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PERFECT TENSORS ON A MANIFOLD

GERALD D. LUDDEN

Introduction

In one of a series of papers on the holonomy group, Hlavaty [2] calls the
infinitesimal holonomy group of a connection perfect if its Lie algebra can be
found from the curvature tensor alone, that is, the covariant derivatives of the
curvature tensor will add nothing new to this Lie algebra. In [4] we generalized
this definition to an arbitrary tensor and gave a necessary and sufficient con-
dition that a tensor be perfect. This condition was expressed in terms of restric-
tions on a certain set of local tensor fields. In this paper, we call a set of tensor
fields perfect if they satisfy this condition in every coordinate neighborhood.

Our perfect set of tensor fields reduces to several well-known concepts in
special cases. For example, if there is only one tensor field in a perfect set, this
tensor field is recurrent (or covariant constant). Also, if the tensor fields in a
perfect set are all vector fields, then their linear span at all points of the mani-
fold form a parallel field of planes (see Walker [5]).

To a given tensor field on a manifold M, Chern [1] has associated a set of
functions on the bundle of frames over M. Wong [7] has given a necessary and
sufficient condition on these functions such that the associated tensor is covari-
ant constant or recurrent. He also gives [8] a necessary and sufficient condi-
tion on these functions so that there exists a connection on the manifold M,
with respect to which the associated tensor is covariant constant or recurrent.
The present paper extends Wong's results to a perfect set of tensors. In this
regard, Wong's theorems [7, Theorem 3.9], [8, Theorem 1.2] are special cases
of Theorems 2.4 and 2.8. Using our characterization of perfect tensor fields,
in §5 we are able to prove a fundamental result on fields of planes, namely,
every field of planes on M is parallel with respect to some connection on M.

In §3, we examine the set of covectors that occur in the definition of a per-
fect set of tensors. A necessary and sufficient condition is obtained guarantee-
ing that the recurrence covector of a recurrent tensor is locally a gradient. This
is then generalized to the set of covectors mentioned above. §4 is devoted to
applications of the previous results.

This paper is condensation of a part of the author's doctoral dissertation
presented to the University of Notre Dame. The author would like to express
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his sincere thanks to his research director Dr. Cecil B. Mast for his help and
encouragement.

1. Preliminaries

In this section we will summarize some well-known results on linear con-
nections. The proofs of the various theorems can be found in Chern [1] and
Wong [7], Here also, we will fix our notation.

Let M be a connected, C~ manifold of dimension n, and let B denote the
total space of the frame bundle over M. Next let B(M,G) denote the
principal fiber bundle over M with group G, where G is the general linear
group and π the natural projection of B onto M. If x € M, then z(x) e B will
denote a frame at x and thus, π(z(x)) = JC.

Let (U, x*) be a coordinate neighborhood in M. If z(x) is a frame at x € £/,
the tangent vectors Xβ(x)(a = 1, , n) of z(;c) can be expressed as Xa(x) =
uiJββχi)x (note that the summation convention is used throughout this paper),
where u* are n2 real numbers such that det w* Φ 0. The following theorem
will be stated for a tensor of type (2,1), although it is also true for tensors of
arbitrary type.

Theorem 1.1. To any tensor W of type (2,1) on M, there corresponds a
set of nz functions Wa/ on B such that for any z$B and any geG we have

where g'1"' is the inverse matrix of gj,. Conversely, to any such nz functions
on B satisfying (1.2) there corresponds a tensor of type (2, 1) o« Λf. More-
over, if (U, JC£) and (π"^!/), (x\ *4)) are local coordinate systems in M and B
respectively, then

(1.3)

where z = (**, w£).
We will write (1.2) as

(1.20

The quantities Wf(z) are usually called the non-holonomic components of
tensor W%.

Let γ = (pj) be the matrix of one-forms given by a connection on M in a
coordinate system (U, x*). Then (using an obvious notation) the n one-forms
dx-u'1 and the n2 one-forms du w1 + u γ-w1, defined in each π~\U), piece
together to form n one-forms θ = (θa) and n2 one-forms ω = (ωj) respectively,
globally defined on B. A vector tangent to B is said to be horizontal if it
annihilates all of the n2 one-forms ωλ

v, and a sectionally smooth curve in B is
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called horizontal if its tangent vectors are all horizontal where defined. A
horizontal curve z(t) in B is called a lift of a curve x(t) in M if π(z(t)) = x(ί)
for each ί. For any ZQ e B, let B[zQ] be the set of all points in B that can be
joined to z0 by a sectionally smooth horizontal curve. We quote the following
lemmas.

