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TITS GEOMETRY ASSOCIATED WITH
4-DIMENSIONAL CLOSED REAL-ANALYTIC
MANIFOLDS OF NONPOSITIVE CURVATURE

CHRISTOPH HUMMEL & VIKTOR SCHROEDER

Abstract

We investigate the geometry and topology of the Tits boundary associated
with 4-dimensional closed, real-analytic manifolds of nonpositive curvature.
We show that each homotopically nontrivial component is a union of geo-
metric boundaries of flats in the corresponding Hadamard manifold and this
can be used to describe the structure of its maximal dimensional quasi-flats.
The homotopically trivial components are intervals of length smaller than
7 and we give a necessary and sufficient criterion for the existence of such
intervals of length greater than zero.

Introduction

The Tits boundary drX = (X(o0), Td) of a complete, simply con-
nected, nonpositively curved Riemannian manifold X is a metric space
which reflects parts of the asymptotic geometry of X. In this paper we
obtain a description of this space in the case that X is the universal
covering of a compact real-analytic Riemannian manifold of nonposi-
tive sectional curvature and dimension < 4. While the situation in the
2- and 3-dimensional case is quite obvious and easy to describe (com-
pare Section 1), new and interesting phenomena occur in dimension 4.
Roughly speaking, up to dimension 3 the nontrivial components of 0y X
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are completely determined by the structure of the flat subspaces, while
in dimension 4 other ‘nonstandard’ components occur. However, we will
show that the nonstandard components are always intervals of length
< m. In particular these components are contractible. It follows that
the homotopy type of drX is already determined by the structure of
the flat subspaces in X. This enables us to apply results of B. Kleiner
on the structure of quasi-flats in X. In special cases this leads to a
complete description of all quasi-flats in X.

To describe the results in more detail, let M = ¥\ X be a compact
real-analytic Riemannian manifold of dimension 4, X its Riemannian
universal covering space. For our description we can assume that X is
irreducible, i.e., X does not split as a nontrivial product. The structure
of flat subspaces of X was determined in [8] and we recall the main
results in Section 1. We say that a geodesic ¢: R — X has higher
rank, if there exists a geodesic ¢: R — X with ¢(R) # ¢/(R) which is
parallel to ¢, i.e., their Hausdorff distance satisfies Hd(¢(R), ¢'(R)) < oc.
A submanifold V' C X is called a higher rank submanifold if V is a
complete totally geodesic submanifold of X with the property that every
geodesic ¢ in V has a parallel ¢/ with ¢/(R) # ¢(R) in V. In our situation
there are only the following possible types of higher rank submanifolds,
namely:

(i) Vis a k-flat for £ = 2 or k = 3, i.e., V is the image of a totally
geodesic and isometric embedding R* — X

(i) V is isometric to @ X R, where @) is a 2-dimensional visibility
manifold.

A higher rank submanifold V is closed, if ¥y = {oc€ X |0V =V }
operates with compact quotient on V. We say that a higher rank sub-
manifold V' is maximal, if V is not contained properly in a higher rank
submanifold V. Clearly every 2-flat F' is contained in some (maybe
several) maximal higher rank submanifolds.

In [8] it is proved that modulo X, there are only finitely many max-
imal higher rank submanifolds and all of them are closed. As a conse-
quence the structure of higher rank submanifolds can be recognized in
the fundamental group.

In this paper we address the question whether the flat subspaces
determine already the whole asymptotic geometry which is reflected in

the Tits boundary orX.
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We call a connected component of 0rX standard if it contains a
boundary point of a flat and nonstandard if it is not trivial (i.e., is not
a single point) and not standard.

The standard components of dr X are described in Section 2, and
the main result there is that the standard components are built from
the geometric boundaries of the maximal higher rank submanifold.

The nonstandard components are investigated in Section 3. It fol-
lows from the properties of the Tits metric that a ray representing a
point in a nontrivial component is asymptotically arbitrarily close to
the flats and hence to the maximal higher rank submanifolds in X. If a
ray represents a point in a nonstandard component, it is close to a single
higher rank submanifold at most on a bounded interval. This gives rise
to an infinite sequence of maximal higher rank subspaces associated to
such a ray. Up to some initial elements, this sequence is determined
by the corresponding nonstandard component (see Proposition 3.4). In
particular, each nonstandard component can be encoded by a sequence
of maximal higher rank subspaces.

Below we state the main result of the present paper. It is an exis-
tence result for nonstandard components in 07X, and we show that the
nonstandard components are always intervals of some length < 7. In
particular they are contractible.

Theorem 1. Let X be the Riemannian universal covering space of
a 4-dimensional closed, real-analytic manifold of nonpositive curvature.
Then the following are true:

(1) Every nonstandard connected component of 0y X is an interval of
length < ™ — &g where dg > 0 depends only on X.

