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POSITIVITY OF DIRECT IMAGE BUNDLES AND
CONVEXITY ON THE SPACE OF KÄHLER METRICS

Bo Berndtsson

Abstract

We develop some results from [4] on the positivity of direct
image bundles in the particular case of a trivial fibration over a
one-dimensional base. We also apply the results to study varia-
tions of Kähler metrics.

1. Introduction

In a previous paper, [4], we have studied curvature properties of vec-
tor bundles that arise as direct images of line bundles over a Kähler
fibration. Here, we will continue this study in a very special case –
trivial fibrations over a one-dimensional base – and elaborate on its
connection with problems of variations of Kähler metrics on a compact
manifold.

Let Z be a compact complex n-dimensional manifold, and let L̂ be a
positive line bundle over Z. Put X = U × Z, where U is a domain in
C, and denote by L the pullback of L̂ under the projection from X to
Z. Let φ be a hermitian metric on L. Then φ can be written

φ = φ0 + ψ,

where φ0 = φ0(z) is some fixed metric on L̂, pulled back to X, and
ψ = ψ(t, z) is a function of t in U and z in Z. We can thus think of φ

as a family of metrics on L̂, indexed by t in U , or as a (complex) curve
in the affine space of all metrics on L̂. Put

Ê = H0(Z, L̂⊗KZ),

the space of global holomorphic L̂-valued (n, 0)-forms on Z. Denote by
E the (trivial) vector bundle over U with fiber Ê.

Even though E is a trivial bundle, it has a naturally defined metric
Hφ which is not trivial. Hφ is defined by

‖u‖2
t =

∫

π−1(t)
[u, u]e−φ =

∫

Z
[u, u]e−φ0−ψ(t,z)
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if u is an element in Et = Ê, the fiber of E over t. Here [u, u]e−φ is
defined by

[u, u]e−φ = cnuj ∧ ūje
−φj

if uj and φj are local representatives of u and φ with respect to a local
trivialization. The constant cn = in

2
is chosen to make this expression

nonnegative.
With this metric E becomes an Hermitian vector bundle, and it makes

sense to consider its curvature ΘE . It is proved in [4] that if φ is a
(semi)positive metric on L, then Hφ is a (semi)positive metric on E.
Moreover, assuming that Z has no nontrivial global holomorphic vector
fields, ΘE is strictly positive at a point t unless ωt = i∂∂̄zφ is stationary
so that

∂

∂t
ωt|t = 0.

We are now ready to describe the content of this paper. In the next
section, we will first reprove the formula for the curvature (Theorem 2.1)
from [4], which is particularily simple in this situation. We then proceed
to give exact conditions on φ that characterize when the curvature ΘE

has a null-vector, for the case when φ itself is semipositive. This result
is implicit in [4], but not explicitly stated there. Then we go on to show
that if the curvature is degenerate not only for one single t but for all t
in an open neighbourhood of 0, then

ωt = T ∗t ω0,

where Tt is the flow of some holomorphic vector field on Z.
In Section 3, we then give a result corresponding to Theorem 2.1 for

a trivial vector bundle F with fiber H0(Z, L) instead of H0(Z, L⊗KZ).
In this case, we define our L2-norms on the fiber by

‖u‖2 =
∫

Z
|u|2e−φωn

(see below). Surprisingly, we then get an estimate from above of the
curvature, which implies among other things that if ωn+1 = 0 on the
total space U × Z, then ΘF is seminegative.

Next, we consider the Hermitian bundles E(p) defined in the same
way as E, but replacing L by Lp for some positive integer p. We then
take pφ for our metric on Lp, and put Θp = ΘE(p) for ease of notation.
It is an a priori non trivial fact, but an immediate consequence of the
characterization mentioned above that if at some t and for some p0 Θp0

is degenerate, then Θp actually vanishes at t for all p.
Motivated in part by this observation, we then study the asymptotic

behaviour of Θp, as p tends to infinity. Let

τ(p) = trΘp/dp,
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where dp is the rank of E(p), i.e., the dimension of H0(Z, L̂p ⊗ KZ).
Thus, τ(p) is the average of the eigenvalues of the curvature. In Section
4, we give an asymptotic formula for τ(p) containing one term of order
p, one term of order zero, and one term that vanishes in the limit. It
follows from this formula that if we assume i∂∂̄φ to be semipositive,
then

lim inf
p→∞ τ(p) = 0

implies that the condition characterizing degeneracy follows. Hence,
in this case, Θp actually vanishes for all p. Ma and Zhang [12] have
announced the existence of a complete asymptotic expansion for the
(or ‘a’) kernel of the full curvature operator in a situation more general
than ours and also computed the first two terms on the diagonal. I do
not know if our result (which is much more elementary) follows from
theirs. Our result does, however, follow from the relation between our
vector bundles E(p) and the Mabuchi functional from Kähler geometry
that we discuss in Section 5. Hence, the reader who so wishes can skip
directly to Section 5 after a brief look at our recollection of the Tian-
Catlin-Zelditch asymptotic formula for the Bergman kernel in Section
4.

In Section 5, we relate our results to the study of variations of Kähler
metrics on Z, cf. [14], [1], [7], [8], [15], [5]. In these works, one considers
the space of all Kähler metrics ω on Z that lie in one fixed cohomology
class, viz, c(L̂), the Chern class of L̂. Any such metric can be written

ω = ω0 + i∂∂̄ψ,

where ω0 is the fixed reference metric, and ψ is a function on Z. The
space of all such Kähler metrics can therefore be identified with the
space K of all - say smooth - metrics on L̂, modulo constants, and it
has a natural structure as a Riemannian manifold. A curve in K can
be represented by a function ψ(t, z) on Z depending on an additional
parameter t. Here t is naturally a real variable but following the usual
convention we let t be complex, and assume ψ independent of the imag-
inary part of t. Our domain U is then a strip, and metrics φ satisfying
(i∂∂̄φ)n+1 = 0 correspond to geodesics in K.

The basic strategy in [7] and [8] is to approach the study of metrics
on L̂ - and hence Kähler metrics on Z with Kähler form in c(L̂)- through
the induced metrics Hilb (φ) on H0(Z, L̂) defined by

‖u‖2 =
∫

Z
|u|2e−pφωφ

n,

and similar metrics on H0(Z, L̂p) for p large. Here ωn = ω∧n/n! is the
volume element on Z induced by ω. In our terminology, [7] and [8] thus
deal with the bundle F .
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In this paper, we will follow a different approach using the spaces
Ê = H0(Z, L⊗Kz) and the induced norms Hφ described above instead
of H0(Z, L) and Hilb (φ).

