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ESTIMATE OF THE CONFORMAL SCALAR
CURVATURE EQUATION VIA THE METHOD
OF MOVING PLANES. II

CHIUN-CHUAN CHEN & CHANG-SHOU LIN

1. Introduction

In this paper, we consider a sequence of positive C? solutions u; of
(1.1) Au;+ Ki(2)u?* =0 in By,

where K;(z) is a sequence of C! positive functions defined in By, the
n
ball with center at 0 and radius 2, A = }_ ;—; denotes the Laplacian
=19
of R” with n > 3, and 1 < p; T % Throughout this paper, we always
assume that K; is bounded between two fized positive constants. One
of the motivations in studying equation (1.1) arises from the problem
of finding a metric conformal to the standard metric of R” such that
K(z) is the scalar curvature of the new metric. Recently, there have
been many works devoted to this problem. For details please see [2],
[3], [6], [11], [15], [16], [23], - - -, and the references therein. It has been
shown that for a sequence of solution w; of (1.1), the blow-up does not
occur at a noncritical point of {K;}. We refer [15] and [8] for a proof of
this statement. Hence in this article, we will assume that 0 is the only
critical point of { K}, that is, K; satisfies the following:

(1.2)  For any ¢ > 0, there exists ¢(¢) > 0 such that
cle) <|VEKi(z)| <y

for |x| > €, where ¢y is a positive constant independent of ¢ and e.
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Assume that the order of the flatness of K; at 0 is no less than n — 2.
The authors in [8] have proved that there exists a constant ¢ > 0 such
that the inequality

(1.3) wi(z +x;) < e M7Ha| 72

holds for |z| < 1, where M; = maxu; = u;(x;) — oo for some z; € By.
1

Inequality (1.3) was also derived in [15] and [24] where a global solution
of (1.1) on S™ was considered. In the same paper, we also showed by
examples that, in order to have (1.3) hold, the assumption on the order
of flatness of K at its critical points is optimal. In this paper, we want
to consider the situation when the flatness of K; at its critical points
is less than or equal to n — 2. To state our result, we assume that
K; € C*(Bz) and satisfies the following conditions:

K;(x) = K;(0) + Q;(z) + R;(z) in a neighborhood of
0, where Q;(z) is a C'! homogeneous function of order
o satisfying

cilz|* T < |[VQi(x)] < eof]* !

for some «; > 1, and R;(z) satisfies
1
> VERi(w)] |27 =0
(14) s=0
as |z| — 0 uniformly in ¢. Furthermore, we assume

that K;(2) converges uniformly to K(z) as i — 400,

'hgl a; = o> 1 and @Q;(z) converges to Q(z) in
11—+ 00

C1(S™ 1) as i — 400, where Q(x) is a C' homoge-
neous function of order «. For simplicity, we assume
K(0) = n(n — 2) throughout this paper.

Let Uy be the positive smooth solution of

(1.5) {AUo@) +n(n— 208D =0 i RY

Up(0) = maxgn Up(z) =1 .

By a theorem of Caffarelli-Gidas-Spruck (see Corollary 8.2 and Theorem
8.1 in [5]), Uop(y) is radially symmetric with respect to 0. Hence, (1.5)

leads to Up(y) = (1 + |y|2)_(n_2)/2. In addition to (1.4), we also assume



ESTIMATE OF THE CONFORMAL SCALAR CURVATURE EQUATION 117

that @) satisfies

(1.6) fR"VQ5+y)Un2()dy 40 forall € €R".
fRn €+yU"2()dy

Our first result is

Theorem 1.1. Suppose u; is a sequence of positive C? solution
of (1.1) with p; < 2 and lim p; = 22 Assume (1.2), (1.4)

i—+00 n—2
and (1.6) are satisfied with 1 < a < n — 2. If we further assume

that for any solution & of fRn VQ(z + &)U, y2n/ (= 2)( )dy = 0, we have
JenQE+2)U, 2n/(n 2)( ydz > 0. Then u; is uniformly bounded in B .

Throughout this paper, B(z,r) always denotes the open ball with
center z and radius r. When @ = 0, we simply use B, for B(z,r). Sup-
pose u; is a sequence of solutions of (1.1) with max u; — +o00 as i — 4o0.

B
Let S = {z||z| < 1, and there exists ; — = such that Tim ;_ . u;(z;)
= 400} be the blow-up set of {u;}. Assume (1.2) holds. Then, as men-
tioned above, we have S = {0}. The blow-up point 0 is called isolated,

if there exists a positive constant ¢ such that
2
wi(z) <cle—axy P T

for |z| < 1, where u;(z;) = maxu;. The concept of an isolated blow-up

1
point was first introduced by R. Schoen.

Theorem 1.2. Assume that (1.2) and (1.4) are satisfied with 1 <
a;, o <n—2. Let u; be a sequence of solutions of (1.1) with p; < %,
h_lrfl pi = % and maxu; — 4oc. Then 0 is an isolated blow-up
Z—> o0 B1

point.

In fact, we are going to prove

(1.7) ui(@)]e T < e

a stronger result than Theorem 1.2. In particular, we have

p;—1

(1.8) |l <eM; 7,
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p;—1

where u;(2;) = maxu; = M;. Let £ = lim MZ»T$Z' and 7; = % - ;.
Fl 1—+400
In Section 3, we will prove that £ satisfies
2n_
(1.9) [ VQE+ UG (y)dy =0,
and 7; satisfies
_(pi—1l)ey
(1.10) n<cM,
which, in turns, implies
(1.11) lim M =1.

i—+00

The inequality (1.8) is important when we come to calculate integrals
2n

n—2

involving the term u;”". When a > n — 2, we can show that 0 is a
simple blow-up point. For a proof of this statement, we refer the reader
to [8], [15] and [24].

Rewrite the equation (1.1) into Au; + ¢;(2)u; = 0, where ¢;(2) =
Ki(z)u? " (2) < ¢|z|72 by (1.7). Then, the Harnack inequality can be
applied to u;, i.e., there exists a constant ¢ > 0 such that

(1.12) maxu; < ¢ min u; .
||=r ||=r

With the help of the Pohozaev identity, we have

Theorem 1.3. Suppose that (1.2), (1.4) and (1.6) are satisfied
with ”2;2 <a; <n—2, and u; is a sequence of C? positive solutions of
(1.1) with p; = 2£2. Suppose M; = maxu; — +oo as i — +oco. Let

n—2"
B
m; = min u;. Then there exists a constant ¢ > 0 such that the followings
B
hold:
(1.13) wi(z+a;) < e M7 zPT" for |z] < Mi_ﬁi,

where w;(x;) = M; and 3; = nQTQ (1 - naT’z) > 0.

2a; 2a;

1- 1. _s
(1.14) M T <wia) < eM; "7 for x| > §MZ b

— K3
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In particular,

lim m; =0 ifa> 22
(1.15) istoo / 2
cl<m;<e ifoei:”Q;Q.

And for the energy, we have

2n z
. - =] = (52"
i K5 )2 = ()
. > n—2’
(1.16) 2n_ o 25 7
: ”. n—2 = o
zlgl-noo fBr I(Z(x)uz ($) dx (n(n—?j) (1 + 0(1))
Zfod — 7152’

where S, is the best Sobolev constant and o(1) — 0 as r — 0.
For o < %, we have

Theorem 1.4. Suppose the assumption of Theorem 1.3 holds except
that « satisfies 1 < a < ”2;2 Let u; be a sequence of solutions of (1.1)

with p; = % and maxu; — +oo as 1 — 4+00. Then
B
2n_
lim w7 (2) de = 400 .
i—+00 B;

Furthermore, there exists a subsequence of u; (still denoted by ;) such
that u; converges to a singular solution w of (1.1) with a nonremovable

4
singularity at 0. The conformal metric ds* = un=2|dx|? is complete in
B\ {0} and has unbounded curvature near 0. If we assume 0 is the
only zero of

(1.17) [ Ve i =

Then u(z) =u(|z|) (14 o(1)) as x — 0, where w(r) denotes the integral
average of u over the sphere |z| = r.

Let u be the singular solution in Theorem 1.4 and

B n—2 du |z 9 Ju
P(r,u)_/m:r( u(e) 5t~ SVl —|—|x|‘$

2

2 2
n—2
2n

(1.18)

+ K(x)|x|u%(x)) do .
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By the Pohozaev identity, we have for r > s,
2n

(1.19) P(r;u)—P(s;u):/<| o V) e ) de

Since u(z) < c|av|_nT_2 by Theorem 1.2, (z -VK(QC))U% e LY(By).
Thus, lin% P(r;u) = D is always well-defined. Since u is a limit of a
r—r

sequence of smooth solutions of (1.1), we can prove
(1.20) D=0.

This is a new phenomenon different from the case with a constant K.
When K(z) =1 and u is a singular solution of

Au—l—uﬁ%zo in By \ {0},

the famous theorem of Caffarelli-Gidas-Spruck says that if 0 is a nonre-
movable singularity, then there exists an entire singular solution ug(z) =

ug(|x]) of

Auofe) + 05 =0 in R\ {0)
(1.21) ﬁz: zo(x)ui —|—o_o "’ |
|z|—0
satisfying
(1.2 ulw) = uo(lel) (14 o(1)) -

Since the Pohozaev constant D < 0 for any solution ug of (1.21), as a
consequence of (1.20), there exist no entire solutions of (1.21) satisfying
(1.22) for this particular u of Theorem 1.4. However, if o > ”2;2,
then the result of Caffarelli-Gidas-Spruck still holds true. We refer the
interested readers to [9] for related results.

The estimates of Theorem 1.3 and Theorem 1.4 are important when
we want to find an apriori bound for solutions of (1.1) globally defined on

S™. As an application of Theorem 1.3, we proved the following theorem
in [10].

Theorem A. Let K be a positive C' function on S™. Suppose
for each critical point P of K, when using the coordinate in R™ of the
stereographic projection from S™ with P as the South pole, K satisfies
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(1.4) and (1.6) with 252 < a < n — 2. Then there exists a constant
¢ > 0 such that
u(z) <ec

for all x € 5™ and for all positive solutions of

4(n —1)

5 Aou+n(n — 1)u+ K(ac)u%l-_g =0,
n j—

(1.23)

where Ag is the Beltrami-Laplacian operator of the standard S™.
A special case of Theorem A is

Corollary 1.5. Suppose K is a positive Morse function in S™ with
AK(P) # 0 for any critical point P of K. There exists a constant ¢ > 0
such that for any solution u of (1.23), we have

(1.24) {u(x) <c forn =25,

Son IVul* + [5n uisz <c¢ forn=6.

At the first sight, we might apply the degree theory developed by
Chang-Yang [11] and Li [15] to find a solution of (1.23). However, a
study of radial solutions suggests that the Leray-Schauder degree might
be zero in the situation of Theorem A. In a forthcoming paper, we will
compute the degree for all solutions of equation (1.23). An immediate
consequence of Theorem 1.4 is

Corollary 1.6. Suppose K is a Morse function in S™ and satisfies
AK(P) # 0 for any critical point P of K. Let u; be a sequence of
solutions of (1.23) with r%ax u; — +00 as 1 — +oo. Then

2n

im K(z)u!™ (z) de = 400
1—>+00 Jgn

ifn>1.

The possibility of blowing-up with infinite energy was first men-
tioned in [21]. It should be an interesting queation whether we can find
a blowing-up sequence of solutions in the situation of Corollary 1.6. For
the existence of solutions of (1.23) for n > 7, we refer [11], [1] and [24].

As in [8], there are two main ingradients in our approach. One
is the blowing-up anaysis, introduced first by Schoen. Another one is
the well-known "method of moving planes”, which was first invented
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by A. D. Alexandrov and has been further developed by Serrin, Gidas-
Ni-Nirenberg and Caffarelli-Gidas-Spruck. In this paper, the method
of moving planes is used to show that how large of the domain where
rescaled solutions can be compared to Uy(y) of (1.5). This is the major
step in our approach. See Lemma 3.1 in Section 3.

This paper is organized as follows. In Section 2, we will collect some
preliminary results for later uses. Most of them are well-known. How-
ever, we will present their proofs here to make the paper self-contained.
In Section 3, Theorem 1.1 is proved. Theorem 1.2 will be proved in
Section 4. In the final section, both Theorem 1.3 and Theorem 1.4 are
proved. In forthcoming papers, we will present some applications of our
estimates to equation of (1.1) on S™.