Lemma 1.4. Any two points in M can be joined by a sectionally smooth
curve.

Lemma 1.5. Given any sectionally smooth curve x(t), 0 < t < 1, in M and
any ZQ € π~\x(Q)), then there exists a unique lift z(t) of x(t) such that z(0) = ZQ.

Lemma 1.6. For any xzM and any z0 6 B, π"\x) Π Bfo] is non-empty.
Lemma 1.7. For any two points, z0 and zl9 of B, there exists a geGsuch

that B[zx] = B[z&\ = {z' I z' = zg for some z e Bfo]}.
Lemm 1.8. // Wf(z) are the nz functions on B corresponding to the tensor

W{j on M, then the absolute differentials hdW^β (i.e. the horizontal part of
dW**) are related to the covariant differential dW¥ by

(1.9) hdWf(z) = δWy. uξuξiή .

Furthermore, the n4 functions DtWf on B, defined by hdWf = DeWf0', cor-
respond to FmW^ in a similar fashion.

It is known that any principal fiber bundle which satisfies the second axiom
of countability admits a connection. The following theorem will enable us to
extend a connection which we put on a closed subbundle to all of B(M, G).

Theorem 1.10. Let f: B'(M'9 G') -* B(M, G) be a homomorphism of prin-
cipal fiber bundles with corresponding homomorphism f\Gr-+G such that the
induced mapping f: M' —* M is a diffeomorphism of Mr onto M. Let Γf be
a connection in B'. Then there is a unique connection in B such that the
horizontal sub spaces of Γ' are mapped by f into horizontal sub spaces of Γ.

2. Perfect sets of tensor fields

In this section, we will define the concept of perfect sets of tensor fields and
obtain a characterization of them. The theorems which provide such charac-
terization are a generalization of similar theorems of Wong [7] that character-
ize a recurrent tensor field.

Definition 2.1. A set {WA \ A = 1, , r) of tensor fields of the same type
on M is perfect if

(i) the WVs are linearly independent at at least one point of M (i.e. there
is x € M such that CAW'A(x) = 0 implies CΛ = 0 for all A, where CA are real
numbers), and

(ϋ) in any coordinate neighborhood we have FhWA = FB

AhWB, for some
set of local covariant vector fields FfΛ.

In proving the following theorems we frequently specify the WVs to be of
a particular type (usually of type (1,1)) for convenience. However, the type
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is completely arbitrary. We might mention here that if r = 1, then the perfect
set of tensors is just a recurrent tensor (or covariant constant tensor if F\h =
0), or if the vectors F^h are of the form δAVAh (no sum on A) on M, then
the perfect set of tensors is just a set of recurrent (or covariant constant)
tensors. Also, if the tensors WA are all of type (1, 0) (i.e. vectors) then the
set sp{WA} of all linear combinations of the WA(x)'s at each point x of M
forms a parallel field of planes on M (see Walker [5]).

Theorem 2.2. // {WA \ A = 1, , r} is a perfect set of tensors, then along
any sectionally smooth horizontal curve in B there exists a matrix function
Φ*(t) such that

WA{t) = φB

A{t)WBφ) ,

where WA represents the set of functions on B corresponding, in the sense of
Theorem 1.1, to the tensor WA. Also det φ^(t) does not vanish.

Proof. Suppose the horizontal curve z(t), 0 < t < 1, lies in a coordinate
neighborhood π~\U) so that x(t) = π(z(t)) is a smooth curve in M. Assume

the WAs are of type (1,1) on M. Now —(WA

a

β) = l—9dfrAi)9 where
dt \ dt i

<, > denotes the action of the form on the vector. By Lemma 1.8, since z(t)
is horizontal, we then have

dt

dxk

where fl(t) = -=-F2». Therefore, WA%\ <a,β <n) are n2 solutions of the
dt

system of differential equations

Let 0f(ί) (1 < B < r) be r linearly independent solutions of this system of
differential equations such that φ^(0) = identity matrix. Then

WA%t) = WB*βφ)φ*{t) .

