4) as well as the following holds

1

T + t1 − t0
≤ E2δ

2

4E3
, ǫ ≤ E2δ

2

8̺T
, Cq ≤

λ2δ2(t1 − t0)

4E5T
.

But this contradicts again the fact that γ is c-semi static.
Let us consider the case when cq is close to P. In this case, if ‖cx −

y(cq)‖ ≤ Cq, the c-minimal measure may have some support in {‖x −
x(cq)‖ ≤ δ}, and have other support in {‖x−x′(cq)‖ ≤ δ} also. It is easy

to see that the Aubry set Ã(c) ⊆ {‖x−x(cq)‖ ≤ δ}∪{‖x−x′(cq)‖ ≤ δ}.
If the Aubry set is in a neighborhood of one sub-torus x = const., then
the Mañé set is also in this neighborhood. If both {‖x−x(cq)‖ ≤ δ} and
{‖x− x′(cq)‖ ≤ δ} contains the support of the minimal measure, let us
take ξ ∈ M0(c)∩{‖x−x(cq)‖ ≤ δ}, take ζ ∈ M0(c)∩{‖x−x′(cq)‖ ≤ δ}
and calculate the quantity h∞c (ξ, ζ). There must be some point m /∈
{‖x− x(cq)‖ ≤ δ} ∪ {‖x− x′(cq)‖ ≤ δ} such that

h∞c (ξ, ζ) = h∞c (ξ,m) + h∞c (m, ζ).

Similarly, there exists m′ /∈ {‖x− x(cq)‖ ≤ δ} ∪ {‖x− x′(cq)‖ ≤ δ} such
that

h∞c (ζ, ξ) = h∞c (ζ,m′) + h∞c (m′, ξ).

Recall the definition of the barrier function B∗
c :

B∗
c (m) = min {h∞c (ξ,m) + h∞c (m, ζ) − h∞c (ξ, ζ) : ξ, ζ ∈ M0(c)}

we see that the Mañé set contains some orbits connecting {‖x−x(cq)‖ ≤
δ} to {‖x− x′(cq)‖ ≤ δ} or vice versa. This proves the first part of the
lemma.

To continue the proof, we define

D(cq) =
{

c ∈ H1(Tk × Tn,R) : cq = constant,

∃ c-minimal measure µ such that ρx(µ) = 0
}

.
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Obviously, it is an n-dimensional convex disk and contains the set {cq =
constant, ‖cx − y(cq)‖ ≤ Cq}. In fact, if µ is a c-minimal measure for
some c ∈ int(D(cq)) then it is also a (cq, y(cq))-minimal measure. To see
it, let us note a fact:

Proposition 3.1. Let c′, c∗ ∈ H1(M,R), µ′ and µ∗ be the correspond-

ing minimal measures respectively. If 〈c′− c∗, ρ(µ′)〉 = 〈c′− c∗, ρ(µ∗)〉 =
0, then α(c′) = α(c∗).

Proof. : By the definition of the α-function we find that

−α(c′) =

∫

(L− ηc′)dµ
′

=

∫

(L− ηc∗)dµ
′ + 〈c∗ − c′, ρ(µ′)〉

≥ − α(c∗).

In the same way, we have −α(c∗) ≥ −α(c′). q.e.d.

It follows from this proposition that α(c) = constant for all c ∈ D(cq).
For each c ∈ int(D(cq)) if there was a c-minimal measure µ1 such that
ρx(µ1) 6= 0, then ∃ c′ = (cq, c

′
x) ∈ int(D(cq)) such that 〈cx−c′x, ρx(µ1)〉 <

0. Thus

−α(c∗) = Ac∗(µ1)

= Ac′(µ1) + 〈cx − c′x, ρ(µ1)〉
> − α(c′).

On the other hand, from the definition of D(cq) and from the Proposi-
tion 3.1 we obtain that α(c′) = α(c∗). The contradiction implies that
ρx(µ) = 0 for each c-minimal measure when c ∈ int(D(cq)). Conse-
quently, for each c-minimal measure µ

∫

(L− ηc)dµ =

∫

(L− ηcq)dµ,

here, ηc = (ηcq , ηcx) is a closed 1-form with [ηc] = (cq, cx) ∈ H1(Tk+n,R).
Therefore, supp(µ) ⊂ {‖x−x(cq)‖ ≤ δ} if cq is not close to P, supp(µ) ⊂
{‖x − x(cq)‖ ≤ δ} ∪{‖x − x′(cq)‖ ≤ δ} if cq is close to P. This proves
the second part of the lemma.

Finally, let us consider the case that the c-minimal measure µc is
always uniquely ergodic for each c ∈ int(D(cq)). Obviously, there exists
an invariant measure µ such that µ = µc for all c ∈ int(D(cq)). Note

Ñ (c) = Ã(c) in this case. We claim that for each dγ ∈ Ñ (c) and each
ξ ∈ M0(c), if kij → ∞ (i = 1, 2) as j → ∞ are the two sequences such
that dγ(−k1j), dγ(k2j) → π−1(ξ), then

(3.5) lim
j→∞

∫ k2j

−k1j

γ̇xi(t)dt = 0, ∀ 1 ≤ i ≤ n.
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In fact, for any ξ ∈ M0(c) there exist two sequences kij → ∞ as j → ∞
(i = 1, 2) such that dγ(−k1j) → π−1(ξ) and dγ(k2j) → π−1(ξ) as j →
∞. Since γ is c-static, it follows that

h
k1j
c (γ(−k1j), γ(0)) + h

k2j
c (γ(0), γ(k2j )) → 0.

If (3.5) does not hold, by choosing a subsequence again (we use the same
symbol) there would be some 1 ≤ i ≤ n such that

∣

∣

∣

∣

∣

lim
j→∞

∫ k2j

−k1j

γ̇xi(t)dt

∣

∣

∣

∣

∣

≥ 2π > 0.

Under this assumption, let us consider the barrier function B∗
c′ where

all other components of c′ ∈ Rk+n are the same as those of c except for
the component for xi. Since c − c′ = (0, · · · , 0, cxi − c′xi , 0, · · · , 0), we
obtain from the Proposition 3.1 that α(c′) = α(c), so

Bc′(γ(0)) ≤ lim inf
j→∞

∫ k2j

−k1j

(

L(dγ(t), t) − 〈c′, γ̇(t)〉 + α(c′)
)

dt

≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t) − 〈c, γ̇(t)〉 + α(c)) dt

+ (cxi − c′xi) lim
j→∞

∫ k2j

−k1j

γ̇xi(t)dt

≤ − 2|cxi − c′xi |π < 0

as we can choose cxi > c′xi or cxi < c′xi accordingly. But this is absurd
since barrier function is non-negative.

Let us derive from (3.5) that each c-semi-static orbit dγ is contained

in {‖x − x(cq)‖ ≤ δ}. In fact, we find that dγ ∈ Ñ ((cq, y(cq))). To see
that, we find from (3.5) that the term 〈cx, γ̇x〉 has no contribution to
the action along the curve γ|[−k1j ,k2j ]:

(3.6)

∫ k2j

−k1j

(L− 〈cq, γ̇q〉 − 〈cx, γ̇x〉)dt →
∫ k2j

−k1j

(L− 〈cq, γ̇q〉)dt,

as j → ∞. If dγ /∈ Ñ ((cq, y(cq))), there would exist j′ ∈ Z+, k′ ∈ Z, E >
0 and a curve ζ: [−k1j , k2j + k′] → M such that ζ(−k1j′) = γ(−k1j′),
ζ(k2j′ + k′) = γ(k2j′)

∫ k2j′

−k1j′

(L(dγ(t), t) − 〈cq, γ̇q〉 − 〈y(cq), γ̇x〉 + α(c))dt(3.7)

≥
∫ k2j′+k

′

−k1j′

(L(dζ(t), t) − 〈cq, ζ̇q〉 − 〈y(cq), ζ̇x〉 + α(c))dt + E

≥ F(cq,y(cq))(γ(−k1j′), γ(k2j′)) + E
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and

(3.8)

∣

∣

∣

∣

∣

∫ k2j′+k
′

−k1j′

ζ̇xidt

∣

∣

∣

∣

∣

→ 0, ∀ 1 ≤ i ≤ n.

(3.8) follows from the facts that Ñ ((cq, y(cq))) ⊂ {‖x−x(cq)‖ ≤ δ} and
γ(−kij) → ξ ∈ M0((cq , y(cq))) = M0(c). Let j− j′ be sufficiently large,
we construct a curve ζ ′: [−k1j , k2j + k′] →M such that

ζ ′(t) =











γ(t), t ∈ [−k1j ,−k1j′ ];

ζ(t), t ∈ [−k1j′ , k2j′ + k′];

γ(t− k′), t ∈ [k2j′ + k′, k2j + k′].

It follows from (3.5–3.8) that
∫ k2j+k′

−k1j

(L(dζ ′(t), t) − 〈c, ζ̇ ′〉)dt

<

∫ k2j

−k1j

(L(dγ(t) − 〈cq, γ̇q〉 − 〈y(cq), γ̇x〉)dt − E

≤
∫ k2j

−k1j

(L(dγ(t), t) − 〈c, γ̇〉)dt − E

2
,

but this contradicts to the property that dγ ∈ Ñ (c). q.e.d.

Remark: The first part of the lemma can be proved by using the
upper-semi continuity of Mañé set on Lagrangian functions. But the
dependence on ǫ is not so clear as here (cf (3.4)) if we prove it in that
way.

From the proof of the first part of the Lemma 3.1 we can see

Lemma 3.2. Let c ∈ {‖cx − y(cq)‖ < Cq} and b − a ≥ 1. For

small number d > 0 there exits ǫ > 0 and δ > 0, such that if ‖P‖ ≤ ǫ
and if γ: [a, b] → Tk+n is a c-minimizer connecting points γ(a), γ(b) ∈
{‖x− x(cq)‖ ≤ δ}, then ‖γx(t) − x(cq)‖ < d for all t ∈ [a, b].

The structure of Mañé set and pseudo connecting orbit set depends
on what configuration manifold we choose for our consideration. In the
following, when necessary, we use Ñ (c,M), C̃η,µ,ψ(M) to specify the
manifold on which these sets are defined. We shall omit M in that
symbol when it is clearly defined. We do not intend to consider the
most general case. Instead, let us consider some special case which is
sufficient for the purpose of this paper.

According to the Lemma 3.1, the Mañé set Ñ (c) is contained in
Nδ := {‖x − x(cq)‖ ≤ δ} for the cohomology class c = (cq, y(cq)) if cq
is not close to P. To each curve γ: (a, b) → M such that γ(a) ∈ Nδ

and γ(b) ∈ Nδ we can associate an element [γ] = ([γ]1, [γ]2, · · · , [γ]n) ∈
H1(M,Nδ ,Z). Here, a is a finite number or −∞, b is a finite number or
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∞. From the proof in [Be1] we can see that there exists a homoclinic
orbit dγ such that the first component of its relative homology is not
zero: [γ]1 6= 0. The term “homoclinic” here means that both the α-limit
set and the ω-limit set of the orbit are contained in the same Mañé set:
α(dγ) ⊆ Ñ (c), ω(dγ) ⊆ Ñ (c). These homoclinic orbits are not in the

Mañé set Ñ (c) if c ∈ {‖cx − y(cq)‖ < Cx}, but some of them are in the

Mañé set Ñ (c, M̃ ) for a finite covering space M̃ .

Let M̃ = Tk × (2T) × Tn−1 be the covering space of M = Tk+n, let

π1 be the covering map M̃ →M :

π1(q1, · · · , qk, x1, · · · , xn) = (q1, · · · , qk, [x1], x2, · · · , xn)

where [x1] = x1 if x1 ≤ 2π, [x1] = x1 − 2π if 2π ≤ x1 ≤ 4π.

Lemma 3.3. Let c = (cq, y(cq)), M̃ = Tk × (2T) × Tn−1. If dγ:

R → TM is a homoclinic orbit to the set Ñ (c) ⊂ Nδ with the property

lim inf
T0→∞
T1→∞

{

∫ T1

−T0

(L− ηc)(dγ(t), t)dt + (T0 + T1)α(c)
}

= lim inf
T0→∞
T1→∞

min
ξ(−T0)∈Nδ
ξ(T1)∈Nδ

[ξ]1 6=0

{

∫ T1

−T0

(L− ηc)(dξ(t), t)dt + (T0 + T1)α(c)
}

,

then {dγ(t), t} ⊂ π1Ñ (c, M̃ ).

Here we also use π1: TM̃ → TM to denote the standard projection,
π1(u, u̇) = (π1u, u̇).