In [8], Donaldson introduced certain, intimately related, functionals
on K, Lp, and L̃p. Stationary points of L̃p correspond to so called
balanced metrics on L̂p. As p tends to infinity, L̃p goes to a multiple of
the so called Mabuchi functional, whose stationary points are precisely
the metrics of constant scalar curvature on Z. Donaldson’s L functional
can be defined in terms of the metric on det(F ) induced by the metric
on F . The negativity of F , and hence det(F ), then give convexity of L
along geodesics (which is mentioned without proof in [8]).

Here we introduce the analogs of Donaldson’s functionals in our set-
ting and show that they have largely the same properties, with one im-
portant difference: In our setting, the L functional is defined with the
opposite sign compared to [7] and [8] reflecting the different estimates
for the curvatures of the bundles F and E.

Nevertheless our L-functional still converges to a multiple of the
Mabuchi functional as p goes to infinity. This fact is actually somewhat
easier to verify in our setting. We also show that the second derivative
of the L̃p-functional along a curve can be computed from the trace of
the curvature of our associated vector bundles. From this, it follows
that the second derivative of the Mabuchi functional along a geodesic
in K equals the limit

lim
p→∞ τ(p).

From this, we see that our asymptotic formula for the trace τ(p) is,
in fact, equivalent to a known formula for the second derivative of the
Mabuchi functional, see [9].

As is well known, this formula gives a “formal proof” of the unique-
ness properties of metrics of constant scalar curvature: Using the char-
acterization of when the above limit vanishes, we see that two metrics
of constant scalar curvature can be connected through the flow of a
holomorphic vector field, provided that they can be connected with a
smooth geodesic in the Riemannian space K. This certainly does not
give the results in [7], [1], [13], and [6], as the existence of smooth
geodesics is an open and even dubious issue, (see [5] and [6] for the best
results in this direction), but at least it indicates a seemingly interesting
relation between our results on flatness of direct image bundles and the
results of [1], [13], and [6].

It is proved in [5] that two metrics in K can always be connected
with a geodesic of class C1,1. Phong and Sturm have showed that this
geodesic can be obtained as an almost uniform limit of certain “finite
dimensional geodesics” obtained from Bergman kernels in H0(Z, Lp).
In the last section, we show that in our setting, we can improve on
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this result somewhat, and prove that Bergman kernels for the spaces
H0(Z, Lp⊗KZ) approximate the geodesic uniformly at the rate at least
p/ log p. This section is independent of most of the rest of the paper,
using only Theorem 2.1. Therefore, a reader mainly interested in the
convergence of geodesics can go directly to the last section after reading
Theorem 2.1.

Part of the results in this paper were announced in [3]. As is probably
clear from the text, I am a novice in the study of extremal Kähler
metrics, and I apologize for any omission in accrediting results properly.
The motivation for this paper lies not so much in the particular results
as in showing the link between ∂̄-theory and this beautiful area. It
should also be stressed that the list of references in this paper is far
from complete. Finally, I would like to thank Robert Berman, Sebastien
Boucksom, and Yanir Rubinstein for helpful and stimulating discussions
on these matters.

2. Positivity of direct images

We start by giving the precise form of the result from [4] in this
particular setting, a trivial fibration with compact fibers over a one-
dimensional base. We will assume all the time that the metric φ restricts
to a positive metric on each fiber {t} × Z. Most of the time, but not
always, we will also assume that φ defines a semipositive metric on the
total space X. With φ = φ0 + ψ given, we put

c(φ) = ψtt̄ − |∂̄zψt|2ωt .

Here ψt means ∂ψ/∂t and the subscript ωt indicates that we measure
the (0, 1)-form ∂̄zψt with the metric

ωt = i∂∂̄zφ|t.
This function plays a major role in our estimates and also in the theory
of variations of Kähler metrics. A short calculation (see [14], [16], or
[4]) shows that it is related to the complex Monge-Ampère operator
through the formula

(2.1) c(φ)idt ∧ dt̄ ∧ ωt
n = (i∂∂̄φ)n+1.

It is also, as proved in the references above, equal to the geodesic cur-
vature of the path defined by φ in the Riemannian manifold K.

To state our formula for the curvature of E, it is convenient to intro-
duce yet another piece of notation. Let f be a ∂̄-closed form of bidegree
(n, 1) with values in L̂ on Z. Given a positive metric φ on L̂, we can by
the Hörmander ∂̄-estimate solve ∂̄v = f with the L2-estimate

‖v‖2 ≤ ‖f‖2,
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where the norms are defined using the Kähler metric i∂∂̄φ on Z. Let v
be the L2-minimal solution and put

e(f) = ‖f‖2 − ‖v‖2.

Thus, e is a quadratic form in f , which by the Hörmander estimate is
positively semidefinite. If we develop f

f =
∑

fj ,

where the fj are eigenforms of the ∂̄-Laplacian with eigenvalues λj , one
can easily verify that

e(f) =
∑(

1− 1
λj

)
‖fj‖2,

but we will not use this. We next restrict our quadratic form e to
∂̄-closed forms f of the form

f = ∂̄µ ∧ u

where µ is a smooth function, and u is a holomorphic L valued (n, 0)-
form. We then put

A(µ, u) := e(∂̄µ ∧ u).
A is a quadratic form in both u and µ separately, and it will play a main
role in the sequel. We will give a conjectural geometric description of A
as the Chern curvature form of a vector bundle over a certain infinite
dimensional complex manifold in Section 5.

Theorem 2.1. Let u be an element in Et. Then

〈ΘEu, u〉 =
∫

π−1(t)
c(φ)[u, u]e−φ + A(ψt, u).

This result is implicit in [4], but we shall indicate a simple proof in
this special situation. Take t = 0. We extend u to a holomorphic section
of E near the origin in such a way that D′u = 0 at 0, where D′ is the
Chern connection on E. Then

〈ΘEu, u〉 = − ∂2

∂t∂t̄

∣∣∣
t=0
‖u(t)‖2

t .

It is easily verified, cf. e.g., [4], that

D′u = Πholo(ut − ψtu)

with Πholo being the projection on the subspace of holomorphic sections.
Hence, D′u = 0 means that v = (ut−ψtu) is orthogonal to the space of
holomorphic forms. Therefore, for t = 0, v is the L2-minimal solution
to the equation

∂̄zv = −∂̄zψt ∧ u = −f.

Since
∂

∂t
‖u(t)‖2

t = 〈ut − ψtu, u〉,
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we get

∂2

∂t∂t̄
‖u(t)‖2

t |t=0 =
∂

∂t̄
〈(ut − ψtu), u〉 = −

∫
ψtt̄[u, u]e−φ +

∫
[v, v]e−φ.

