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Abstract

We prove that the rotation in time T of a trajectory of a
K-Lipschitz vector field in Rn around a given point (stationary
or non-stationary) is bounded by A + BKT with A,B absolute
constants. In particular, trajectories of a Lipschitz vector field
in finite time cannot have an infinite rotation around a given
point (while trajectories of a C∞ vector field may have an infi-
nite rotation around a straight line in finite time). The bound
above extends to the mutual rotation of two trajectories (for the
time intervals T and T ′, respectively) of a K-Lipschitz vector
field in R3: this rotation is bounded from above by the quantity
CK min(T, T ′) + DK2TT ′.

1. Introduction

In this paper we investigate the tameness of a geometric behavior of
trajectories of vector fields: the rotation of such a trajectory around a
point or the mutual rotation of two trajectories.

Of course, a lot of results have been published on the geometry of
solutions of differential equations and trajectories of vector fields, and
we simply cannot give an extensive review or even a bibliography on the
subject. Nevertheless, we have at our disposal only few global theories
and general results concerning the tameness of trajectories. In this very
short introduction we just want to focus on two of them.

In Gabrielov-Hovanskii’s theory of Pfaffian sets, a Pfaffian function
f on an open set U ⊂ Rn is defined as a function that can be written
in the following way: f(x) = P (x, c1(x), . . . , cm(x)), where P is a poly-
nomial and the ci’s are analytic solutions of the polynomial triangular
differential system:

(∗) Dci(x) =
m∑

j=1

Pi,j(x, c1(x), . . . , ci(x)) dxj , i ∈ {1, . . . ,m}.
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Then, if we consider the Pfaffian structure, that is to say the smallest
structure containing the semi-Pfaffian sets, it has been proved in [Wi],
using a Bezout type theorem of Hovanskii ([Ho 1], [Ho 2]), that this
structure is o-minimal (see [Co], [Dr], [Dr-Mi], [Sh]): for short, the
number of connected components of sets in such a structure is finite, and
consequently, no Pfaffian curve (nor set) may infinitely oscillate or spiral
around a point and two such curves have bounded mutual rotation.

This theory presents a large class of tame objects coming from differ-
ential equations, but when we deal with vector fields, the only way to a
priori be sure that the trajectories belong to this category is to assume
that the trajectory is a Pfaffian function itself, satisfying equation (∗).
We deduce from this assumption that the field depends only on one
variable. A too restrictive hypothesis that obviously not allows a wild
behavior for trajectories.

On the other hand, starting with a given vector field and studying
the local geometry of its trajectories in a neighborhood of one of its
singularities, we know that this geometry is tame, following [Ku-Mo]
and [Ku-Mo-Pa], provided that the field is an analytic gradient vector
field: the rotation of a trajectory of an analytic gradient vector field
around one of its singularities is finite. As a consequence, the limit of
the secant lines to the trajectory exists (Thom’s Gradient Conjecture).
Let us notice that we do not know whether a trajectory of an analytic
gradient vector field lies in some o-minimal structure, although we know
that trajectories of the gradient of a function definable in a given o-
minimal structure have finite length (see [Ku]). On the local behavior
of trajectories we would like to refer to the number of deep results
produced by the Spanish-Dijon School, and specially the most recent
ones: [Ca-Mo-Ro], [Ca-Mo-Sa 1], [Ca-Mo-Sa 2], [Ca-Mo-Sa 2],
[Bl-Mo-Ro].

The aim of this paper is to give general results about rotation of
trajectories of a vector field, with no restrictive assumptions on the
nature of the field, besides the Lipschitz property which is a minimal
hypothesis for the existence of trajectories.

Of course, in this direction, we cannot hope to treat infinite time
phenomena, as it is done in [Ku-Mo-Pa] and the Pfaffian theory be-
cause it is well-known that complete trajectories of polynomial vector
fields in the plane may spiral around a singularity of the field (see, for
instance, Remark of Section 3.1). We thus obtain our bounds for trajec-
tories defined on a finite time interval. For other bounds obtained in the
same spirit, the reader may report to [Gr-Yo], [Ho-Ya], [No-Ya 1],
[No-Ya 2], [Ya]. Of course, we can then let the time go to infinity in
our bounds in order to get asymptotic bounds. In this direction, one
direct consequence of the existence of our bounds is an explicit upper
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bound for the so-called asymptotic Hopf invariant (Theorem 3.12) de-
fined by Arnold in [Ar] in order to compute the minimun energy of fields
obtained from a given divergence-free field under the action of volume-
preserving diffeomorphisms. Another immediate consequence given in
this paper is a logarithmic bound for the asymptotic local rotation at
singular points of analytic vector fields (Theorem 3.13).

The paper is organized as follows.
In Section 2, we introduce and compare some notions of absolute and

topological rotation for trajectories around an affine subspace in Rn or
for two trajectories around each others in R3.

In Section 3, we first notice that the rotation of any trajectory of a
Lipschitz vector field around its stationary points is bounded in terms of
the Lipschitz constant and the time elapsed only (Proposition 3.1). The
same is true for the rotation of any trajectory around a linear invariant
subspace of the field (Proposition 3.2). Moreover, while the rotation
velocity of a trajectory around a non-stationary point of the field may
tend to infinity, we prove our first main result: the “total” rotation
around such a point is still bounded in terms of the Lipschitz constant
and the time interval (Theorem 3.8). Our second main result is a conse-
quent of the first one: we give a uniform bound for the mutual rotation
of any two trajectories of a given Lipschitz vector field in terms of the
time interval and the Lipschitz constant (Theorem 3.9). In contrast,
we provide an easy example showing that the rotation of a trajectory
of C∞ vector field around a non-invariant subspace may be infinite in
finite time (Example 3.3). The end of the paper is devoted to the two
direct applications mentioned above (Theorems 3.12 and 3.13).

We would like to thank the referee for finding a gap in our initial
arguments and pointing out a possible way to close it.

2. Definition of signed and absolute rotation

2.1. Rotation around an affine subspace. First of all, we define
an absolute rotation of the curve γ in Rn around the origin 0 ∈ Rn.
Assuming that γ does not pass through the origin, we can define the
spherical image of γ as the curve σ in the unit sphere Sn−1 in the
following way:

σ(t) =
γ(t)
‖γ(t)‖ .

Definition. The absolute rotation Rabs(γ, 0) of the curve γ around
the origin is the length of σ, the spherical image of γ in the unit sphere
Sn−1.

We have the following lemma (easy to check) which relates the rota-
tion to the spherical part of the velocity of the curve:
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Lemma 2.1. Let γ′(t) =
dγ(t)

dt
be the velocity vector of γ : I → Rn,

and let γ′r(t) and γ′s(t) be the radial and the spherical components of this
velocity vector. Then the velocity of the spherical blowing-up σ of γ is

σ′(t) =
γ′s(t)
‖γ(t)‖ .

As a consequence, the absolute rotation Rabs(γ, 0) is given by the integral

Rabs(γ, 0) =
∫

t∈I

‖γ′s(t)‖
‖γ(t)‖ dt.

Remark. The absolute rotation Rabs(γ, 0) is invariant with respect
to the monotone reparametrizations of the curve γ. In the same way
we want our results to be about the geometry of the curve and not de-
pending on one of its parametrizations. This is why in what follows
we implicitly consider the geometric trajectory γ(I) of the injective
curve γ : I → γ(I) as the class of γ : I → Rn modulo its injective
reparametrizations.

For plane curves γ in R2, we can define their “signed rotation” R(γ, 0)
around the origin, which is, of course, the usual rotation index. Indeed,
in this case the unit sphere is a circle. Assuming that the orientation
of this circle (and of the curve γ) has been chosen, we can define the
signed rotation essentially by the same expression as above:

Definition. The signed rotation R(γ, 0) of γ around the origin is
defined by

R(γ, 0) =
1
2π

∫

γ
±‖γ

′
s(t)‖

‖γ(t)‖ dt.

Here the sign under the integral is chosen according to the direction of
the tangent to the unit circle vector γ′s(t).