Proof. : If we think M̃ as the configuration manifold, Nδ has two
lifts denoted by N ′

δ and N∗
δ . In this case, the minimal measure has at

least two ergodic components, the support of one component is in N ′
δ,

another one is in N∗
δ . The lift of the homoclinic orbit founded in [Be1]

is just an orbit joining the lift of the support of the minimal measure in
N ′
δ with another lift in N∗

δ . Recall the definition of the barrier function
introduced by Mather in [Ma2]

B∗
c (m) = min{h∞c (ξ,m) + h∞c (m, ζ) − h∞c (ξ, ζ) : ∀ ξ, ζ ∈ M0(c)},

we obtain the result immediately. q.e.d.

Mañé announced in [Me1] that all c-static classes should be topo-
logically transitive, it has been partially proved in [CP]. Mañé’s an-
nouncement is true when there are finitely many Aubry classes, which
is proved a generic property for all cohomology classes in [BC].
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We can also define the Mañé set Ñ (c, M̃ ) from another point of view.
Let c = (cq, y(cq)), m0 ∈ Nδ, m1 ∈ Nδ, we define

hkc,e1(m0,m1) = inf
γ(0)=m0
γ(k)=m1
[γ]1 6=0

∫ k

0
(L− ηc)(dγ(t), t)dt + kα(c),

hk1,k2c,e1 (m0, ξ,m1) = inf
γ(−k1)=m0
γ(0)=ξ

γ(k2)=m1
[γ]1 6=0

∫ k2

−k1

(L− ηc)(dγ(t), t)dt + (k1 + k2)α(c),

h∞c,e1(m0,m1) = lim inf
k→∞

hkc,e1(ξ, ζ),

h∞c,e1(m0, ξ,m1) = lim inf
k1→∞
k2→∞

hk1,k2c,e1 (m0, ξ,m1),

B∗
c,e1(ξ) = inf{h∞c,e1(m0, ξ,m1) − h∞c,e1(m0,m1) : m0,m1 ∈ M0(c)}.

Recall we have introduced a modified Lagrangian Lη,µ,ψ = L − η −
µ− ψ. Let T0 ∈ Z+, T1 ∈ Z+, we define

hT0,T1

η,µ,ψ,e1
(m0,m1) = inf

ξ(−T0)=m0
ξ(T1)=m1

[ξ]1 6=0

∫ T1

−T0

Lη,µ,ψ(dγ(t), t) + T0α(c) + T1α(c′),

hT0,T1

η,µ,ψ,e1
(m0, ξ,m1) = inf

ξ(−T0)=m0
ξ(T1)=m1
ξ(0)=ξ
[ξ]1 6=0

∫ T1

−T0

Lη,µ,ψ(dγ(t), t) + T0α(c) + T1α(c′),

h∞η,µ,ψ,e1(m0,m1) = lim inf
T1→∞
T2→∞

hT0,T1

η,µ,ψ,e1
(m0,m1),

h∞η,µ,ψ,e1(m0, ξ,m1) = lim inf
T1→∞
T2→∞

hT0,T1

η,µ,ψ,e1
(m0, ξ,m1).

Clearly, we have

Lemma 3.4. Assume L has the form of (3.1), c = (cq, y(cq)), then

π1N0(c, M̃ ) = {B∗
c,e1 = 0} ∪ {B∗

c = 0},

π1N0(c, M̃ )\N0(c,M) 6= ∅.

For C̃η,µ,ψ(M̃), we have the similar result:

Lemma 3.5. Let c = (cq, y(cq)), c
′ = (c′q, y(c

′
q)), [η] = c and µ is a

U -step 1-form with [µ̄] = c′ − c. If N (c) ⊂ Nδ, ‖ψ‖C0 is suitably small

and supp(ψ) ∩Nδ = ∅, then

π1Cη,µ,ψ(M̃)\Cη,µ,ψ(M) 6= ∅.
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Proof. : For m0, m1 ∈ Nδ, positive integers T i0, T
i
1 ∈ Z+, let γi(t,m0,

m1, e1): [−T i0, T i1] → M be a minimal curve joining m0 and m1 such
that [γi]1 6= 0 and

h
T i0 ,T

i
1

η,µ,ψ,e1
(m0,m1) =

∫ T i1

−T i0

Lη,µ,ψ(dγi(t), t)dt + T i0α(c) + T i1α(c′).

Let {T i0}i∈Z+ and {T i1}i∈Z+ be the sequence of positive integers such

that T ij → ∞ (j = 0, 1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i0 ,T

i
1

η,µ,ψ,e1
(m0,m1) = lim inf

T0,T1→∞
hT0,T1

η,µ,ψ,e1
(m0,m1) = h∞η,µ,ψ,e1(m0,m1).

Let γ̃i be the lift of γi in the covering space M̃ , it is a M̃ -minimal curve.
Clearly, the set of accumulation points of the set {γi} contains a curve
γ: R →M with [γ]1 6= 0.

On the other hand, if ‖ψ‖C0 is suitably small and m0, m1 ∈ Nδ, the
hyperbolic structure of ℓ2 guarantees that

h∞η,µ,ψ(m0,m1) < h∞η,µ,ψ,e1(m0,m1).

In other words, these M̃ -minimal curves {γi} are not M -minimal curve.
Consequently, γ is not a M -minimal curve. This completes the proof.

q.e.d.

Lemma 3.6. Assume that A0(c) ⊂ ({‖x−x0‖ < δ}∪{‖x−x1‖ < δ}),
M0(c)∩{‖x−x0‖ < δ} 6= ∅ and M0(c)∩{‖x−x1‖ < δ} 6= ∅ (x0 6= x1).
Then, for suitably small δ we have

N0(c)\({‖x − x0‖ < δ} ∪ {‖x− x1‖ < δ}) 6= ∅.

Proof. : Let m0 ∈ M0 ∩ {‖x− x0‖ < δ}, m1 ∈ M0 ∩ {‖x− x1‖ < δ}
and consider the function h∞(m0,m1). q.e.d.

4. Existence of local connecting orbits

To begin with, let us consider the construction of diffusion orbits in
Arnold’s example from the variational point of view. There, each Mañé
set under consideration properly contains the corresponding Mather set
if we study the problem in a covering manifold M̃ = 2T×Tn. Under the
small perturbation the stable manifold of each invariant circle transver-
sally intersects the unstable manifold of the same invariant circle. It
implies that the set π1N0(c, M̃ )\(M0(c,M) + δ) is non-empty but its
first homology is trivial for each c under consideration, here we use A+δ
to denote the δ-neighborhood of A. The main goal of this section is to
show that if the Mañé set N0(c) has some kind of topological triviality,

then for all c′ sufficiently close to c, Ñc′ can be connected with Ñc by
some local minimal orbits.
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Definition 4.1. Let c = (cq, y(cq)), c
′ = (c′q, y(c

′
q)), Nδ = {‖x −

x(cq)‖ ≤ δ}. We assume that Ñ (c) ⊂ int(Nδ) and Ñ (c′) ⊂ int(Nδ).
Let γ: R → M be an absolutely continuous curve such that γ(t) ∈ Nδ

when |t| ≥ T , and such that [γ]1 6= 0 where [γ] = ([γ]1, · · · , [γ]n) ∈
H1(M,Nδ ,Z). We say dγ is a local minimal orbit of L of the first type

that connects Ñ (c) to Ñ (c′) if
1, dγ(t) is the solution of the Euler-Lagrange equation (1.3), the α-

and ω-limit sets of dγ are in Ñ (c) and Ñ (c′) respectively;
2, There exist a closed 1-form η with [η] = c, a U -step 1-form µ with

[µ̄] = c′ − c and a bump function ψ such that dγ(t) ∈ C̃η,µ,ψ(t) is a local
minimal curve of the Lagrangian Lη,µ,ψ in the following sense: there
exist two open balls V0, V1 and two positive integers T0, T1 such that
V̄0 ⊂ Nδ\M0(c), V̄1 ⊂ Nδ\M0(c

′), γ(−T0) ∈ V0, γ(T1) ∈ V1 and

min
{

hT0,T1

η,µ,ψ,e1
(m0,m1) + h∞c (ξ,m0) + h∞c′ (m1, ζ) :(4.1)

ξ ∈ M0(c) ∩ π(α(dγ)|t=0), ζ ∈ M0(c
′) ∩ π(ω(dγ)|t=0)

}

− lim infT ′
0
→∞

T ′
1→∞

∫ T ′
1

−T ′
0

Lη,µ,ψ(dγ(t), t)dt − T ′
0α(c) − T ′

1α(c′) > 0

holds for any (m0,m1) ∈ ∂(V0 × V1).

Since π(ω(dγ)) ⊂ N (c′) ⊂ Nδ and π(α(dγ)) ⊂ N (c) ⊂ Nδ, [γ|T1≤t<∞]
and [γ|−∞<t≤−T0 ] are well defined. Indeed, recall the Lemma 3.2, we
can see [γ|T1≤t<∞] = 0 and [γ|−∞<t≤−T0 ] = 0. That is why we can use
h∞c (ξ,m0) and h∞c′ (m1, ζ) in this definition. We do not intend to discuss
local minimal curves in the most general case, the above definition is
introduced for the special purpose of this paper.

Obviously, (4.1) is equivalent to that

hT0,T1

η,µ,ψ,e1
(m0,m1) + h∞c (ξ,m0) + h∞c′ (m1, ζ)(4.2)

−
∫ T1

−T0

Lη,µ,ψ(dγ(t), t)dt − T ′
0α(c) − T ′

1α(c′)

− h∞c (ξ, γ(−T0)) − h∞c′ (γ(T1), ζ) > 0

for each ξ ∈ M0(c) ∩ π(α(dγ)|t=0) and each ζ ∈ M0(c
′)∩ π(ω(dγ)|t=0).

Lemma 4.1. If N0(c,M) ⊂ Nδ and π1A0(c, M̃ )\Nδ is totally discon-

nected, then there exist ǫ1 > 0, a U -step form µ, a bump function ψ, a

small number t0 and an open disk O such that if [µ] = c′, ‖c′ − c‖ < ǫ1,
then

(4.3) ∅ 6=
{

π1Cη,µ,ψ(M̃ )\Cη,µ,ψ(M)
}

0≤t≤t0
⊂ O

and each dγ(t) ∈ C̃η,µ,ψ(M̃ )\C̃η,µ,ψ(M)|t determines a minimal orbit of

L of first type which connecting Ñc with Ñc′.
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Proof. : Since π1N0(c, M̃ )\Nδ is totally disconnected, there exist an
open, connected set O which can shrink to one point by continuous
deformation, and a small positive number t0 > 0 such that

O ∩ π1N (c, M̃ )|0≤t≤t0\Nδ 6= ∅,

O ∩Nδ = ∅, ∂O ∩ π1N (c, M̃ )|0≤t≤t0 = ∅.

Clearly, we can find a small δ1 > 0 and define a non-negative function
f ∈ Cr(M,R) such that

f(q, x)











= 0 (q, x) ∈ Nδ ∪
(

π1N (c, M̃ )|0≤t≤t0\(O + δ1)
)

,

= 1 (q, x) ∈ O,

< 1 elsewhere.

We choose a Cr-function ρ : R → [0, 1] such that ρ = 0 on t ∈ (−∞, 0]∪
[t0,∞), 0 < ρ ≤ 1 on t ∈ (0, t0). Let λ ≥ 0 be a positive number,

ψ(q, x, t) = λρ(t)f(q, x),

By the upper semi-continuity of the set function (η, µ, ψ) → Cη,µ,ψ(M̃ )

we see that Cη,0,ψ(M̃)|0≤t≤t0 ∩ ∂O = ∅ if λ > 0 is suitably small. By

the choice of ψ, we have C̃η,0,ψ(M) = Ñ (c,M). Consequently, by using
the similar argument to prove the Lemma 3.5 we find

∅ 6=
{

π1Cη,0,ψ(M̃ )\Cη,0,0(M)
}

0≤t≤t0
⊂ O.

Since O is homotopically trivial, for any cohomology class c′, there exists
a closed 1-form µ̄ such that [µ̄] = c′ − c and supp(µ̄) ∩ O = ∅. Let
ρ1 ∈ Cr(R, [0, 1]) such that ρ1 = 0 on (−∞, 0], 0 < ρ1 < 1 on (0, t0) and
ρ1 = 1 on [t0,∞), let µ = ρ1(t)µ̄ and set

Lη,µ,ψ = L− η − µ− ψ.