Moreover, since

det φ^(t) = det φ^(0) exp ( Γ trace f%t)dt
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(see Hochstadt [3, §2.8]) and fA(f) = —FB

Ak are C°° functions, we have that
at

άttφA(t) is nowhere zero. This finishes the proof of the theorem.
By definition, the WAs are linearly independent at at least one point of M,

say at x0. Let z0 e π-"1^) and let xx be any point in M. Since π'\x^) Π B[z0]
is non-empty, there is a sectionally smooth horizontal curve z(t) in B such
that z(O)=z0 and π(z(l))=x1. Thus WA(z(l)) = φϊ(lWB{z0), where
det0f(l)=£θ. This proves

Corollary 2.3. // {WA j /ί = 1, , r) is a perfect set of tensors on M, the
WAs are linearly independent at every point of M.

We are now in a position to prove the main theorem that characterizes a
perfect set of tensors:

Theorem 2.4. The set of tensors {WA | A = 1, , r} is perfect if and only
if the l^As, with domain restricted to any B[z0], are linearly independent on
B[Zo\ and given by

(2.5) WA(z) = φB

A(z)CB , z e B[z0] ,

where det φA(z) is nowhere zero on B[z0] and the CB's are constants.
Proof. We should note that if WB stands for WBy;.\, then CB stands for

CBy:.\. Let us again suppose the WAs are tensors of type (1,1). Since any z
in B[z0] can be joined to z0 by a sectionally smooth horizontal curve in B, the
"only if" part of the theorem follows immediately from Theorem 2.2.

To prove the "if" part of the theorem, take any xλ € M and any coordinate
neighborhood U of xλ. Then there is a zλ € B[z0] such that π(zx) = xτ. Let
x(t), 0 ̂  t < 1, be any smooth curve in U with x(tλ) = JCX, where 0 < tλ < 1,
and let z(ί) be the lift of *(ί) such that z(tτ) = z2. Therefore z(ί) is a curve
in r'^ί/) Π £[z 0], and thus on z{t) we have

4r^4) = ^ -αί dt

where 0""^ is the inverse matrix of φ%, and we have denoted ΦA'Φ~13B by
dt

/5(ί). Thus, along the curve x(t), we have (VkWA))—= fA(t)WB). How-

ever, since this is to hold for any smooth curve x(t) with x(tx) = * l 5 it is a
simple matter to show that FkWA} = F^Wgj on 1/ for some set of vectors
F2Λ. This finishes the proof of the theorem.

The preceding theorem demanded that WA(z) be of the form φA(z)CB on any
B[Zo]. However, if WA(z) = φB

A(z)CB on 5[z0], then, since B[zλ] = B[Zog] for
some g € G, we have for z' € J5[zJ that
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WA{z') = W(zg) = g~WA(z) = g~ιφl(z)CB = φ'B

A(z')CB ,

where φ'A

B(z') = φ%(z) if z' = zg and C* = g - 1C 5. As a consequence, the W/s
assume the same form on B[zx] as on B[ZQ].

If each of the tensors WA appearing in the statement of Theorem 2.2 is
covariant constant (a special case of {WA \ A == 1, , r,} being perfect), the
systems of differential equations which appear in the proof of Theorem 2.2
become homogeneous systems. Hence, the matrix 05(0 obtained from the
auxiliary system of equations is a constant matrix. This shows that Corollary
2.7 below (which is Theorem 3.15 in Wong [7]) is immediate. Corollary 2.6
below which is Theorem 3.9 in Wong [7]) is just Theorem 2.4 for the special
case where r = 1.

Corollary 2.6. The tensor W on M is recurrent if and only if the cor-
responding junction W on B have no common zero and are proportional to
a set of constants on ony B[Zo\.

Corollary 2.7. The tensor W onM is covariant constant if and only if the
corresponding functions have no common zero and are constant on any B[Zo].

If we are given a set of tensors on M, we might ask if there is any connec-
tion on M with respect to which the set is perfect. The answer is given in

Theorem 2.8. Let {WΛ\A = 1, ,r} be a given set of tensors on M.
There exists a connection on M such that this set is perfect with respect to
this connection if and only if we can assign to each xeM a frame z(x)
such that the WA(z(x)) are linearly independent for each xeM, and WA(z(x))
= ΦA(Z(X))CB for some set of constants CB and some matrix function φA(z{x))
on M whose determinant is nonvanishing on M.