2. Preliminary results

In this section, we will collect several lemmas which are useful later.
First, we formulate a modified version of the well-known methods of
moving planes. Let € be a smooth open domain in R™ such that the
complement set Q° of Q is compact. Let u € C?(Q)NC(Q) be a positive
solution of

Au+ f(z,u) =0 in Q,

where f(z,u) is a nonnegative function, Hélder in =, C! in w > 0 and
is defined on Q x [0,00). For A < 0, we denote T) = {z € R"|z; = A},
Yy ={r € Rz > A} and 2* = (2\ — 2y, @9, -+, 2,) as the reflection
point of # with respect to 7). Let

A =sup{A|A<0 and Q°CX\},
(2.1) Yi=3,nQ for A< A, and
wy(z) = u(z) — ur(z) = u(z) — u(z?) for z € ¥} .

For any continuous function by (z), we have
(2.2) Awy () +ba(@)wr () = Q(a, ba(2)) in B
where
(23)  Q(z,0a(2) = f(e*, 0 (@) = flz,u(2)) + ba(z)ws () .

Suppose that hy(2) and by (z) are two families of continuous nonnegative
functions defined for z € Q and A\; < A < A\g with two constants Ay and
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A1 < A" such that the following conditions are satisfied.
(2.4) 0 <by(z) < C(a)|x|™? forx e,

where C'(z) is independent of A and tends to zero as |z| — 4o0.
The function k() is C1(Z}) and satisfies

{AhA(ac) > Q(a,by(x))  in X,

(2.5) .
hy(z) >0 in X/

in the distributional sense for A € [Ay, A].
(2.6) hy(z) =0on T\ and hy(z) = O(|z|™™) as |2| — +oo for some
constant 71 > 0.

(2.7) ha(z) < wa(z) for z € 09, A\ < X < Ag and,
' by (z) < wy, (x)  forz e X .

(2.8) Both hy(z) and V;h)(z) are continuous with respect to both
variables & and A on i&.

Lemma 2.1. Let u be a solution of (2.1) satisfying u(z) = O(|z|7™)
at oo for some T, > 0. Suppose there are two families of continuous
nonnegative functions by(x) and hy(x) satisfying (2.4) ~ (2.8) for Ay <
A < Ag with Ao < X*. Then wy(x) > 0 for x € ¥\ and X € [Ag, Aq].

Proof. Lemma 2.1 is a special case of Lemma 2.1 in [8]. For the
reader’s convenience, we reproduce the proof here.

Step 1. There exists Ry > 0, independent of A, such that if (w) —
hy)(x) is negative somewhere in ¥\, and 2o € ¥} is a minimum point
of wy — hy, then |z¢| < Rp.

By (2.2) and (2.5), we have

(2.9) A(w/\—h/\)—l—b/\(w/\—h/\) < —byhy <0

in ¥\. Let 0 < ¢ < min(m,72,n —2) and g(z) = |2[77. Set ¢(x) =

%. Then ¢ satisfies

(2.10) Ad+ z%-vw (bA(ac) + %) 6<0.

By (2.4), we note that
Ag

o) =(C(x)—0cn-2-0))]z]7*<0

b/\(w) +

123
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for large |z|. Hence, there is a large Ry with Q° C Bp, such that

Ag(z)
g

(2.11) ba(z) + <0

for |z| > Ro. Now suppose wy — hy(xo) = inf(wy — hy) < 0 for some
DN

zo € X\, Then we want to show |zo| < Ro.

Since | |lim é(z) = 0 and ¢(x) > 0 on 9%, there exists Ty such
x|—+oo

that ¢ has its minimum at Zp. By applying the maximum principle at

To, (2.10) implies

Ag(To)
g

By (2.11), we have |To| < Rg. Since

wx(zo) = ha(wo) _ (wr = 7)) (To)

b (To) + > 0.

0T S @ ™
_ wa(@o) = ha(wo)
< @xg) = 9(70)

we have |zg| < |To| < Rp. Hence Step 1 is proved.

From (2.7) and (2.9), it follows that wy, — hy, is a nonegative su-
perharmonic function in E/Al and is strictly positive on 092. Hence, by
the maximum principle, wy, — hy, > 0 in E/Al' Let

;\:sup{/\ > Xo|(wy, — hy)(z) > 0in EL forall Ay <p < /\} )

It suffices to prove
Step 2. A = \o.
We prove Step 2 by contradiction. Suppose A < Ag. Then there ex-
ists A, J A with \,, < g, and g}f (wx, —hy,) = (wy, —hy, ) (2,) < 0 for
An

some z, € E/Anv because wy, — hy, > 0 on 0X) and

lim (wy, — hy,)(z) = 0. By Step 1, we have |z,| < Rg. Without

|z|—co

. . =/
loss of generality, we may assume lim 2, = 29 € X5. Thus,
n——+oo

(2.12) V(ws — hy)(zo) = 0 and (w5 — hy)(29) < 0.
Since (w5 — hs)(x) > 0 for & € X%, we have

Aws = h3) < =by(ws — h3) <0
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in E’}. From the first part of (2.7) and the maximum principle, it follows
that

wy — hy(x) >0 forz e X .

Therefore, we have ¢ € T5. However, the first part of (2.12) yields a
contradiction to Hopf’s boundary point Lemma. Hence, the proof of
Lemma 2.1 is finished. q.e.d.

To apply Lemma 2.1 in the proofs of our theorems, we need the
following lemma about the Green function G*(x,7) of —A on X, with
the Dirichlet boundary condition. The Green function has the form of

(2.13) GA(x,n):cn( Lo )

R e VR

for 2,1 € 3\, where ¢, is a positive constant depending on n only.

Lemma 2.2. There exists positive constants ¢y and co, depending
on n only, such that the following statements hold:

(i)

_ Al
2> for e < B
GMz,0) > ¢ _ 2

(i)

G*w, ) < czmin (|x — P (v = A)|e — )t (21 T /\)(77|1 - /\))
r—n"

The proof of Lemma 2.2 is elementary. Please see, for example, [8]
for a proof.

Lemma 2.3. Suppose that u is a positive smooth solution of
Au+ K(z)u? =0 in B, ,

where 0 < a < K(2) <bin B, and 1 < p < % Then there exists
a small positive number €y, depending on a,b and n only such that if

||| 70 < €0 with p* = @,

u(z) < culy)

then the Harnack inequality

holds for |z|,|y| < 22, where ¢ is a positive constant depending on a,b
and n.
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2

Proof. Let v(y) = r§ u(roy) for |y| < 1. Then v satisfies
Av+ K(y)oP =0 in|y| < 1,

where K(y) = K(roy). By the assumption, we have
/ v’ (y) dy:/ u? dy < € .
B B’I‘O

Then we can apply the standard iteration technique due to Moser, as
shown in [14] (see Lemma 6 in [14]), to obtain

* n k * n k—1
/ o (7" dy < Ck/ o = dy
lyl<5+5r ly| <L+

k=T

for Kk =1,2,---. Hence, after a finite number of iteration steps, we have
vP € LY(BR,) for some ¢ > % and some Rg > % By elliptic LY theory,

we have max v < ¢ for some constant. Applying Corollary 8.21 in [13]
1

3
shows that there exists a constant ¢; > 0 such that

v(y) < erv(y)
for |y, [y < i. Obviously, Lemma 2.3 follows immediately.  q.e.d.

Lemma 2.4. Suppose ¢(y) satisfies

(2.14) AG(y) + n(n + U (5)6(y) = 0 in R”

with ¢(y) — 0 as |y| — +oo, where Uy(y) is the solution of (1.5). Then
&(y) can be written as

o) = covols) + 3. et )

for constants ¢; € R, j =0,1,---,n, where ¢;(y) = a_lijo for1 <j<n
and Yo(y) = 252Us(y) + y - VU (y).

Proof. Let ®;(w) denote a spherical harmonic of degree k on S"~1
and ¢p(r) = f|w|:1 o(rw)®i(w) ds. We want to prove ¢x(r) = 0 for

k > 2. Then the conclusion of Lemma 2.4 follows immediately.
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It is obvious to see that ¢; satisfies

4
o+ 222+ (aln+ U (r) — 22 ) 6, <0,
¢1(0) = 0 and ¢, (0) =0

Let ¢ (r) = —=U’(r). Differentiating (1.5) with respect to r, we have

(2.15)

900+ 22000+ (il + 2007 () - 52 v =0,
P(r)>0forr>0.

(2.16)

Since 1 (r) > 0 for r > 0, by the Sturm-Liouville comparison Theorem,
¢ (r) does not change its sign for all » > 0 unless ¢ (r) = 0. We may
assume ¢ (r) > 0 for all » > 0. For any R > 0, we have

R (9 (R) ¢ (R) — on'(R))

R
(2.17) :/0 (b (r)Agy — ¢ Av(r))r" " dr
= [k(n+k—2) - (n—1)] /R ¢k(r:2¢(r)rn_1 i >0

Since ¢'(R) = O(R™") at oo and ¢;(00) = 0, there exists R; — 400 as
i — 400 such that ¢} (R;) <0 and

which yields a contradiction to (2.17). Hence Lemma 2.4 is proved.
q.e.d.

3. Applications of the method of moving planes

In this section, we are mainly concerned with the proof of Theorem
1.1. The proof will be divided into several lemmas. The first one —
Lemma 3.1 — is very important in our approach, and will be very useful
later. To state it, we consider a sequence solution u; of (1.1) and let
z; be a local mazimum point of u; in B, with M; = u;(z;) — +oo as
i — +o0o0. We assume K; satisfies (1.2), (1.4) with a; < n — 2. Let

_Bil
(3.1) vi(y) = M, (962 +M, * y) .
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p;—1

Obviously, v;(y) is defined in |y| < M, ? . In Lemma 3.1, v; is
always assumed to satisfy

(3.2) v;(y) is uniformly bounded in any bounded set of R™

Suppose v; satisfies (3.2). Without loss of generality, we may assume
v;(y) uniformly converges to Up(y) in any compact set of R™. Since v;
satisfies

p;—1
2

(3.3) Av;(y) + Igz(y)vf’(y) =0 in |yl <M, ,

p;—1

where K;(y) = K; (wZ + M, ? y), Uy must satisfy

nt2 .
(3.4) AUp+n(n—2)Ug™2 =0 in R”,
Up(0) =1, and 0 is a critical point of Uj.

By a theorem of Caffarelli-Gidas-Spruck, Uy is radially symmetric with
respect to 0, and

(3.5) Uoly) = (1+y?) ™% .

In the followings, we let

1

pi=1 \ »—2 %
(3.6) L; = min (Mﬁ |xi|1—%) , MO

Obviously, lim [L; = 4o0. Since

1—400

T =i (B=U() 7 (pi=1) 1-a;
(o)™ - (1)

1

p;—1

= piml
we have L; = (MZ 2 |$i|1_ai) if M, ? |a;] > 1. From (3.6) and

p;—1

o; < n— 2, we always have M, 2 > L;. Thus, v;(y) is well-defined for
ly| < Li.

Lemma 3.1. Assume v; satisfies (3.2). Then, for any ¢ > 0 there
exist 61 = 81(€) > 0 and a positive integer ig = ig(€) such that for i > iy,
the inequality

min v;(y) < (14 e)r?™"
lyl<r
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holds for all 0 < r < & L;.
Proof. We will prove the lemma by contradiction. Suppose there

exists €¢p > 0 such that |rﬁ1in vi(y) 2 (1+ 260)7‘2»2_71 for some r; < 6L,
y|<rg

where ¢ is a small positive number which will be chosen later. Since
v;(y) uniformly converges to Up(y) in any compact set of R™, we have
r; — 400 as ¢ — +00. Let

0i(y) = vi(y +e1) witheg =(1,0,---,0) .
Thus,
(3:7) Bi(y) 2 (14 eo)r2™
for |y| < r;. Let 7;(y) be the Kelvin transformation of o;, that is,
- —n~ Yy
(3:5) mit) = > ()
|yl
Then 7, satisfies

p;—1

(3.9) AT+ Ki(y)v* =0 for |y|> M, 2,

— ~ _pict

where K;(y) = K;(y)ly|™" = K; |z, + M, * ﬁ;) ly|”™ and 7; =
(n42)—(n—2)p; > 0. Since 0;(y) converges to Uy(y+e), T;(y) converges
to Ug(y) in C? in any compact set of R” U {oo} \ {0}, where Uy(y) =
ly|>=" Uy # + e). By a straightforward computation, we can prove
that Ug(y) is radially symmetric with respect to yo = (—%,07 -+, 0).
Therefore, 7;(y) has a local maximum y; near yo for large i.