By using the upper semi-continuity and the similar argument to prove
the Lemma 3.5 again we obtain (4.3) if ‖µ‖ is suitably small. Let dγ ∈
π1C̃η,µ,ψ(M̃ )\C̃η,µ,ψ(M). Note that f ≡ 1 in O, supp(µ̄) ∩ O = ∅,
dγ: TM → R is obviously a solution of the Euler-Lagrange equation,
α(dγ) ⊂ Ñ (c) and ω(dγ) ⊂ Ñ (c′).

Since we have assumed that π1C0(c, M̃ )\Nδ is totally disconnected
in O, by the upper semi-continuity, there obviously are two open and
connected sets V0 and V1 such that V̄0 ⊂ Nδ\M0(c), V̄1 ⊂ Nδ\M0(c

′)
and (4.1) holds. q.e.d.

Let us compare π1Cη,0,ψ(M̃ )\Cη,0,ψ(M) with π1N (c, M̃ )\N (c,M). If

γ(t) is a minimal curve in π1N (c, M̃ )\N (c,M), then its time k trans-
lation γ(t + k) is also a minimal curve for each k ∈ Z. By the choice
of the open set O and the function ψ, we see that each orbit dγ in
π1Ñ (c, M̃ )\Ñ (c,M) might be an orbit of the Euler-Lagrange equation
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determined by L− ψ still, but only those curves remain to be minimal
if they pass through O when t ∈ [0, t0].

We now consider some c-minimal measure which has more than one
ergodic components.

Lemma 4.2. Let Γ : [−ε, ε] → H1(M,R) be a continuous curve.

We assume that for each −ε < s < 0, N0(Γ(s)) ⊂ {‖x − x0‖ < δ},
for each 0 < s < ε, N0(Γ(s)) ⊂ {‖x − x1‖ < δ} while A0(Γ(0)) ⊂
({‖x − x0‖ < δ} ∪ {‖x − x1‖ < δ}), M0(Γ(0)) ∩ {‖x − x0‖ < δ} 6= ∅
and M0(Γ(0))∩{‖x−x1‖ < δ} 6= ∅. We also assume N0(Γ(0))\({‖x−
x0‖ < δ} ∪ {‖x − x1‖ < δ}) is totally disconnected. Then, there exists

0 < ε′ ≤ ε, for each s0 ∈ (−ε′, 0) and each s1 ∈ (0, ε′), there are two

closed 1-forms ν0, ν1 with [ν0] = Γ(0) − Γ(s0), [ν1] = Γ(s1) − Γ(0), a

U-step 1-form µ with [µ̄] = Γ(s1) − Γ(s0) and a bump function ψ such

that each orbits dγ(t) ∈ C̃η−ν0,µ,ψ(t) is an orbit of the Lagrange flow

determined by L and

(4.4) ∅ 6= Cη−ν0,µ,ψ(M)|0≤t≤t0 ⊂ O.

Proof. : According to the Lemma 3.6, N0(Γ(0))\({‖x − x0‖ < δ} ∪
{‖x − x1‖ < δ} is non-empty. In this case we do not need to lift M to
its finite covering. Since N0(Γ(0))\({‖x − x0‖ < δ} ∪ {‖x − x1‖ < δ}
is totally disconnected, there is a shrinkable open set O and a small
positive number t0 > 0 such that

O ∩ N (Γ(0))|0≤t≤t0\({‖x − x0‖ < δ} ∪ {‖x− x1‖ < δ} 6= ∅,

∂O ∩ N (Γ(0))|0≤t≤t0 = ∅,

O ∩ ({‖x− x0‖ < δ} ∪ {‖x− x1‖ < δ}) = ∅.

Remaining argument for the proof is similar to the proof of the Lemma
4.1. q.e.d.

The orbits in C̃η−ν0,µ,ψ has some local minimal property as the orbits

of the first type have. For each dγ ∈ C̃η−ν0,µ,ψ, there exist two open
balls V0 and V1 such that V̄0 ⊂ {‖x − x0‖ < δ}, V̄1 ⊂ {‖x − x1‖ < δ},
γ(−T0) ∈ V0, γ(T1) ∈ V1 and

hT0,T1

η−ν0,µ,ψ
(m0,m1) + h∞Γ(s0)(ξ,m0) + h∞Γ(s1)(m1, ζ)(4.5)

−
∫ T1

−T0

Lη−ν0,µ,ψ(dγ(t), t)dt − T ′
0α(c) − T ′

1α(c′) > 0

holds for each (m0,m1) ∈ ∂(V0 × V1), each ξ ∈ M0(c) ∩ π(α(dγ)|t=0)
and each ζ ∈ M0(c

′) ∩ π(ω(dγ)|t=0). In this case, we call the element

of C̃η−ν0,µ,ψ local minimal orbits of the second type.

We consider another type of local minimal orbits which connects Ñ (c)

with Ñ (c′).
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Lemma 4.3. If there is an open neighborhood V of N0(c) such that

H1(V,R) = 0, then there exists small ε > 0, for each c′ with ‖c′−c‖ ≤ ε
there exist a closed 1-form η and a U-step 1-form µ such that [η] = c,

µ̄ = c′ − c and each orbit in C̃η,µ is an orbit of the Lagrange flow of L.

We call dγ in such C̃η,µ local minimal orbit of the third type. Another
version of the Lemma 4.3 was formulated by Mather in [Ma2].

Proof. : Since V is topologically trivial, for any c′ ∈ H1(M,R) there
exists a closed 1-form µ̄ such that suppµ̄ ∩ V = ∅. We take the U -step
1-form in the way such that µ = 0 when t ≤ 0 and µ = µ̄ when t ≥ t0
where t0 > 0 is suitably small. By the upper-semi continuity of the
map (η, µ) → C̃η,µ, we find that dγ(t) (0 ≤ t ≤ t0) is in V if dγ ∈ C̃η,µ
and if ‖c′ − c‖ is sufficiently small. Therefore, dγ is a solution of the
Euler-Lagrangian equation determined by L. q.e.d.

5. Construction of global connecting orbits

The goal of this section is to construct some orbits which connect
Ñ (c) with Ñ (c′) if c and c′ are connected by a generalized transition
chain in H1(Tk × Tn,R).

Definition 5.1. Let M̃ be a finite covering of a compact manifold
M and let c, c′ be two cohomolgy classes in H1(M,R). We say that c is
joined with c′ by a generalized transition chain if there is a continuous
curve Γ: [0, 1] → H1(M,R) such that Γ(0) = c, Γ(1) = c′ and for each
τ ∈ [0, 1] at least one of the following cases takes place:

(I), there is small δτ > 0 such that π1N0(Γ(τ), M̃ )\(A0(Γ(τ),M)+δτ )
is non-empty and totally disconnected;

(II), N0(Γ(τ),M) is homologically trivial, i.e. it has a neighborhood
Uτ such that the inclusion map H1(Uτ ,R) → H1(M,R) is the zero map.

In this paper, we do not intend to establish a theorem of the existence
of connecting orbits between two cohomology classes in the most general
case when they are joined by a generalized transition chain. Instead, we
restrict ourselves to a special case:

Theorem 5.1. Let M = Tk × Tn, M̃ = Tk × 2T × Tn−1, the La-

grangian L be given by (3.1). Let x : [0, 1] → Tn be a piecewise con-

tinuous curve, not continuous only at l points τj (0 < τ1 < · · · <
τl < 1) where its left and right limit exist x−j := limτ→τ−j

x(τ) 6=
limτ→τ+

j
x(τ) := x+

j . We assume:

i, the two first cohomology classes c = (cq, y(cq)) and c′ = (c′q, y(c
′
q))

are joined by a generalized transition chain Γ: [0, 1] → H1(M,R)∩{cx =
y(cq)};
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ii, for each τ ∈ (τj−1, τj), N0(Γ(τ)) ⊂ {‖x − xj(τ)‖ < δ}, Γ(τ)-
minimal measure is uniquely ergodic when N0(Γ(τ),M) is not homolog-

ically trivial;

iii, when τ = τj for 1 ≤ j ≤ l, A0(Γ(τj)) ⊂ ({‖x− x−j ‖ < δ} ∪ {‖x−
x+
j ‖ < δ}), M0(Γ(τj)) ∩ {‖x − x−j ‖ < δ} 6= ∅ and M0(Γ(τj)) ∩ {‖x −
x+
j ‖ < δ} 6= ∅.

Then there exists an orbit of the Euler-Lagrange equation (1.3) dγ:

R → TM that has the property: α(dγ) ⊂ Ñ (c) and ω(dγ) ⊂ Ñ (c′).

Proof. : According to the Lemma 4.2, there exist two numbers τ−j <

τj < τ+
j for each 0 < j < l such that |τ±j − τj| is small and Ñ (Γ(τ−j ))

is connected to Ñ (Γ(τ+
j )) by some local minimal orbits of the second

type.
Since the map c → N (c,M) is upper semi-continuous, there are

finitely many open intervals {Ji}0≤i≤m such that
1, ∪Ji ⊃ [0, 1], Ji ∩ Ji+1 6= ∅ and Ji ∩ Ji±2 = ∅;
2, each Ji is defined in this way: if for all τ ∈ Ji the case (I) happens,

then for all τ ∈ Ji−1 ∪ Ji+1 the case (II) happens.
By the assumptions, there exists a finite sequence {si}0≤i≤im such

that si ∈ Jj for each integer i ∈ [ij−1, ij ] (0 < j < m), Ñ (Γ(si)) is

connected to Ñ (Γ(si+1) by some local minimal orbit dγi of L. dγi is
of the first or second type when i ∈ [0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im)
and of the third type when i ∈ [i1, i2) ∪ · · · ∪ [im−2, im−1). We choose
these {si} such that if N0(Γ(τ±j )) is homologically trivial, then ∃ some

si = τ−j , si+1 = τ+
j . Let ci = Γ(si), we define I = {i} be the index set

that Ñ (ci) is connected to Ñ (ci+1) by some local minimal orbits of the
second type if i ∈ I.

More precisely, for each integer i ∈ [0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im):
1, There exists a local minimal orbit of the first type or of the second

type dγi: R → TM such that it solves the Euler-Lagrange equation
determined by L, α(dγ) ⊂ Ñ (ci) and ω(dγ) ⊂ Ñ (ci+1);

2, Given a small number λi there is a non-negative function ψi(q, x, t)
such that ψ ≤ λi, ψi = 0 when t ∈ (−∞, 0] ∪ [1,∞). For each fixed t,
the support of ψi is contained in a small neighborhood of the open disk
O and ψi = constant when it is restricted in Oi. If i /∈ I

Oi ∩ (N (ci, M̃)|0≤t≤t0\Niδ) 6= ∅,

∂Oi ∩ N (ci, M̃)|0≤t≤t0 = ∅,

Oi ∩Niδ = ∅

where Niδ = {‖x− x(si)‖ < δ}; If i ∈ I, Oi satisfies the following

Oi ∩ (N (ci,M)|0≤t≤t0\(Niδ ∪N(i+1)δ) 6= ∅,

∂Oi ∩ N (ci,M)|0≤t≤t0 = ∅,
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Oi ∩ (Niδ ∪N(i+1)δ) = ∅.

3, There exist a closed 1-forms ηi with [ηi] = ci and a U step 1-form
µi such that the restriction on {t ≥ t0} is a closed 1-form µ̄i on M
with [µ̄i] = ci+1 − ci. The support of µi is disjoint with Oi. For i /∈ I,

according to the Lemma 4.1, we can see that the set C̃ηi,µi,ψi(M̃) has
the property:

(5.1) ∅ 6= π1Cηi,µi,ψi(M̃ )\Cηi,µi,ψi(M)|0≤t≤t0 ⊂ Oi,

each orbit dγ(t) ∈ C̃ηi,µi,ψi(M̃ )\C̃ηi,µi,ψi(M)|t determines a local minimal

orbit of L of the first type, which connects Ñ (ci) to Ñ (ci+1). Conse-
quently, there exist two open (k+n)-dimensional disks V +

i and V −
i+1 with

V̄ +
i ⊂ Niδ\M0(ci), V̄

−
i+1 ⊂ N(i+1)δ\M0(ci+1), two positive integers T̃ 0

i ,

T̃ 1
i and a positive small number ǫ∗i > 0 such that

min
{

h∞ci (ξ,m0) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(m0,m1) + h∞ci+1

(m1, ζ) :(5.2)

(m0,m1) ∈ ∂(V +
i × V −

i+1)
}

≥ min
{

h∞ci (ξ,m0) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(m0,m1) + h∞ci+1

(m1, ζ) :

(m0,m1) ∈ V +
i × V −

i+1

}

+ 5ǫ∗i

where ξ ∈ M0(ci), ζ ∈ M0(ci+1). For i ∈ I, according to the Lemma
4.2 we find that

(5.3) ∅ 6= Cηi−νi−ψi(M)|0≤t≤t0 ⊂ Oi

and each orbit dγ(t) ∈ C̃ηi−νi−ψi(M)|t determines a local minimal orbit

of L of the second type which connects Õ(ci) to Ñ (ci+1). Consequently,
there exist two open (k+n)-dimensional disks V +

i and V −
i+1 with V̄ +

i ⊂
Niδ\M0(ci), V̄

−
i+1 ⊂ N(i+1)δ\M0(ci+1), two positive integers T̃ 0

i , T̃ 1
i and

a positive small number ǫ∗i > 0 such that

min
{

h∞ci (ξ,m0) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi
(m0,m1) + h∞ci+1

(m1, ζ) :(5.4)

(m0,m1) ∈ ∂(V +
i × V −

i+1)
}

≥ min
{

h∞ci (ξ,m0) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi
(m0,m1) + h∞ci+1

(m1, ζ) :

(m0,m1) ∈ V +
i × V −

i+1

}

+ 5ǫ∗i ,

where ξ ∈ M0(ci), ζ ∈ M0(ci+1). Note (5.2) and (5.4) are independent
of the choice of ξ and ζ since the ergodicity of ci-minimal measure is
assumed for each i.