By definition ∫
[v, v]e−φ = ‖v‖2 = ‖f‖2 − e(f),

so

〈ΘEu, u〉 =
∫

π−1(t)
(ψtt̄[u, u]− |f |2)e−φ + e(f)

=
∫

π−1(t)
c(φ)[u, u]e−φ + e(f),

and the proof is complete.

Since by Hörmander’s theorem e(f) and hence A are always nonneg-
ative, it follows immediately from Theorem 2.1 that

(2.2) 〈ΘEu, u〉 ≥
∫

π−1(t)
c(φ)[u, u]e−φ,

with equality if and only if A(ψt, u) = 0. We also see that in case φ is
assumed to be semipositive, then ΘE is also semipositive and can have
a null-vector u only if c(φ) = 0, and e(∂̄zψt ∧ u) = 0. By (2.1), the
first condition means that φ satisfies the homogenuous Monge-Ampère
equation

(i∂∂̄φ)n+1 = 0.

To understand the meaning of the second condition, we need to analyze
the quadratic form e(f) a bit further.

Recall that the minimal solution v to the equation ∂̄v = f can be
written

v = ∂̄∗α
for some (n, 1)-form α. This is simply because on a compact manifold
the range of ∂̄ and ∂̄∗ are closed, so any form orthogonal to the null-
space of ∂̄ lies in the image of the adjoint operator. Moreover, by taking
α orthogonal to the kernel of ∂̄∗, we can assume that ∂̄α = 0, and α
is then uniquely determined (as follows from (2.4) below). We will use
the Kodaira-Nakano identity in the following form:

(2.3) ‖α‖2 + ‖v‖2 + ‖∂̄ ∗ α‖2 = 2〈f, α〉,
where all norms are taken with respect to the Kähler metric given by the
curvature form of the metric on L̂. This slightly nonstandard formula
follows from the more standard

(2.4) ‖α‖2 + ‖∂̄ ∗ α‖2 = ‖∂̄α‖2 + ‖∂̄∗α‖2

if we add ‖∂̄∗α‖2 = ‖v‖2 to both sides and use

‖∂̄∗α‖2 = 〈f, α〉.
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Now,

2〈f, α〉 = 2Re 〈f, α〉 = ‖f‖2 + ‖α‖2 − ‖f − α‖2.

Inserting this in (2.3) and simplifying, we find that

(2.5) e(f) = ‖f − α‖2 + ‖∂̄ ∗ α‖2.

Thus, e(f) = 0 if and only if f = α and ∂̄ ∗ α = 0, so if e(f) vanishes,
we must have ∂̄ ∗ f = 0. Conversely, if ∂̄ ∗ f = 0, then ∂̄∂̄∗f = f since

∂̄∂̄∗f = ∂̄(−eφ∂e−φ ∗ f) = ω ∧ ∗f = f.

Hence α = f , and we see that e(f) = 0. We have therefore proved the
next proposition.

Proposition 2.2.
e(f) = 0,

i.e., equality holds in the Hörmander estimate for the L2-minimal solu-
tion to

∂̄v = f

if and only if the (n− 1, 0)-form ∗f is holomorphic.

For later use, we also give a variant of the argument above that leads
to a more precise statement.

Proposition 2.3. e(f) is the minimum of the quadratic expression

q(f, g) := ‖f − g‖2 + ‖∂̄ ∗ g‖2

where g ranges over all (L-valued) ∂̄-closed (n, 1)-forms. Hence, if we
take g = f , it follows that

e(f) ≤ ‖∂̄ ∗ f‖2.

Proof. We already know that q(f, α) = e(f) if α is chosen so that
∂̄∂̄∗α = f and ∂̄α = 0, so we need only prove that for any g as above,
q(f, g) ≥ e(f). Write g = α + γ. We claim that

〈α− f, γ〉+ 〈∂̄ ∗ α, ∂̄ ∗ γ〉 = 0.

This follows from polarizing (2.4); if we recall that ∂̄α = ∂̄γ = 0, we get

〈α, γ〉+ 〈∂̄ ∗ α, ∂̄ ∗ γ〉 = 〈∂̄∗α, ∂̄∗γ〉 = 〈f, γ〉.
Hence,

q(f, α + γ) = q(f, α) + ‖γ‖2 + ‖∂̄ ∗ γ‖2 ≥ e(f).
q.e.d.

Recall that we are interested in when e(f) = 0 when f = ∂̄zψt ∧ u.
Let V be the complex gradient of ψt on a fiber {t}×Z. This is a vector
field of type (1, 0) defined by

δV ωt = ∂̄ψt,
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where δV means contraction of a form with a vector field. We claim
that ∗(∂̄zψt ∧ u) = −δV u. To see this, note that

ωt ∧ u = 0

for degree reasons, so

0 = δV (ωt ∧ u) = ∂̄zψt ∧ u + ωt ∧ δV u.

Hence
∗δV u = −∂̄zψt ∧ u,

which proves the claim.
Since u is a holomorphic form, δV u is holomorphic if and only if V

is a holomorphic vector field. This is clear outside of the zeros of u,
and since V is automatically smooth, it must hold everywhere. We
therefore see that for any choice of u in Et and f = ∂̄zψt ∧ u, we
have e(f) = A(ψt, u) = 0 if and only if V , the complex gradient of
ψt, is a holomorphic vector field. Note that, somewhat surprisingly,
this condition is independent of u. We have therefore proved the next
theorem.

Theorem 2.4. Equality holds, for some u, in the inequality

〈ΘEu, u〉 ≥
∫

π−1(t)
c(φ)[u, u]e−φ

if and only if V , the complex gradient of ψt on the fiber Zt = {t} × Z,
is a holomorphic vector field. If φ is semipositive, then ΘE has a null
vector in Et if and only if c(φ) = 0 and V is holomorphic on Zt. In this
case, ΘE vanishes on all of Et.

We shall next see that if the conditions of the previous theorem -
vanishing of c(φ) and holomorphicity of V on Zt - are satisfied for t in
an entire neighbourhood of the origin, then the variation of the metrics
on Z comes from the flow of the holomorphic field V , the complex
gradient of ψt.

Let us first recall a few basic facts about real and complex vector
fields. If v is a real vector field on X, then v generates a flow, a one-
parameter group Fτ , of diffeomorphisms of X satisfying

d

dτ
g(Fτ (x)) = v(g)(Fτ (x))

for any smooth function g. The Lie derivative of a form α on X with
respect to v is defined by

Lvα =
d

dτ
|τ=0F

∗
τ (α).

By a classical formula of Cartan,

Lvα = (dδv + δvd)α.
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If V is a complex vector field of type (1, 0), we similarily let the complex
Lie derivative be

LCV α = (∂δV + δV ∂)α.