Remark. Notice that the normalization by 2π, the unit circle length,
which appears here to make the linking number defined below, is an
integer. In codimension greater or equal to three, we do not normalize
the length of the spherical curves.

An absolute rotation of the curve γ in Rn around a linear k-dimensional
subspace L ⊂ Rn is defined as follows: let L⊥ denote the orthogonal
subspace to L. Let γ̃ be the projection of γ on L⊥. Assuming that γ
does not touch L, we get γ̃ not passing through the origin in L⊥.

Definition. The absolute rotation Rabs(γ,L) is defined as the abso-
lute rotation of the curve γ̃ in L⊥ around the origin. In the case of a
linear subspace L of codimension 2 in Rn, a signed rotation R(γ,L) of
γ around L is defined as the signed rotation of the curve γ̃ in the plane
L⊥ around the origin.
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Of course, the absolute rotation always bounds from above the abso-
lute value of the signed one.

For a closed curve γ and for a subspace L of codimension 2, the signed
rotation R(γ,L) is an integer, and it is a topological invariant. For γ
non-closed, this signed rotation R(γ,L) may take non-integer values.
However, it is still an invariant of deformations of γ preserving the end
points and not touching L.

2.2. Rotation of two curves in R3. It is well known that the link-
ing number of two closed curves in R3 can be defined via an integral
expression, the so-called Gauss integral (see, for example, [Ar-Kh],
[Du-Fo-No]). This gives us a natural way to define also an absolute
and a signed rotation of two curves (closed or non-closed) one around
the other.

For non-closed curves, the rotation defined in this (or any other) way
cannot be metrically or topologically invariant. But on the other hand,
the Gauss integral representation provides a powerful analytic tool for
its investigation. In the next subsection, we remind the construction
of the Gauss integral and its main properties. Our presentation follows
very closely the one given in [Du-Fo-No].

2.2.1. The Linking Coefficient. Consider a pair of smooth, closed,
regular directed curves in R3, which do not intersect. We may assume
them to be parametrized in the following way: γi : Ii → R3, i = 1, 2,
with I1, I2 two compact intervals. We denote our geometric curves by
γ1 and γ2 (instead of γ1(I1), γ2(I2)).

Definition. The linking coefficient of the two curves γ1, γ2 is defined
in terms of the “Gauss integral” by

{γ1, γ2} =
1
4π

∫

t1∈I1

∫

t2∈I2

〈γ′1(t1) ∧ γ′2(t2), γ12(t1, t2)〉
‖γ12(t1, t2)‖3

dt1dt2,

where γ12(t1, t2) = γ2(t2)− γ1(t1).

Remark. In this definition, the normalization by 4π has to be seen
as the normalization by the volume of the unit sphere of R3 (see the
Remark that follows the proof of Theorem 2.2).

Let us stress that this definition immediately shows that {γ1, γ2}
does not depend on the parametrizaton of the curves nor on their rigid
transformations. Intuitively speaking the linking coefficient gives the
algebraic (i.e., signed) number of loops of one contour around the other.
This interpretation is justified by the following result:

Theorem 2.2. Let γ1 and γ2 be two closed curves in R3 and assume
that I1 = [0, 2π].
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(i) The linking coefficient {γ1, γ2} is an integer, and is unchanged by
deformations of γ1 and γ2, involving no intersection of one curve
with the other.

(ii) Let F : D2 → R3 be a map of the disc D2 which agrees with

γ1 : t 7→ γ1(t), 0 ≤ t ≤ 2π on the boundary ∂D2 ' S1 ' [0, 2π]
0 ∼ 2π

,

and is transversal to the curve γ2 ⊂ R3. Then the “topological
linking number,” which is the intersection index F (D2) · γ2 (i.e.,
the number of the intersection points of F (D2) and γ2, counted
with the signs reflecting the orientation), is equal to the linking
coefficient {γ1, γ2}.

Proof. The closed curves γi(t), i = 1, 2, give rise to a 2-dimensional,
closed, oriented parametric surface γ1 × γ2 in R6:

γ1 × γ2 : (t1, t2) 7→ (γ1(t1), γ2(t2)).

Since the curves are non-intersecting, the map ϕ : γ1 × γ2 → S2 given
by

ϕ(t1, t2) =
γ1(t1)− γ2(t2)
‖γ1(t1)− γ2(t2)‖

is well defined. An easy geometric consideration shows that the inte-
grand in the Gauss integral is just the Jacobian of the map ϕ. Therefore,
the Gauss integral above is equal to the degree of the map ϕ. Hence
the linking coefficient is, indeed, an integer. Under deformations of
the curves {γ1, γ2} involving no intersection one with the other, the
map ϕ undergoes a homotopy, so that its degree, and therefore also the
linking coefficient, are preserved. Let us stress that in the process of
these deformations each of the curves γ1, γ2 separately may cross itself
in an arbitrary way. Of course, the topological linking number is also
preserved by such deformations.

We now prove (ii). If the curves are not linked (i.e., if by means of a
homotopy respecting non-intersection, they can be brought to opposite
sides of a 2-dimensional plane in R3), then it can be verified directly
that {γ1, γ2} = deg ϕ = 0. In a general case, we can “push” γ1 along
γ2 in such a way that after this deformation, it comes close to γ2 only
in a neighborhood of exactly one point. Then by applying another
deformation (remember that self-intersections of the curves are allowed),
we reduce the general case of the problem of calculating the linking
coefficient essentially to the following simple situation: the curve γ2 is
a straight line, while γ1 is a circle, orthogonal to γ1 and passed several
times in the positive or negative direction. Thus, we suppose γ1 and γ2

to be given respectively by γ1(t1) = (cos t1, sin t1, 0), 0 ≤ t1 ≤ 2π and
γ2(t2) = (0, 0, t2), −∞ < t2 < ∞. The linking coefficient for these two
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curves is

{γ1, γ2} =
1
4π

∫ ∞

−∞

∫ 2π

0

dt1dt2

(1 + t22)3/2
=

1
2

∫ ∞

−∞

dt2

(1 + t22)3/2

=
1
2

∫ ∞

−∞

du

ch2(u)
=

1
2
[th(u)]+∞−∞ = 1.

Hence, for these two directed curves, the statement (ii) of the Theorem
holds. The general result now follows via the deformation described
above. q.e.d.

Remark. One can give another proof of Theorem 2.2. As above, we
notice that the Gauss integral is equal to the degree of the mapping
ϕ : γ1 × γ2 → S2. Now fix a point p in S2 which is a regular value of ϕ
and consider the projection π along the corresponding line `p onto the
orthogonal plane Pp. The preimages ϕ−1(p) correspond exactly to the
crossing points of the plane curves π(γ1) and π(γ2) in Pp. The sign of
the Jacobian of ϕ at each of the preimages ϕ−1(p) can be computed via
the directions of π(γ1) and π(γ2) at their corresponding crossing point
taking into account, which curve is “above” and which is “below”.

Now the degree of the mapping ϕ is the sum of the signs of the
Jacobian of ϕ over all the preimages ϕ−1(p). On the other hand, the
corresponding sum over all the crossing points of π(γ1) and π(γ2) can
be easily interpreted as the topological linking number of γ1 and γ2.

2.2.2. Signed and absolute rotation. As the curves γ1, γ2 are not
necessarily closed, the Gauss integral can be still computed.

Definition. For two curves γ1, γ2 in R3, closed or non-closed, we call
the Gauss integral along these curves the signed rotation of the curves
γ1 and γ2 and denote it by R(γ1, γ2). We have

R(γ1, γ2) =
1
4π

∫

t1∈I1

∫

t2∈I2

〈γ′1 ∧ γ′2, γ12〉
‖γ12‖3

dt1dt2,

where γ12 = γ2 − γ1.
For two curves γ1, γ2, not necessarily closed, the absolute rotation of

these curves is defined as

Rabs(γ1, γ2) =
1
4π

∫

t1∈I1

∫

t2∈I2

|〈γ′1 ∧ γ′2, γ12〉|
‖γ12‖3

dt1dt2.