For each integer i ∈ [i1, i2)∪ · · · ∪ [im−2, im−1), there exist two closed
1-forms ηi, µ̄i defined on M , a U -step 1-form µi defined on (u, t) ∈M×R
and an open set Ui ⊂ M such that [ηi] = ci, µi is closed on Ui × [0, t0],
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µi = 0 when t ≤ 0, µi = µ̄i when t ≥ t0 > 0, [µ̄i] = ci+1 − ci and there
is a small number δi > 0 such that

(5.5) Cηi,µi(t) + δi ⊂ Ui, when t ∈ [0, t0].

All orbits in C̃ηi,µi are the local minimal orbits of the third type of L,

they connect Ñ (ci) to Ñ (ci+1).
By the compactness of the manifold M , for a small ǫ∗i > 0 there exists

(T̆ 0
i , T̆

1
i ) = (T̆ 0

i , T̆
1
i )(ǫ∗i ) ∈ (Z+,Z+) such that

(5.6) hT0,T1
ηi,µi (m0,m1) ≥ h∞ηi,µi(m0,m1) − ǫ∗i

holds for all T0 ≥ T 0
i , T1 ≥ T 1

i and for all (m0,m1) ∈M×M . Obviously,
given (m0,m1) there are infinitely many T0 ≥ T 0

i and T1 ≥ T 1
i such that

(5.7)
∣

∣hT0,T1
ηi,µi (m0,m1) − h∞ηi,µi(m0,m1)

∣

∣ ≤ ǫ∗i .

Let γi(t,m0,m1, T0, T1) : [−T0, T1] →M be the minimizer of hT0,T1
ηi,µi (m0,

m1), it follows from the Lemma 2.2 that if ǫ∗i > 0 is sufficiently small,

T0 > T̆ 0
i and T1 > T̆ 1

i are chosen sufficiently large so that (5.7) holds,
then

(5.8) dγi(t,m0,m1, T0, T1) ∈ C̃ηi,µi(t) + δi, ∀ 0 ≤ t ≤ 1.

From the Lipschitz property of hT0,T1
ηi,µi (m0,m1) in (m0,m1) there exist

T̂ 0
i (ǫ∗i ) > T̆ 0

i (ǫ∗i ) and T̂ 1
i (ǫ∗i ) > T̆ 1

i (ǫ∗i ) so that for each (m0,m1) there

are Tj = Tj(m0,m1) with T̆ ji (ǫ
∗
i ) ≤ Tj ≤ T̂ ji (ǫ

∗
i ) (j = 0, 1) such that

both (5.7) and (5.8) hold. Note that for different (m0,m1) we may need

different Tj ≥ T̆ ji (j = 0, 1).
Before we go back to consider those integers i ∈ [0, i1)∪ [i2, i3)∪ · · · ∪

[im−1, im), let us observe some facts. We can define the set of forward
and backward semi-static curves:

Ñ+(c) = {(z, s) ∈ TM × T : π ◦ φtL(z, s)|[0,+∞) is c-semi-static},
Ñ−(c) = {(z, s) ∈ TM × T : π ◦ φtL(z, s)|(−∞,0] is c-semi-static}.
Proposition 5.1. If the c-minimal measure is uniquely ergodic, u ∈

A0(c), then there exists a unique v ∈ TuM such that (u, v) ∈ Ñ+
0 (c) (or

Ñ−
0 (c)). Moreover, (u, v) ∈ Ã0(c).

Proof. : Let us suppose the contrary. Then there would exist (u, v) ∈
Ã0(c) and a forward c-semi-static curve γ+(t) with γ+(0) = u and
γ̇+(0) 6= v. In this case, for any u1 ∈ M0(c) there exist two sequences

ki, k
′
i → ∞ such that π ◦ φkiL (u, v) → u1, γ+(k′i) → u1 and

h∞c (u, u1) = lim
ki→∞

∫ ki

0
(L− ηc)(φ

t
L(u, v), t)dt + kiα(c)

= lim
k′i→∞

∫ k′i

0
(L− ηc)(dγ+(t), t)dt + kiα(c).
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Thus, we obtain that

h∞c (π ◦ φ−1
L (u, v), u1)

= Fc(π ◦ φ−1
L (u, v), u) + h∞c (u, u1)

= Fc(π ◦ φ−1
L (u, v), u) + lim

k′i→∞

∫ k′i

0
(L− ηc)(dγ+(t), t)dt

> h∞c (π ◦ φ−1
L (u, v), u1)

where the last inequality follows from the facts that γ̇+(0) 6= v and the
minimizer must be a C1-curve. But this is absurd. q.e.d.

Proposition 5.2. Assume the c-minimal measure is uniquely er-

godic, then for all ζ ∈ M(c) and all m0,m1 ∈M , we have

h∞c (m0, ζ) + h∞c (ζ,m1) = h∞c (m0,m1).

Proof. : By definition,

h∞c (m0, ζ) + h∞c (ζ,m1) ≥ h∞c (m0,m1)

for all m0,m1, ζ ∈ M . Let γT : [0, T ] → M be a c-minimal curve
connecting m0 with m1. As the c-minimal measure is uniquely ergodic,
for any ǫ > 0, there exists a positive integer T (ǫ) such that for each
integer T ≥ T (ǫ) there is T1 < T with the property γT (T1) ∈ M(c) + ǫ.
Let T2 = T − T1. In this case, we have

hTc (m0,m1) = hT1
c (m0, γT (T1)) + hT2

c (γT (T1),m1)

We claim that T1 → ∞ and T − T1 → ∞ as ǫ → 0. Indeed, if T1 is
bounded by some finite number, then there would be a point u ∈ M0(c)
and a vector v ∈ TuM such that φt(u, v) is a forward c-semi-static orbit

as t → ∞ with (u, v) /∈ Ã(c). But this contradicts to the Proposition
5.1. Clearly, there exist ζ ∈ M(c) and a subsequence {Ti} such that
γTi(T1) → ζ as Ti → ∞. It implies that

h∞c (m0, ζ) + h∞c (ζ,m1) ≤ h∞c (m0,m1).

As the c-minimal measure is uniquely ergodic, for any ξ ∈ A0(c)

h∞c (m0, ξ) + h∞c (ξ,m1)

= h∞c (m0, ζ) + h∞c (ζ, ξ) + h∞c (ξ, ζ) + h∞c (ζ,m1)

= h∞c (m0, ζ) + h∞c (ζ,m1).

This completes the proof. q.e.d.

Let m0,m1 ∈M , let γT : [0, T ] →M be a c-minimizer connecting m0

with m1. For each integer i ∈ [0, i1]∪ [i2, i3]∪ · · · ∪ [im−1 − im), in view

of the Proposition 5.2, there exists T̆i(ǫ
∗
i ) > 0, independent of m0 and

m1, such that
(5.9)

hTci(m0,m1) ≥ h∞ci (m0, ζ) + h∞ci (ζ,m1) − ǫ∗i , ∀ T ≥ T̆i(ǫ
∗
i ), ζ ∈ M(c)
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and there exists T̂i(ǫ
∗
i ) > T̆i(ǫ

∗
i ) such that for each (m0,m1) ∈ M ×M

we have some integers T between T̆i(ǫ
∗
i ) and T̂i(ǫ

∗
i ) so that

(5.10)
∣

∣hTci(m0,m1) − h∞ci (m0, ζ) − h∞ci (ζ,m1)
∣

∣ ≤ ǫ∗i , ∀ ζ ∈ M(c).

We define τi inductively for 0 ≤ i ≤ im. We let τ0 = 0, for i ∈
[0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im) we choose τi such that

(5.11) T̆i + T̃ 1
i−1 + T̃ 0

i ≤ τi − τi−1 ≤ T̂i + T̃ 1
i−1 + T̃ 0

i

(cf. (5.2) for the definition of T̃ 1
i−1 and T̃ 0

i ). For i ∈ [i1, i2) ∪ · · · ∪
[im−2, im−1) we choose those τi such that

(5.12) max{T̆ 0
i , T̆

1
i−1 + 1} ≤ τi − τi−1 ≤ max{T̂ 0

i , T̂
1
i−1 + 1}.

To consider the case that i = i1 we note that both T̂i1 and T̂ 0
i1

can be
taken large enough such that for anym0,m1 ∈M there exist T (m0,m1),
T0(m0,m1) with

max{T̆i1 , T̆ 0
i1} ≤ T (m0,m1), T0(m0,m1) ≤ max{T̂i1 , T̂ 0

i1}

such that (5.7) holds provided we set T0 = T0(m0,m1); (5.10) holds
provided we set T = T (m0,m1); and (5.6) and (5.9) hold for each

T0, T ≥ max{T̆i1 , T̆ 0
i1
}. Thus, we choose

(5.13) T̃ 1
i1−1 + max{T̆i1 , T̆ 0

i1} ≤ τi1 − τi1−1 ≤ T̃ 1
i1−1 + max{T̂i1 , T̂ 0

i1}.

The case for i = i3, i5, · · · , im can be treated in the same way.
Similarly, we can choose suitably large T̂i2 and T̂ 1

i2
and set the range

for τi2 :

(5.14) max{T̆ 1
i2−1, T̆i2} + T̃ 0

i2 ≤ τi2 − τi2−1 ≤ max{T̂ 1
i2−1, T̂i2} + T̃ 0

i2 .

The case for i = i4, i6, · · · , im−1 can also be treated in the same way.
We define an index set for ~τ = (τ1, τ2, · · · , τi3−2, τi3−1):

Λ =
{

~τ ∈ Zi3−1 : (5.11 ∼ 5.14) hold
}

.

Consider τ as the time translation τ∗φ(q, x, t) = φ(q, x, t + τ) on
M × R, let ψi ≡ 0 for i ∈ [i1, i2) ∪ · · · ∪ [im−2, im−1), we define a
modified Lagrangian

(5.15) L̃ = L− η0 −
im−1
∑

i=0

(−τi)∗(µi + ψi).

Let V = V +
0 × V −

1 × · · · × V −
i1

× V +
i2

× · · · × V +
im−1 × V −

im
. For (m,m′) ∈

M ×M , Z = (z+
0 , z

−
1 , z

+
1 , · · · , z+

i1−1, z
−
i1
, z+
i2
, z−i2+1, · · · , z+

im−1, z
−
im

) ∈ V
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we define

hK,K
′

L̃
(m0,m1, Z, ~τ ) = inf

γ(−K)=m0
γ(K̄′+τim−1)=m1

γ(τi−T̃
0
i )=z+

i

γ(τi+T̃
1
i )=z−

i+1
[γ|t∈Ji

]1 6=0

i∈I

∫ K̄ ′+τim−1

−K
L̃(dγ(t), t)dt

+

im−1
∑

i=1

(τi − τi−1)α(ci) +Kα(c0) +K ′α(cim)

where K̄ ′ = K ′+T̃ 1
im−1+T̂im , Ji = [τi−T̃ 0

i , τi+T̃
1
i ] and I = N∩

(

[0, i1)∪
[i2, i3) ∪ · · · ∪ [im−1, im)\I

)

.