When V is a holomorphic field, and v = ReV , one easily checks that

Lv = ReLCV ,

so information about the complex Lie derivative of V enables us to draw
conclusions about the flow of v = ReV .

Recall that the complex gradient of ψt is defined by

∂̄ψt = δV ωt.

Applying i∂ to both sides, we get (since ∂ω = 0)

∂

∂t
ω = i∂δV ω = iLCV ω,

so we have a formula for the complex Lie derivative of ω. To use this
formula, we need, however, to know that V is a holomorphic field, not
just on each slice Xt, but also that it depends holomorphically on t.
That is the object of the next lemma.

Lemma 2.5. Assume V , the complex gradient of ψt is holomorphic
on each slice Xt = Z × {t} for all t in U . Let Vt̄ = ∂V/∂t̄. Then Vt̄ is
the complex gradient of c(φ). In particular, if c(φ) is constant on slices,
then V is a holomorphic field on all of X = U × Z.

Proof. Recall that

(2.6)
∂

∂t
ω = i∂δV ω = iLCV ω,

where LCV is the complex Lie derivative with respect to V . Taking
conjugates, it follows that

∂

∂t̄
ω = −i∂̄δV̄ ω.

Differentiating the defining relation

∂̄ψt = δV ωt

with respect to t̄, we get

∂̄zψtt̄ = δVt̄
ω + δV

∂

∂t̄
ω = δVt̄

ω − iδV ∂̄δV̄ ω

= δVt̄
ω + i∂̄δV δV̄ ω = δVt̄

ω + ∂̄|V |2.
Thus,

δVt̄
ω = ∂̄(ψtt̄ − |V |2),

and the lemma follows since the norm of V is equal to the norm of ∂̄ψt.
q.e.d.
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Theorem 2.6. Assume the curvature ΘE is degenerate on Et for all
t in U . Then

ωt = S∗t (ω0),

where St is the flow of some holomorphic vector field on Z. It follows
that

φ(t, z) = φ(0, St(z)) + ψ(t).

Proof. By Theorem 2.3 and Lemma 2.4, the hypothesis implies that
V , the complex gradient of ψt, is holomorphic with respect to both t
and z. Let

Ts(t, z)

be the flow of iV ; note that it acts fiberwise on X. Let

Us(t, z)

be the flow of W := iV − ∂/∂t. Then

Us(t, z) = (t− s, Ts(t, z)).

By (2.7), the (complex) Lie derivative of ω with respect to W vanishes,
so U∗

s (ω) = ω. Taking s = t, it follows that ω0 = T ∗t (ωt), and the
theorem follows with S equal to the inverse of T . (The last part follows
since φ(t, z)− φ(0, St(z)) is pluriharmonic, hence constant, on fibers.)
q.e.d.

3. Negativity of direct image bundles.

In this section, we give for comparison a theorem that very roughly
corresponds to Theorem 2.1 for the (trivial) vector bundle F with fiber

F̂ = Ft = H0(Z, L),

instead of Ê = H0(Z, KZ ⊗ L). The difference is thus that we do not
take tensor products with the cannonical bundle here. We then use the
metric

‖u‖2
t :=

∫

π−1(t)
|u|2e−φωn,

where ω = (i∂∂̄)zφ, on F . We shall see that we then instead get an
estimate of the curvature from above.

Theorem 3.1. Let φ be a smooth metric on L over Z ×U satisfying

ωφ := i∂∂̄φ ≥ 0.

Let u be an element in Ft. Then the curvature ΘF of F equipped with
the metric described above satisfies

〈ΘF u, u〉 ≤ (n + 1)
∫

π−1(t)
|u|2c(φ)e−φωn.
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Proof. Let u be a holomorphic section of F . We start by computing

i∂∂̄‖u‖2
t .

For this, we note that ‖u‖2 is the push-forward of the form

R = |u|2e−φωφ
n

under π. Hence, if we denote by ∂φ the twisted derivative eφ∂e−φ

i∂∂̄‖u‖2
t = π∗(i∂∂̄R)(3.1)

= π∗(i∂φu ∧ ∂φu ∧ ωφe−φ)− π∗(|u|2ωφ ∧ ωφ
ne−φ).

Here we have used the commutator rule

∂̄∂φ + ∂φ∂̄ = ∂∂̄φ.

The first term in the right hand side of (3.1) is nonnegative, so using

ωφ ∧ ωφ
n = (n + 1)c(φ)idt ∧ dt̄ ∧ ωφ

n,

we get that

(3.2) i∂∂̄‖u‖2
t ≥ −(n + 1)

∫

π−1(t)
|u|2c(φ)e−φωnidt ∧ dt̄.

On the other hand,

i∂∂̄‖u‖2
t = 〈D′u, D′u〉 − 〈ΘF u, u〉

if D′ is the (1, 0)-part of the connection on F . If we combine this formula
with (3.2), we see that

〈ΘF u, u〉 ≤ 〈D′u,D′u〉+ (n + 1)
∫

π−1(t)
|u|2c(φ)e−φωnidt ∧ dt̄.

Since we can make the first term in the right hand side vanishes at any
given point by choosing the section u, so that D′u = 0 at that given
point, it follows that

〈ΘF u, u〉 ≤ (n + 1)
∫

π−1(t)
|u|2c(φ)e−φωn.

q.e.d.

Corollary 3.2. Assume in addition to the hypotheses in the previous
theorem that ωφ

n+1 = 0, so that c(φ) = 0. Then ΘF ≤ 0.

Remark. It might seem surprising (and even confusing) that we get
different signs for the curvature of the very closely related bundles E
and F . This can be clarified somewhat if we consider the real variable
analogs of Theorems 2.1 and 3.1. In this analogy, a metric on L over
Z ×U with nonnegative curvature corresponds to a convex function on
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Rn × U with U now an interval in R. As explained in [4], Theorem 2.1
corresponds to Prekopa’s Theorem, which states that the function

− log
∫

Rn

e−φ(x,t)dx

is convex. On the other hand, Theorem 3.1 corresponds to the fact that

log
(∫

e−φ(x,t)det(φxjxk
)dx

)

is convex if the determinant of the full hessian of φ vanishes.

4. Asymptotics

As in the introduction, we next let for p a positive integer E(p) be the
vector bundle defined in the same way as E, but replacing L by Lp. It
follows immediately from Theorem 2.3 that if the curvature Θp of E(p)
is degenerate at t for p equal to some p0, then actually Θp vanishes
completely at t for any p = 1, 2, . . .. We shall now see that we can draw
a similar conclusion if Θp vanishes in the limit, as p tends to infinity.
This requires an asymptotic study of the two terms in our curvature
formula from Theorem 2.1.