Let —% < Ao < =1 where Ay will be chosen to be sufficiently close

-1
to —1. For A < Ao, asin Section 2, let Th = {a |2y = A}, X\ = {a |z, >
A, x| > r;l} and 2% = (2\ — 2y, -+, x,) denote the reflection point of
x with respect to 7). We claim for large 1,
(3.10) Ti(yY) < Tily)

holds for y € ¥4 and A < Ag. Obviously, (3.10) yields a contradiction
to the fact that 7;(y) has a local maximum at y;.

Let wy(y) = T;(y) — T;(y"). (The index i is omitted for the sake of
simplicity.) Then w) satisfies

(3.11) Awy 4+ by (y)wr(y) = Qu(y) in X,



130 CHIUN-CHUAN CHEN & CHANG-SHOU LIN

where bA&) = iﬁz(y) (E’(y)pi - E’(yA)pi) (E(y) - E@A)) , and
Q) = (Kiy") = Ki(y)) [@:(yM)"
By (3.7) and (3.8), for !

ly| = r;" we have
(3.12) 7 (y) > r?_z |rﬁ1in 0; > 14 €.
y|<r:

On the other hand, 7; (y_%) uniformly converges to ﬁo(O_%) =Uy(0) =
1

1 for |y| = r;l, where y~2 and 0~% are the reflection point of y and
0 with respect to the hyperplane T 1 respectively. Hence, there exists

1
)

—i > Ao > —% such that
(3.13) Ti(y') <14 =

for |y| = r;', A < Ao and large i. Together with (3.12), it implies that
when |y| = r;’!, we have

€
(3.14) wly) > L
for A < Ag and large ¢. In the followings, Ag > —% is chosen so that the
inequality

(3.15) wr(y) = 5 = oy "Gy, 0)
holds for |y| = r;l, A < Ag and large i, where ¢g is a constant depending
on ¢g and n only.

Since T; has a harmonic asymptotic expansion at oo, we have

) = (7, + S 7 pte) 0 (i)
Z(y) = (- 2% +0 ()

Iy

(3.16)

where constants ¢, ; and ¢, , converge to some ¢, > 0 and ¢, as i — +o0.
By elementary Calculatlons and Lemma 2.2, there are Constants ¢ and
co > 0 such that

wx(y) =Tily) — Tily)

=M e, A
(3.17) N b ly*| < 2ly]
Iylﬁ if [y > 2|yl

> ¢, G (y, 0)
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for y € ¥y, A < A; < 0 and |y| > R if both |A{| and R are sufficiently
large, but independent of i. (For a proof, see Lemma 2.3 in [5].) Since
T; is superharmonic in ¥4 and T; > 1 on |y| = ri_l, for ri_l <l|ly <R
and y € ¥, we have

Ti(y) > |;|11:fRE >c3>0,

where ¢3 is a constant independent of i. Hence, if [A\y| is sufficiently
large, then

C3
wy(y) > )

for ri_l <ly] < Rand A < Ay < 0. Since w), is superharmonic in 3 for
A < Ay, by (3.15), we have for large ¢

(3.18) wy(y) > cor; "TIG (y,0)

for y € ¥\ and A < Ay,
Let Q‘AI' = max(0,Q)), and set

(3.19) ha(y) = ALT2GMy,0) - : GMy, m)QT (n) dn,

where GA(y, n) is the Green’s function in Section 2, and A is a positive
constant to be chosen later. Obviously, h) satisfies

(3.20) Ahy=QF(y) > Qa(y) in X.

Since gt > |n| for n € ¥y and A < Ag < —i, we have

A
- 77 —T; I 77 —T; =P
Or(y) = (MWM - Rl ) 5 ()
A
~ 7 =~ 0N N —=Ti=Pi (A
< | K; - Ki(+— T () .
( T <|n|2>)' )
Hence,
A
Ti 77 -~ 77 —Pq
) <47 Rl = Rt o7 ()
21
- < 2[Ry - R (1 1) 7
<2 \|\KGp) - K
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From (1.4) it follows that, for |y| > ri_l,

fﬁ(ﬁ) ~ Kz

- _(pi=l)(e 1) I—o _pizl
sﬁ{mw- P ) )}{M = (1t 1yl

pi—l (pi—1)oy

< e {|90i|°”_1]\4¢_T (L+lyl™)+M, = (1+ Iyl_“")} :

p;—1

If M, 2 |a;| > 1, then

pi—1

If M, 2 |2;| <1, then

_pi—1 a;(pi—1)

M7 gt < 2 =Y

K3 K3

In any case,

lyl?

Thus, by (3.21) and (3.22), we have

—(n— —a —(n=2)p;
(3:23) QT <es L7 (1 ful=) (14 oY) .

For 0 < 8 < m, we want to estimate

)—(n—2)pz‘ d .

S = [ Gl (1410’

Case 1: |y| < % .
By Lemma 2.2, we obtain G*(y, 1) < c|y — 5/>~". Hence

)—(n—2)pz‘

Sa) < [y =P~ lal=" (141 dn.

PP\
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Decompose

|y Iyl

}U {lly —nl > == Inl <2Jyl}

Iyl

R" ={n| |y —n| <

U{nlly—nl> =, [n1 > 2ly]} = A1 U Ay U As.

Elementary calculations give

- —(n—2)p; B PN
/ ly = n*~"|n] ﬁ(l—l-IUAI) dy < er|y[> P (1 + [A) (D

Ay

/Am Y2 B (L [ )P dy < ey P (L4 (A
2

For |y| <1,

ly[2=P  if § > 2
[ =P ey < e Sty i =2
Ao 1 it 5 <2

For |y| > 1,

/ = PP+ )2y

As

<o / |2 dy < ey T
As

We also note that, for 1 < |y| < %,

ly[2 P (1 4+ A TP =y Ty PR (L 4 A
< cylylTMHT

In conclusion, we have for |y| < 1,

lyl>=7 it 5> 2,
(3.24) Sply) < es{logry ifB=2,
1 if 8 <2,

and for |y| > 1,

(3.25) Saly) < cqly| ™7 .
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Case 2. |y| > %

As before, let Ay = {n||y —n| < |32/—|} and Ay = {9||y — n| > |12/_|}
For n € Ay, by Lemma 2.2, we have

GMy,m) < ey — Ny — )" .

Thus,

} GMy, )|~ (1 + |nl) =2y

IN

cln— N1+ Iyl)‘(”_Z)p"/ ly —n|' ™" dn

Ay
< ey = Ayl

For i € Ay, we apply G*(y,7) < ¢ (y1 — A)(m — A)|ly — 5|~ Then,

/A Gy )l 51+ o)~

IN

e = N1~ [ a0 ) O g
= ca(yr = Alyl™" .

Combining these two estimates together yields

(3.26) Sp(y) < ealyr = My

By (3.23)~(3.26) and Lemma 2.2, we obtain

(3.27) | G mQIm dn < 6L Gy, 0)

A
for some constant ¢g > 0. Set A = 2¢ in (3.19). By (3.27), we have
(3.28) 0 < cgL?7"GMy, 0) < hi(y) < 2¢6L27 "Gy, 0) .

Recall r; < §L;. Choose d to be sufficiently small such that §—(n=2) >

3% where cg is the constant in (3.18). Then, when i is large,

wx(y) > ha(y)

holds for |y| = ri_l and A < Ag, and holds for y € ¥\ . It is obvious
that hy(y) satisfies the assumption of Lemma 2.1 for Ay < A < Ag and
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large 7. Applying Lemma 2.1 gives (3.10). Thus, the proof of Lemma
3.1 is finished. q.e.d.

Lemma 3.2. Suppose v;(y) satisfies (3.2) and v;(y) < 2 for |y| <
co L;. Then there exist positive constants d and ¢ such that

vi(y) < e Uol(y)

for |y| < 09 L;, where ¢ is a constant depending on n only.

Proof.  Let G;(y,n) be the Green’s function of the Laplacian oper-
ator in the ball B; = {n||n| < L;} with zero boundary value. For any
€ > 0, let §; be the positive number stated in Lemma 3.1. Let § be
sufficiently small (independent of ¢) such that

1—c¢
Gi 7 > "y — 2—n
(y,m) = Un(n_Q)ly |

for |y| = §1L; and || < dL;, where o, denotes the area of the unit
sphere S™~1.

Let |y;| = 61 L; satisfy v;(y;) = |1?r1i5n v;(y). Then, by Lemma 3.1,
y|<éL;

we have

1+ ¢ .
571 2Ln 2 = yZ / G y“ ) (77) d77

(n—2)(1 — 2 .
oy / pom
n(n = 2)(81+8)" 2L Sy,
Let § < &;. Then
(3.29) / v () dn < —(1—|—4e) .
|n|<SL;
Since v; uniformly converges to Up(y) in any compact set of R™ and
Up(y) satisfies
= Tn
/nUo () dy=—,

there exists a large R such that

5o,€

(3.30 | s
R< 0| <8 L n
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holds for large 7. Since v;(y) < 2, we have

* 100,
(3:31) [ Ay
R<|n|<5L

Let ¢ be sufficiently small such that % < ¢g, where ¢g is the small
number in Lemma 2.3. An applying of Lemma 2.3 shows that there
exists a constant ¢ > 0 such that

(3.32) fn|ax vi(y) <e |H}in vi(y)
yl=r yl=r

holds for 2R < r < gLi. By Lemma 3.1, we have
(3.33) vi(y) < eUo(y)

for 2R < |y| < gLi. Obviously, (3.33) holds true for |y| < 2R also.
Hence we have finished the proof of Lemma 3.2. q.e.d.

Let I; = 69L;, where &5 is the positive constant stated in Lemma 3.2.

Lemma 3.3. Suppose v; satisfies the assumptions of Lemma 3.2.
Then there exists a constant ¢ > 0 such that

max |v;(y) — Ui(y)] < cl;(n_z) .
ly|<li

where U; (y) is the C* positive solution of

n+2

AU + Ki(e) UM =0 inR™,
U;(0) = 1_maxU( ) .

Proof. Rewrite equation (3.3) into
Av; +¢;(y)vi(y) =0 for |y| <{;

with ¢;(y) = K:(y)v!" ' (y) < e (14]y])~ = D=2 by Lemma 3.2. Note
that (p; — 1)(n — 2) > 2 for large i. Hence, by applying the gradient
estimates for the linear elliptic equations, we obtain

(3.34) IVoi(y)| < ervi(y)(1+ [y~

for |y| < %’ In particular, we have

(3.35) (Vo (y)| < e 177
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for |y| = %’

By (3.3) and the Pohozaev identity, from (3.35) we conclude

n n— 2 / ~ 41
- Ki(y)v!™ (y) dy
(prl—l 2 ) lyl<i ) )

1 - >
+ / y-VE(y)) o?dy
pitl |y|s%( )

2

_/ n—2'8vi+8vi »
- |y|:l_i 2 Vi or or Y
2
1 ly| ~ +1
— —|Vu*ly| + ==K, (y)o? T do
§cl;”+2 .
Since
‘y : Vf(i(y)‘
_pimt LBl 3

(3.30 e R

<el7UT Ayl
we have

/ Yy VE(y) | ol T y) dy
ly|<+

< el / (1+ [yl>) (1 + [y)) =2 gy

< Cl—(n—2)
Thus
(3.37) =(n+2)—(n—2)p; < cl;(n_z) ,
which implies lim ] = 1.

1—+400
Let A; = mgf |v; — Ui = vi(y;) — Ui(yi) for some |y;| < {;. Suppose

the conclusion of Lemma 3.3 does not hold true, i.e., Ail?_z — 400 as
i — +oo. Let wi(y) = A7! (vi(y) — Uiy)). By (3.3), w; satisfies

(3.38) Aw; + bw; = Qi (y),

137
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where b;(y) = K;(y) (Ufl_g’pl) and

vi—Uy

Qily) =A7" { (Kz’(%) — K;(x; + Mi_%__ly)) U (y)
K (25) (U_i_g - Uf")} .

By Lemma 3.2 and (3.37), we have

(3.39)

(3.40) bily) Sc(+lyh™" for |yl <1
By a straightforward calculations,
Qi) < e A7 {170 (4 fyl) 2o
(3:41) 73 (L4 y) =+ log U]}
S AT+ )T
for [y| < 1;.

Applying the Green representation’s Theorem leads to

wits) = [ Gitwon (bt + @) dn= [ Sty ds.

aB;

where B; = B(0,[;), and G is the Green function of A in B;. Thus, by
(3.40) and (3.41), we obtain

ol <ea{ [ o= a0 a0

(3.42)
e {14 AT

where we note that |w;(7)| < A;ll;(n_z) for |n| = [; by Lemma 3.2.