Let hK,K
′

L̃
(m0,m1) be the minimizer of hK,K

′

L̃
(m0,m1, Z, ~τ ) over V in

z and over Λ in ~τ respectively:

(5.16) hK,K
′

L̃
(m0,m1) = min

~τ∈Λ,z∈V

hK,K
′

L̃
(m0,m1, Z, ~τ ),

let Kj ,K
′
j → ∞ be the subsequence such that

(5.17) lim
Kj ,K ′

j→∞
h
Kj ,K ′

j

L̃
(m0,m1) = lim inf

K→∞
K′→∞

hK,K
′

L̃
(m0,m1),

and let γ(t;Kj ,K
′
j ,m0,m1) be the minimal curve, we claim that

dγ(t;Kj ,K
′
j ,m0,m1)

is a solution of the Euler-Lagrange equation determined by L if Kj and
K ′
j are sufficiently large. Indeed,

1, for each i ∈ [i1, i2) ∪ · · · ∪ [im−2, im−1), we have

(5.18) (−τi)∗γ(t;Kj ,K
′
j) ∈ Cηi,µi(t)+δi ⊂ Ui, when τi ≤ t ≤ τi+1.

To see that, let us choose mi = γ(τi−1 + 1), m′
i = γ(τi+1). Since

γ(t;Kj ,K
′
j , m0,m1) is the minimizer of hK,K

′

L̃
(m0,m1, Z, ~τ ) over Λ, thus

AL̃((−τi)∗γ|τi+1

τi−1+1) + (τi − τi−1 + 1)α(ci) + (τi+1 − τi)α(ci+1)

= inf
ξ(−T0)=mi
ξ(T1)=m′

i

T̆0
i ≤T0≤T̂

0
i

T̆1
i ≤T1≤T̂

1
i

∫ T1

−T0

(L− ηi − µi)(dξ(t), t)dt + T0α(ci) + T1α(ci+1).

Thus we obtain (5.18) from this formula, (5.5), (5.8) and (5.12). Con-
sequently, γ(t;Kj ,K

′
j)|τi≤t≤τi+1 falls into the region where (−τi)∗µi is

closed. So, dγ(t;Kj ,K
′
j) is the solution of the Euler-Lagrange equation

determined by L when τi ≤ t ≤ τi + 1;
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2, for i ∈ [0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im), we claim that

(5.19) (−τi)∗γ(t)|0≤t≤t0 ∈ int(Oi).

It is actually the consequence of (5.1). In fact, if

dγ ∈ C̃ηi,µi,ψi(M̃)\C̃ηi,µi,ψi(M)

then γ must pass through Oi during the time interval [0, t0]. We note
that the function Lηi,µi,ψi is not time-periodic, the translate of dγi is no

longer a minimizer of the same kind if dγi ∈ π1C̃ηi,µi,ψi(M̃ )\C̃ηi,µi,ψi(M),

dγi(k) /∈ π1C̃ηi,µi,ψi(M̃ )|t=0 for each k ∈ Z\{0}.
By the condition of the Theorem 5.1, both ci- and ci+1-minimal mea-

sure are uniquely ergodic. For any mi ∈ M0(ci), mi+1 ∈ M0(ci+1) and

any smooth curve dγ ∈ C̃ηi,µi,ψi(M̃ )\C̃ηi,µi,ψi(M), if Z+ ∋ T k0 → ∞ and

Z+ ∋ T k1 → ∞ (as k → ∞) are two sequences such that γ(−T k0 ) → mi

and γ(T k1 ) → mi+1, then

lim
k→∞

∫ T k1

−T k0

Lηi,µi,ψi(dγ(t), t)dt + T k0 α(ci) + T k1 α(ci+1)

= h∞ηi,µi,ψi,e1(mi,mi+1).

Let ζ: R →M be an absolutely continuous curve such that [ζ]1 6= 0,
ζ(t′) /∈ int(Oi) for some t′ ∈ [0, t0], ζ(−T k0 ) → mi, ζ(T

k
1 ) → mi+1 as

k → ∞. Since C̃ηi,µi,ψi |t=constant is closed, there exists a positive number
d > 0 such that

lim inf
T k0 →∞

T k1 →∞

∫ T k1

−T k0

Lηi,µi,ψi(dζ(t), t)dt + T k0 α(ci) + T k1 α(ci+1)

≥ h∞ηi,µi,ψi,e1(mi,mi+1) + d.

Recall the construction of the modified Lagrangian L̃ (see (5.15))

and γ is the minimizer of hK,K
′

L̃
(m0,m1, Z, ~τ ) over V in z and over Λ in

~τ respectively. Given any small number ε > 0, by choosing sufficiently
large T̂i−T̆i, we can see that there are sufficiently largeK−

i ,K
+
i ∈ Z with

the properties that τi−1+T̃ 1
i−1+K−

i +K+
i = τi−T̃ 0

i , T̆i ≤ K−
i +K+

i ≤ T̂i
and
∥

∥

∥
γ(τi − T̃ 0

i −K+
i ) −mi

∥

∥

∥
< ε,

∥

∥

∥
γi(τi + T̃ 1

i +K−
i+1) −mi+1

∥

∥

∥
≤ ε.

If there was t′ ∈ [0, t0] such that

(−τi)∗γ(t′) /∈ int(Oi),
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from the Lipschitz continuity of h∞ηi,µi,ψi,e1(m,m
′) in (m,m′) we would

obtain
∫ τi+T̃ 1

i +K−
i+1

τi−T̃ 0
i −K

+
i

Lηi,µi,ψi(dγ(t), t)dt

+ (T̃ 0
i +K+

i−1)α(ci) + (T̃ 1
i +K−

i+1)α(ci+1)

≥ h∞ηi,µi,ψi,e1(mi,mi+1) +
3

4
d.

On the other hand, there is suitably large K̄−
i , K̄

+
i ∈ Z with the prop-

erties that T̆i ≤ K̄−
i + K̄+

i ≤ T̂i and
∥

∥

∥
γi(τi − T̃ 0

i − K̄+
i ) −mi

∥

∥

∥
≤ ε,

∥

∥

∥
γi(τi + T̃ 1

i + K̄−
i+1) −mi+1

∥

∥

∥
≤ ε.

Because dγi(t
′) ∈ C̃ηi,µi,ψi |t=t′ , we have

∫ τi+T̃ 1
i +K̄−

i+1

τi−T̃ 0
i −K̄

+
i

Lηi,µi,ψi(dγi(t), t)dt

+ (T̃ 0
i + K̄+

i−1)α(ci) + (T̃ 1
i + K̄−

i+1)α(ci+1)

≤ h∞ηi,µi,ψi,e1(mi,mi+1) +
1

4
d

if ε is sufficiently small. It implies that γ is not a minimizer. This
contradiction verifies our claim.

The formula (5.19) implies that dγ(t;Kj ,K
′
j) is the solution of the

Euler-Lagrange equation determined by L when τi ≤ t ≤ τi + 1 for
i ∈ [0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im);

3, We claim that the curve γ does not touch the boundary of V +
i at

the time t = τi − T̃ 0
i and does not touch the boundary of V −

i+1 at the

time t = τi + T̃ 1
i for each integer i ∈ [0, i1) ∪ [i2, i3) ∪ · · · ∪ [im−1, im).

If (γ(τi − T̃ 0
i ), γ(τi + T̃ 1

i )) = (mi,m
′
i) ∈ ∂(V +

i × V −
i+1) for some i /∈ I,

let m′
i−1 = γ(τi−1 + T̃ 1

i−1) and mi+1 = γ(τi+1 − T̃ 1
i+1), from (5.1) we

can see that there exist (m̄i, m̄
′
i) ∈ V +

i ×V −
i+1 such that for ξ ∈ M0(ci),

ζ ∈ M0(ci+1):

hTici (m
′
i−1,mi) + h

T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(mi,m

′
i) + h

Ti+1
ci+1 (m′

i,mi+1)

≥ h∞ci (ξ,mi) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(mi,m

′
i) + h∞ci+1

(m′
i, ζ)

+ h∞ci (m
′
i−1, ξ) + h∞ci+1

(ζ,mi+1) − 2ǫ∗i

≥ h∞ci (ξ, m̄i) + h
T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(m̄i, m̄

′
i) + h∞ci+1

(m̄′
i, ζ)

+ h∞ci (m
′
i−1, ξ) + h∞ci+1

(ζ,mi+1) + 3ǫ∗i

≥ h
T ′
i
ci (m

′
i−1, m̄i) + h

T̃ 0
i ,T̃

1
i

ηi,µi,ψi,e1
(m̄i, m̄

′
i) + h

T ′
i+1
ci+1 (m̄′

i,mi+1) + ǫ∗i
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where Ti, Ti+1, T
′
i , T

′
i+1 satisfy the condition T̆j ≤ Tj , T

′
j ≤ T̂j (j =

i−1, i). In above arguments, (5.9) and (5.10) are used to obtain the first
and the third inequality, (5.2) is used to obtain the second inequality.

But this contradicts to the fact that γ is a minimal curve of L̃ on V and
Λ. The case for i ∈ I can be treated in the same way. Therefore, the
minimizer γ is differentiable at the time t = τi − T̃ 0

i and t = τi + T̃ 1
i for

each i.
Let Kj ,K

′
j → ∞, denote by γ∞: R → M an accumulation point of

{γ(t,Kj ,K
′
j)}. Obviously, α(dγ∞) ⊂ Ñ (c) and ω(dγ∞) ⊂ Ñ (c′). This

completes the proof. q.e.d.

6. Hölder continuity

The task in this section is to build up some Hölder continuous de-
pendence of h∞c on some parameters if we set k = 1. These properties
will be used to show that there is a generic set for perturbation where
the conditions for the Theorem 5.1 are satisfied.

Let Φt
H be the Hamiltonian flow determined by H, it is a small

perturbation of Φt
h. Let ΦH and Φh be their time-1-maps. Accord-

ing to the hypothesis H2’ and H3’, there are several cylinders Σ0
j =

T × {pj−1 − 2δ < p < pj + 2δ} × {(x, y) = (xj(p), y(p))} (1 ≤ j ≤ l)
which are normally hyperbolic and invariant to the map Φh, here δ > 0
is small. When p increases from pj − δ to pj + δ, the global maxi-
mum point of h(x, p, y(p)) jumps from xj(p) to xj+1(p). It follows from
the fundamental theorem of normally hyperbolic invariant manifold (cf.
[HPS]) that there is ǫ = ǫ(A,B, δ) > 0 such that if ‖P‖Cr ≤ ǫ on the

region {‖(p, y)‖ ≤ max(|A|, |B|) + 1} the map Φs+k
H (k ∈ Z, 0 < s < 1)

also has several Cr−1 invariant manifold Σj(s) = T × {pj−1 − δ < p <
pj+δ}×{(x, y) = (xj(p, q), yj(p, q))}, provided that r ≥ 2. These mani-
folds are the small deformation of the manifolds Σ0

j |pj−1−δ<p<pj+δ. Thus,

they are also normally hyperbolic and time-1-periodic. Let Σj = Σj(0),
it can be considered as the image of a map ψ from the standard cylin-
der Σ = T × R × {(x, y) = (0, 0)} to Σj = {q ∈ T, pj−1 − δ < p <
pj + δ, (x, y) = (xj(p, q), yj(p, q))}. This map induces a 2-form Ψ∗

jω on
Σ

Ψ∗
jω =

(

1 +
n
∑

i=1

∂(xji, yji)

∂(p, q)

)

dp ∧ dq

and Ψ∗
jω = dp∧dq when P = 0. Since the second de Rham co-homology

group of Σ0 is trivial, by using Moser’s argument on the isotopy of
symplectic forms [Mo], we find that, on Σ{|p|≤max(|A|,|B|)+1}, there exists
a diffeomorphism Ψ such that

(Ψj ◦ Ψ)∗ω = dp ∧ dq.
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Since Σ is invariant for ΦH and Φ∗
Hω = ω, we have

(

(Ψj ◦ Ψ)−1 ◦ ΦH ◦ (Ψj ◦ Ψ)
)∗
dp ∧ dq = dp ∧ dq

i.e. (Ψj ◦ Ψ)−1 ◦ ΦH ◦ (Ψj ◦ Ψ) preserves the standard area. Clearly, it
is exact and twist since it is a small perturbation of Φh. In this sense,
we say that the restriction of ΦH on Σj is obviously area-preserving
and twist. If r > 4 there are many invariant homotopically non-trivial
curves, including many KAM curves. All these curves are Lipschitz.
Given ρ ∈ R there is an Aubry-Mather set with rotation number ρ,
which is either an invariant circle, or a Denjoy set if ρ ∈ R\Q, or periodic
orbits if ρ ∈ Q. Under the generic condition we can assume there
is no homotopically non-trivial invariant curves with rational rotation
number for ΦH |Σj , instead, there is only one minimal periodic orbit on
Σ for each rational rotation number.