The main point in our asymptotic study of Θp is the next asymptotic
formula for the trace of the quadratic form A(µ, ·) introduced in Section
2.

Theorem 4.1. Let Ap be the quadratic form A with L replaced by
Lp. Denote by dp the dimension of H0(Z,KZ ⊗ Lp) and by Vol (Z) the
volume of Z with respect to the metric ω. Then

lim
p→∞

1
dp

trAp(pµ, ·) =
1

Vol (Z)

∫

Z
|∂̄Vµ|2ωn.

In the proof, we will use the asymptotic expanison for Bergman ker-
nels of Tian-Catlin-Zelditch that we recall in the next subsection.

4.1. The Tian-Catlin-Zelditch asymptotic formula for Berg-
man kernels. Fix p for the moment, and let uj be an orthonormal
basis for E(p) =. Then

∑
[uj , uj ]e−pφ =: Bpe

−pφ

is the Bergman form for E(p) = H0(Z,KZ ⊗ Lp). By e.g., [18], there
are constants aj so that

(4.1) Bpφe−pφ = pn

(
a0 +

a1

p
S + O

(
1
p2

))
ωφ

n.

Here a0 and a1 are constants, and by the computation of the second
term due to Lu, [11], S = Sωφ is the scalar curvature of the metric
with Kähler form ωφ. Normally the expansion is given for the Bergman
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kernel for the space of global sections of Lp, but the analogous formula
for our Bergman kernel follows from this. More precisely, it follows from
the known expansions for Lp ⊗ F , where F is another line bundle with
fixed metric – our case corresponding to F = Kz with metric induced
by ωφ, see e.g., [2].

Since
dp

pn
= b + c/p + O

(
1
p2

)
,

where b is again a positive constant, it follows from 2.7 that

(4.2)
Bpφe−pφ

dp
=

(
a′0 +

a′1
p

(S − Ŝ) + O

(
1
p2

))
ωφ

n

for certain constants a′0, a′1 and Ŝ. The left hand side here integrates to
1, so it follows that a′0 = 1/Vol(Z). Moreover, the second term in the
right hand side must integrate to 0, so Ŝ is the average of S over Z.

4.2. Proof of Theorem 2.7. We shall first prove that

lim sup
p→∞

1
dp

trAp(pµ, ·) ≤ 1
Vol(Z)

∫

Z
|∂̄Vµ|2ωn.

This is a relatively simple consequence of Proposition 2.3, together with
the formula for the asymptotic expansion of Bergman forms. Recall
that by Proposition 2.3,

Ap(pµ, u) ≤ ‖p∂̄ ∗p ∂̄µ ∧ u‖2
p = ‖∂̄ ∗ ∂̄µ ∧ u‖2.

Here the p in the subscript indicate norms and *-operators with respect
to the metric pω, and norms and *-operators without subscripts are
taken with respect to ω. (Notice that p∗p = ∗ and that the norm of
a form of total degree n does not change when we multiply the metric
with p.) But it is easily verified that

‖∂̄ ∗ ∂̄µ ∧ u‖2 =
∫
|∂̄Vµ|2[u, u].

This means that the trace of Ap is dominated by
∫
|∂̄Vµ|2Bpφ,

which after divison with dp tends to

1
Vol(Z)

∫
|∂̄Vµ|2ωn

by the asymptotic formula for Bpφ. This completes the proof of the
upper estimate. We next turn to the estimate from below of the trace,
i.e., we estimate ∂̄Vµ from above.
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For this, we shall estimate

I =
∫

(∂̄Vµ, ξ)ωn/Vol(Z)

where ξ is a (0, 1) with vector field coefficients. By the asymptotic
expansion for Bergman forms, this is the limit of

Ip =
∫

(∂̄Vµ, ξ)
∑

[uj , uj ]/dp,

as p tends to infinity, if (uj) is an orthonormal basis for H0(Z, KZ⊗Lp).
But

Ip =
∑

〈∂̄δVµuj , δξuj〉/dp =
∑

〈δVµuj , ∂̄
∗δξuj〉/dp.

Recall that

Ap(pµ, uj) = ‖p∂̄µ ∧ uj − pαj‖2
p + ‖∂̄ ∗p αj‖2

p

where αj are (n, 1)-forms. Translating to norms with respect to ω, this
equals

p‖∂̄µ ∧ uj − αj‖2 + ‖∂̄ ∗ αj‖2.

In particular,
∑

‖∂̄µ ∧ uj − αj‖2/dp =
∑

‖δV µuj − ∗αj‖2/dp ≤ 1
p
trAp(pµ, ·)/dp.

Hence, up to an error of size 1/p, Ip equals
∑

〈∗αj , ∂̄
∗δξuj〉/dp =

∑
〈∂̄ ∗ αj , δξuj〉/dp,

which by Cauchy’s inequality is dominated by
(∑

‖∂̄ ∗ αj‖2/dp

)1/2 (∑
‖δξuj‖2/dp

)1/2

≤ (trAp(pµ, ·)/dp)1/2

(∫
|ξ|2Bφ/dp

)1/2

.

Therefore,

1
Vol(Z)

∫
(∂̄Vµ, ξ)ωn ≤ lim inf(trAp(pµ, ·)/dp)1/2(‖ξ‖2/Vol(Z))1/2,

so
1

Vol(Z)

∫
|∂̄Vµ|2ωn ≤ lim inf

1
dp

trAp(pµ, ·).

This completes the proof of Theorem 2.7. q.e.d.
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4.3. Asymptotic behaviour of the curvature. In the previous sub-
section, we have used the asymptotics of Bergman forms to describe
the asymptotic behaviour of the trace of Ap. The behaviour of the first
term in the formula for the curvature Θp as p goes to infinity also follows
from the Tian-Catlin-Zelditch formula. This term is∫

c(pφ)[u, u],

so its trace is ∫
pc(φ)Bpφ.

The results recalled in Subsection 2.1, therefore, lead to the next theo-
rem.

Theorem 4.2. As p goes to infinity,
1
dp

trΘp

= (p
∫

c(φ)ωφ
n +

∫
c(φ)(S − Ŝ)ωφ

n +
∫
|∂̄Vψt |2ωφ

n)/Vol(Z) + o(1).

In particular,

lim inf
1
dp

trΘp = 0

(if and) only if c(φ) = 0, and Vψt is a holomorphic vector field.