Since w; is bounded in C? , there exists a subsequence of w; (still
denoted by w;) such that w; converge to w in C?_ by elliptic estimates,
where w satisfies

{Aw + n(n+ 2)U0"+2(y)w(y) =0 inR",
fw(y)] < e(1+ [y) 2

By Lemma 2.4, we get w(y) = Z C]%_l;]o + ¢ (|y|U(’)(|y|) + ”Q;QUO(|y|))
71=1

Since w(0) = gTw(O) = 0, we must have ¢; = 0 for 0 < 7 < n, namely,
J

w(y) = 0. Hence lim |y;| = +oo.
1—+400
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Applying (3.42) at y = y; gives
1= i) < {0+ D24 A7

which obviously yields a contradiction. Thus, Ail?_z must be bounded.
q.e.d.
Let z; € By satisfy w;(2;) = maxu;(x;) = M;. Suppose M; — +occ.

B

1
For this sequence of maximum points z; of u;, the rescaled function

v;(y), defined in (3.1), obviously satisfies (3.2) and v;(y) < 1 for |y| <
p;—1

MZ»T. We have

Lemma 3.4. Let z; satisfy u;(z;) = maxu;(x;) = M;. Then
B
pi—1

M; ? || is bounded.

p;—1

Proof.  Suppose lim M, ? |z;| = +o00. By (3.6), we have L; =
1—400
pi—l
(M, ? |xi|1_ai)ﬁ. By Lemma 3.3, w;(y) = [*7% (vi(y) — Ui(y)) is
uniformly bounded in |y| < /;. Thus, we may assume w;(y) uniformly
converges to w(y). By (3.35), we have

(3.43) |Vw;(y)| < e 171

for |y| = 11;.
Let ¢; = |VK;(z;)| 7'V K;(z;). Without loss of generality, we may
assume lim e; = (1,0,---,0). For any R > 0, from (3.39) it follows
1—+400
that

0ily) =027 5T (VK (2| {(en ) + o1} U7 ()

(341 e
+ l?_QKi(xi) (UZ»"—2 — Ulpl) .

for |y| < R and large i. For |y| > R, by (3.41) we have

(3.45) Qi(y)| < c(1+ |y~

for a constant ¢ independent of 7.
Thus, by (3.44) and (3.45) it is easy to see that

nt2
(3.46) lim Qi(y)1(y) dy = & /R n¢1(y)y1Uo"‘2 (y) dy

i—+oo |y|<l2_i

139
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for some constant ¢; > 0, where

_pi—l
cp= lim [P72M; 2 |VK(z;)| = 6572 lim |o,|' | VK ()]
1—400 1—400

U
and ¥ = Tl

On the other hand, multiplying ; on both sides of (3.38) gives
[ w0 (0 b)) dy
Vs

Jw; 01y
(3.47) ‘|‘/|y|:% (¢1 Ep —wzw) ds

- /| <k Qi(y)¥n(y) dy.

By (3.43), the boundary term of the above tends to 0 as ¢ — +o0. Since
|w;i(y)| < ¢, we can easily prove

lim w;i(y) (AY(y) + bi(y) i (y)) dy

im0 Jly|<

:/nw(y) (A%-I-n(n—l-Q)Uo"%%) dy
-0,

(3.48)

which obviously yields a contradiction to (3.47). Thus, the proof of
Lemma 3.4 is finished. q.e.d.

pi—1

Remark 3.5. Since M, ? |z;| is bounded,

(pi—1)ay (pi—1)ay

CMZ 2(n—2) S LZ S MZ 2(n—2)

for some positive constant c¢. By (3.37), we have

(pi—1)oy
2

(3.49) = 0(1) (m_ax u) i

B

By Lemma 3.4, without loss of generality, we may assume

pi—1
(3.50) €= lim M, ? ;.

i—+00
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Lemma 3.6. Let z; satisfy w;(z;) = max ui(z) — 400 as i — 400
1
and & be the vector in R", given by (3.50). Then & satisfies

(3.51) [ Yaw+ouiT way=o.

Proof. Following the notation of Lemma 3.3 and Lemma 3.4, let
w;(y) = "2 (vi(y) — Ui(y) ), where [; = 8, L;. Then w; satisfies

(3.52) Aw; + bi(y)w; = Qi(y)

where

_pl .
Qily) =177 (fﬂ»(xi) - K; ( + M, Ly)) U (y)
nt2 )
+ I(i(%') (UZ."—2 _ Uipl) ‘

By (3.49) and (1.4), we have

p;—1

K; (962 + Mi_ 2 y) — I(YZ'(O)

pi—1

_Bi—l _pil
(3.53) = Qi (wz +M; * y) + R (962 +M; ° y)

(pi—1)oy

= 0T Qi) + o)1+ 1)

(pi—1)oy

p=1
for |y| <I; with & = M, * «,.

By Lemma 3.3 and Remark 3.5, M, * l?_” is bounded and w;(y)

is uniformly bounded in |y| < %li. Without loss of generality, we may
(pi=1) o

assume ¢ = lim M, °2 l?_” > 0 and w; converges to w uniformly
1—400

in any compact set of R™. Let 1;(y) = 88—[;0 for 1 < j < n. Since
J

[, w0 - Ka)vro)
e nt2

+ Ki(x;) [U{“ (y) = UY "(y)] dy =0,
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by (3.53) we have

=c 'lim/
1—+400 |y|<

e [ @+ nln+ U7 () dy =0

wi (A; + b;(y);) dy + boundary term)

Applying the integration by part gives

nt2

2n /nay] T Wy = [ QU+ DU w)vs) du =0,

Hence, Lemma 3.6 is proved. q.e.d.

Lemma 3.7. Let z; satisfy u;(z;) = maxu;(z). Suppose a <
B

n — 2. Then for any R > 0, there exists a constant ¢ > 0 such that
n—2 _ 3. L .
wi(zi + )|y T < e for ly| < RMT™, where j3; = Pl(] — 2,
Proof. By Lemma 3.1 and Lemma 3.2, there exist 4, and ¢; such
that

(3.54) vi(y) < crlio(y)

holds for |y| < d2L;. Since v;(y) is superharmonic, it is easy to show

(3.55) vi(y) > calo(y)

for some constant ¢ > 0 and |y| < d2L;. Therefore

1_pi=De; 1_pi Yoy

(3.56) coM. 2 <w(rity) <aM,; 2

K3

for |y| = 52Mi_ﬁi and for two constants ¢; and ¢y which is independent
of 7, and also (by 3.54),

2 pi—l pi=1 i1
(3.57) ug (i + y)y|t = v (Mi : y) (Mi ? Iyl) <



ESTIMATE OF THE CONFORMAL SCALAR CURVATURE EQUATION 143

for |y|] < 52Mi_ﬁi.

Now suppose the conclusion of Lemma 3.7 does not hold. Then we
can apply a blow-up argument due to R. Schoen (see [17] or the proof
of Lemma 4.1 in §4) to show that there exists a sequence y; such that
the followings hold:

2 .
Loowi(@; 4+ yi)|yi|»~7 — 400 as 1 — 400

2. wi(z; +y) has a local maximum at y;,

—~ ~_ Pzl
3. The function v;(z) = Mi_lui (wZ +yi+ M, ° z) uniformly con-

verges to Up(z) in C2 _(R™), where M; = u;(z; + y;), and

loc

4. SoM7P <y < 2RMTP

Since v; is superharmonic, by the maximum principle, we have

(3.58) Ui(2) > eglz|*

Pl

for some constant ¢z when 1 < |z| < %MZ 2
Let S; = {y| ly| = %OMZ»_ﬁ’} and 7, € S; satisfy |y; — 7;| = d(y;, S:).

p;—1

Set z; = Z\Z > (¥; — yi). By (3.56) and (3.58), we have

_(pi=lay

T _ 1
eslzP M < wi@i +7;) < el M; 2

Then

(pi—1) (n—2)

=) (n=2) _(pi=1l)oy

Mg oA 1— e /7 i 1/ )
M, 2 <M T |y =Tl < esM, 2,

K3

where |y; — 7| < |yi| +17;] < (R+ 50)Mi_ﬁi. Since 1 — W < 0,
we have

(3.59) M; < esM; |

~ Pzl
which implies v;(2) < ¢s5 for |2| < M, 2 . Following the proof of Lemma
3.4 with z; replaced by x; 4+ y;, we can show the identity
nt2
A Vi) Uy (y) dy =0
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holds, where we assume 'H-Ir{l VK (2;+y) | VK (z:4y;) |71 = (1,0,--+,0).
T—>+00

Obviously, it yields a contradiction. Hence the proof of Lemma 3.7 is

finished. q.e.d.
Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1.  Suppose M; = maxu; = u;(z;) — +00

B
2

as i — +oo. Let r; = Mi_ﬁi and u(y) = v u(z; + riy), where we

K3

2
recall §; = % (1 — naT’z) Then u7(0) = Z\L’f‘f"_1 =M,

t — +00. By Lemma 3.2, we have

&y
2 s oo as

(3.60) ui (y) < cuf(0)7Hy| 7"

for |y| < dp. By Lemma 3.7, 1LZ*(y)|y|nT_2 is uniformly bounded in
any compact set of R”. Applying the Harnack inequality and (3.60),
u;(0)u}(y) is uniformly bounded in any compact set of R™\ {0}. There-

k3

fore, there exists a subsequence u’(0)u(y) (still denoted by wf(0)u;(y))

K3

such that u}(0)u}(y) converges to h(y) in C* topology in any compact

k3

set of R”\ {0}. It is not difficult to see h(y) is harmonic in R™\ {0};

thus,
a

h(y):W+b

with both a and b > 0.
Applying the Pohozaev identity, we have

1 / . 11
r; y - VK (2 +ry)) ul(y)" T dy
e [ e V) i
(3.61) Lo no n—2 / o LY ()P
_P(17u2) pZ_I_l 2 I(Z(xl—l_rly)ul (y) dy
<p(lu)
where
2 * 1
P = [ (SRS - v
om \ 2 ov 2
8u* 2 1 p;+1
- ——Ki(xi+ry)u; " | d

Since u}(0)ul(y) converges to h(y), a simple calculation leads to

(3.62) lim w (0)P(1;uf) = —(n — 2)0,ab < 0

1—400
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where 0, denotes the area of the unit sphere $”~!. On the other hand,
the left hand side of (3.61) tends to

2

lim (O)T‘z’/ (y‘VI(Yi($i—|—riy))u:f(y)pi+l dy
B

i—+00
. 2(a; —1) . _pi-l 1
. = lim n—2 . F . L
(3.63) lim M / y- VK ( + M, * y) P dy
oo [yl <Ly

:/Rn (y-VQE+y) U (y) dy ,

where lim M =1 is utilized.
1—400

Applying Lemma 3.6, (3.62) and (3.63), we have
. 1 .
o< | QE+y)UY T (y) dy = E/ (y+8)-VQu+OUF (y) dy <0,

which yields a contradiction. Therefore, the proof of Theorem 1.1 is
completely finished. q.e.d.

4. Isolated Blowing-UP

Suppose that Theorem 1.2 does not hold, that is,

(4.1) lim sup (ui(x)|x|piT_l) — oo

1—>+00 Fl

Let z; be a local maximum point of u;. Following the notation in pre-
vious sections, we set

_pimt
vi(y) = M, (%—I—Mi ’ y) ;

(y) = vily+er) , and,
W =P ()

(4.2)

U

o

=

where M; = w;(z;) and e; = (1,0,0,---). Similarly, we define

(4.3) Uoly) = ly|*™"Us (ﬁ + 61) :

n—2

It is easy to see that Up(y) = (m) ’

L0,---,0).

-3

and Uo(O) = Uo(—el) =1

where 7, = (

145
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Given €y > 0 with ¢y < 1, there exists A\g = Ag(eg) < 0 and ¢, > 0
such that

(4.4) {—% < Ao(€n) < —i , and

Uo(y") <1+ %

for |y| < ¢, €0 and A < Ag(€), where ¢, depends on n only.
In the followings, dg < % is a fixed positive number, but small enough
such that (4.13), (4.15) and (4.16) below are satisfied.

Lemma 4.1. Given ¢y, Ry where ¢¢ € 1 <€ Ry and Ral < ¢, €0,
there exists a positive constant Cy > 0 such that the following statements
hold true. s

(i) If wi(2)|e|Pi=T > Cy, then there exists a local mazimum point
z; € B(x,dolz|) of u; with u;(x;) > u;(x) such that the rescaled function
v; of (4.2) satisfies (4.5)—(4.7).