Proof. Since π~\x) Π B[ZQ] is non-empty for each xsM, Theorem 2.4
proves the "only if" part of the theorem.

Now assume for each x e M there is a frame z(x) such that WA(z(x)) =
φA(z(x))CB for some set of lineary independent constants CB and some matrix
function φ^(z(x)) on M whose determinant is non-vanishing on M.

Define H to be the subgroup of G consisting of all elements h in G for
which there exists a non-singular r xr matrix ψi(h) such that h~1CA =
φB

AQi)CB. Then H is a non-empty closed subgroup of G, and therefore H is
a Lie group. In a like manner, define BH to be the set of all points z in B
for which there exists a non-singular r x r matrix φi(z) such that WA(z) =
ΦIQQC*' l t i s n o w a simple matter to show that for each x e M, BH n π~\x)
= z(x)H = {z(x)h\heH}. Hence, BH is invariant and has no fixed points
under the action of H. We now will show that BH is a closed submanifold of
B. Let zn be a sequence of points in BH converging to z in B and let WA(zn)
= φA.(Zn)CB. Since the functions WA are C00 on £ , we have that Cn^φA(zn)CB

= WA(z). The constants CA are linearly independent, so there is a matrix
CA such that CBCA = δi (i.e. if CA stands for CA then CA stands for C£ and
C%Ci = δf). Thus, «;.. φ*(Zn) = WA(z)CB = # ( z ) . Substituting this last
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equation in the previous one, we have WA(z) = φA(z)CB, which shows that
zeBH.

From the above, we see that BH(M, H) is a principal fiber bundle, which
is a subbundle of B(M, G). It is well-known that there exists a connection on
BH(M,H) which, by Theorem 1.10, can be extended to B(M,G). Also
Theorem 1.10 can be used to show that BH[ZQ] = B[Zo] for any ZQ. Since the
functions WA satisfy the hypothesis of Theorem 2.4 on all of BH, therefore on
BH[Z0] = B[z0], we have that the set {WA \ A = 1, , r} is perfect with respect
to this connection. Hence the proof is finished.

3. The vectors F\\

In the case of a recurrent tensor field it is of some interest to determine
whether the recurrence covector is locally a gradient. We could also ask
this question of the set of vectors ΈB

A1c. The following theorem gives a neces-
sary and sufficient condition for the vectors ΈB

Ak to assume a form resembling
a gradient.

Theorem 3.1. Let {WA | A = 1, , r} be a perfect set of tensors, so that
FkWA = FA\kWB on ony coordinate neighborhood I/, and for some ZQ€B let
WA{Z) = φB

A{z)CB for z e Biz,]. Then

(3.2) F*Ak = - ψ-

for some matrix function φ% on U (here ψ'™ is the inverse matrix of φ%) if
and only if for each x e M , φ\(z) is constant on π-\x) Π B[z<>].

Proof. Suppose φB

A(z) is constant on π~\x) Π B[ZQ] for all x € U, where U
is any coordinate neighborhood.

Define a matrix function ψA(x) on U by

where z is any point of π " 1 ^ ) Γ) B[ZQ]. We should note here that if JfrA(z) =
Φ**(z)Cs on B[zx], then, since B[z{\ = B[Zog] for some g e G, we have that

Φ*i(z) = φϊizg-1) = ψ-^Λπizg-1)) .

It is easy to see that 0f(x) is a C°° function on U (local cross-sections of
B[ZQ] exist). Therefore, let W% be r tensors on U given by

These tensors are linearly independent since det ψjίx) Φ 0. Since the φA(x)
are scalars on U, ψ^(z) = ψ^iπz) on π~\U) Π B[ZQ]. Therefore, we have
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on π'\U) Π B[ZQ]. By Corollary 2.7, each tensor Wf is covariant constant
on U. This implies that

and, since the WB's are linearly independent, we have that 0 = dkφ
B

A + φc

AF
B

Ck.
Since det^J ^ 0, this last equation can be written as Fik = ^ψ-^.dkψi on
£/.