5. Convexity on the space of Kähler metrics

We now return to the space K of Kähler potentials on Z. Fixing a
base metric φ0, any other metric φ can be written

φ = φ0 + ψ

where ψ is a function on Z. The space K is therefore affine, and its
tangent space is the space of (say smooth) real valued functions on Z.
Following [14] and [16], one defines a metric on the tangent space at φ
by

‖ψ‖2 =
∫
|ψ|2ωφ

n,

where ωφ = i∂∂̄φ. This gives K the structure of a Riemannian manifold,
and it is proved in the references above that the geodesic curvature of
a path φ(t, z) = φ0(z) + ψ(t, z) is given by

c(φ) = ψtt̄ − |∂̄zψt|2ωφ .

Here we follow the convention that we let t be complex and let ψ be
independent of the argument of t. By formula (2.1), φ defines a geo-
desic in K precisely when φ satisfies the homogenuous Monge-Ampère
equation with respect to both variables t and z.



POSITIVITY OF DIRECT IMAGE BUNDLES ... 473

Let us now consider a (smooth) function, F on K. Then

∂

∂t
F(φt) = F ′.φt.

To write second order derivatives, we have two possibilities. The sim-
plest alternative would be to write

∂2

∂t∂t̄
F(φt) = F ′.φtt̄ + D2F(φt, φt̄).

Then D2F is the Hessian of F with respect to the affine structure on
K. The second possibility is to write

(5.1)
∂2

∂t∂t̄
F(φt) = F ′.c(φ) + F ′′(φt, φt̄)

and let this formula define the Hessian of F as a quadratic form on the
tangent space to K. This is the Hessian of F determined by the Rie-
mannian structure on K, and it is this form of the Hessian that we will
use. Then F is said to be convex on K if F ′′ is positively semidefinite,
so that, in particular, the restriction of F to any smooth geodesic is
convex. Notice, however, that the convexity is defined independently of
the existence of smooth geodesics.

One classical example of such a function is I defined by

I ′.φt =
∫

φtω
φ
n.

It is well known and not hard to compute that
∂

∂t̄
I ′.φt =

∫
c(φ)ωφ

n = I ′.c(φ),

so I ′′ = 0 and I is linear along geodesics.
In [8], Donaldson introduced another functional L in the following

manner. Let H be the space H0(Z, L̂) of global holomorphic sections
to L̂ over Z. Let (hj) be some fixed basis for H, and let for any φ in K,
L(φ) be the logarithm of the determinant of the matrix of the metric
Hilb (φ) expressed in the given basis. Here the metric Hilb (φ) is defined
by

‖h‖2 =
∫
|h|2e−φωφ

n.

Note that L depends on the basis chosen, but only up to an additive
constant. Equivalently, Donaldson’s L-functional can be defined as the
logarithm of the square of the norm of some fixed constant section of the
line bundle det(F ), where F is the vector bundle discussed in Section 3
(the notion of a constant section makes sense since F and hence det(F )
are trivial bundles). Corollary 3.2 therefore implies that L(φ(·, t)) is a
subharmonic function of t if φ(·, t) is any curve in K satisfying c(φ) = 0.
Hence, in particular, L is convex along geodesics. Notice, however, that
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L has no apparent convexity property along curves satisfying i∂∂̄φ ≥ 0
or i∂∂̄φ ≤ 0.

In this paper, we will change the setup and notation, and let L be
the similarily defined functional but with opposite sign, and using the
space Ê = H0(Z, L⊗KZ) instead of H, and our metrics Hφ instead of
Hilb (φ). Hence, in our setup L is the negative of the logarithm of the
squared norm of some fixed constant section of the line bundle det(E)
discussed in Section 2. Here the norm on det(E) is, of course, the norm
induced by our norms Hφ on E.

Thus, L′ is the negative of the connection form on det(E) (with re-
spect to the constant section chosen). Let (uj) be an orthonormal basis
of E for one fixed t. Then the connection form on det(E) is equal to
the trace of the connection, θ on E.

trθ =
∑

〈θuj , uj〉 = −
∑∫

φt[uj , uj ]e−φ = −
∫

φtBφe−φ,

where Bφ is the Bergman kernel. We have thus proved the first part of
the following lemma.

Lemma 5.1.
L′.φt =

∫
φtBφe−φ

and
∂2

∂t∂t̄
L(φt) = trΘE .

Hence,
L′′(µ, µ) = trAµ(·, ·).

The second part of the lemma follows since the Laplacian of the
logarithm of the square norm of a holomorphic (in this case constant)
section to detE is the negative of the curvature of detE, which is equal
to the trace of the curvature of E. The last part then follows from the
definition of the Hessian, formula (3.1), and Theorem 2.1.

Note that by Lemma 3.1, L′′ is nonnegative along geodesics and van-
ishes only if V , the complex gradient of ψt = φt is a holomorphic vector
field on Z. Hence L is convex along geodesics and also convex along
any curve such that c(φ) ≥ 0.

Following [8], we next let

L̃ =
1
d
L − 1

Vol
I,

where d is the dimension of Ê, and Vol is the volume of Z. Then
L̃′.φt = 0 if φt is constant on Z for some t, and L̃ is also convex along
geodesics (since I is linear). The stationary points of L̃ are in this
setting the points φ in K such that

Bφe−φ =
d

Vol
ωφ

n.
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This follows immediately from

L̃′.µ =
∫

µ

(
Bφe−φ

d
− ωφ

n

Vol

)
.

We will refer to these points as balanced, but note that this term now
has a slightly different meaning from what it has in [8].

Finally, we give also the definition of the Mabuchi functional M. It
is determined (up to a constant) by the formula for its derivative

M′.µ =
∫

µ(Sωφ − Ŝωφ)ωφ
n,

where Sωφ is the scalar curvature of the metric ωφ, and Ŝωφ is its average.
Its critical points are precisely the metrics φ in K that induce metrics
of constant scalar curvature on Z.

Proposition 5.2. Let φ0 and φ1 be balanced points. Assume they
can be joined by a smooth geodesic. Then

ωφ0 = S∗(ωφ1)

where S is the time 1 map of some holomorphic vector field on Z.

To see this, let φ be the geodesic and consider the restriction of L̃
to the geodesic. Since the end points are balanced, the derivative of L̃
vanishes at the end points, and since L̃ is convex, it must be constant.
Since I is linear, L′′ also vanishes so ΘE is zero by Lemma 5.1. The
proposition then follows from Theorem 2.4.

We will now apply the same reasoning to Lp, where p tends to infinity.
Define Lp the same way as L, but replacing L by Lp. Put

(5.2) L̃p =
1

d(p)
L − 1

Vol
I.

Then

L̃′.µ =
∫

µσp

where

σp =
Bpφe−pφ

d(p)
− ωφ

n

Vol
.