Remarks. The absolute rotation of two curves bounds the absolute
value of their signed rotation:

|R(γ1, γ2)| ≤ Rabs(γ1, γ2).

In particular, for γ1, γ2 closed, the absolute rotation bounds the absolute
value of the linking number {γ1, γ2}.

For γ1, γ2 not closed, R(γ1, γ2) does not need to be an integer any-
more. This rotation number also is not invariant under the deformations
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of the curves γ1, γ2 without crossing one another, even if we assume that
the end-points of γ1 and γ2 are fixed. Indeed, if we take the curve γ1 to
be a “long” segment of the straight line, and the curve γ2 to be the unit
circle around γ1, the computation at the end of the proof of Theorem
2.2 above shows that the signed rotation R(γ1, γ2) is approximately one.
On the other hand, we can deform the circle γ2 with one of its points
fixed as follows: we pull it out from the segment γ1, and then contract
it to the point. The rotation of the deformed curves is zero, so it was
not preserved in the process of the deformation.

However, for one of the curves, say γ1, closed, we have the following
result:

Proposition 2.3. Let the curve γ1 be closed. Then the signed ro-
tation R(γ1, γ2) is invariant under the deformations of the curve γ2

(without crossing γ1) if the end-points of γ2 remain fixed.

Proof. Consider a closed curve γ̃2 obtained from γ2 by passing it twice
in the opposite directions. We have R(γ1, γ̃2) = 0, since the rotation
of these two closed curves is invariant under deformation, while γ̃2 can
be deformed into the point without crossing γ1. Now consider another
deformation of γ̃2, where one copy of γ2 remains fixed, while another
copy, γ̂2, undergoes a deformation without crossing γ1 and with the end
points fixed. The signed rotation remains zero in this deformation, so
R(γ1, γ̃2) = R(γ1, γ2)−R(γ1, γ̂2) = 0. Hence R(γ1, γ̂2) remains the same
in the deformation. q.e.d.

Another property which can be obtained by a rather straightforward
computation is the following:

Proposition 2.4. For γ1 = L a straight line, the signed rotation
R(γ1, γ2) (resp. the absolute rotation Rabs(γ1, γ2)) given by the Gauss
integral coincides with the signed rotation R(γ2,L) (resp. the absolute
rotation Rabs(γ2,L)) of the curve γ2 around the straight line L, as de-
fined by projection on L⊥ in Section 2.1 above.

Proof. Let us start with the case of the signed rotation. We have
passing to the length parametrization

R(γ1, γ2) =
1
4π

∫

I1

∫

I2

〈n1 ∧ n2, γ12〉
‖γ12‖3

ds1ds2,

where n1, n2 are the unit tangent vectors to the curves γ1, γ2, and s1, s2

are the length parameters on the curves γ1, γ2, respectively.
Let η2(s2) denote the vector joining the point s2 ∈ γ2 with the

projection of s2 onto the straight line γ1 (see Figure 1). We have
〈n1 ∧ n2, γ12〉 = 〈n1 ∧ n2, η2〉. Hence,

R(γ1, γ2) =
1
4π

∫

I1

∫

I2

〈n1 ∧ n2, η2〉
‖γ12‖3

ds1ds2.
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The vector n1, being the tangent vector to the straight line γ1, is con-
stant. Therefore, the triple product under the above integral depends
only on s2, and we have

R(γ1, γ2) =
1
4π

∫

I2

〈n1 ∧ n2(s2), η2(s2)〉
∫

I1

ds1

‖γ12(s1, s2)‖3
ds2.

Now the integral ∫

I1

ds1

‖γ12(s1, s2)‖3

over the straight line γ1 has been computed (up to a scaling by the
distance ‖η2(s2)‖ to the line) at the end of Section 2.2.1 above. It is

equal to
2

‖η2(s2)‖2 . So for the rotation R(γ1, γ2), we finally get

R(γ1, γ2) =
1
2π

∫

I2

〈n1 ∧ n2(s2), η2(s2)〉
‖η2(s2)‖2 ds2.

Now we can replace the vector n2 in the triple product by its projection
n̂2 to the line orthogonal to the lines γ1 and η2. Hence, this triple

product is equal to
‖n̂2‖
‖η2‖ with the sign defined by the orientation, and

we obtain

(1) R(γ1, γ2) =
1
2π

∫

γ2

±‖n̂2‖
‖η2‖ ds2.

γ

n

1

2

n1

η
2

η
2

^

γ
2

γ
1

Figure 1.
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But η2 is just the radius-vector of the projection of the curve γ2 onto
the plane orthogonal to the line γ1, and n̂2 is the orthogonal component
of the velocity vector of this projection. Therefore, according to Lemma
2.1 and up to a sign ε, the integral (1) is the signed rotation R(γ2,L) of
γ2 around the straight line L = γ1, as defined in Section 2.1 (the sign ε
is +, when in the computation of R(γ2,L), we have oriented the plane
L⊥ in such a way that if (~u,~v) is an oriented orthonormal basis of L⊥,
~u ∧ ~v = −n1 (see Figure 1)).

This completes the proof of the proposition for the signed rotation.
The proof for the absolute rotation is exactly the same: we just take

the absolute value of the triple product in each step. Since the proof
above consisted of a chain of point-wise equalities of the integrands, it
remains valid also for the absolute values. q.e.d.

3. Rotation of trajectories of Lipschitz vector fields

For a Lipschitz vector field in Rn, the very simple and basic fact is
that the angular velocity of its trajectories with respect to any station-
ary point is bounded by the Lipschitz constant K. As an immediate
consequence, the rotation of a trajectory around a stationary point is
bounded (up to some universal constant C) by the Lipschitz constant
K and the time interval T . The bound has this form: C ·K · T .

Below we remind the proof of this fact. In fact, we show that the
same is true for the rotation speed of the trajectories around any linear
subspace L ⊂ Rn, which is an invariant submanifold of our field.

The main result of this section (Theorem 3.8) is that the rotation of
a trajectory around any point (stationary or not) is bounded in terms
of K and T . As the consequence, we prove (Theorem 3.9) that the
mutual rotation of any two trajectories of a Lipschitz vector field is
essentially bounded by the Lipschitz constant and the length of the time
interval. More accurately, the absolute rotation of any two trajectories
of a Lipschitz vector field on the time intervals T1 and T2, respectively,
is bounded from above by a linear combination of the expressions K ·
min(T1, T2) and C ·K2 · T1 · T2. Easy examples given in the end show
that this bound is sharp.

At this point, let us remember that the rotation of a curve ω : I → Rn

around a point, an affine space or another curve, as defined above,
only depends on the trajectory ω(I), provided we only admit injective
(parametrization of) curves. Consequently, our bounds do not really
depend on the field, but rather on the geometry of the trajectories of
the fields. This is obvious when we look at the type of bounds we
obtain: (up to some universal constant) they are combinations of K · T
and K2 · T1 · T2, expressions that are unchanged with respect to any
transformation of the field that preserve the trajectories.
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For Lipschitz vector fields, we can summarize the situation by the
following slogan: “two trajectories have finite mutual rotation in finite
time.”

We cannot expect bounds of this sort to be true for a rotation around
a non-invariant subspace of the field. Indeed, Example 3.3 below shows
that a trajectory of a C∞-vector field in R3 can make in finite time an
infinite number of turns around a straight line.

Let us remember that it was shown (in some special cases) in [Gr-Yo]
that for a trajectory of a polynomial vector field (trajectory, which is
not, in general, in some o-minimal structure), its rotation rate around
any algebraic submanifold is bounded in terms of the degree of the sub-
manifold and the degree and size of the vector field (see also [No-Ya 1,
No-Ya 2, Ya]). As a consequence, we obtain also a linear in time bound
on the number of intersections of the trajectory with any algebraic hy-
persurface.

On the other hand, our bounds on the rotation rate of the trajectories
of a polynomial vector field imply upper bounds on the multiplicities of
the local intersections of such trajectories with algebraic submanifolds
in terms of the degree only.