Now suppose that Fik = — φ~lB'dkφc on every coordinate neighborhood
£/, for some matrix function φ% defined on ϋ. Then the r tensors W% on ϋ,
defined by Wϊ = ψζWB, are covariant constant on U. Therefore W%(z) = DΛ

on π~\U) Π 5[Zo] for any ZQ, where D^ is some set of constants. Thus we
see that

on TΓ-^C/) Π B[zo]9 where ^J(z) = ^2(ίcz). Since ψi(z) is constant on
π~ι(x) Π 5[z0] for each x in I/, this last equation shows that 0f (z) must also
be constant on π~\x) Π B[ZQ] for each xεU. Since this is true for every U,
the theorem is proved.

Corollary 3.2. // W is a recurrent tensor with recurrence covector V9 and
W(z) = p(z)C on B[Zo], then Vm is locally a gradient if and only if p(z) is
constant on π'\x) Π B[ZQ] for each xeM.

Proof. Let r = 1 in the theorem. Then we have that

Vk = -φ-χdkφ = -dk In φ on ϋ

if and only if p(z) is constant on π"\x) Π B[ZQ] for each x e t/.
In the special case of tensors of type (1,1), we have the following sufficient

condition that the recurrence covector is locally a gradient. Its proof uses some
of the technique used above.

Theorem 3.3. // W is a recurrent tensor of type (1,1) on M such that
trW Φθ on M, then the recurrence covector is locally a gradient.

Proof. Let U be any coordinate neighborhood. By Theorem 2.4, for each
xs I/, there is a frame Z(JC) such that W(z(x)) = p(x)C, where p(x) ^ O o n l / .
Since local cross-sections of B[zo] exist, we see that p(x) can be assumed to

be C~. Let W* be a tensor on U defined by W*(x) = -L-W{x). Now, we
p(x)

see that

W*(z(x)) = -i-Jp(z(jc)) = -j-p(x)C = C .
p(x) p(x)

Therefore, by Theorem 2.4 and Corollary 2.7, there is a connection on C/
respect to which W* is covariant constant on U. Let the components of this
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connection be Γ'fk = Γ% + K)k, where Γ% are the components of the original
connection. Therefore, we have

o = Fkw*j = rkw*j + κimw*mj - KfjW**

= a4v + -7T
p{x) p(x)

so contracting we obtain that 0 = (3*-ί- + -λ-Vk)Wi Or Vk =
p(x) p(x)

—p(x)dk = — dk In on V, since W{ is assumed to be non-zero.
p{x) p(x)

4. Applications

A large part of a recent paper by Wong [8] was devoted to the question of
whether the connection on M can be changed so that a tensor that is recurrent
with respect to the original connection is covariant constant with respect to the
new connection. We will use the following lemma, which appears as Theorem
1.3 in Wong [8], to study this situation in the case of perfect tensors. This
lemma is the homogeneous case of Theorem 2.8.

Lemma 4.1. Let WA (A = 1, , r) be r given tensors on M. There exists
a connection on M9 with respect to which each of the WΔ is covariant constant,
if and only if we can assign a frame z(x) to each xeMsuch thatWA(z(x)) are
not all zero, and are independent of x for each A.

Theorem 4.2. Let {WA \ A = 1, , r} be a perfect set of tensors on M
(with respect to a given connection). Then for every coordinate neighborhood
U, there exists a connection on U and r linearly independent tensors W'Λ on
U such that each of the W'A is covariant constant with respect to this new
connection and sp {WA(x)} = sp {WA(x)} for each x in U.

Proof. Let U be any coordinate neighborhood. By Theorem 2.8 for each
x e U there is a frame z(x) such that WA(z(x)) = φ\(x)CB, where φ\(z) is C00

on U and det φ^(x) ψ 0 on U. Define r tensors W'A on U by

W'A(x) = φ-w

A{x)WB(x) ,

where φ^ix) is the inverse of φA(x). Since the WA are linearly independent,
so are the W'A and clearly sp {WA(x)} = sp {WA(x)} at each x e U. Now

W'A{z(x)) = φ-w

A{z{x))WB(z(x)) = φ-^WφKxyCc = C

Thus, by Lemma 4.1, the proof is finished.
In the special case of tensors of type (1,0), we can go a bit further. We will

give two proofs of the following theorem. In the first proof, we will only use
the fact that a certain set of vector fields is perfect in order to insure that they
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are linearly independent at all points of M. Hence, it will apply to any set of
linearly independent vectors on M.