It follows (cf. formula 4.2) that, as p tends to infinity, pσp tends to (a
constant times)

(Sφ − Ŝφ)ωφ
n,

where Sφ is the scalar curvature of the metric ωφ, and Ŝφ is the average
of Sφ. By definition of the Mabuchi functional M, this means that L̃′p
tends to M′. The next result says the second derivatives also converge.
The formula for the second derivative of the Mabuchi functional in this
proposition can be found in [9].
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Proposition 5.3.

lim
p→∞ L̃p

′′
(µ, µ) =

1
Vol(Z)

∫
|Vµ|2ωn = a′1M′′(µ, µ).

Proof. The first equality follows directly from Lemma 5.1 and The-
orem 4.1, and the remaining equality follows, of course, since we know
that the first derivative of L̃p converges to a′1M′. q.e.d.

Remark. Conversely, Theorem 4.1 follows from the formula for sec-
ond derivative of the Mabuchi functional if we use that A is the Hessian
of L̃ and that L̃p converges to a multiple of the Mabuchi functional. We
have included the proof in Section 4 since it gives an approach to the
Hessian of the Mabuchi functional using only data that can a priori be
of very low regularity.

In particular, the Mabuchi functional is convex along geodesics, and
even strictly convex if Z has no nontrivial holomorphic vector fields.
Recall that the critical points of M are precisely the Kähler potentials
such that ωφ has constant scalar curvature. The same argument that
led to Proposition 3.2 now gives the next theorem.

Theorem 5.4. Let φ0 and φ1 be points in K that define metrics of
constant scalar curvature on Z. Assume they can be joined by a smooth
geodesic. Then

ωφ0 = S∗(ωφ1)
where S is the time 1 map of some holomorphic vector field on Z.

5.1. An interpretation of the form A (?). Our form

A(µ, u) = e(∂̄µ ∧ u)

is defined on the tangent bundle of K times the complex vector space

Ê = H0(Z,KZ ⊗ L),

and it is quadratic in both arguments so it resembles a curvature form
on a vector bundle over K with fiber Ê. If we try to make this idea
more precise, we must first find a connection. Clearly, the trivial bun-
dle over K with fiber Ê has a natural metric if we define the norm over
a point φ in K to be just Hφ. A metric does not in itself induce a con-
nection, however. It is therefore natural to consider complexifications
of K since holomorphic bundles over complex manifolds have canonical
connections.

Let us, therefore, assume that we have a complex manifold K̃ con-
taining K as a totally real submanifold together with a projection map

π : K̃ → K,

having the property that any geodesic in K lifts to a holomorphic curve
in K̃. Define a trivial vector bundle E over K̃ with fiber Ê and the
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’tautological’ Hermitian metric Hπ(z) on Ez. We claim that A(µ, u)
must then be the Chern curvature form

〈ΘE
(µ,iµ)u, u〉.

To see this, take a piece of a geodesic curve through a point φ0 in K with
tangent vector µ at φ0 and lift it to a complex curve through a point
z0 in K̃. Then E restricted to this complex curve is a vector bundle E
of the type considered in Section 2. By Theorem 2.1, its curvature is
given by

〈ΘEu, u〉 = A(µ, u)
(the first term in the curvature formula disappears for a geodesic). But
the Chern curvature of the bundle restricted to a complex curve is the
restriction of the Chern curvature of the full bundle, proving our claim.

This interpretation hinges, of course, on the existence of a complexi-
fication of K with the properties above. As pointed out to me by Yanir
Rubinstein, the at least ’moral’ existence of such a complexification is
an important motivation for the constructions in [16] and [9]. One can
also compare to the work of Lempert and Szoke, [10], who show the
existence of a complex structure with the properties we require on a
neighbourhood of the zero section in the tangent bundle of any finite
dimensional Riemannian manifold. At any rate, if K̃ exists, we also
see that Hörmander’s L2-estimates imply (and are almost equivalent
to) that E has nonegative curvature, and that the curvature is strictly
positive if Z has no nontrivial holomorphic vector fields.

5.2. ‘Finite dimensional geodesics’. A Hermitian metric H on the
trivial vector bundle E = U × Ê over U is a complex curve in the space
of Hilbert norms on Ê. The latter is a symmetric space (cf. [16] and
[7]), and it turns out that geodesics in this space correspond exactly
to metrics with zero curvature (at least if the metric depends only on
the real part of t). Let us call a metric with semipositive curvature a
subgeodesic, and in the same way call a complex curve in K a subgeodesic
if i∂∂̄φ ≥ 0. With this terminology, Theorem 2.1 implies that if φ is
a subgeodesic in K, then the corresponding metric Hφ on E is also a
subgeodesic. Moreover, Hφ is a geodesic, i.e., the curvature vanishes
if and only if φ arises from one fixed metric on L̂ via the flow of a
holomorphic vector field.

Conversely, any metric on a vector bundle F = U×H0(Z, L) induces a
corresponding curve in the space of metrics on L by taking the Bergman
kernels of the norms on any fiber (this map from metrics on U×H0(Z, L)
to K is called in the Fubini-Study map, see [8]). Assuming that L̂ is
sufficiently positive so that the Bergman metric is nondegenerate on
fibers, we have here a completely symmetric situation: Subgeodesics on
F map to subgeodesics in K, and the image is a geodesic if and only
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if the metric on F arises from one fix Hilbert norm on F̂ via the flow
of a holomorphic vector field. The first part of this claim is clear from
the explicit form of the Bergman kernels (see beginning of next section
or [15]). The second part follows from an analysis of the foliation by
complex curves that the homogenuous Monge-Ampère equation

(i∂∂̄ log B)n+1 = 0

induces, but we omit the proof.

6. Approximation of geodesics

In the previous section, we did not use the full curvature estimate in
Theorem 2.1, but only the estimate of the trace of the curvature that
follows from it. In this section, we shall use the full curvature estimate
to show that a recent result of Phong and Sturm, [15], on approximation
of geodesics can be sharpened a bit in our setting.

Recall that any φ in K induces a Hilbert norm Hφ on Ê. Let M

be the space of all Hilbert norms on Ê and let Ht be a curve in M ,
where t in U is a complex parameter. Then Ht defines an Hermitian
structure on our vector bundle E over U . We say that Ht is flat if
this Hermitian structure is flat, i.e., if it has vanishing curvature. In
case Ht is independent of the argument of t, this means precisely that
the corresponding real curve is a geodesic in the symmetric space of all
Hermitian norms on Ê, see [7] and [15].

As in [15], we note that any two points H0 and H1 in M can be
joined by a flat curve: Choose an orthonormal basis of H0, (uj) that
diagonalizes H1, so that

〈uj , uk〉H1 = δjke
2λj .