As Example 3.3 shows, nothing of this sort can be expected even
for C∞ (and of course, for Lipschitz) vector fields. Still, the results of
this section show that Lipschitz vector fields exhibit rather strong non-
oscillation patterns. As far as the rotation of the trajectories of such
fields around non-invariant submanifolds is concerned, our current un-
derstanding is far from being sufficient. In particular, there is a serious
gap between the result of Theorem 3.8 below that a “global” rotation
rate of a trajectory of a Lipschitz vector field around a non-stationary
point is still bounded, and Example 3.3, demonstrating an infinite rota-
tion around a non-invariant straight line.

3.1. Rotation of a trajectory around a stationary point. Let v
be a vector field defined in a certain domain U in Rn. We shall always
assume v satisfying a Lipschitz condition with the constant K:

‖v(x)− v(y)‖ ≤ K‖x− y‖, for any two points x, y ∈ U.

Let x0 ∈ U be a stationary (or a singular) point of v, i.e., v(x0) = 0,
so that the constant curve c(t) = x0, t ∈ R, is the integral curve of v
passing through x0. Then, for any x ∈ U, x 6= x0, the angular velocity
of the trajectory of v passing through x with respect to x0 is equal to
‖v̂(x)‖/‖x− x0‖, where v̂(x) is the projection of the vector v(x) to the
hyperplane orthogonal to x− x0. Hence, this angular velocity does not
exceed K:

‖v̂(x)‖
‖x− x0‖ ≤

‖v(x)‖
‖x− x0‖ =

‖v(x)− v(x0)‖
‖x− x0‖ ≤ K,
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where K is the Lipschitz constant of v. By Lemma 2.1, we obtain:

Proposition 3.1. For any trajectory ω(t) of the field v, its rotation
around the stationary point x0 of the field between the time moments t1

and t2, i.e., the length of the spherical curve s(t) =
ω(t)− x0

‖ω(t)− x0‖ between

t1 and t2, does not exceed K · (t2 − t1).

Remark. Of course, on an infinite time interval, a trajectory may
have infinite local rotation around a stationary point, as shown by the
example given below (we avoid the obvious example of a cyclic trajec-
tory, since we aim to work with injective trajectories). This example
can be compared also with the result of Theorem 3.13 below.

Let us consider the following algebraic field in R2 with singular point
O = (0, 0):

v(x, y) =
(
(x2 + y2 − 1)x− y, (x2 + y2 − 1)y + x

)
,

and introduce the following notations: r2 = x2 + y2, ~τ = (x, y)/r and
~n = (−y, x)/r. We have

v(x, y) = r(r2 − 1) · ~τ + r · ~n.

A trajectory passing at a point p with r(p) = 1 has to be the unit
circle. Now consider ω = (α, β) an integral curve of v passing through a
point q with r(q) < 1. This trajectory cannot go outside the open unit

disc and as we have
d[r2 ◦ ω]

dt
= 2(αα′ + ββ′), we obtain

d[r2 ◦ ω]
dt

=

2(r2 − 1)(α2 + β2) < 0. This proves that the trajectory ω has the
singular point O as limit (while the unit circle has to be a limit cycle of
this trajectory). Furthermore, we know that from the point q, the limit
O is approached on an infinite time interval I.

On the other hand, the velocity ṽ of the spherical blowing-up σ of ω

is:
1
r
· r · ~n = ~n. We conclude that

Rabs(ω,O) =
∫

I
‖~n(w(t))‖ dt =

∫

I
1 dt = +∞.

To finish with this remark, let us recall that such an example of
spiraling trajectory does not exist for v a gradient vector field of an
analytic map, as proved in [Ku-Mo-Pa], [Ku-Mo]; for such a field the
length of σ is finite and the limit of the secants passing through the
singular point does exist (Thom’s Gradient Conjecture).

Exactly in the same way, as in Proposition 3.1, we prove the following
more general result about rotation of a curve around an invariant affine
space L. The proof actually shows that in Proposition 3.1, the assump-
tion v(x0) = 0 has preferably to be considered as “v(x0) is tangent to
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.

v

τ n

ω

Figure 2.

the submanifold {x0} of Rn”, or “v is a stratified field with respect to
the stratification ({x0}, U \ {x0}) of U .”

Proposition 3.2. For any affine subspace L ⊂ Rn which is invariant
for the vector field v (i.e., for any x ∈ L, v(x) is tangent to L or, in
other words, v is stratified with respect to (L, U \L)), the rotation speed
of v in the orthogonal to L direction is bounded by K. In particular, the
absolute rotation of any trajectory ω of the field v around L in time T
does not exceed K · T .

Proof. According to the definition of the absolute rotation around a
linear subspace (Section 2.1), we consider the orthogonal to L compo-
nent ṽ(x) of the vector field v(x). Let x0 be the projection of x onto
L. We denote by v̂(x) the “rotation” component of ṽ(x), orthogonal to
x − x0. Then the rotation speed of v in the orthogonal to L direction
is equal to ‖v̂(x)‖/‖x− x0‖. Hence, this rotation speed is bounded as
follows:

‖v̂(x)‖
‖x− x0‖ ≤

‖ṽ(x)‖
‖x− x0‖ =

‖ṽ(x)− ṽ(x0)‖
‖x− x0‖ ≤ ‖v(x)− v(x0)‖

‖x− x0‖ ≤ K.

Here we use the fact that L is invariant for v and hence ṽ(x0) = 0. By
definition, we obtain that the absolute rotation of any trajectory w(t)
of the field v around L in time T does not exceed K ·T . This completes
the proof of Proposition 3.2. q.e.d.
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If x0 is not a stationary point of v, the angular velocity of v(x) with
respect to x0 tends to infinity, as x approaches x0 in any direction
transverse to v(x0). Indeed, as x approaches x0, v(x) tends to v(x0) 6= 0.
By Lemma 2.1, the angular velocity of v(x) with respect to x0 is equal
to ‖v̂(x)‖/‖x− x0‖, where v̂(x) is the component of v(x) orthogonal to
x − x0. So if x approaches x0 in a direction transverse to v(x0), v̂(x)
tends to v̂0 6= 0, while x− x0 tends to zero (see Figure 3).

v(x  )
x

x

v(x)

v(x)^

0
0

Figure 3.

However, one can show (see Theorem 3.8 below) that for any trajec-
tory ω(t) of v, and for t2 − t1 big enough, the length of the spherical
curve s(t) = ω(t)− x0/‖ω(t)− x0‖ (i.e., the absolute rotation of ω(t)
around x0) is still bounded by C ·K ·(t2− t1). The intuitive explanation
is as follows: as the trajectory ω(t) passes very close to x0, its rotation
around x0 in the time interval [t1, t2] comes to approximately 1/2 (see
Figure 4).

x
0

v(x  )
0

v(x)

Figure 4.

However, continuing to move in the same direction, the trajectory
ω(t) cannot gain more rotation. So for the total rotation of the trajec-
tory ω(t) around x0 to grow, its velocity vector v(ω(t)) must change its
direction. On the other side, if we know a priori that the directions of
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v(x) and v(x0) are strongly different with respect to the distance ‖x−x0‖,
then the argument applied in the stationary case works, and rotation
speed satisfies the same Lipschitz upper bound as above. Consequently,
the time interval [t1, t2] has to be large in order to gain a large total
rotation.

Although the rotation in finite time of a trajectory of a Lipschitz field
around a point is bounded, the rotation of a trajectory of a Lipschitz
vector field v around a straight line, which is not invariant under v, can
be unbounded during a finite interval of time, and this phenomena may
occur even for v a C∞-vector field. Consider for instance the following
field:

Example 3.3. Let Φ : R3 → R3 be a diffeomorphism, defined by

Φ(x1, x2, x3) = (x1, x2, x3), x1 ≤ 0,

Φ(x1, x2, x3) = (x1, x2 + ω1(x1), x3 + ω2(x1)), x1 ≥ 0,

where ω1(x1) = e−1/x2
1 cos(1/x1), and ω2(x1) = e−1/x2

1 sin(1/x1).

One can easily check that Φ is a C∞-diffeomorphism of a neighbor-
hood of 0 ∈ R3. Now the image of the positive x1-semiaxis under Φ is
a line w, which makes an infinite number of turns around Ox1 in any
neighborhood of the origin.