(4.5)  The origin 0 is the only local maximum of v; in B(0,4Ry).

(4.

4.6)

(4.7) Ti(y) has a local maximum point Y, near T, such that
Yi1 < %(/\0 - %) < Ao for all i where ¥, | denotes the xi-coordinate
of J; and g is the constant in (4.4).

0i(y) = Uo(y)|c2(B(o,are)) < €0(4Ro)* ™",

.Y e
(i) Let {x;} denote all local maximum points of w; with
J=1

u2($;)|$;|plT_l > Cy such that (4.5), (4.6) and (4.7) hold. Then

2
(4.8) ui(x) <2Co|x| 7=t for all v ¢,
where ; = U; B (x;, 2680 wz ) Furthermore,
. . . _Pizl
(4.9) |2} — a}| > 4Rou; (%) 2

forj #k.

Proof of part(i). We will prove (i) by a blow-up argument, which
was originally due to R. Schoen. Suppose the conclusion of (i) of Lemma
4.1 does not hold true. Then there exists a subsequence of u; (still
denoted by w;) and z; with uz(x2)|$2|nT_2 — +oo such that u; has no
local maximum which is no less than u;(z;) in B(x;,|2;/d0) and satisfies

(4.5), (4.6) and (4.7).
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Let {; = do|x4|, and
(4.10) Si(x) = ui(2)(l; — |z — x2|)m2_—1 .

Let T; satisfy
Set

(4.11)

pi—1
. 2

1— _
ly| < M, (i = [z — i),

Li—lo—a| > L= |Zi—a| = M; ? |y

(4.12) 1
> 5(12 — |TZ — $Z|) .

__pit rit
Since M, ? (l; = |Z; — x]) > w; * (2;)l; = 400 as ¢ — 400, v;(y) is
uniformly bounded in any compact set of R™. Therefore, there exists
a subsequence of v; (still denoted by v;) which converges to Vy(y) in

C? _(R™), where Vy(y) is a positive entire smooth solution of

n+2

AVo(y) +n(n —2)Vy 2 =0 in R".

Applying a theorem of Caffarelli-Gidas-Spruck, Vy(y) is radially sym-
metric about some point yo in R™, and Vp(y) has a nondegenerate max-
imum at yo. Thus, for large ¢, v;(y) has a local maximum at y; near yq.

Going back to u;, we have found a local maximum point z} of u; with
—_pi~!
|af —7;| <eM, * for some constant ¢ > 0, and

ui(27) > wi(T) > uiw).

Y i
Obviously, |z7 — 7| < eM, ° = o(1)(l; — [T; — x;]). It is easy to see
that 27 satisfies all conditions in (i) when 7 is large. Hence we have a
contradiction, and (i) is proved.
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Proof of part (ii). Recall Q; = U;B ($§7250 ) where {x;}ml
71=1

is the set of local maximum points of u; which satisfy the conditions

i
x]

2
in part (i). Suppose that z satisfies u;(2)|z|?=7 > 2Cy. By (i), there
exists a local maximum point z; € B(z, d|z|) with u;(2;) > u;(2) such
that (4.5)—(4.7) are satisfied. Since |z;| > (1 — do)|z|, we have

“i($i)|$i|ﬁ > (1- 50)zn-2_—1ui($)|$|pf—_1
> 2(1 — 80) 7T Cy > Co,
if dp is small such that

(4.13) 21— 6)FT > 1.

Hence z; = wz for some j. Since |x;| > (1 —do)|z| and & < 3, we have

do
1 -4

|2t — 2] < Golz| < || < 200|a] .
Thus « € €;, and (4.8) is proved. The inequality (4.9) is an immediate
consequence of (4.5). q.e.d.

Let {x;};n:’l be the set of local maximum points of u; in Lemma 4.1.
Points wz can be ordered by u;(x}) > w;(wh) > -+ > ui(al,). Assum}e
(4.1). Then there is a subsequence of u; (still denoted by u;) and z*,
such that uz(x;l)|x;l|ﬂ—1 > ¢ and uz(x;)|x;|1’z—1 <itfor1<j<yj;. Itis
obvious that uz(wz) — +00 as ¢ — +oo for § < j;. Hence |x;| — 0 for
J < i

Lemma 4.2. There exists a positive integer tg such that, for 1 > ig,
wi(z) < 2u2(x;) forx € B(x;,250|x;|) with j < j; and for i > 1.

Proof. Suppose the conclusion of Lemma 4.2 does not hold true.
Then we claim that there is a subsequence of u; (still denoted by wu;)
and k; < [; < ji such that (i) [2}.| < 2|2 |, and (i) u;(2) < 2u;(xy,) for
all © € B($2i7250|$§w|)‘

To see this, suppose u;(z) = n%aLx u; > 2u(ac;) for some 7 and 7 < j;

7

and for some x € B; where B; = B(ac;, 2(;0|$§|). Then, by Lemma 4.1,
there exists 2}, € B(z, dg|z|) such that u(2t) > u;(z) > 2u($;) By the
ordering on {x;}, we have k < j < j;. Since

|2kl 2 (1= do)le| > (1 — o) (1 — 280) |5,
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we have

ug () [k FT > 2 (1 = 80) (1 — 260)) 7T (x| 7T

(4.14) (

>

3 NI =
5 u(ay)|ay 7T,

if 8y satisfies

w

(4.15) [(1 = 60)(1 — 260)]7T > =

If w;i(z) < 2u;(zy) for all @ € B(at,200|at]), then we let k; = k and
l; = j. Thus, the claim is proved. If there exists x € B(x},2dg|z}|) such

that u; () > 2u;(z}), then we can repeat the argument above to have
km < kpm_1 < --- < ky < j such that

[, | > (1= 80) (1= 200) [, _,| > [(1 = 80) (1 = 260)]" [,

and by (4.14),

. .2 3 m . L2
i > u(ag, )|, [P > (—) u(af)|wf| P

2
3 m
>1=) Co.
> (3)
Thus, after finite steps, we can find k; € N, such that
ek | > (1= 80) (1 = 280) |}, _, | 4
and, '
ui(z) < 2ui(zy,)

for z € B(x};i,250|x};i|). Let dg satisfy

(4.16) (1= 60)(1 = 260) > % .

Then our claim is proved.

However, by Lemma 4.4 below, we have |$}€l| = 0(1)|3€}'i|7 which
yields a contradiction to the claim above. Hence the proof of Lemma
4.2 is finished.  q.e.d.

To complete the proof of Lemma 4.2, we need the following two
lemmas.

149
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Lemma 4.3. Let k; < j; be a sequence of positive integers, and
suppose that w;(v) < 2u;(y, ) for v € By, 25|y, [). Then
pizl . 1

p;—1

where L; = (M, ? |$2l|1—az)ﬁ and M; = uz(f;ﬂ)

p;—1

~1
Proof. Suppose lim,; ., L; (MZT|$§%|) < +o00. Without loss
of generality, we may assume
(4.17) Li <y M; 2 |z,

for all 7 and some constant ¢; independent of . Since

7
as 1 — +oo, we have lim xﬁg =0 and
i—+00 ¢
pi—1 . 1
lim M; ? |z} | > ¢y lim L;=+4o00.
i—+00 ¢ i—+00

p;—1

Hence, the scaled function v;(y) = M u; (w}% + M, 2 y) uniformly

converges to Up(y) in any compact set of R™ as ¢ — +o00. Therefore, by
Lemma 3.1 we have for any ¢ > 0, there exists 6; = 61(¢) > 0 such that

min v;(y) < (14 €)Up(r)

lyl=r
holds for all 0 < r < é;L;. As in the proof of Lemma 3.2 (See (3.30)),
there exists a d3 > 0 such that

o,

(4.15) [y s 2
n
R<|y|<o2 Ly
for some R = R(€) > 0, which is independent of i. By (4.17) d; may
<

be choosen small such that 6;L; < 260 M, * |$§w| Hence v;(y) < 2 for
1

ly| < d2L;. Recall pf = Z(p; — 1) > p; and p¥ — p; < 1. By (4.18),

* 100,
(4.19) [ w2
n

R<y|<82Li
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If € is choosen small, then, by Lemma 2.3 and the Harnack inequality,
we have

(4.20) vi(y) < e2Up(y)

for all |y| < d2L; and for some constant ¢y independent of i. By (4.20),
Lemma 3.3 holds for v; also. Repeating the proofs of (3.44), (3.46) and
(3.47) in Lemma 3.4, we can obtain

2n_
. D1y Ug 7 (y)dy =10,

which yields a contradiction. Hence Lemma 4.3 is proved. q.e.d.

Lemma 4.4. Let k; <l; < m; be two sequences of positive integers.
Suppose u;(x) < 2u;i(xy,) for v € B(wy, ,2d0l|xy,|). Then, for any e > 0,
there exists a positive integer ig = ig(€) such that

|2, | < elay,]
for v > 1.

Proof. Suppose the claim of Lemma 4.4 does not hold. Without
loss of generality, we may assume

for all ¢ and some ¢ > 0 independent of .
Let ¢ and Rg be the constants in Lemma 4.1. Let v;(y) = Mi_lui(wﬁw—l—

_pi—l

M, "% y) with M; = uz(x}%) First, we note that, by (4.5)—(4.7),

Lemma 3.1 holds for v;(y) also, that is, there exist & = d1(¢p) and
i = ig(€o) such that

(4.22) min v; (y) < (14 2¢0)Uo(r)

ly|=r

i1
for 0 <r < 4;L; and 7 > 1y, where L; = (MZPTM}%P_%

Since L; is not tending to 400 in general as ¢ — +00, the claim of
(4.22) is viewed as a "finite” version of Lemma 3.1. Under conditions of
(4.5)—(4.7), however, the proof of (4.22) can go through as in Lemma
3.1 without too much modification. In the followings, we would like to
sketch its proof briefly.
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Suppose (4.22) does not hold true for a subsequence of v; (still de-
noted by v;), i.e., there exists a sequence of r; such that

min v;(y) > (14 2¢)Up(r;)

ly|=r:

for some r; < §;L;, where §; will be chosen later. By Lemma 4.1, we
have r; > 4Rg. Let ; and T; be defined as in (4.1). Thus, we have

| |min 0i(y) > (14 2€0)Up(rs) > (1+€0)Up(r; — 1), if Ral < ¢, €¢g where
y|l=r;—1

¢, is independent of 7. For simplicity of notation, we replace r; — 1 by
5, i.e., we have

(4.23) min 9;(y) > (14 €)Uo(r;) ,

ly|=ri
and r; satisfies
(4.24) 2Ro <1y < 6, L; .
By (4.23), we have

(4.25) Ti(y) > ri? |ni1in o > (1+¢€) for |y|=r7t.
y|<rs

Let Ao = Ao(eo) be the number defined in (4.4). For |y| > 1, by (4.6)
we have

%i(y) = Uo(y)| < eolyl* " (4Ro)*~"

which implies

Ti(y) < Uo(y) + coRy™ .
By (4.4), for |y| = 77! and A < Ay we have
i(y") < Uoly") + coRy™"
4:20) <1+ T 4aRT <14 %60 .
Let wy(y) = Ti(y) — vi(y"). Applying (4.25) and (4.26) together gives

€0
(4.27) 4
co 87T LITMGM (y, 0)

> ¢ r?_nGA (y7 0)

for |y| = ri_l and A < A, where ¢g depends on n and ¢y only.
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As in the proof of Lemma 3.1, 7; has a harmonic asymptotic expan-
sion (3.16) at oo,
Tly) = o (@ + X7 ) + 01 ()
Tiy = —(n = 2) 9 + O (L) ;

[y[™ [y[™

where ¢, . — ¢, ¢, , are uniformly bounded as i — +o0, and O;(|y[™") <
c|y|~" for some constant ¢ > 0 independent of i, by (4.6). Therefore,
as in (3.17), there exists A; < 0, independent of i, such that

(4.28) w(y) > e1 GM(y, 0)

forall A < A and y € ¥4 = {y|y; > A and [y| > r'}.
As in Lemma 3.1, we let

429 () = AL 0 - [ @@t dn.

By the same estimates in Lemma 3.1, we can find a constant A, inde-
pendent of ¢, such that 2y (y) > 0in X\. Furthermore, we have

2 L7"GMy,0) < ha(y) < es LI7"GM(y,0)

for y € ¥\, A < Ao and two constants ¢y and cs, independent of i.