Then Ht defined by
〈uj , uk〉Ht = δjk|t|2λj ,

where log |t| ranges from 0 to 1, is a flat curve joining H0 and H1.
For any curve in M , we get a curve of metrics on L ⊗Kz by taking

the logarithm of Bt, the Bergman kernel for Ê with the metric Ht. Here
Bt is defined by

Bt =
∑

[ujt(z), ujt(z)],

where (ujt) is an orthonormal basis for the scalar product Ht. Explicitly,

(6.1) Bt =
∑

[uj(z), uj(z)]|t|−2λj

if (uj) is the diagonalizing basis chosen above.
For p a positive integer, we can do the same construction for the space

Ê(p) consisting of sections to Lp ⊗KZ and get metrics

pφ(p)(t, ·) = log Bt(p)
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on Lp ⊗KZ .
Let φ0 and φ1 be two smooth positive metrics on L̂, i.e., points in K.

Let U be the annulus {0 < log |t| < 1} and consider the space A of all
smooth semipositive metrics φ on L, the pull back of L̂ to U × Z such
that

φ ≤ φ0

for log |t| = 0 and
φ ≤ φ1

for log |t| = 1.
Then φ∗ := supA φ is a moral candidate for a geodesic in K, but its

eventual smoothness properties is a very hard issue, see [5], [6].
Here we shall prove a variant of the result of Phong and Sturm, [15].

For p large, we consider the Hilbert norms Hpφ0 and Hpφ1 on Ê(p),
connect them with a flat curve of Hilbert norms and define Bt(p) and
φ(p) as above.

Theorem 6.1.

(6.2) sup |φ(p) − φ∗| ≤ C
log p

p
.

The meaning of this statement is perhaps a bit obscure since φ(p) and
φ∗ are metrics on different bundles. If we choose a fixed smooth metric
χ on KZ , the precise meaning of (6.2) is

sup |(φ(p) − χ/p)− φ∗| ≤ C
log p

p
.

Note that in the case of principal interest when KZ is negative, we
can choose χ to have negative curvature so that our approximants are
positively curved. In case L̂ is a power of the canonical bundle on Z,
one can also avoid the introduction of χ by normalizing φ(p) differently.

To prove Theorem 6.1, we first note that φ∗ is bounded from above
by max(φ0, φ1). This follows if we apply the maximum principle with
resepct to the t-variable for a general element in A.

The direction of Theorem 6.1 that estimates φ∗ from below is rela-
tively straightforward. First note that when log |t| = 0 by the Tian-
Zelditch-Catlin formula

(6.3) |φ(p) − χ/p− φ0| ≤ C log p/p,

and that a similar estimate holds on the outer boundary of the annulus.
We will use φ0 as a fixed strictly positive auxilary metric on L̂. Notice
that by (6.1), φ(p) defines a semipositive metric on L over U ×Z so that
if a is a sufficiently large constant,

φ(p)(1− a/p) + aφ0/p− χ/p
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is also semipositive for p large enough (the positivity of φ0 compensates
for the possible negativity of χ if a is large enough). Combining with
(6.3), we see that

ξp = φ(p)(1− a/p) + aφ0/p− χ/p− C log p/p

belongs to A. Hence φ∗ ≥ ξp proving one direction of (6.2). Notice that
this shows, in particular, that φ∗ is uniformly bounded from below by
the smooth metric ξp0 for some fixed large p0.

The proof of the other direction is divided into two steps. First we
estimate Bt(p) from below by Bpφ∗ - the Bergman kernel associated to
pφ∗, and then we estimate Bpφ∗ by epφ∗ . For the first step, we need a
well known lemma, cf. [17].

Lemma 6.2. Let E be a holomorphic vector bundle over ( the closure
of ) a one-dimensional domain U , and let A and B be two Hermitian
metrics on E that extend continuously to Ū . Assume that the curvature
of A is seminegative and that the curvature of B is semipositive. Then
if A ≤ B on the boundary of U , it follows that A ≤ B in U .

Let E = E(p) be our trivial bundle with fiber Ê(p), and let A be the
metric defined by the flat curve between Hpφ0 and Hpφ1 . B is the metric
defined by Hφ∗ . By Theorem 2.1, B is semipositive and by definition A
is flat. Thus by the lemma,

A ≤ B.

This implies the opposite inequality for the Bergman kernels, so

(6.4) Bt(p) ≥ Bφ∗ .

One might object here that φ∗ is not necessarily smooth, so Theorem
2.1 can not be applied directly. This can be circumvented by proving
instead (6.4) with φ∗ replaced by an arbitrary element in A, which will
suffice for our purposes.

The remaining part of the proof now follows from a variant of the
Ohsawa-Takegoshi extension theorem.

Theorem 6.3. Let L be a line bundle over a compact manifold Z
with a positive metric φ0, and let φ be a semipositive metric on L such
that φ0 − φ is uniformly bounded. Let χ be a fixed smooth metric on
KZ .

Then for any point x in Z and any sufficiently large integer p, there
is a holomorphic section h to Lp ⊗KZ such that

(6.5) |h(x)|2 ≥ epφ+χ(x)

and

(6.6)
∫

[h, h]e−pφ ≤ C,

where C does not depend on p.
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Accepting this for a moment, we first see how Theorem 6.1 follows.
We will apply Theorem 6.3 to φ∗ (or to an arbitrary element in A) for
one fixed value of t. We already know that φ∗ is bounded from below
by a smooth metric and from above by max(φ0, φ1), so Theorem 6.3
does apply to the couple φ∗ and φ0. By the extremal characterization
of Bergman kernels, it follows from Theorem 6.3 that

Bpφ∗ ≥ Cepφ∗+χ.

Combining with (6.4), we find

(6.7) Bt(p) ≥ Cepφ∗+χ,

from where it follows that

φ(p) ≥ φ∗ + χ/p + C/p;

so Theorem 6.1 follows.
To prove Theorem 6.3, first choose a trivializing neighbourhood W

and local coordinates centered at x. By the Ohsawa-Takegoshi extension
theorem for bounded domains in Cn, we can find a section over W
satisfying (6.5) over W with an integral estimate over W . A standard
argument involving Hörmander L2-estimates over Z with respect to a
singular weight with a logarithmic pole at x then extends h to a global
section such that (6.5) still holds and∫

[h, h]e−(p−p0)φ+p0φ0 ≤ C.

Since φ− φ0 is assumed to be uniformly bounded, this gives (6.6), and
we are done.

As a final remark, we note that if we assume known that φ∗ has a
certain degree of smoothness, and that ωt > 0, then we can replace the
crude lower bound in (6.7) from the Ohsawa-Takegoshi theorem by a
few terms from the Tian-Zelditch-Catlin expansion. One then gets a
very precise estimate from below of Bt(p).
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