Theorem 4.3. Let {WA | A = 1, , r) be a perfect set of tensors of type
(1,0) on M. Then there exists a connection on M such that each of the
vectors WA is covariant constant with respect to this connection.

Proof 1. Since the WA's are linearly independent at each xeM, we can
extend [WA(xj) to a basis {Wi(x)} for Mx at each x € M. Then {Wi(x)} is a
frame at x, so let {W"(*)} be its dual coframe. With respect to this set of
frames, we have

WA(z(x)) = WA(x)Wl(x) = δA .

Therefore, by Lemma 4.1, there is a connection on M, with respect to which
each of the vectors WA is covariant constant.

Proof 2. Let U be any coordinate neighborhood and let VmWA = F^mW%
on U. Extend the WA to a basis W\ of the tangent space Mx at each point of
17, and let W\ denote the corresponding dual bases. This process can be done
so that the Wϊ are C°° on U. Define a tensor Kij on U by

The Wi and W\ can be picked so that K^ are the components of a C* tensor
on M. Let a new connection M be given whose components on U are

where the Πj are the components of the original connection. Then

F'kWA = F , ϊ n + JKL»Tf = F*AkW% - WtfϊJVgWΐ = 0 .

Thus, the proof is finished.
It is well known (see Wong [7]) that the Lie algebra of the holonomy

group at any point Zo of B is spanned by the elements Ri(aβ)(z), 1 < α, β < n,
as z runs through J5[ZQ]. We close this section with the following application
of Theorem 2.4 to the holonomy group on B.

Theorem 4.4. Let R be the curvature tensor of the given connection on
M and suppose R can be globally decomposed as R=WA®MΛ (A —
1 j * J r)> where the WAs form a perfect set of tensors of type (1, 1) on M,
and the tensors MΛ of type (0,2) are linearly independent on M. Then the
dimension of the holonomy group is constant on B and is less than or equal
to n(n - l)/2.

Proof. Since the Af^'s are linearly independent tensors that are skew-
symmetric at each point of M, we see that r < n(n — l)/2. Now, we have
WA"β(z) = φ^iΦCβ'β on any B[z0], where φ\(z) is a non-singular matrix function
defined on B\z^. Therefore, Rliaβ)(z) = CB

λ

vφ^(z)AΪfaβ)(z) on B[z0] and thus,
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the holonomy algebra at z0 is spanned by linear combinations of the r matrices
CA. Since the MiB(zd a * e linearly independent, the r x n2 matrix (M^(z0)),
where A represents the row and the pair aβ represents the column, has rank
r. Hence, this matrix has r linearly independent columns say A/j(z0) (A =
1, , r). Now det (φi(zo)M^(zo)) = det 0f(zo) det Λ/£(z0) Φ 0. Therefore,
the r linearly independent matrices CBlφA(zo)Iifj(zo) are all in the holonomy
algebra at z0. Hence, the dimension of the holonomy group at any z in B is r.

5. A generalization

As mentioned before, if a perfect set of r tensors consists of tensors of type
(1,0), then the linear span of these tensors at each point of M produces a
parallel field of r-planes on M. However, if we are given a parallel field of
r-planes on M, in general we cannot find r vectors on Λί that span the parallel
field. This is so, since /--distributions do not always exist for arbitrary r. We
would like to use our results to prove the following well-known theorem on
r-planes:

Theorem 5.1. // M admits a C°° field of planes, then M admits a connec-
tion with respect to which this field of planes is parallel.

This theorem is in the paper by Willmore [6]. If we can find r vectors global-
ly defined on M that span the field of planes, then applying the method of
proof 1 of Theorem 4.3 and using Theorem 2.8, the proof of Theorem 5.1 is
immediate. However, to prove the general case we need the following generali-
zation of Theorem 2.8.