Hence, if §; satisfies 877" > QCCS , then, by (4.27), (4.28) and Lemma 2.1,
0

we have

wA(y) >0

for y € ¥\ and A < Ag(eg). However, it yields a contradiction to the
fact that T; has a local maximum point 7, with 77, , < %(/\0 - %) < Ao
Hence, (4.22) is proved.

As in (3.29), (4.22) implies that there exists d; = d2(€g) < &1 such
that

(4.30) / v (y) dy < Z2(1 + 4ep) -
ly|<d2L; n

Let

. . pi—1

and
p;—1

Bi={yle=2a} + M, 7 yeBi}.
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For y € Ei, by (4.21) we have
pi—1

K3

. pi—1 .
< 2Rou(e}) "7 + 20, |o|

TR T i i
= 2Ro (u(ef) Tl |71) Ja] | +2¢, [},
<ol
_pi—l

where ¢, =2(14+ Ry Cy, 2 )¢, . Thus, by Lemma 4.3,

pi—t . 09

(4.31) < e AT Lo < 2L

for large . On the other hand, we have

_pg—t . . .
Mi ’ |y| Z ‘xﬁw B x;z‘ B ‘x;z B x‘
> ‘x}% — x}l‘ — 2R0u(xfi)_pi;1

Moreover, by Lemma 4.1 and M; > uz(x}l),

p;—1

lyl = w7 () [, — i, | = 2R
Z 2RO 3

(4.32)

which combined together with (4.31) gives B; C {y| 2Ry < |y| < %Lz}
From (4.5) and (4.6) it follows that wu;(z) < uz(x}l) for z € B;. Since
Uz(ﬂ) < uz(wﬁﬂ), we have v;(y) < 1 on B;, and therefore

/ s dy:/~ vl dy
B; B;

< / vt dy .

2R <Jy|<82 L

(4.33)

Let Ry be sufficiently large such that
pi In
Up'(y)dy > —(1 — o)
ly|<2Ro n

Then, by (4.6) and (4.30), we obtain

/ v dy < T, €

2R <Jy|<82 L
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for some constant €, depending on n only. Together with (4.33), the
inequality above implies

1 2n. * _

§/WU0"‘2 (y) dy < /up (y) dy <%, €o,

which obviously yields a contradiction if ¢y is sufficiently small. Hence,
Lemma 4.4 is proved. q.e.d.

Proof of Theorem 1.2. Suppose the conclusion of Theorem 1.2 does
not hold true. Let ¢¢ € 1 < Ry be true positive constants satisfying
Ral < ¢, € for some small constant ¢,,. By Lemma 4.1 and Lemma 4.2,

there exists a constant Cjy and the set of local maximum points {x; ;”:’1
. L2

of u; satisfying w;(2%)|a%|7=7 > Co, (4.5), (4.6) and (4.7). The set

{}}72, can be ordered by u;(z}) > u;(w3) > --+ > w;(z;,,). Without

loss of generality, we may assume that, for each ¢, there exists a positive

integer j; such that w;(z} )2} [»=7 > 7 and w(2})]2}|7~" < i Let

Q; = U;n:"lB(x;, 2(;0|$§|). Then

(4.34) wi(2) < 2Co|e| 7T
for x ¢ Q;, and

(4.35) ui(z) < 2uq(ah)
for z € B(x§,250|x§|) where 1 < j < 7;.

By Lemma 4.3, we have

pit o\
(4.36) lim inf L;; (ZMM2 |x;|) = +oo,

1
. . ;—1 . o
where M; ; = u;(2%) and L; ; = (ui(x;)plfz |$}|1_°”) "~*. Moreover, by

Lemma 4.4, we can show that for any § with 0 < § <« 1, there exists
ip = 10(0) such that for 7 > 4,

. §
(4.37) 28y < =

|2
2

il
holds for 2 < j < j;+ 1, and

iy o0
(4.38) |25, < §|9€j|
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for j; +1 < j < m;. From (4.37), (4.38) and Lemma 4.1 it follows that

(4.39) ui(w) < wixl)  for |o] > 8]t | .

for ¢ > i3 = 11(8) > ip. Obviously, (4.37) implies

. SNk .
(4.40) i< (3) Il
for j < j; and k = j; — j. By (4.22), (4.30) and (4.36), we obtain

(4.41) / WP (y) dy < 2 / o () dy <2 (2214 3e0))
: n
B(w§,250|1’§|) ly|<82L; ;
. _pi—1
for large ¢ where v; ;(y) = M;Jluz (x; +M;; %y
In the followings, both ¢y and Ry will be fixed. For the simplicity
. 2
of notation, we let x; = «} . Note that lim wi(@i)]z;|?~7 = 4oo0. As
¢ i—+00
_pi—l
in (4.2), we let v;(y) = M u;(z; + M; % y) with M; = u;(z;). By
Lemma 3.1 and Lemma 3.2, for any ¢ > 0 there exist d; = d2(¢) > 0
and a positive integer i3 = i3(€) such that for ¢ > i3,

min v;(y) < (14 €)Up(r)

holds for 0 < r < §;3L; and, by (3.29) we obtain

(4.42) [ s 2ot
ly|<d2 Ls n

1
p;—1

Pi— n—2
where L; = (MZ 2 |$i|1_ai) . In particular, there exists R =
R(€) > 0 such that for i > i3,

. 50,
(4.43) / () dy < 270
R<y|<82Li n

Therefore, by Lemma 2.3 and (4.39), there exists a constant ¢; > 0 such
that

(4.44) vi(y) < e1 Us(y)
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p;—1

for |y| > 2M, 2 |z;| and large 1.

Let ¢; = |VK;(2;)|'VK;(z;) and let y; satisfy z; — y; = |z;]e;.

Applying the Pohozaev identity, we obtain

_9 .
n2n / (z — ;) - VEi(2)u? ' (2) da
|| <t

-2 .
+ ( no_r ) / K;- uf""l dx
pit+1 2 |z|<1;

(4.45)

:/|l’|:li [(ﬂf—ynvui)%—(ﬂﬁ—ynl/) 5+

14
o) I("(x)up""'l] do
pi+1 T 7

pi—1

where [; = %’LiMZ»_T. By (4.44) and the gradient estimates, we have

1
for |y| = 721/27 .
[Voi(y)| < croi(w)lyl™

which implies for |z| = ;,

p;—1

Vui(e)| < ea M 77 L7

7

ui(z) < ey ML
(4.46)

By (3.49), we have

(4.47) lim M7 =1,

i—+00
which and (4.46) lead to

the right-hand side of (4.45) < ¢z L;"t?

K3
_pi—l

(4.48) = ¢3 M. T|$i|ai_1
= o(1)]zs|* .
To estimate the left-hand side of (4.41), we decompose
B(O7 lz) = B(O7 (S|$Z|) U Al U A2 U Ag,

where

p;—1

_Bi—l bl
Ar=A{z| |z —2;| <M, *> R}, Ay=A{z||lv—2|>M, > R

[Vuil>  n—2 du
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and
Sla;| <la| < 3lael}, Az = {z| 3|ai| < 2] < L},

and R = R(¢) in (4.43). It is easy to calculate

lyl<1

|
1

(4 49) /A ($ yl) -V Krz(xz)ufl+1($) dx > ¢y |$Z.|Ofi/ Uf:ﬂ dy
: 1
> cs |2

where ¢5 depends on n and the lower bound of [VE;(x)| |x[~* !,
Let ©; = U;iz_llB(x;, 2(;0|$§|). Then from (4.37) it follows that

Q; C B(0, 8|z;)

2 ~
for © > 4g(d). Since u;(x) < 2Co|z| Pi=T for @ € B(0,6|x;]) \ Q;, by
(4.47) we obtain

z — ;| VK (2)|uP T () do
|z =y [V EK(2)|uf
B(O,5|xl‘|)\fll‘
_q_2(pi+1)
(450) §06|$i| / |$|ozl 1 =T dx
B(0,8]z;])
<or 87

for i > 4g. Let B; = B(x§,250|x§|) and k = j; — j. Then by (4.40) and
(4.41) we have

/ & — yi| [VE ()|l (2) dae

J

et [ o
B]
<eg |ag] |25 < g fag]* 8"

Therefore,

(4.51) /~ o — y| [VE () (2) dee < 2 g |i] 6 .

J

Let & be sufficiently small such that

(4.52) / |z — yi |VI('¢($)|ufi+1 dz < C—5|x2|a’
B(0,8]z4]) 2
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holds for 7 > ig. For the rest of the proof, § will be fixed.
By (4.39), (4.43) and (4.47), for ¢ > max(i3(d)i3(€) ) we have

/|wwmvm@m$“m
As

*

< 1ol / o dy
R<[y|<8,Li

<erolai]™ / o dy
R<y|<82 Ly

< 1 |
—c5 |x;
S G5

(4.53)

|
1

if € is sufficiently small.
pi—1

For z € A3, let e =a;+ M, ? y. Then

p;—1 p;—1

o> My e =il > SM; 7 Jal

_pi—l
which implies |z| < 2M, > |y|. Together with (4.44) and (4.47), w
have
/ |z — | |[VEK (2) [l da
As
_(pi=le; o 2
< cio M, ? / ly|* 072 (y) dy
RLy|<82Ls
Y |y *2" d
< ey M, / y|“ " dy
(4.54) R<|y|<62 Li
_(pi=1e
<enM;
, _pizt T
= C11 |$Z'|al (MZ 2 |$Z|)
= o(1)]a;]* .

Combining (4.48), (4.49) and (4.52)—(4.54) gives

1 . .
Zes ol < o],

which obviously yields a contradiction. Hence, the proof of Theorem

1.2 is completely finished. q.e.d.
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5.

In this section, we are going to prove both Theorem 1.3 and Theorem
1.4. The key step for the proof of both theorems is the following lemma
— Lemma 5.1. To state Lemma 5.1, we rewrite equation (1.1) into

4

Au; 4 ¢;(z)u; = 0 with ¢;(z) = K;(z)u2. By Theorem 1.2, we have
c;(z) < e|z|? for some constant ¢ > 0. Applying the Harnack inequality
and the gradient estimates of linear elliptic equations, we have

(5.1) sup u;(z) < ¢ |ir|1f w; ()
|z|=r wI=r

and

(5.2) |Vau; (2)| < eyug(z)]z]™"

hold for |z| < 1.
Let w;(t) = m(r)rnT_Z) and r = €', where
1

w;(r) = EEA| wi(z; + ) do

|z|=r

is the integral average of w;(z;4x) over the sphere |z| = r. By (5.1) and
(5.2), both w;(t) and w!(t) are uniformly bounded for all ¢ < 0, where
w! denotes the first derivative of w; with respect to t. By elementary
calculations, w; satisfies

- 2)° = —2\? nt2
3 (n2 ) wi = e S wf < (n2 ) wi — cyw? (1)

for all t < 0 and two positive constants ¢; and ¢z3. From (5.3), there
exists a small positive number ¢; > 0 such that w/(f) > 0 whenever
w;(t) < €1. For simplicity, we replace w; by w(t) in the following lemma.
Lemma 5.1. There is a small positive number ¢g < € such that
the followings hold:
(1) Suppose that w(t) is nonincreasing in (lo,t1) with w(ty) < €.
Then the inequality

2 w(to)
5.4 ty —tg < ——1
( ) 1 O_R—Qng(t1)+C

holds, where ¢ is a constant. Futhermore, if t1 is a local minimum point

of w, then the inequality

2 w(to)
. t1 —tg > ——1
(5.5) L=0="0"3 ng(tl)
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holds.

(ii) Suppose that w(t) is nondecreasing in (t1,t2) with w(tz) < €.
Then
w(ts)
w(ty)
Jfor some constant ¢ > 0. Furthermore if t1 is a local minimum point of
w, then

2
(56) to — 11 S mlog +c

2 w(tg)
. to —t1 > ——1
(5.7) 2 l_n—Qng(tl)

holds.
Proof. Suppose w is nonincreasing in (fg,t1). By the first half of

inequality (5.3), w? — (”2;2)2 w? + cw%(t) is nonincreasing in (to, ¢1)

where ¢ = ”n;ch. Hence

(5.8) wi = g(w) > —g(w(tr))
for t € [to,t1) where g(w) = (”2;2)2 w? — cwnz, Integrating (5.8) gives
(5.9) e dw
. to—to < / .
wit) V/9(w) —g(w(tr))

By scaling,

w(to) d Z(E?) d
(5.10) / = = / . +

wit) Vg(w) —glw(t)) i 9(n) —9(1)
where G(n) = (”2;2)2772 —cw(tl)mn%. For1 <n< 37(%% < mqt)_lj’ we
have

w(to)
/w Z(1J dn
1 g(n) —7(1)
w(to) w(tg) 4
< — 3wn=2 (11
n—2J vn?-1 1 n?—1
2 t
log w(to) + ey
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for some constant c¢4. Here, we have used

w(to) _4 4
nn-2 4
dn < cswn=2 (1) (

4 w(ty)
wn—2 tl / P
o [

Therefore, the first part of (i) is proved.