Consider the vector field v in R3, which is an image under Φ of the
constant vector field e1 = (1, 0, 0). Clearly, w is a trajectory of the C∞-
vector field v, and it makes an infinite number of turns around Ox1 in
finite time. In coordinates,

v(x1, x2, x3) = DΦ(x1,x2,x3)(e1) =
∂Φ
∂x1

(x1, x2, x3) = (1, ω′1(x1), ω′2(x1)).

Notice that in this example, the orthogonal components of v on the line
Ox1 itself have an infinite number of sign changes, accumulating to the
origin.

Remark. Notice that the rotation of any two trajectories of the
vector field of Example 3.3 one around another is zero. Indeed, the field
v does not depend on the coordinates x2, x3. So the vector joining
the intersection points of the two trajectories with the planes x1 = c
remains constant. In particular, this shows that we cannot expect any
“transitivity” in the rotation of three curves: take two trajectories of
v “far away” from the line Ox1, while the third trajectory is w as in
Example 3.3.

3.2. Rotation of a trajectory around a non-stationary point. As
it was mentioned above, one cannot bound uniformly the momentary
angular velocity of trajectories of a vector field v with respect to a non-
stationary point x0. We shall show in this section that nevertheless the
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“long-time” rotation rate of trajectories of a Lipschitz field v with respect
to any point x0, stationary or non-stationary, is uniformly bounded.

The proof of this fact given below is elementary but rather involved.
Let us outline here its main idea. Assuming that the rotation of a
trajectory ω of a Lipschitz field v around the point x0 is large, we shall
find a line ` and two points x1, x2 such that the projections of the velocity
vectors of ω at x1 and x2 on ` are large and point in opposite directions.
Comparing x1 and x2 with x0, we then find that the Lipschitz condition
for v is violated at least at one of the points x1, x2. (The detailed proof
below is direct, not “by contradiction.”)

To find such two points x1, x2, we first recall the proof of the classical
Crofton’s formula: the length of a curve σ is equal to the average of the
number of the points in its hyperplane sections. Next, using the same
kind of computations, we provide more “quantitative” information on
the hyperplane sections of a parametrized curve σ: for some of these
sections at a large proportion of the intersection points the velocity
vector of σ is large. Next, assuming that the curve σ is closed, we find
hyperplane sections for which there is a couple of the intersection points
with large velocity vectors, pointing in the opposite directions. Finally,
we show that under the above assumption of a “large rotation” we can
“close up” our curve in such a way that the points x1, x2 belong to the
original non-closed one.

Let us fix the notations. For H a (n − 1)-vector subspace of Rn, we
denote by λ the sphere H ∩ Sn−1 ' Sn−2 and by ` = `(λ) the line H⊥.
In this way, each great sphere λ = H ∩ Sn−1 ' Sn−2 is identified with
the point `(λ) ∈ RPn−1 in the real projective space RPn−1 (we can
consider instead of RPn−1 the upper half-sphere Sn−1

+ and the points
`(λ) = ` ∩ Sn−1

+ ).
In the rest of our constructions it may help to keep as the main exam-

ple the case n = 3 (only this special case is used in Section 4 below): here
some of the constructions become geometrically more straightforward.

For a given x ∈ Sn−1, consider the projective hyperplane W (x) ⊂
RPn−1 consisting of all the great spheres λ which contain x: W (x) =
{`(λ) ∈ RPn−1, x ∈ λ}.

Now we need the following simple construction: let W1, W2 be two
projective hyperplanes in RPn−1 and let z1 ∈ W1, z2 ∈ W2. Con-
sider the rigid rotation ρ(W1,W2, z1, z2) of the projective space RPn−1

which maps (W1, z1) to (W2, z2), and which is defined as a compo-
sition of the two rotations ω1, ω2. Here ω1 rotates RPn−1 around
the (n − 3)-dimensional subspace V1 = W1 ∩ W2, bringing W1 to W2.
Then ω2 rotates RPn−1 around the (n− 3)-dimensional subspace V2 =
(span{z2, ω1(z1)})⊥, bringing ω1(z1) to z2 (see Figure 5).

Let us remark that the rigid rotation ρ(W1,W2, z1, z2) depends piece-
wise-analytically on its arguments. In particular, for W1, z1 fixed, ρ(W1,
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W2, z1, z2) is analytic in W2, z2 everywhere but on a codimension one
subset Z.

S
n−1

ω1

z

W

W

..
.

z

ω
2

V2

V1

1

2

1

2

z1ω (    )1

Figure 5.

Now let a unit tangent vector v to the sphere Sn−1 at the point x
be given. Then we can identify the hyperplane W (x) of all the great
spheres λ which contain x, with the standard projective space W =
RPn−2, given in RPn−1 by x1 = 0. This is done via the isometry
ρ(W,W (x), n, v) constructed above. Here n = (0, 0, . . . , 0, 1) denotes
the “north pole” of Sn−1, and v is the given unit tangent vector to the
sphere Sn−1 at the point x, considered as a point in W (x).

Let us assume now that a differentiable curve σ : [0, T ] → Sn−1 is
given. We denote, as above, by v(t) the velocity vector of σ, v(t) =
dσ

dt
(t), and we assume that v(t) 6= 0 for t ∈ [0, T ], so we define ṽ(t) as

v(t)
‖v(t)‖. Let M denote the product M = [0, T ]×W . We define a mapping
Ψ : M → RPn−1 in the following way:

Ψ(t, z) = ρ(W,W (σ(t)), n, ṽ(t))(z).

Identifying `(λ(t, z)) = Ψ(t, z) with λ(t, z), the mapping Ψ associates to
the point (t, z) in M the great sphere λ(t, z) which contains σ(t), and
which is obtained from the point z ∈ W by application of the rotation
ρ(W,W (σ(t)), n, ṽ(t)) : W → W (σ(t)). In particular, Ψ(t, n) is the great
sphere λ(t, z) which passes through σ(t), and which is orthogonal to v(t).
The mapping Ψ is at least as smooth as v(t). Finally, for z ∈ W , we
define φ(z) ∈ [0, π

2 ] as the (shortest) angle between the lines z and n.
So φ(z) is also the angle between the normal line `(λ(t, z)) = Ψ(t, z) to
the the great sphere λ(t, z) and the vector v(t) (see Figure 6).

Later we shall apply the above construction to curves σ for which the
mapping t → (W (σ(t)), ṽ(t)) is transversal to the discontinuity set Z
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of ρ (see the proof of Theorem 3.4). So all the computations below are
valid but for a finite set of values of the parameter t, which does not
affect the integrals.

n

W

W(   (t))σ

.

. z

v(t)

W σW(   (t))ρ(    ,              ,   ,     )(   )zv(t)n

σ(t)

φσ

(t,z)λ

φ

Figure 6.

We consider all the projective spaces with their standard metric and
volume form (d` and dz for RPn−1 and W respectively) induced from
Rn. Since ρ(W,W (σ(t)), n, ṽ(t)) : W → W (σ(t)) is an isometry, the
restriction of Ψ on {t} ×W is an isometry for each fixed t. Now, the
displacement of Ψ(t, z) in the direction orthogonal to W (σ(t)), corre-
sponding to the increment ∆t, is equal (up to a higher order in ∆t) to
cosφ(z)‖v(t)‖∆t (see Figure 6). By the classical area formula, we thus
obtain∫

λ∈RP n−1

#{Ψ−1(λ)} d`(λ) =
∫

[0,T ]×W
‖v(t)‖ cos(φ(z)) dz dt.

Denoting L(σ) the total length of the curve σ, the obvious fact that
#{Ψ−1(λ)} = #{σ ∩ λ} gives∫

λ∈RP n−1

#{σ ∩ λ} d`(λ) =
∫

[0,T ]
‖v(t)‖ dt

∫

W
cos(φ(z)) dz

= L(σ)
∫

φ∈[0, π
2
]
µn−2 sinn−3(φ) cos(φ) dφ

=
µn−2

n− 2
L(σ),

where µr denotes the area of the unit sphere Sn−1.
We have proved the classical spherical Cauchy-Crofton formula (see

[Fe 2, 3.2.48]):
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Spherical Crofton’s formula. The total length L(σ) of a spherical
curve σ satisfies

L(σ) =
n− 2
µn−2

∫

λ∈RP n−1

#{σ ∩ λ} d`(λ) =
2π

µn

∫

λ∈RP n−1

#{σ ∩ λ} d`(λ).