Let us consider the Legendre transformation L . By abuse of termi-
nology we continue to denote Σj(s) and its image under the Legendre
transformation by the same symbol. Let

Σ̃j =
⋃

s∈T

(Σj(s), s),

which has the normal hyperbolicity as well. Under the Legendre trans-
formation those Aubry-Mather sets (invariant curves, Denjoy sets or
minimal periodic orbits) on Σ correspond to the support of some c-
minimal measures.

To continue the study, let us first consider the case when there is only
one cylinder Σ̃. In this case, P = ∅. Consequently, N (c) ⊂ Nδ and the
lemma 3.1 has the following form (k=1)

Proposition 6.1. Given some large number K > 0 and a small

number δ > 0 there exists a small number ǫ = ǫ(δ), if L1 ∈ Bǫ,K and if

|cq| ≤ K then there exists an n-dimensional convex set D(cq) which con-

tains a neighborhood of (cq, y(cq))∩Rn such that for each c ∈ int(D(cq))

the Mañé set Ñ (c) ⊂ Σ̃, the Mather set M0(c) is the Aubry-Mather set

for the twist map. If the rotation number is irrational, then M(c) is

uniquely ergodic.

Proof. : The normal hyperbolicity guarantees that the invariant set
in Nδ must be in the invariant cylinder. The time-1-map restricted on
the cylinder is then an area-preserving twist map. q.e.d.

Consider a cohomology class c = (cq, y(cq)) ∈ H1(M,R) such that
it corresponds to an invariant circle Γ in Σ with irrational rotation
number. In the Hamiltonian formalism, Γ = {(p, q, x, y) ∈ Rn+1 ×
Tn+1 : (p, x, y) = (p, x, y)(q), q ∈ T}. Based on each point on this circle,
there is a Cr−1-stable fiber as well as a Cr−1-unstable fiber. These
stable (unstable) fibers Cr−2-depends on the base point and make up
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the local stable (unstable) manifold of that circle which are the graph
of a Lipschitz function in a small neighborhood of the circle, i.e.

W u,s
loc (Γ) =

{

(q, x, (p, y)u,s(q, x)) : (q, x) ∈ Nδ ⊂ T n+1
}

where (p, y)(q, x) is a Lipschitz function of (q, x).
We use Ck,α to denote those functions whose k-th derivative is of

α-Hölder.

Lemma 6.1. There exists a C1,1 function Ss,u: Nδ → R and a

constant vector c ∈ Rn+1 such that W s,u
loc (Γ) = {(q, x), dSs,u(q, x) + c :

(q, x) ∈ Nδ}.

Proof. : Let us consider the stable manifold. By the condition there
is a Lipschitz function (p, y): Nδ → R such that

W s
loc(Γ) = {(q, x, (p, y)s(q, x)) : (q, x) ∈ Nδ}.

Let σ be an 2-dimensional disk in W s
loc. Since σ is in the stable mani-

fold, Φk
H(∂σ) approaches uniformly to Γ, i.e. Φk

H(∂σ) is such a closed
curve going from a point to another point and returning back along al-
most the same path when k is sufficiently large. As ΦH is a symplectic
diffeomorphism we have

∫∫

σ

(

dp ∧ dq +
n
∑

i=1

dyi ∧ dxi
)

=

∮

∂σ

(

pdq +
n
∑

i=1

yidxi

)

=

∮

ΦkH(∂σ)

(

pdq +

n
∑

i=1

yidxi

)

= 0.

Note the function (p, y)s(q, x) is Lipschitz, it is differentiable almost
everywhere in Nδ. As σ is arbitrarily chosen, for almost (q, x) ∈ Nδ the
following holds:

(6.1)
∂p

∂xi
=
∂yi
∂q

,
∂yi
∂xj

=
∂yj
∂xi

, ∀ 1 ≤ i, j ≤ n.

Consequently, there exists a C1,1-function Ssc and c = (cq, y(cq)) ∈ Rn+1

such that (p, y)s = dSsc + c. In the same way, we obtain a C1,1-function
Suc and c′ = (c′q, y(c

′
q)) ∈ Rn+1 such that (p, y)u = dSuc + c′. Since W s

loc

intersects W u
loc on the whole Γ, c′ = c.

q.e.d.

Indeed, for almost all initial points (q, x, (p, y)s(q, x)) ∈ W s, (p, y)s

is differentiable at all Φk
H(q, x, (p, y)s(q, x)) for all k ∈ Z+. To see that,

let O ⊂ Nδ be an open set, for each k there is a full Lebesgue measure
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set Ok ⊂ π(Φk
H{O, (p, y)s(O)}) where (p, y)s is differentiable. Since ΦH

is a diffeomorphism, the set

O∗ =
∞
⋂

k=0

π
(

Φ−k
H {Ok, (p, y)s(Ok)}

)

is a full Lebesgue measure subset of O. For any point (q, x) ∈ O∗, (p, y)s

is differentiable at the points π(Φk
H{(q, x), (p, y)s(q, x)} for all k ∈ Z+.

Let us consider the Hamiltonian flow. The local stable (unstable)
manifold is a graph of some function

W̃ s,u
loc = {(q, x, t), (p, y)s,u(q, x, t) : (q, x, t) ∈ Nδ × T}.

Obviously, we have ((p, y)s,u, t)∗Ω = 0 in M × T, where Ω =
∑

dxi ∧
dyi + dq ∧ dp − dH ∧ dt. Thus, in the covering space Rn+2 there ex-
ists a C1,1-function S̄s,uc (q, x, t) such that dS̄s,uc = (p, y)s,u(q, x, t) −
H((p, y)s,u(q, x, t), q, x, t)dt. Consequently, there exist a cohomology
class c = (cq, y(cq)) and a function Ss,uc (q, x, t) ∈ C1,1(Nδ × T,R) such
that

Ls,u = L− cq(q̇ + ∂qS
s,u
c ) − 〈∂xSs,uc , ẋ〉 − ∂tS

s,u
c

attains its minimum at LW s,u as the function of (q̇, ẋ). Note Ls,u(q̇,ẋ) −
∂(q,x)S

s,u
c is Lipschitz, dLs,u(q̇,ẋ)/dt and Ls,u(q,x) exist almost everywhere.

Since LW s,u is a manifold made up by the trajectories of the Euler-
Lagrange flow, it follows from Euler-Lagrange equation dLq̇,ẋ/dt = Lq,x
and (6.1) that Lq,x|LW s,u

loc
= 0 almost everywhere. The absolute conti-

nuity of L implies that Ls,u|LW s,u
loc

is a function of t alone. So, by adding

some function of t to Ss,uc , Ls,u|LW s,u
loc

= −α(c).

Lemma 6.2. Let c = (cq, y(cq)). If Γ is an invariant circle in

the cylinder, the Aubry-Mather set is uniquely ergodic, then ∃ Ss,uc ∈
C1,1(Nδ,R) such that

(6.2) h∞c (ξ,m) = Suc (m) − Suc (ξ), h∞c (m, ξ) = Ssc (ξ) − Ssc(m)

hold for each ξ ∈ π(Γ) and each m ∈ Nδ.

Proof. : Since there are the local stable manifold W s(Γ) and the
unstable manifoldW u(Γ) to the invariant circle Γ, for each pointm ∈ Nδ

there is a unique c-minimal orbit γs,u(t) such that γs,u(0) = m and
γs,u(k) → π(Γ) as Z ∋ k → ±∞. Let ξ ∈ M0(c), there is an integer
subsequence ks,ui → ±∞ as i → ∞ such that γs,u(ks,ui ) → ξ as i → ∞.
It means that

lim
i→∞

h
ksi
c (m,γs(ksi )) = h∞c (m, ξ), lim

i→∞
h
−kui
c (γu(kui ),m) = h∞c (ξ,m).
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Since Ls,u + α(c) = 0 on W s,u, we have
∫ 0

kui

(

L(dγuc (kui ) − 〈c, γ̇uc (kui )〉 + α(c)
)

dt =Su(γuc (0)) − Su(γuc (kui )),

∫ ksi

0

(

L(dγsc (k
u
i ) − 〈c, γ̇sc (kui )〉 + α(c)

)

dt =Ss(γsc (k
u
i )) − Ss(γsc (0)).

That implies that (6.2) holds for each m ∈ Nδ and each ξ ∈ M0(c).
To see that (6.2) holds for each ξ ∈ π(Γ), let us recall that, for a
twist map, the sufficient and necessary condition for the existence of an
invariant circle is that the Peierl’s barrier function is identically equal to
zero. Consequently, passing each ζ ∈ π(Γ) there is a regular c-minimal
configuration (· · · ,mi, · · · ) such that ζ = m0. Since we have assumed
the unique ergodicity of the minimal measure, dc(ζ, ξ) = 0 for each
ζ ∈ π(Γ) and each ξ ∈ M0(c). Thus, (6.2) holds for each ξ ∈ π(Γ).
q.e.d.

Obviously, Suc (ξ) = Ssc (ξ) for all ξ ∈ π(Γ). Thus, in this case we have

(6.3) h∞c (m,m′) = Suc (m′) − Ssc (m), ∀ m,m ∈ Nδ.

We now consider the local stable and unstable manifolds of all in-
variant circles. Different invariant circle determines different stable and
unstable manifolds, i.e. we have a family of these local stable and un-
stable manifolds. We claim that this family of local stable (unstable)
manifolds can be parameterized by some parameter σ so that both Suc
and Ssc have 1

2 -Hölder continuity in σ. Indeed we choose one circle and
denote it Γ0 and parameterize another circle Γσ by the algebraic area
between Γσ and Γ0,

(6.4) σ =

∫ 1

0
(Γσ(q) − Γ0(q))dq.

This integration is in the sense that we pull it back to the standard
cylinder by Ψ ◦Ψ1 ∈ diff(Σ0,Σ). Let σ = A′ correspond to an invariant
circle where the action p < A, let σ = B′ correspond to an invariant
circle where the action p > B, in the way of (6.4) we obtain an one-
parameter family curves Γ: T × S → Σ in which S ⊂ [A′, B′] is a closed
set. Clearly, for each σ ∈ S, there is only one cq = cq(σ) such that

Γσ = M̃0(c) where c = (cq, 0) ∈ H1(M,R). Clearly, cq is continuous in
σ on S. We can think Γσ as a map to function space C0 equipped with
supremum norm Γ: S → C0(T,R),

‖Γσ1 − Γσ2‖ = max
q∈T

|Γ(q, σ1) − Γ(q, σ2)|.

Straight-forward calculation shows

|σ1 − σ2| ≥
1

2Ch

(

max
q∈T

|Γ(q, σ1) − Γ(q, σ2)|
)2

,
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where Ch is the Lipschitz constant for the twist map, it follows that

‖Γσ1 − Γσ2‖ ≤ Cs|σ1 − σ2|
1
2

where Cs =
√

2Ch. Since both the stable and the unstable fibers have
Cr−2-smoothness on their base points on Σ, r ≥ 3, (p, y)s,uσ is also 1

2 -
Hölder continuous in σ. Because we can choose suitably small Nδ such
that it can be covered by the stable as well as the unstable manifold of
the invariant curve Γσ, π(W s,u

loc (Γσ)) ⊃ Nδ. Let Ss,uσ = Ss,uc(σ), we have

Lemma 6.3. Restricted in Nδ the functions Ssσ(m), Suσ(m) are 1
2-

Hölder continuous in σ ∈ S.

The Lemma 6.3 is not enough for the proof, because we need to
consider the regularity of barrier function defined on the whole config-
uration manifold. Next, let us consider the dependence of the barrier
function on σ ∈ S and on c. Recall the cohomology classes c = (cq, y(cq))
under our consideration is in the set

H1 = {(cq, y(cq)) : |cq| ≤ max{|A|, |B|} + 1}.
Let us remember A(c) ⊂ Nδ. For each c = (cq, y(cq)), each m ∈

M\Nδ and each ξ ∈ Nδ there exist m+
c ,m

−
c ∈ Nδ and k+

c , k
−
c ∈ Z+ such

that
h∞c (ξ,m) = h∞c (ξ,m+

c ) + hk
+
c
c (m+

c ,m),

h∞c (m, ξ) = hk
−
c
c (m,m−

c ) + h∞c (m−
c , ξ).

Clearly, there exists a uniform upper bound K ∈ Z such that for each
c = (cq, y(cq)) ∈ H1, each m ∈M\Nδ and each ξ ∈ Nδ we have k+

c ≤ K,
k−c ≤ K.