For the proof of the second part of (i), we use

n—2\2
wttS 5 w .
2

Hence w; — (;2)2 w is nondecreasing in (tg,?1). In particular, we have

(5.11) w? — (n;2)2w2(t) < - (n;2)2w2(t1) :

because w’(t;) = 0. Integrating (5.11) gives

2 /w(to) dw 2 w(to)
t1 — 1o Z Z log .
n =2 Ju) o) —wit) ~ m—2 T w(t)

Hence, the second part of (i) is proved.
If we let w(t) = w(2t; —t) fort € (2¢4 —t3,1y1), then (ii) immediately
follows by similar arguments to (i).  q.e.d.

Proof of Theorem 1.3. Obviously, (1.13) is a consequence of Lemma

20
3.2 and Theorem 1.2. Since u;(z) ~ Mil_"_“ for |z| = Mi_ﬁi where
a; ~ b; denotes that a;/b; are bounded below and above by two con-
stants independent of 4, it suffices to prove the lower bound of (1.14).
Let z; satisfy u;(z;) = mFaX w;(¢) = M;. By Lemma 3.4, we may

1
2

assume lim Mimxi =&, By Lemma 3.6, & satisfies
1—+400

anQ(€+ y)U()’%(y) dy=0.

n—2

Let wf(y) = r; * w(x; + r;y) with r; = 1\42»_5"7 where

2 oy
;= 1- .
p n—Q( n—2)
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In Section 3, we have proved u}(0)u}(y) converges to h(y) = aly|*~"+b
in C2 (R™\ {0}) where @ > 0 and b > 0. Moreover, from (3.62) and

loc

(3.63), we have

2 ke
zlg{loou (0)P(1;ul)
= lim uf2 (O)ri/ y-VK(z; + rzy)uf(y)% dy
B
2n_
:/R y-VQE+ U™ (y) dy

= Rn@(f+ y)Uo’%(y) dy ,

where

n—2 .0u* 1 ou?
P(l:u) = - g _ *2 4|2
(15u) /QB( 2o v+ 15

2n
K (2 —I—riy)ufm) doy .

Since u}(0)u} converges to h(y), a simple calculation leads to

lim ] 2(0)P(1;uf) =—(n—-2)o,ab <0,

i—+00

where o, is the area of unit sphere $"~1. Therefore, by the assumption
of Theorem 1.3, we have

(5.12) [ Qo war<o,

from which both ¢ and b > 0. Hence it implies w;(¢) has its first local
minimum at t; = —F;log M; + ¢+ o(1), where ¢ is a constant. We also

have w(t;) = const. M"__; We want to prove w(t) < ¢ for t € (¢;,0),
where € is the positive number stated in Lemma 5.1.

Suppose the claim is not true. Let tf < ¢; < ¢; satisfy w;(t7) =
w;(t;) = €0 and w;(t) < ¢ for t € (¢7,1;). Since u(0)u;(y) converges to
hy) = h(ly]). we have u;(z; +2) = T(|e]) (1+ o(1)) and [Vug(a; +2)] =

—u(|z]) (14 o(1)) at |z| = €. By a simple computation, we have for



164 CHIUN-CHUAN CHEN & CHANG-SHOU LIN

r; = eli,
(5.13)
P(ri; u;)

+ (i (1) +wi(ti) ) o(1) |

where K;(r) = |8113r| | Kdo and

|w—a;|=r

n—2 0Ju; r; duy
P(rijug) = o — = Vul? + 5=
rawy= [ TR SIVu
2n

2
Ki(y)u™*(y) ridoy .

n —

_I_

2n
Since w'(t;) = 0, (5.13) implies

w} (L) < enl P(ri)]

2n_
=c, / |o - VK (2)|u]? da
B, \B,»

—I—/B |- VE;(2)|u]? (2) dx)

r¥
[

(5.14)

=L+,

*
7

where r¥ = €', Since |z - VK;(z)| < c|z]™,
(5.15) |13 < co(rf)™ = cgexp(ayt]) .
To estimate Iy, by (5.5), we have for t7 <t <,

n—2

(ti — t)] .

w(t) < csw(t;) exp [
Thus,

t;
|11] §03w%(ti) exp(nt;) / exp —(n — a;)t dt
%

2n

<cqwn=2 (t;) exp(nt;) exp(a; — n)t; .
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From (5.4) it follows that
-2
ult) < ety exp | (152 (- 00
Putting these two estimates together gives
2n_
(5.16) || < coey™ exp(agt) .
Therefore,
o,
(5.17) w(t;) < ez exp(;ti) .
Applying (5.5) and (5.6), we have
2 tr 2
L=t > logw(’)z log —2—
n—2 "w(t) n-2 " wt)
and _
- 2 t; 2
t;, —t; > log w( ) = log ‘0
n—2 “w(t) n-—2 " wt)
Putting these two inequalities and (5.17) together yields
- 4 €0 20
=t > log > — tr — cs
-2 (tz) n—2
Hence
— 20 “
tz ( — 1) tz > —Cg
-2
Suppose = lim «; > % Then
1—+400
tr Z —Cg ,
which yields a contradiction, because lim ¢7 < lim ¢; = —oo. Hence
1—+400 1—+400

w;(t) is increasing in (¢;, 0] with w;(0) < €. By (ii) of Lemma 5.1,

(1) = wi(0) > Clowi(ti)e_nTﬁti
2a;

)
Z C11 Mz .

Applying the Harnack inequality gives the lower bound of (1.14) for

2] > M7P

165
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If o = ”2;2, then 7; > —cg and (% - 1) tr > —cg. Since t7 < 1y,

we have
2o¢i _1

M2 < e

for some constant c¢q2, and there exists a tg, which is independent of ¢,
such that w; is increasing in [t;, to] with w;(tp) < €. Let ro = €. By
(ii) of Lemma 5.1,

n—2 n—2

Wi (ro) =w;(ro)e” "2 1 > erpw;(t;)e” 2

Icloﬂi(eti) Z C11 Mz =2 .

Applying the Harnack inequality, we have the lower bound of (1.15) for

the case of o = ”2;2 Obviously, (1.16) is an immediate consequence of

(1.13)—(1.15). Thus, the proof of Theorem 1.3 is considered completely
finished. q.e.d.

Proof of Theorem 1.4. By Theorem 1.2, we have

|_n—2

(5.18) wi(z) <eplz|”7z for [z < 1.

Applying estimates of linear elliptic equations, u;(z) is bounded in
CE_(B1\{0}). Without loss of generality, we may assume u; converges
to some positive function uin CZ_(B1\{0}), where u is a postive smooth
function of

(5.19) Au+K(z)uns =0 in B\ {0},

and K(z) = 'H-Ir{l Ki(z). In the following, we want to prove u has a
11—+ 00

nonremovable singularity at 0. In fact, we claim that

For any ug > 0, there exists a positive ro > 0

and ig such that @, (rg) > ug for ¢ > iy, where

(5.20) ;
T (r) = ——— w; do .
|8B7’| |z|=r
Now suppose (5.20) is not true. Then there exists ug > 0 and
;(r;) = wuo for some r; > 0 such that 'hgl ri = 0. Let wi(t) =
11—+ 00

m(r)rnT_Z) and t = logr. Denote ¢; = logr;. Then we have w;(t;) =
n—2

uge™ 2 " — 0 as ¢ — +oo. Hence we may assume w;(¢;) < €g for all ¢
where ¢ is the constant in Lemma 5.1.
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Let tf = sup{t < t;| w;(t) = ¢o}. Without loss of generality, we
may assume there are no local minimum of w; in (¢, ¢;). To see this, we
assume there is a local minimum ¢; € (¢7,¢;). Then, by (5.6), we have

ug = (r;) <7u(e") < cw(r;) = cug

for some constant ¢ > 0. Let ¢; and ug be replaced by #; and cuq
respectively and then we may assume there are no local minimal points
of w; in (t,¢;). Thus, we have w!(t) < 0 for t € (¢,¢;).

Let r¥ = e* and let

n—2

(5.21) i (y) = wi(riy)(r7) 2

Since #;(y) satisfies
nt2
A?NLZ' + K; (T‘jy) ?NLZ»n_2 =0 ,

and is uniformly bounded in any compact set of R™\ {0}, #;(y) converges
in CE_(R"\ {0}) to dig, where g satisfies

nt2
(5.22) Atg+n(n—2)a;~> =0 in R"\ {0} .
Applying the Pohozaev identity leads to

(n—2)r;

2n
(5.23) P(l;'ﬁi):—/ y-VE(riy)a~ (y) dy ,
n - Jyx

where P(r,%;) is defined in (1.18). Since
2n_ o oien
ly - VIG(riy)|a] 7 (y) < erf™Hy|" ™" e LY(By)
by Theorem 1.2, we have for any r > 0,

P(r,ig) = lim PF(r;2;) =0 .

(r, ) = lim Fi(r; @)

If 4o has a singularity at 0, then ug(z) = uo(|z|) and P(r;ag) =
constant < 0 by an elementary calculation. Hence #g is smooth at
0. By a theorem of Caffarelli-Gidas-Spruck, iy can be written as

n—2

(5.24) wi) = (1)

L+ A2y —nol?

167
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for some A > 0 and 79 € R”. We have from (5.18),
A|770| S cp .

Step 1. We claim ny = 0.
First, let us assume 79 # 0. Hence, @; has a local maximum at #;
and, by (5.21), u; has a local maximum at y;, where

(5.25) yi =rin;, and, lim 7 =70 .
1—+400

Let § = Ui(yi)%yi- Then

*

lim & = lim fu(m)%(f‘z)_l%

i—+00 i—+00
(5.26) — lm (07,
i (i) 7=
==& -
Thus,
(5.27) 0<e <uly) ™yl < e .

Since (5.18) holds for all |z| < 1, we have for large R > 0, by (5.27)

n=2

uily) < e |y~
n—2 n—2
< R |y

when |y| > R|y;|. From the uniform convergence of %; in any compact
set of R™\ {0} and |y;| = const. r}, it follows that

5.28 u; (y;) = max u;(zx
( ) (4:) | [> 8y (=)

for any fixed but small positive é.
Let

__2_
Uz(y) = Mi_lui (yz + Mi n? y) )

where M; = u;(y;). Obviously, v;(y) converges to Uy(y) uniformly in
any compact set of R”\ {—&p}, where & is the vector in (5.26). By the
same arguments in Lemma 3.1, we can prove Lemma 3.1 still holds for
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v;(y) outside of a small neighborhood of {—&}, i.e., for any € > 0, there
exists 01 = 0(€) and iy = ig(€) such that
(5.28) |H}in vi(y) < (1+¢)U(r)
yl=r
2a;

for 2|&| < r < 6 L; with L; = Mi("_2)2 .

To see this, we suppose (5.28) is not true. Then there exist an €
and a sequence of r; — +00 as ¢ — 400 such that

min v;(y) > (14 2¢)Up(r) ,

ly|=r:

where r; < §; L; for some small ; > 0 to be chosen later. Without loss
of generality, we may assume —&y = 27mpe; for some 74 > 0. Let

n—2 2
. —_ (o ~. ( T0Y
vily) = Iyl) vi (|y|2) ’
2 2
Y
(_|;|2 ‘|‘7'0€1) .