Theorem 5.2. Let there be given r tensors WA {A = 1, . ,r) on each
coordinate neighborhood U such that on Uf)U* we have W% = φAWB, WB =
ΦAWB, where the WA and W% are the tensors defined on the neighborhoods
U and U* respectively. Also, suppose there is at least one point of M such
that the local tensors WA defined at this point are linearly independent. Then,
there exists a connection on M such that on each coordinate neighborhood
U, V^WA = F^kWB for some set of local covariant vectors F^k if and only if
for each coordinate neighborhood U there is a set of linearly independent
constants CA(U) such that for each xeU there is a frame z(x) at x so that
WA(z(x)) = φ*A(x, U)CB(ϋ), where det φB

A(x, U)Φθ, and such that ifxeUΓiU*
and WA(z(x)) = φl(x, ϋ)CB(U), then also W$(z(x)) = φ\\x, U*)CB(U*) (i.e.
the same frame is used for the W% as for the WA).

Proof. Suppose that the WAs are linearly independent at one point of
U. Then, if there exists a connection on M such that VkWA = F*fcWB on U,
the W/s form a perfect set of tensors on U and hence, by Corollary 2.3,
they are linearly independent at every point of U. If ϋ Π U* is non-empty,
we see that ψ*φξ = δc

A, where W* = φ*WB and WA = (faW* on U Π U*9 so
that the W% are linearly independent on U Π U* and, by the above reasoning,
hence on all of Ό*. Since M is connected, we see that the local tensors
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defined for each coordinate neighborhood are linearly independent in these
neighborhoods. Theorem 2.8 then proves the "only if" part of the theorem,
noting that we pick only one frame in π~\x) Π B[zQ] for each x in U Π t/*.

We now prove the "if part". Take any coordinate neighborhood I/. Define
HΌ by Hu = {g € G i g'lCA(U) = ηi(g)CB(U) for some ?*(£) with det ηB(g) ψ 0},
w h e r e W A(z(x)) = #J(jt, U)CB(U) for s o m e f rame z ( * ) at x. li xeU Γ\ U*9

w e h a v e W${z(x)) = # ( * , £/*)C*(£/*) and

W*(z(x)) = ^(z(*))#VΦ0) = «(z(x))^fe V)CC(V) .

Therefore, ^ ( t / * ) = φ-^x, U*)φB(z(x))φc

B(x9 V)CC(U), and since det (φ-*»

(x,U*)φl(z(x))φ%(x9 U)) Φ 0 it is easy to see that Hv = HUi(i. We will denote
this Lie subgroup of G by H.

Define Bff(U) to be the set of all frames z in U for which ^ ( z ) =
ff (z)CB( ί/) for some non-singular matrix ff(z). It is now easy to show that
Hxeϋn £/*,then

BB(U) Π π~\x) = BH(£7*) n π'\x) .

Let 5jy denote the union of all the BH(U). In the same fashion as in the proof
of Theorem 2.8, it can now be show that BH(M, H) is a principal fiber bundle.
Therefore, if we put a connection on BH(M9 H), it can be extended to a con-
nection on B(M,G) in such a fashion that BH[z0] = B[z0]. Thus,
#fo] ίΊ π"x(t0 £ ^ ( t f ) for each £/, and since the WA's satisfy the hypothesis
of Theorem 2.4 on BH(ϋ)9 and therefore on B[z^ n ^ ( t O , we have the
PP/s form a perfect set of tensors on U. This finishes the proof of the
theorem.

To prove Theorem 5.1, we note that on each coordinate neighborhood I/,
we can find a set of vectors WΛ which are a basis for the local field of r-planes
and the global field of r-planes is a parallel field if and only if FkWA = FB

AkWB

(see Walker [5]). Now, since the WA's are linearly independent, they can be
extended to a basis Wl(x) for Mx at each x € U. Denote the dual basis of
Wi(x) by W&x). Then, we see that

WA{z{x)) = WA{x)Wt(x) = δA = δB

Aδ% ,

where Z(JC) = (JC, W*m(x)). If x e U Π U* and W*\x) = φϊ(x)WB(x), then

WA(z(x)) = φB

A(

Thus, it is easy to see that the hypotheses of Theorem 5.2 are satisfied and
there exists a connection on M, with respect to which the field of planes is a
parallel field of planes.

It should be noted that a generalization of Theorem 5.1 to a complete sys-
tem of fields of planes can be proved directly from a special case of Theorem
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2.8. This is accomplished by using the projection tensors associated with the
complete system (see Wong [8]). The generalization of Theorem 2.8 to Theo-
rem 5.2 in order to prove Theorem 5.1 was used here because the proof then
dealt directly with the local bases of the field of planes.
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