This implies, in particular, that the average number of the intersec-

tion points of σ with the great spheres λ is
L(σ)

π
(since the area of

RPn−1 is µn

2 ), and hence for some λ there is at least this number of
the intersection points. Our purpose is to show that we can find λ
with a large part of the intersection points of σ ∩ λ satisfying certain
lower bounds on the angle between σ and λ and on the velocity of σ at
these intersection points. Somewhat unexpectedly, these bounds resem-
ble the quantitative transversality, or quantitative Sard theorem-type
results (see [Yo-Co]).

In what follows, we always assume our curves σ(t) to be differen-
tiable, with a Lipschitz velocity dσ

dt . This assumption is satisfied for the
spherical projections of the trajectories of Lipschitz vector-fields we are
interested in. Notice, however, that in Theorems 3.4-3.6 and in Corol-
lary 3.7 this assumption can be significantly relaxed: in this result only
the length of the curve σ enters explicitly. We do not touch this question
in the present paper.

On the other hand, we cannot assume a priori that the velocity vector
dσ
dt does not vanish, as required in the definition of the mapping Ψ above.
Indeed, this will happen with the spherical projections of the trajectories
of Lipschitz vector-fields to the sphere centered at x0 each time as the
velocity vector v(x) of the vector-field points in a radial direction x−x0.
Also, the a priori regularity of the mapping Ψ is only Lipschitz, so an
application of the above area computation would require an additional
justification. To overcome these problems in the proof of Theorems
3.4-3.6 we use a smooth approximation of the curve σ.

Theorem 3.4. Let σ : [0, T ] → Sn−1 be a curve of length L(σ) and
fix α, β ∈]0, 1[.

1 - There exist (n − 2)-spheres λ ⊂ Sn−1 such that at least (1 −
α)n−2(1− β)

L(σ)
π

points x ∈ σ ∩ λ satisfy:

i - the angle between λ and v(x) at x is ≥ α
π

2
,

ii - ‖v(x)‖ ≥ β
L(σ)

T
.

2 - There exist (n−2)-spheres λ ⊂ Sn−1 such that the number of points
in σ ∩ λ having properties i and ii above is > A · #(σ ∩ λ) > 0,
where A = (1− α)n−2(1− β).
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Proof. We can assume that the curve σ is C∞-smooth and that its
velocity does not vanish. We can assume as well that the mapping t →
(W (σ(t)), ṽ(t)) is transversal to the discontinuity set Z of the rotation
mapping ρ defined above. Indeed, let us approximate, up to an error
ε, the spherical curve σ(t) in a C1-topology by a C∞ spherical curve
σε(t) with a non-vanishing velocity and with the required transversality
condition (these properties are generic). Now assuming that Theorem
3.4 is valid for such curves, we get a (n− 2)-sphere λε ⊂ Sn−1 and the
intersection points xε of λε with σε with the properties (i) and (ii). These
properties guarantee that the intersection points xε are transversal, with
the explicit lower “transversality bound” not depending on ε. Hence
for ε sufficiently small we get near each point xε an intersection point
of λε with σ. As ε tends to zero, we get the required result for the
original curve σ. To simplify the presentation, we shall not repeat this
construction in the proofs of Theorems 3.5 and 3.6.

We adopt the following notations:

Iβ =
{

t ∈ [0, T ]; ‖v(t)‖ ≥ β
L(σ)

T

}
,

Wα =
{

z ∈ W ; φ(z) ≥ α
π

2

}
and Mα,β = Iβ ×Wα.

We then have
∫

t∈Iβ

‖v(t)‖ dt ≥ (1− β)L(σ) since
∫

t∈[0,T ]\Iβ

‖v(t)‖ dt ≤

Tβ
L(σ)

T
and on the other hand,

∫

z∈Wα

cos(φ(z)) dz = µn−2

∫

[0,(1−α)π
2
]
sinn−3(φ(z)) cos(φ(z)) dz

=
µn−2

n− 2
sinn−2((1− α)

π

2
)

≥ µn−2

n− 2
(1− α)n−2,

by the the convexity of sin on
[
0,

π

2

]
. We obtain

∫

(t,z)∈Mα,β

‖v(t)‖ · cos(φ(z)) dt dz

=
∫

t∈Iβ

‖v(t)‖ dt ·
∫

z∈Wα

cos(φ(z)) dz

≥ (1− β)L(σ) · µn−2

n− 2
(1− α)n−2

=
µn

2π
(1− β)(1− α)n−2L(σ).
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Finally, for λ ∈ RPn−1, #{Ψ−1(λ) ∩Mα,β} = #{x ∈ σ ∩ λ; x satisfies
i and ii}; therefore, by the area formula again:

(∗∗)
∫

λ∈RP n−1

#{x ∈ σ ∩ λ; x satisfies i and ii} d`

≥ µn

2π
(1− β)(1− α)n−2L(σ).

Let us now prove the first statement. By inequality (∗∗), there nec-
essarily exists λ ⊂ Sn−1 such that:

Vol (RPn−1) ·#{x ∈ σ ∩ λ; x satisfies i and ii}
≥ µn

2π
(1− β)(1− α)n−2L(σ),

and Vol (RPn−1) =
µn

2
.

We prove the second statement in the same way. If for all λ ⊂ Sn−1,
the number of points in σ∩λ satisfying properties i and ii is < A·#(σ∩λ),
by the spherical Crofton formula and then by inequality (∗∗) we have

A · µn

2π
L(σ) = A

∫

λ∈RP n−1

#(σ ∩ λ(`)) d`

>

∫

λ∈RP n−1

#{x ∈ σ ∩ λ(`); x satisfies i and ii} d`

≥ µn

2π
(1− β)(1− α)n−2L(σ),

which is a contradiction, since A = (1− β)(1− α)n−2. q.e.d.

Theorem 3.5. Let σ : [0, T ] → Sn−1 be a closed curve of length

L(σ). For all α ∈]0, 1− (
1
2
)

1
n−2 [, there exist a (n− 2)-sphere λ ⊂ Sn−1

and two points x1, x2 ∈ σ ∩ λ such that:

i - The angle between λ and v(xj) at xj is ≥ α
π

2
, for j ∈ {1, 2},

ii - For j ∈ {1, 2}, ‖v(xj)‖ ≥ (1− 1
2(1− α)n−2

)
L(σ)

T
,

iii - The projections of v(x1) and v(x2) on `(λ) have opposite direc-
tions.

Proof. Taking β = 1 − 1
2(1− α)n−2

, we have β ∈]0, 1[ for any α ∈

]0, 1− (
1
2
)

1
n−2 [ and for such α, β, (1−α)n−2(1− β) =

1
2
. By the second

part of Theorem 3.4, there exists a (n − 2)-sphere λ ⊂ Sn−1 such that
σ ∩ λ 6= ∅ and for more than half of the number of points x of σ ∩ λ,

the angle between λ and v(x) is at least α
π

2
and ‖v(x)‖ ≥ β

L(σ)
T

. As
σ is closed, the proportion of intersection points x at which σ and λ are
transverse and such that v(x) has a given direction along ` may not be
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more than one half. Consequently, at least a pair of points x1 and x2

have the three properties required. q.e.d.

We extend Theorem 3.5 above to non-closed spherical curves.

Theorem 3.6. Let σ : [0, T ] → Sn−1 be a curve of length L(σ) and

for all α ∈]0, 1− (
1
2
)

1
n−2 [, denote β = 1− 1

2(1− α)n−2
and assume that

L(σ) > 2πθ, with θ >
1
β

. There exist a (n − 2)-sphere λ ⊂ Sn−1 and

two points x1, x2 ∈ σ ∩ λ such that:

i - The angle between λ and v(xj) at xj is ≥ α
π

2
, for j ∈ {1, 2}.

ii - For j ∈ {1, 2}, ‖v(xj)‖ ≥ (β − 1
θ
)
L(σ)

T
.

iii - The projections of v(x1) and v(x2) on `(λ) have opposite direc-
tions.