By a straighforward calculation, we have

=
o
—~
N
~—
ll
N
=8
N
3
|
=

n—2

— A Z
UO(y) - (1—|-/\2|y—|-y0|2) 3

and
Uo(0) = 75"+2,
o 1—|—7'g . 7'60’ .
where A = —% and yy = —%5e;. It is easy to see that there ex-
70 1475

ists a small § > 0 such that the image of the neighborhood B(—&p,6)

2
of —&y under the map y — % + 7pe1 is contained in the half-plane

{(y1,-+,yn)|yr > 0}. In Lemma 3.1, what we have to need about T,
3
is the estimates of 7;(y") for A < Ag and y; > Ao, where )\ = —%%
- 0
Since y* is not contained in the image of B(—&g,d) under the inversion,

% + 10e1 ¢ B(—&o,9) and we have

-2
5(y/\) _ ( 70 )n o (Tgy/\) < C|y/\|2—n
K3 - K3 —=
|y |y

for some constant ¢ > 0 and for A < Ag and 3; > A. Then we can obtain
all the estimates in Lemma 3.1 without any modification, and apply the
method of moving planes to obtain a contradition.
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Applying Lemma 3.2, there exists R = R(¢) > 0 such that

a2 4o
v/ (y) dy < Tné .
R(e)<|y|<b2 Ly

Choose € so small such that Lemma 2.3 can be applyed. Thus,

(5.29) vi(y) < eaUp(y)
for 2|&o| <y < l; = d2L; where ¢4 and d are two constant independent

of ¢. In particular,

(5.30)

vi(y) < eq 772
IVoi(y)] < es177F!

for |y| = I;.
Multiplying g—Z? on the equation for v;, we have

n—2 =2 Ok, =2\ 2=
M'n—2 [ i M'n—2 n—2 d
Zn /lylsu Oz (y e y) W

Jv; Ov; 1
5.31 = uidvi) LGz,
(5-31) /|y|:l,‘ [(391 3’/) Vil

) =2 _2n_
+_n2 K; (yz + M y) vi"_r‘)] do .
n

By (5.30), the absolute value of the boundary term is bounded by
Ce l;”"’l. Hence,

lim (L?7?| the boundary term |) =0 .

i—+00

On the other hand, we have

=2 I(i —2 2n_
lim L?_QMZ»”_2 /| 8 (yZ + Min_2 (y)) Uin_2 (y) dy
Y

1—>+00 |<l; awj
. 8[{ 2 2n
= lim ’ (ZWZ»"_2 y; + y) v (y) dy
1—400 |Z/|§li 8$]

0 2
- [ 2L ot i .
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where we ultilize for any 6 > 0,

2 OK; 2 2n
MZ' n—2 L?—Q/ 8 : (yz -I_MZ n—2y Uin—2 (y) dy
B(—&0,8) | 0%
2 8[{2 2n
S Mi n—2 L?—2/ uin_2 (y) dy
<2l | 0%
2
Send T [ iy
|yl <257 lvil
2
S s 5ai_1|y¢|ai_1L?_2Mi n—2
S Cg 50(,‘—1 .
Therefore, & satisfies
2n_
(5.32) A VQ(& +y)Us ™ (y)dy=0.
By (5.18), we have
n—2
(5.33) wilyi +y)lyl= <er for 20y <[yl < 1.

_2 ,
Let 7y = M, "?L; = Mi_ﬁ’ where 3; = -2 (1 - naT’z), and uf(y) =

n—2 —2 Q

7 2 i (Y +7y). Then wf(0) = F;Tuz(yz) = M — +00 as i — +o0.

K3

By (5.33), u(y) is uniformly bounded in R"\ {0}. By (5.29) and the
Harnack inequality,

wr (0)us(y) = L7 "o Ly)

K3

is uniformly bounded in CZ_(R™\ {0}). Without loss of generality, we
may assume u}(0)u’(y) converges to h(y) in CF (R"\ {0}), where h(y)
is harmonic in R™\ {0}. Thus, by Liouville’s Theorem,

h(y) = aly*™" +b
with a,b > 0. By Pohozaev’s identity, we have

n—2_

2n
m/ y - VE(y: + my)ul (y)»=2 dy = P(1;u])
2n B1

where P(1;u}) is given in (1.18).
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By elementary calculations, we have

(5.34) lim u (0)F(1;uf) = —(n — 2)o,ab |

i—+00

where o, is the area of S™71.

On the other hand,

2

2n
u; (O)Fi/B y- VK (yi + ry)ul(y)»=—2 dy
1

(5.35) =/||<L y-VQi(&er)viﬁQ (y) dy
YIS L

2n_
4 o(1) / 16+ 1™ 07 dy |
ly|<L;

4

For any 4 > 0, we have the estimate

/ y-VE; (& +y)v 7 (y) dy
B(—¢;9)

2a;

_ n—2
=M,

2n
/B( o y-VE(y +y)u (yi +y)dy

_yivM,‘n_ 5)

2a;

(5.36) < M

K3

2n
/ (y- VEi(yi + ) ul 7 (i +y) dy
ly+yil<ca 8]yl

2o¢i
<3 M7 |y ly|> 1" dy
ly|<e2 8lyil

2a;

_ n—2 oy gop—1
= C4 MZ |y2| O
a;—1
S Cs 6% 3
where ¢5 is a constant independent of ¢. Since v; uniformly converges to

Uo(y) in Br\ B(=¢&,,6) for any large R > 0, we have by (5.29), (5.32)
and (5.34)—(5.36),

—9 2n_
(n— 2)onab= ("2 ) i [y dy
) oo Jly| <L
n— 2 2n
=52 vt v

n R
a(n —2)

= Rn@(f‘Fy)Uﬁ(Q) dy <0 .
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From the assumption, it follows that

(5.37) [ Q+nTE Wy <o,

so that both ¢ and b > 0.

Let w;(t) = ﬁi(r)rnT_Z) and r = e' where ;(r) is the integral average
of w;(y; + y) over the sphere |y| = r. Since u7(0)ul(y) — aly|*~™ +b
in CE (R™\ {0}) with both a,b > 0, @; has a first local minimum at

T; = =B logM; + ¢+ o(1). Recall w(tf) = ¢ and 'h-T w;(t;) = 0.
11—+ 00

Thus, we have rf = o(1) min(enT_Z)T"

Harnack inequality, we have

, i) as 1 — 400. Meanwhile, by the

—1 _ N _
c, i(r) < a;(r) < cgi(r)
for r > 2|y;|, where ¢4 is a constant independent of ug and 7.

If t; > T3, then, @;(t) uniformly tends to 0 for T; <t < ¢; as i — +00.
Therefore, w; has no local minimum point in (73, ¢;] for large . By (ii)
of Lemma 5.1, we have

C7Mi1_m < &i(eT") < cui(e") < egug .

Since lim 1 — % =1- nz% > 0, M; is bounded, which yields a
1—+400

contradition.
If t; < T3, Then

12

co M, "7 <0 (Ty) < 4(t;) = o ,

which again leads to a contradiction. Therefore, we have proved 1y = 0.
Step 2.
Applying a variant of the Pohozaev identity (see (5.31)), we have

n—2 / OK; , . . 2
r; riy)ul ™ (y) dy
( 2n ) < O; (riv) )
2n

- C— — |V Py + ——Ki(rfy)a dy |
/|y|:/\i [3% dv 2| wl v+ om (riy)u;= (y)| dy

(5.38)

where A; = (rf)% In the followings, we discuss two cases seperately.
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Case 1. Suppose w; has no local minimum after ¢;. Then (5.4) and
the Harnack inequality give

- — _n=2
" = wi(rfy) ()" () T3

2

w;(y)ly
(5.39) < cui(r?) (r)) T

K3

= C¢€g
for 1 < |y| < (r7)~!. By gradient estimates, we have
Vii(y)] < erii(y)lyl™ < eyl

for |y| > 2. Hence, the absolute value of the right-hand side of (5.38)
< e AT Multiplying A2 = (7)™ on both sides of (5.38) leads to

-2 . K; 2
0= (52) im o7t [ i way
n
|

i—+00 y|<Ay 0x;
n—2 aQ 2n_
540 — — 2 d
(5.40) TRl Ty (y)ig = (y) dy

n—2 0Q 28
= — B —— " d
T W)U (y) dy

where we have untilized (5.39) and the following estimate: For any
d > 0, by Theorem 1.2,

/|y|S5

Case 2. Suppose w; has a local minimum after ¢;, then, by (5.4) and
(5.5), we have

2n

8I(i * O\ ~n—2 Y Qg — a;—1—-n
A W dy < [ gy
ly|<é

0x;

»f)oz,'—l(soz,'—l .

= c5 (1]

e ui(r)) ()" S wi(ri)ri T = wor? T < () (1)

Recall u;(r}) (r*)nT_2 = ¢p. Hence,

(5.41) e (1) <1 < ey (r1)?

where both ¢35 and ¢4 are independent of ¢. Thus, as i = +o0,

(5.42) ()77 = o(1)r;
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which and (5.4) give (5.39) again, that is,

(5.39') i (y) < eoly*™"

—a

for 1 <ly| < (rl*)n—zg = )A;. Hence, by (5.38), we have the same conclu-
sion as (5.40).

n-2 n—
Let wi(y) = w(Ay)A;? . By Theorem 1.2, u}(y) < c|y|_T2.
—2

Therefore u}(y) is uniformly bounded in C*(R"\ {0}). Since /\:Tul*(y)
satisfies

n_2 n—2
A (AZ» ul*(y)) + I(Z(/\Zrl*y)(uz*)% (Ai 2 ul*(y)) =0,

n=2

and, by (5.39) and (5.39'), A\ > w7 (y) = AP 2d;(\;y) is uniformly bounded
n—2

in any compact of R™\ {0}, A, ? u}(y) converges to a harmonic func-

tion h(y) in CE_(R™\ {0}). Using Liouville’s Theorem, we have h(y) =

aly|>=™ 4+ b for a,b > 0. By a similar argument as in Step 1, we have

0>—(n—2)o,ab
n_2 2n

= lim AP72 (A7) /B y - VE;(Niriy) (u))»=2 (y) dy
1

2n  i—+oo

n — 2 . n—2 x - * ~ n2f2
= lim A7 7r; y-VE;(riy)a (y) dy
[yl <A

2n  i—=+co

_9 2n_
e e

Thus, by (5.40) the assumption (1.6),

(5.43) [ QWU ay <o,

which implies that both @ and b > 0. Therefore, we conclude that w;
has at least one local minimum at 7; = (1 — naT’z) t*+c+o(l) after t7.

Since 1 — =& > %, we have by (5.41),

< T, I <Ly
; i = - TS gl S Y
! n—2 2

for large ¢, which yields a contradiction to the assumption that there
exists no local minimum point of w; between ¢f and ¢;. Thus, (5.20) is
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2n
proved. Since u has a nonremovable singularity at 0, we have fB un—2 =
1
2n

. — i
+o00, and therefore ZETOO fBl u]' " (x) do = 4o0.

By (1.7) and the Harnack inequalty,

2n_ 2 1
+oo = un=2 (z)dx < cl/ un= (z)|z| 7" dx
B1 Bl

1
< 02/ (|ir|1f u%(x)) dr ,
0 z|=r

4
from which the completeness of un—2|dxz|? follows immediately.
Suppose Q(z) satisfies that 0 is the unique zero of

2n_
VQE+y)Us ™ (y)dy=0.
Rn
We want to prove u(z) is asymptotically symmetric. Suppose the con-
trary. Then there exists a sequence of z; = 0 as ¢ — 400 such that

(5.39) u(@;) > (14 eo)a(|ai])

for some positive €y, where T(r) denotes the integral average of u over
|z| = r. Let v;(y) = u(|avz|y)|avz|nT_2 By Theorem 1.2, v;(y) is uniformly
bounded in any compact set of R™\ {0}. If ﬂ(|x2|)|x2|nT_2 — 0as ¢ —
+oo, then there is a subsequence of v; (still denoted by wv;) such that

% converges to a positive harmonic function h(y) in CZ_(R™\ {0}).

By Liouville’s Theorem, h(y) = a|y|>~™ 4+ b with a,b > 0 and a + b > 0.
Obviously, it is a contradiction to (5.39). Suppose ﬂ(|x2|)|x2|n7_2 >c>0
for some constant c. Then v;(y) converges to Up(y) in CZ (R"™\ {0}).
As the argument in Step 1, we see that ﬁo(y) is smooth at 0. Hence

n—2

0 S
oly) = (1+/\2|y—770|2) ‘

Suppose 79 # 0. Then u has a local maximum at z; where z; satisfies

lim (u(xz)ﬁxz) =Ap=%& .

i—+00

Since u; converges to u in CZ_(Bj \ {0}), there is a subsequence of u;
(still denoted by u;) and a sequence of local maximum points y; of u;
such that

2

lim uin_2 (i)lyil =& -

i—+00
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Thus, we can repeat the same argument as in Step 1 to prove that &

satisfies
2n

. VQ(&+y)Us ™ (y)dy =0 .

By the assumption, we have &, = 0, which obviously yields a contradic-
tion. Hence we have proved 1y = 0. However, it also yields a contradic-
tion to (5.39). The completeness of the comformal metric g = un= |dz|?
is the consequence of the fact that w has a nonremovable singularity at
0 and the Harnack inequality (1.12) holds. The unboundedness of cur-
vatures of g is an immediate consequence of Proposition 2.6 in [22].
Therefore, the proof of Theorem 1.4 is completely finished.  q.e.d.
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