Let γc : [0, k+
c ] →M , with γc(0) = m+

c and γc(k
+
c ) = m, be the curve

which realizes the quantity

hk
+
c
c (m+

c ,m) =

∫ k+
c

0
Lηc(dγc(t), t)dt + k+

c α(c).

Obviously, we have that

h∞c′ (ξ,m) ≤
∫ k+

c

0
Lηc′ (dγc(t), t)dt + k+

c α(c′)

+ h∞c′ (ξ,m+
c )

holds for any other c′. Note Lη′c − Lηc = 〈ηc′ − ηc, q̇〉, we find

∫ k+
c

0
Lηc(dγc(t), t)dt + k+

c α(c) − hk
+
c
c (m+

c ,m)

=

∫ k+
c

0
〈ηc′ − ηc, γ̇c(t)〉dt + k+

c (α(c′) − α(c))

≤ |γ̄c(0) − γ̄c(−k+
c )||c′ − c| + k+

c (α(c′) − α(c)),
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where γ̄c denotes the lift of γc to the universal covering R.
Since c and c′ are considered in the bounded set H1, there exists

Cα > 0 such that

|α(c) − α(c′)| ≤ Cα|c− c′|, ∀ c, c′ ∈ H1,

and there exists Cr > 0 such that

|γ̄c(0) − γ̄c(−k+
c )| ≤ CrK, ∀ c ∈ H1.

Note there is a subset in H1 such that σ ∈ S has one to one correspon-
dence to this subset, we can write c = c(σ) when c is in this subset.
Since m+

c ∈ Nδ, we obtain from the Lemma 6.3 and above estimate
that

h∞c′ (ξ,m) − h∞c (ξ,m)

≤
∫ k+

c

0
Lηc′ (dγc(t), t)dt + k+

c α(c′) − hk
+
c
c (m+

c ,m)

+ h∞c′ (ξ,m
+
c ) − h∞c (ξ,m+

c )

≤ C3(
√

|σ − σ′| + |c(σ) − c(σ′)|)
where C3 > 0 is a positive number depending on max{|A|, |B|}, Cα and
Cα. By exchanging c with c′, in the same way we obtain

h∞c (ξ,m) − h∞c′ (ξ,m) ≤ C3(
√

|σ − σ′| + |c(σ) − c(σ′)|).
Recall the Lemma 3.2. For each c = (cq, cx) with ‖cx − y(cq)‖ < Cq

(Cq > 0), the Mañé set keeps the same. Thus, we can assume that
y = y(cq) is smooth in cq. Therefore, from the Lemma 6.3 and the
formula (6.3) we obtain

Lemma 6.4. Assume σ, σ′ ∈ S. Let c = (σ), c′ = c(σ′), m ∈ M\Nδ

and ξ ∈ Nδ. Then
∣

∣

∣
h∞c(σ)(ξ,m) − h∞c(σ′)(ξ,m)

∣

∣

∣
≤ C3(

√

|σ − σ′| + |c− c′|),
∣

∣

∣
h∞c(σ)(m, ξ) − h∞c(σ′)(m, ξ)

∣

∣

∣
≤ C3(

√

|σ − σ′| + |c− c′|).
The function h∞c(σ), defined on σ ∈ S, can be extended to a function h∞c,σ
defined in a neighborhood of the continuous curve {σ, cq(σ)} ⊂ R2 such

that h∞c(σ) = h∞c,σ|c=c(σ) and the above formulas hold for h∞c,σ.

Remark: We do not know whether the function σ → c(σ) has some
Hölder continuity in σ.

Let us consider the case when there are several pieces of invariant
cylinder. Under such condition, the barrier function may be not contin-
uous at finitely many points if we consider the continuity along the path
{c = (cq, y(cq)) : A−1 < p < B+1}. In fact, restricted on each cylinder
Σj, ΦH is an area-preserving and twist map. According to the hypothe-
sis (H2’), ∂ph|x=xj(p) 6= ∂ph|x=xj+1(p), we find that there exists a unique
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cq = cjq with pj − δ < cjq < pj + δ such that the c-minimal measure is

uniquely supported on an Aubry-Mather set in Σj if cj−1
q < cq < cjq and

it has exactly two ergodic components when cq = cjq. One component
corresponds to an Aubry-Mather set in Σk, another one corresponds

to an Aubry-Mather set in Σj+1. When c = (cjq, y(c
j
q)), the Mañé set

contains these two Aubry-Mather sets and the minimal orbits connect-
ing them. Due to the non-degenerate condition (H2’), the normally
hyperbolic cylinder Σj is long enough so that it’s interior contains all

Aubry-Mather set for those c with cj−1
q ≤ cq ≤ cjq.

7. Generic property

In this section we also assume that k = 1. The task in this section
is to show that there is a residual set in Bǫ,K such that if P is in this
set then there is a generalized transition chain {c ∈ H1(M,R) : c =
(cq, y(cq)), A− 1 ≤ cq ≤ B + 1}. Since there are finitely many invariant
cylinders {Σi}, it is sufficient to verify the generic property for one of
these cylinders.

Let us consider this issue from the Hamiltonian dynamics point of
view. Since the system is positive definite in action variable v = (p, y),
it has a generating function G(u, u′) (u = (q, x))

G(u, u′) = inf
γ∈C1([0,1],Rn+1)

γ(0)=u,γ(1)=u′

∫ 1

0
L(γ(s), γ̇(s), s)ds,

where u, u′ are in the universal covering space Rn+1. Clearly, G(u +
2kπ, u′ + 2kπ) = G(u, u′) for each k ∈ Zn+1. The map ΦH : (u, v) →
(u′, v′) is given by

v′ = ∂u′G(u, u′), v = −∂uG(u, u′),

let π2 be the standard projection from Rn+1 → Tn+1, let c ∈ Rn+1 and

Gc(u, u
′) = G(u, u′) − 〈c, u′ − u〉

then
hc(m,m

′) = min
π2(u)=m

π2(u′)=m′

Gc(u, u
′) + α(c).

We consider the change of the function h∞c when the generating function
is subject to a small perturbation G → G + G1. Let m ∈ M\Nδ ,
ξ ∈ M0(c), c = (cq, y(cq)). Let {ki} be a subsequence such that

lim
i→∞

hkic (ξ,m) = lim inf
k→∞

hkc (ξ,m),

let {u1 = ξ, u2, · · · , uki = m} be the minimal configuration, we claim
that there exists b > 0 such that ui /∈ Bb(m) for each 1 ≤ i ≤ ki−1, here
Bb(m) denotes a b-ball centered at m. In fact, there is a positive number
A > 0 such that hkc (m,m) ≥ 2A for each c = (cq, y(cq)) ∈ H1(M,R),
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for each k ∈ Z+ and for m ∈ M\Nδ . If not, there exists a subsequence
kj such that

lim
kj→∞

h
kj
c (m,m) = 0.

It implies that m ∈ A0(c), which contradicts the Lemma 3.1. As
hkc (m

′,m) is Lipschitz in m,m′, there exists b > 0 such that if m′ ∈
Bb(m) then hkc (m

′,m) ≥ A for each k ∈ Z+. If there is ui ∈ Bb(m) for
some i ∈ {ki}, let m′ be an accumulation point of {ui} then there exists
some k ∈ Z+ such that

h∞c (ξ,m) = h∞c (ξ,m′) + hkc (m
′,m).

Consequently,

h∞c (ξ,m′) ≤ h∞c (ξ,m) −A.

On the other hand, from the Lipschitz property we obtain that

h∞c (ξ,m′) ≥ h∞c (ξ,m) − CL‖m−m′‖.

It leads to a contradiction if m′ is sufficiently close to m. The con-
tradiction verifies our claim. Consequently, if the generating function
subjects to a small perturbation G(u, u′) → G(u, u′) + G1(u

′), where
supp(G1) ⊆ Bb(m), h∞c will also undergo the small perturbation:

h∞c (ξ,m′) → h∞c (ξ,m′) +G1(m
′), ∀m′ ∈ Bb(m), ξ ∈ M0(c);

while h∞c (m′, ξ) remains the unchanged.
Choose ξ, ζ ∈ M0(c), m ∈ M\Nδ. The change of h∞c,e1(ξ,m, ζ) is a

little bit complicated when the generating function undergoes the same
small perturbation as above. Let {ki} be a subsequence such that

lim
i→∞

hkic,e1(ξ,m, ζ) = lim inf
k→∞

hkc,e1(ξ,m, ζ).

Let {u0 = ξ, u1, · · · , uli = m, · · · , uki = ζ} be the minimal configuration
that realizes the minimal action hkic,e1(ξ,m, ζ), denote by γi: [0, ki] →M
the corresponding minimal curve. As the first step, we claim that for
each m ∈ M\Nδ , when ki is sufficiently large, there exists b > 0 such
that there is at most one uji ∈ Bb(m) for some 1 ≤ ji < ki, ji 6= li.
To a curve γ: [0, k] → M with γ(0), γ(k) ∈ Bb(m) we can associate an
element [γ] = ([γ]q, [γ]x1 , [γ]x2 , · · · , [γ]xn) ∈ H1(M,Bb(m),Z). If there
were two other points uji , uj′i ∈ Bb(m) (without losing of generality we

assume ji < j′i < li), then we would have two alternatives:
1, either [γ|[ji,j′i]]x1 = 0, or [γ|[j′i,li]]x1 = 0, or both;

2, both [γ|[ji,j′i]]x1 6= 0 and [γ|[j′i,li]]x1 6= 0.
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In the first case, we can cut off a piece γ|[ji,j′i] from the minimal curve

and define a curve γ′: [0, ki − j′i + ji] →M such that

γ′(t) =











γ(t) t ∈ [0, ji],

η(t) t ∈ [ji, ji + 1],

γ(t− j′i + ji + 1) t ∈ [ji + 1, ki − j′i + ji],

where η: [ji, ji+1] →M is a minimal curve joining γ(ji) with γ(j′i+1).
Clearly, [γ′]x1 6= 0. Since γ(ji) is close to γ(j′i), by the Lipschitz property
of hc(m,m

′) in m,m′, we have

(7.1)

∫ ki−j′i+ji

0
L(dγ′(t), t)dt+ (ki − j′i + ji)α(c) ≤ hkic,e1(ξ,m, ζ)−A.

To see the absurdity of (7.1), let us observe a simple fact: if some
{u0 = ξ, · · · , uki = ζ} is the minimizing sequence and if uj ∈ Bb(m),
then j → ∞, ki − j → ∞ as i → ∞. It implies that ki − j′i + ji → ∞.
So (7.1) contradicts the definition of h∞c since we choose ki → ∞ being
such a subsequence that limki→∞ hkic,e1(ξ,m, ζ) = h∞c,e1(ξ,m, ζ). For the
second alternative, by cutting off one piece γ|[ji,j′i] or both γ|[ji,j′i] and

γ|[j′i,li] we can construct a curve γ′ such that [γ′]x1 6= 0 and (7.1) holds

for γ′. But it is also absurd.
For the second step, let us recall that the support of each c =

(cq, y(cq))-minimal measure is in a small δ-neighborhood of the circle
Nδ if the perturbation is sufficiently small. Let γ+

c (t,m) be the forward
c-semi-static curve such that γ+

c (0,m) = m, let γ−c (t,m) be the back-
ward c-semi-static curve such that γ−c (0,m) = m. Denote by W s,u(c)
the stable and unstable set for the support of the c-minimal measure,
which contains forward and backward semi-static orbits respectively, we
define

St0,t1 =
⋃

u∈∂N2kδ
(u,u̇)∈Ws,u(c)

t0≤t≤t1

πφtL(u, u̇).

If δ is suitably small and k is suitably large, then
i, H1(N3kδ , Nkδ,Z) = 0;
ii,
{

πφtL(u, u̇) : ∀ u ∈ ∂N2kδ, (u, u̇) ∈W s,u(c), t ∈ [−3, 3]
}

⊂ N3kδ\Nkδ;

iii, γ+
c (t,m), γ−c (−t,m) stay in N3kδ for all t ≥ 0 if m ∈ S−2,2.

Thus, there exists b > 0 such that γ+
c (t,m) does not visit Bb(m) again

when t ≥ 1, and γ−c (t,m) does not visit Bb(m) again when t ≤ −1.
We assume the c-minimal measure is uniquely ergodic. Given u ∈

S−2,2, there is a minimizing curve γ(t) for h∞c,e1(ξ, u, ζ) in the sense that

there are two sequence {k+
i }, {k−i }, such that γ(k+

i ) → ξ, γ(−k−i ) → ζ,
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γ(0) = u and

h∞c,e1(ξ, x, ζ) = lim
k
+
i

→∞

k
−
i

→∞

∫ k+
i

−k−i

(Lc(dγ(t, u)) + α(c))dt.