Proof. In case σ is not closed, consider a new closed curve σ̃ : [0, T̃ ] →
Sn−1 obtain by closing σ with some geodesic (of length ≤ 2π) passed

with velocity
2π

γ · T , for γ =
1

βθ − 1
. We have T̃ ≤ T +

2π

2π/(γ · T )
=

T (1 + γ). We apply now Theorem 3.5 to the closed curve σ̃: there
exist a (n − 2)-sphere λ ⊂ Sn−1 and two points x1, x2 ∈ σ ∩ λ such
that i and iii of Theorem 3.5 are satisfied and such that ‖v(xj)‖ ≥
β

L(σ̃)

T̃
≥ β

L(σ)
(1 + γ)T

= (β − 1
θ
)
L(σ)

T
. On the other hand, as ‖v(xj)‖ ≥

(β− 1
θ
)
L(σ)

T
> (β− 1

θ
)
2πθ

T
=

2π

γ · T , the points x1 and x2 cannot belong

to the geodesic added to σ in our closing process. q.e.d.

Corollary 3.7. Denoting ν = 1 − 1√
2
, let σ : [0, T ] → Sn−1 be a

curve of length L(σ) > 2πθ, with θ >
1
ν
. There exist a line ` ∈ Rn and

two points x1, x2 ∈ σ∩λ(`) such that for j ∈ {1, 2}, the projection pj of

v(xj) on ` have opposite directions and ‖pj‖ ≥ 1
n− 2

(ν2 − ν

θ
)
L(σ)

T
.

Proof. By Theorem 3.6, there exist a line ` ∈ Rn and two points
x1, x2 ∈ σ such that for j ∈ {1, 2}, the projection pj of v(xj) on ` have

opposite directions and ‖pj‖ ≥ sin(α
π

2
)(1− 1

2(1− α)n−2
− 1

θ
)
L(σ)

T
, for

all α ∈]0, 1 − (
1
2
)

1
n−2 [ and for

1
θ

< 1 − 1
2(1− α)n−2

. Now, for such

values of α, we have sin(α
π

2
) ≥ α. Furthermore, for all θ > 2 and for
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α ∈]0,
1

2(n− 2)
θ − 2
θ − 1

[, we have

1− 1
2(1− α)n−2

− 1
θ
≥ 1− 1

2(1− (n− 2)α)
− 1

θ
> 0.

Denoting hθ = sup
α∈]0, 1

2(n−2)
θ−2
θ−1

[

α(1− 1
2(1−(n−2)α) − 1

θ ), we obtain

‖pj‖ ≥ hθ · L(σ)
T

, for any θ > 2.

A direct computation shows that hθ is reached at α = 1
n−2(1−

√
θ

2(θ−1))

and that hθ = 1
n−2(

√
1− 1

θ − 1√
2
)2 > 1

n−2(ν2− ν
θ ) (note that c = ν2 and

d = ν are the sharpest values of c and d such that hθ > c + d/θ, and
that ν2 − ν

θ > 0 for θ > 1/ν > 2). q.e.d.

Our main result is the following theorem:

Theorem 3.8. Let v be a Lipschitz vector field on an open set U ⊂
Rn with Lipschitz constant K and let ω(t) be a trajectory of v. Then
for any x0 ∈ U the absolute rotation of ω around x0 between any two
time moments t1 and t2 satisfies

Rabs(ω, x0) ≤ 2π

ν
+

(n− 2)K
ν2

· (t2 − t1),

with ν = 1− 1√
2
.

Proof. We apply Corollary 3.7 to the spherical curve σ(t) = (ω(t) −
x0)/‖ω(t) − x0‖ between the moments t1 and t2. By this corollary, for
any θ > 1/ν, either the length s(t1, t2) of σ(t) between the moments
t1 and t2 is smaller than 2πθ, or there exist a line ` and two time pa-
rameters τ1, τ2 such that for j ∈ {1, 2}, σ(τj) ∈ λ(`), the projections
pj on ` of the velocity vectors of σ at τj have opposite directions and

‖pj‖ ≥ 1
n− 2

(ν2− ν

θ
)
s(t1, t2)
t2 − t1

. We adopt the following notations: v(t) is

the velocity vector of the trajectory ω(t), while ṽ(t) is the velocity vec-
tor of the spherical curve σ. Then for j ∈ {1, 2}, ωj = ω(τj), vj = v(τj),
ṽj = ṽ(τj) and for a point s ∈ Sn−1, T (s) is the tangent hyperplane to
Sn−1 at s. We remark that ` ⊂ T (s), for all s ∈ λ(`). The immediate
consequence of this inclusion is that for j ∈ {1, 2}, pj is also the pro-
jection on ` of the vector

vj

‖wj − x0‖ , because ṽ(t) is the orthogonal to

ω(t)−x0 component of
v(t)

‖ω(t)− x0‖ . Consequently, the projections on `
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of
vj

‖wj − x0‖ have length ≥ 1
n− 2

(ν2 − ν

θ
)
s(t1, t2)
t2 − t1

and their directions

are opposite.

Let us now consider two auxiliary vectors: V1 =
v1 − v(x0)
‖w1 − x0‖ and V2 =

v2 − v(x0)
‖w2 − x0‖ . Since the projections of

v1

‖w1 − x0‖ and
v2

‖w2 − x0‖ on ` had

opposite directions, independently of the vector v(x0) at least one of the

vectors V1, V2 has its projection on ` of size ≥ 1
n− 2

(ν2 − ν

θ
)
s(t1, t2)
t2 − t1

.

But since the vector field v is Lipschitz, the norms of both the vectors

V1 and V2 are bounded by K. Hence
1

n− 2
(ν2 − ν

θ
)
s(t2, t1)
t2 − t1

≤ K, or

s(t2, t1) ≤ θ

ν2θ − ν
(n− 2)K(t2 − t1). In any case we have proved

Rabs(ω, x0) = s(t2, t1)

≤ max
[
2πθ,

θ

ν2θ − ν
(n− 2)K(t2 − t1)

]
, ∀θ > 1/ν.

Finally

Rabs(ω, x0) ≤ inf
θ> 1

ν

max
(

2πθ,
θ

ν2θ − ν
(n− 2)K(t2 − t1)

)

=
2π

ν
+

(n− 2)K
ν2

(t2 − t1).

q.e.d.

3.3. Rotation of two Lipschitz trajectories. In this section we
prove that the absolute rotation of any two trajectories of a Lipschitz
vector field in R3 is bounded in terms of the Lipschitz constant K and
the time interval.

Theorem 3.9. Let as above ν = 1 − 1√
2

and let ω1 and ω2 be tra-

jectories, on time intervals T1 and T2 respectively, of a Lipschitz vector
field v defined in some open subset U of R3 and of a Lipschitz constant
of K. Then the mutual absolute rotation of w1 and w2 satisfies

Rabs(ω1, ω2) ≤ K

2ν
min{T1, T2}+

K2

4πν2
T1T2.

In fact, we shall prove a more accurate version of this theorem, which
bounds the absolute rotation Rabs(ω1, ω2) through the Lipschitz con-
stant of the field and through the bound of the absolute rotation of
the trajectory ω1 (respectively ω2) around the points of ω2 (respectively
of ω1) (Theorem 3.10). Then to get back to Theorem 3.9 we use the
uniform bound on the rotation of Lipschitz trajectories around points,
provided by Theorem 3.8.
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Theorem 3.10. Let ω1 and ω2 be trajectories, on time intervals T1

and T2 respectively, of a Lipschitz vector field v defined in some open
subset U of R3. With the following notations:

R1 = maxp2∈w2Rabs(ω1, p2), R2 = maxp1∈w1Rabs(ω2, p1),

the absolute rotation of w1 and w2 satisfies

Rabs(ω1, ω2) ≤ 1
4π

KR1T2 and Rabs(ω1, ω2) ≤ 1
4π

KR2T1.

Corollary 3.11. With the same notations and hypothesis as in The-
orem 3.10, we have

Rabs(ω1, ω2) ≤ K

4π
·min{R1T2, R2T1}.

Proof of Theorem 3.10. We recall that for trajectories of the vector field
v the Gauss integral takes the form

Rabs(ω1, ω2) =
1
4π

∫

T1

∫

T2

|〈v1 ∧ v2, r12〉|
‖r12‖3

dt1dt2.

Here v1, v2 are the velocity vectors of ω1, ω2, respectively (i.e., the values
of the vector field v at the running points p1(t1) and p2(t2) on ω1 and
ω2), and r12 = p2 − p1 is the vector joining the running points p1 and
p2. So we have

4π ·Rabs(ω1, ω2)

=
∫

T1

∫

T2

|〈v1 ∧ v2, r12〉|
‖r12‖3

dt1 dt2

=
∫

t2∈T2

dt2

∫

t2∈T1

|〈v1(t1) ∧ (v2(t2)− v1(t1)), r12(t1, t2)〉|
‖r12‖3

dt1.

Indeed, the subtraction of v1(t1) from v2(t2) does not change the triple
product under the integral. Now, since the vector field v is Lipschitz,
we have: ‖v2(t2)− v1(t1)‖ ≤ K · ‖r12‖.

Hence, for the triple product we obtain

|〈v1 ∧ (v2 − v1), r12〉| ≤ ‖ṽ1‖ ·K · ‖r12‖ · ‖r12‖,
where ṽ1 is the component of the vector v1 orthogonal to the vector r12

(see Figure 7).
Therefore for the absolute rotation we get

4π ·Rabs(ω1, ω2) ≤ K ·
∫

t2∈T2

dt2

∫

t1∈T1

‖ṽ1(t1, t2)‖
‖r12(t1, t2)‖ dt1.

In the interior integral the time t2 and the corresponding point p2(t2)
on the curve ω2 are fixed, while the integration runs over the curve ω1,

and hence the integral
∫

t1∈T1

‖ṽ1(t1, t2)‖
‖r12(t1, t2)‖ dt1 is equal to the length of

the spherical projection σ1 of the curve ω1 from the point p2(t2), i.e., to
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ω

ω

1

2

v1

v
1

~

p

p
1

2

r12

Figure 7.

2π · Rabs(ω1, p2). By the assumptions, this rotation is uniformly in p2

bounded by R1. Hence the interior integral
∫

t1∈T1

‖ṽ1‖
‖r12‖ dt1 does not

exceed R1, and finally

4πRabs(ω1, ω2) ≤ KT2R1.

The setting of Theorem 3.10 is symmetric with respect to the trajecto-
ries ω1 and ω2. So interchanging these trajectories we get:

4πRabs(ω1, ω2) ≤ KT1R2.

This completes the proof of Theorem 3.10. q.e.d.

Proof of Theorem 3.9. We use Theorem 3.8, which states that a rotation
in time T of any trajectory of a Lipschitz vector field v in R3 around

any point p does not exceed
2π

ν
+

KT

ν2
. Applying Corollary 3.11 we get

Rabs(ω1, ω2) ≤ K

2
min

(
T1

ν
+

K

2πν2
T1T2,

T2

ν
+

K

2πν2
T1T2

)
,

and Theorem 3.9 is proved. q.e.d.

Examples of application: Asymptotic Hopf invariant and Log-
arithmic bound of the local rotation at singular points for an-
alytic vector fields.

In [Ar] the following extremal problem is studied: a divergence-free
vector field v being given in some compact domain U of R3 (assum-
ing that v is tangent to the boundary of U), find the minimun energy
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e(v) for fields ξ obtained from v under the action of volume preserving

diffeomorphisms of U (we recall that the energy E(ξ) of ξ is
1
2

∫

U
(ξ, ξ)).

The following construction is then done: for T1, T2 > 0 and
for (almost all) x and y in U , let us denote γx the trajectory of v
passing through x at t = 0 and Γx,T1 the closed curve obtained by
closing γx([0, T1]) by a segment. Then consider R(Γx,T1 ,Γy,T2), the
rotation of Γx,T1 and Γy,T2 . It is proved that the limit Av(x, y) =

lim
T1,T2→∞

1
T1T2

R(Γx,T1 ,Γy,T2) exists and equals lim
T1,T2→∞

1
T1T2

R(γx(T1),

γy(T2)), where R(γx(T1), γy(T2)) is the signed rotation of the non-closed
curves, as defined in Section 2.2.2. The asymptotic Hopf invariant I(v)

of v is then defined as I(v) ·
∫

(x,y)∈U×U
dxdy =

∫

(x,y)∈U×U
Av(x, y) dxdy

and it is proved (under some additional conditions) that e(v) = I(v)/λ
(where λ is an eigenvalue of a certain naurally arising operator, see [Ar],
Section 5.1).

The question of whether I is, to a certain extent, a topological in-
variant has been studied in particular in [Ga-Gh 1] and [Ga-Gh 2].

As a direct consequence of Theorem 3.9 we obtain an upper bound
for I(v) in term of the Lipschitz constant K of v.

Theorem 3.12. Let v be a divergence-free vector field in some com-
pact domain U of R3, tangent to the boundary of U and of Lipschitz
constant K. Then the asymptotic Hopf invariant I(v) of v satisfies the
following inequality:

I(v) ≤ K2

4πν2Vol2(U)
,

where ν = 1− 1√
2
.

Proof. With the notations introduced above and from Theorem 3.9.
we have

1
T1T2

R(γx(T1), γy(T2)) ≤ K

2ν

min{T1, T2}
T1T2

+
K2

4πν2
.

Letting T1 and T2 go to ∞, we obtain the desired inequality. q.e.d.

As another application of the bounds found in Section 3, let us now
consider the following situation. The vector field

dv

dt
= Lv + G(v)

is defined in a neighborhood of O ∈ R3 and has a non-degenerate linear
part L with all the eigenvalues `j , j = 1, 2, 3, having a negative real
part: <(`j) ≤ ` < 0, j = 1, 2, 3. In dynamical language, v = has a
non-degenerate sink at the origin (it is the case of our field in R2, in the
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Remark following Proposition 3.1). It is easy to see that the Lipschitz
constant of v in a neighborhood U of the origin tends to the norm of
L as U shrinks to the origin. The following theorem is an immediate
corollary of the results of Section 3:

Theorem 3.13. For any two trajectories ω1, ω2 of the field v in a
neighborhood of O ∈ R3, the absolute rotation Rabs(ω1, ω2) grows at
most logarithmically with the distance to the origin. More accurately,
the rotation Rabs(ω1, ω2, R, r) of the parts of ω1, ω2 between the spheres
of the radii R > r > 0 satisfies

Rabs(ω1, ω2, R, r) ≤ C‖L‖2 log2(R/r)
`

.

Proof. This is a direct consequence of Theorem 3.9, since the Lips-
chitz constant of v in a neighborhood U of the origin tends to ‖L‖ as
U shrinks to the origin, while the time interval for both the trajectories

between the spheres of the radii R > r > 0 is of order log(R/r)
`

. q.e.d.

Remark. Of course, one can easily show that the bound of Theorem
3.13 is sharp: consider a linear vector field

dv

dt
= Lv

in a neighborhood of O ∈ R3, with a non-degenerate linear part L having
all its eigenvalues `j , j = 1, 2, 3, with negative real part: Re(`j) ≤ ` <
0, j = 1, 2, 3. Assume in addition that `1 ∈ R, while `2 and `3 are
conjugate: `2,3 = α±iβ. Then the solutions are x1 = C1 ·exp(`1t), x2 =
C2 · exp(αt) · sin(βt), x3 = C3 · exp(αt) · cos(βt), and the trajectories
rotate around the x1-axis and one around another exactly as prescribed
by the upper bound given in Theorem 3.9.
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UMR CNRS 6621
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