Obviously, γ is smooth everywhere except for t = 0, and either {dγ(t, x) :
t ≤ 0} ⊂ N3kδ or {dγ(t, x) : t ≥ 0} ⊂ N3kδ alternatively.

Let m ∈ S−1/2,1/2. We consider the case that the minimal curve
{γ(t)} of h∞c,e1(ξ,m, ζ) returns to a small ball Bb(m) in the sense that
there is some i ∈ Z\0 such that γ(i) ∈ Bb(m). Without losing generality,
we assume i > 0, the case that i < 0 can be treated similarly. Let us
consider the minimizing curve γ2(t) for h∞c,e1(ξ, γ(2), ζ) and γ2(0) = γ(2).

In this case, γ2(t) = γ(t+ 2) for all t ≥ 0. We claim that γ2(t) does
not return to Bb(γ(2)) if we choose suitably small b > 0. Otherwise,
from the continuity of the solution of ODE on initial value we can see
that the minimal curve γ shall return again to a small neighborhood of
m at t = 2i, but this contradicts to the fact there is at most one point
of the minimal configuration falls into the small ball Bb(m). Obviously,
{γ1(t) : t ≤ 0} ⊂ N3kδ in this case.

If for some m ∈ S−5/2,5/2, the minimizing curve γ with γ(0) = m
for h∞c (ξ,m, ζ) does not return to B2b(m) for all k ∈ Z\{0}, then for
m′ suitably close to m and c′ suitably close to c, the minimizing curve
γ′(t) for h∞c′ (ξ,m

′, ζ) with γ′(0) = m′ does not return to B2b(x) for
all k ∈ Z+\{0} either. Therefore, there is an open set Oc ⊂ S−3,3

and a neighborhood for c such that for each m ∈ Oc, each c′ in the
neighborhood of c, and each minimizing curve γ for h∞c′,e1(ξ,m, ζ) with

γ(0) = m, γ(i) /∈ Bb(x) for all i ∈ Z\{0}.
Note any minimizing curve γ for hc,e1(ξ,m, ζ) must pass through

S−1/2,1/2, we have proved

Lemma 7.1. Assume that the c-minimal measure is uniquely ergodic

for each c = (cq, y(cq)) (A < cq < B). There is a small positive number

ǫ = ǫ(A,B, κ) > 0, if ‖L1‖Cr ≤ ǫ, then:

i) an open sets Oc exists such that ∀ dγ ∈ Ñ (c, M̃ )\Ñ (c,M), there

is k ∈ Z such that γ(k) ∈ Oc;
ii), there is b > 0 such that for each c = (cq, y(cq)) with A < cq < B,

if the generating function is subject to a small perturbation Gc(u, u
′) →

Gc(u, u
′) + G1(u

′), where supp(G1) ⊆ Bb(u) ⊂ Oc, then the barrier

function undergoes a small perturbation:

B∗
c,e1(u) → B∗

c,e1(u) +G1(u) + a small constant.

iii), Ũ = ∪A<cq<BOc is open in [A,B]×M , U = πŨ ⊂M\Nδ, where

π is a standard projection from [A,B] ×M to M .
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The next goal is to show that the density of the set {P ∈ Cr : {u ∈
M\Nδ : B∗

c,e1(u) = minuB
∗
c,e1(u)} is totally disconnected}.

For convenience of notation, we set x0 = q. Let Rd(u
∗) = {u ∈ M :

|xi − x∗i | ≤ d,∀ 0 ≤ i ≤ n} ⊂ Bb(u∗), Sc,σ = B∗
c(σ) + G1, we say a

connected set V is non-trivial for Rd if Πi(V ∩ Rd) = {x∗i − d ≤ xi ≤
x∗i+d} for some 0 ≤ i ≤ n. Here Πi is the standard projection from Tn+1

to its i-th component. Let Md,u∗(S) = {u : S(u) = minu∈Rd(u∗) S}, we

define a set in the function space F(d, u∗) = C0(Rd(u
∗),R),

Z(d, u∗) =
{

S ∈ F(d, u∗) : Md,u∗(S) ⊇ a set non-trivial for Rd(u
∗)
}

.

We define Zi (i = 0, 1, · · · , n):

Zi =
{

S ∈ Z(d, u∗) : Πi(Md,u∗(S)) = {x∗i − d ≤ xi ≤ x∗i + d}
}

.

Clearly:

Z(d, u∗) =

n
⋃

i=0

Zi.

We claim that for each generating function G ∈ Cr(M × M,R)
and each ǫ > 0, there is an open and dense set H(d, u∗) of Bǫ(0) ⊂
Cr(Rd(u

∗),R), for each G1 ∈ H(d, u∗), the image of Sσ from [A′, B′] to
F has no intersection with the set Zi.

Obviously, the set Zi is a closed set and has infinite co-dimension in
the following sense, there exists Ni, an infinite dimensional subspace of
F, such that (S+F ) /∈ Zi for all S ∈ Zi and F ∈ N\{0}. In fact, for each
non constant function F (xi) ∈ C0([x∗i − d, x∗i + d],R) with F (x∗i ) = 0
and each S ∈ Zi we have S + F /∈ Zi. Thus, we can choose

Ni = C0([x∗i − d, x∗i + d],R)/R,

which we think as the subspace of C0(Rd(u
∗),R) consisting of those

continuous functions independent of other coordinate components xj
(j 6= i).

Let

Fσ = {B∗
c(σ),e1

: σ ∈ [A′, B′]}.
Clearly, this set is determined by the generating function G. Recall the
Lemma 6.4, we can extend B∗

c(σ),e1
to a function [A,B] × [A′, B′] → F

that has 1
2 -Hölder continuity, the image of the continuous curve {σ, c(σ)}

⊂ [A,B] × [A′, B′] is compact and its box dimension is not bigger than
4,

DB(Fσ) ≤ 4.

Let

N =

n
⊕

i=0

Ni.
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Lemma 7.2. There is an open and dense set N∗ ⊂ N such that for

all F ∈ N∗

(7.2) (Fσ + F ) ∩ Z = ∅.

Proof. : We show (Fσ + F ) ∩ Zi = ∅ for each 0 ≤ i ≤ n. The open
property is obvious. If there was no density property, for any k ∈ Z,
there would be a k-dimensional ǫ-ball Bǫ ⊂ Ni for some ǫ > 0, for each
F ∈ Bǫ, there would exist S ∈ Fσ such that F + S ∈ Zi.

For each S ∈ Fσ there is only one F ∈ Bǫ such that S + F ∈ Zi,
otherwise, there would be F ′ 6= F such that S + F ′ ∈ Zi. Since we can
write F ′ +S = F ′ −F +F +S where S +F ∈ Zi and F ′ −F ∈ Ni\{0},
this contradicts to the definition of Ni. Given F ∈ Bǫ, there might be
more than one element in SF = {S ∈ Fσ : S + F ∈ Zi}. Given any two
F1, F2 ∈ Bǫ, for any S1 ∈ SF1 and any S2 ∈ SF2 we have

d(S1, S2) = max
u∈Rd(u∗)

|S1(u) − S2(u)|(7.3)

≥ max
|xi−x∗i |≤d

∣

∣

∣
min

|xj−x
∗
j
|≤d

j 6=i

S1(u) − min
|xj−x

∗
j
|≤d

j 6=i

S2(u)
∣

∣

∣

= max
|xi−x∗i |≤d

|F1(xi) − F2(xi)|

= d(F1, F2)

where d(·, ·) denotes the C0-metric. It follows from (7.3) and the defi-
nition of box dimension that

DB(Fσ) ≥ DB(Bǫ) = k,

but this is absurd if we choose k > 4. q.e.d.

As Cr is dense in C0, an open and dense set H(d, u∗) ⊂ Cr(Rd(u
∗),R)

clearly exists such that for each function G1 ∈ H(d, u∗), we have

(Fσ +G1) ∩ Z(d, u∗) = ∅, ∀ σ ∈ S,

where by abuse of terminology we continue to denote Sσ and its restric-
tion to Rd(u

∗) by the same symbol.
Let U be an open set, MU (S) = {u : S(u) = minu∈U S} and

Zc =
{

S ∈ C0(U,R) : MU (S) is totally disconnected
}

.

Given di > 0, there are finitely many uij such that ∪jRdi(uij) ⊇ U .
Thus there exists a sequence di → 0 and a countable set {uij} such that
for each G1 ∈ ⋂∞

i,j=1 H(di, uij)

Fσ +G1 ⊂ Zc.

Recall the Lemma 3.4, we have the following
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Lemma 7.3. There exists a residual set Sǫ ⊂ Bǫ ⊂ Cr(U,R) (r =
ω,∞, or ≥ 3), for each G1 ∈ Sǫ

π1N0(c(σ), M̃ )\(N0(c(σ),M) + δ) is totally disconnected

when σ ∈ S.

Proof. : For r = ∞ or r = finite, we can write G1 =
∑

iG1i where
G1i has its support at Rdi(u) and there exists dqi > 0 such that Rdi(u)×
{|cq − c∗q | ≤ dqi } ⊂ Ũ and ∪iRdi(u) × {|cq − c∗q | ≤ dqi } = Ũ , taking the
intersection of countably many open-dense sets of Cr-function space, we
obtain the residual property.

The perturbation to the generating function G can be achieved by
perturbing the Hamiltonian function H → H ′ = H + δH. To do that,
let us introduce a differentiable function κ: M → R such that 0 ≤ κ(u−
u′) ≤ 1, κ(u−u′) = 1 if |u−u′| ≤ K and κ(u−u′) = 0 if |u−u′| ≥ K+1.
We choose sufficiently large K so that {‖v‖ ≤ max(|A|, |B|) + 1} is
contained in the set where |u− u′| ≤ K. Let Φ′ be the map determined
by the generating function G + κG1, the symplectic diffeomorphism
Ψ = Φ′ ◦ Φ−1 is closed to identity. We choose a smooth function ρ(s)
with ρ(0) = 0 and ρ(1) = 1, let Φ′

s be the symplectic map determined
by G + ρ(s)κG1i, let Ψs = Φ′

s ◦ Φ−1. Clearly, Ψs defines a symplectic
isotopy between identity map and Ψ. Thus, there is a unique family of
symplectic vector field Xs: T

∗M → TT ∗M such that

d

ds
Ψs = Xs ◦ Ψs.

By the choice of perturbation, there is a simply connected and compact
domain DK such that Ψs|T ∗M\DK = id. It follows that there is a hamil-
tonian H1(u, v, s) such that dH1(Y ) = dv ∧ du(Xs, Y ) holds for any
vector field Y . Re-parameterizing s by t we can make H1 smoothly and
periodically depend on t. To see that dH1 is also small, let us mention
a theorem of Weinstain [W]. A neighborhood of the identity map in
the symplectic diffeomorphism group of a compact symplectic manifold
M can be identified with a neighborhood of the zero in the vector space
of closed 1-forms on M. Since Hamiltomorphism is a subgroup of sym-
plectic diffeomorphism, there is a function H ′, sufficiently close to H,
such that ΦH1 ◦ ΦH = Φt

H′ |t=1.
The perturbation made to H does not change the dynamics around

the cylinder, it means that the set of invariant circles remains unchanged
if H is subject to the perturbation constructed this way.

In the case of twist map, each co-homology class corresponds to a
unique rotation number. Obviously, for each rotation number p/q ∈ Q,
there is an open and dense set in the space of area-preserving twist
maps such that there is only one minimal (p, q)-periodic orbit without
homoclinic loop. Take the intersection of countably open dense sets it
is a generic property that there is only one minimal (p, q)-periodic orbit
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without homoclinic loop for all p, q ∈ Z. Recall that the minimal mea-
sure is always uniquely ergodic when the rotation number is irrational,
there is a residual set in Bǫ,K, such that if L1 is in this set, then there
is a generalized transition chain Γ: [0, 1] → H1(M,R) ∩ {cx = 0} which
connects {cq ≤ A} with {cq ≥ B}. For each c in a transition piece,
M(c) is uniquely ergodic, thus the conditions of the Theorem 5.1 are
satisfied. Therefore, there is a residual set of small perturbations in
Bǫ,K, such that the perturbed systems has an orbit connecting {p < A}
to {p > B}.

Therefore, the proof of the Theorem 1.2 is completed. The Theorem
1.1 is a special case of the Theorem 1.2. q.e.d.
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