(2) The Tits boundary drX contains nonstandard connected compo-
nents if and only if X contains two mazimal higher rank submani-

folds Wi and Wy of dimension 3 with WiNW, # @ and Wy # Wj.

Part (1) of this theorem is proved in Section 3, and Part (2) in
Section 4.

Remarks.

1. The connected components of a length space coincide with its path
connected components.

2. There are examples of Hadamard manifolds X, constructed in [1],
satisfying the assumption of the theorem and the condition in
part (2).
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3. Investigating the geometric boundary of graphmanifolds, C. Croke
and B. Kleiner [4] found, to our knowledge, the first examples of
a Tits geometry with nontrivial nonstandard components.

We can use our result to study the structure of quasi-flats f: R? — X
in the case that X does not contain a 3-flat.

A 2-dimensional quasi-flat in X is a map f: R? — X such that there
are constants I > 1 and C' > 0 with the property

L7ld(x,y) = C < d(f(x), f(y)) < Ld(z,y)+ C

for all z,y € R% In this case f is also called an (L, C)-quasi-flat.

In Section 5 we will define the conical quasi-flats in X. The image
of a conical quasi-flat is a cone over a simple closed Tits geodesics in
OrX and it is contained in a distance tube around a finite union of flats
in X.

Then one can prove the following result which depends essentially
on the structure theory for quasi-flats of B. Kleiner [6].

Theorem 2. Let X be as in Theorem 1 and assume additionally
that X does not contain any 3-flat. Then the image of every (L,C)-
quasi-flat R? = X lies in finite distance to a conical quasi-flat and thus
in finite distance to a finite number of 2-flats. Furthermore, that number
can be bounded depending only on L, and it is equal to one, provided the
constant L is sufficiently close to 1.

Remark. The reader should compare this result with the structure
of quasi-flats in symmetric spaces (see Section 7.2. in [7] and [5]).

We are grateful to the referee who pointed out the following corollary
of Theorem 2.

Corollary 3. Let f: X1 — X5 be a quasi-isometry between two
manifolds as in Theorem 2. Then [ maps 2-flats to within finite distance

of 2-flats.
We would like to thank S. Buyalo, C. Croke and B. Leeb for stim-
ulating discussions, and B. Kleiner also for explaining to us his results

on quasi-flats in [6]. The first author is grateful to the Department of
Mathematics at the University of Pennsylvania for its hospitality.
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1. Higher rank submanifolds and discreteness

In this section we briefly recall the relevant results of [8] and state
some discreteness properties. We also fix some of our notation.

In the sequel, X denotes a real-analytic Hadamard manifold, and
3 a group acting freely and properly discontinuously by isometries on
X such that the quotient ¥\ X is compact. We let d and d* be the
induced distance functions on X and the unit tangent bundle 71X of
X, respectively. The geometric boundary X (co) of X together with the
Tits metric Td is the Tits boundary denoted by drX. We write / for
the Tits angle. For the basic results on the Tits metric we refer to [2]
or [3].

If X is reducible, the Tits geometry of X is the spherical join of the
Tits geometries of its lower-dimensional, irreducible factors (see 2.3.4
in [7]). For completeness, we describe briefly the structure of dr X in
the case that X is irreducible and dim X < 4: If dim X < 3 then 9rX
is discrete. If dim X = 3, then the connected components of dr X are
points and circles of length 27; the circles are precisely the boundaries
at infinity of the 2-flats in X (see [8]).

By the above and under the additional assumption that X is re-
ducible, the statement of Theorem 1 holds trivially and the statement
of Theorem 2 follows directly from [6]. Hence we will assume for the
rest of the paper that dim X = 4 and X is irreducible.

Unless otherwise stated, geodesic segments in X or drX are sup-
posed to be parametrized by arc length. A geodesic ray in X is always
parametrized on the interval [0,00) =: R>. If ¢ is a geodesic segment,
¢(00) and ¢(—o0) denote the limit points in 7 X of the complete ex-
tension of ¢ in positive and negative direction, respectively. Suppose
p,qg € X and x,y € drX. Then we mean by pq the geodesic segment in
X connecting p to ¢, and by pT the geodesic ray in X starting at p and
representing z. If Z(z,y) < 7 we write Ty for the unique Tits geodesic
in dr X connecting z to y. By })? we denote the unit vector tangent to
PZ at p in the direction of z € X U X (00).

If v € T1X is a unit tangent vector, then ¢,: R — X is the geodesic
with ¢,(0) = v. We also write v(£o0) instead of ¢,(occ). By P, we
denote the parallel set of ¢,, i.e., the subset of X consisting of the union
of all unparametrized geodesics parallel to ¢,. By analyticity, P, is
either equal to ¢,(R) or a higher rank subspace of X. We recall that
a higher rank subspace of X is a totally geodesic submanifold V of X
with the property that every geodesic ¢ in V has a parallel ¢ in V' with
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d(R) # ¢(R). The rank of v € T'X is equal to the dimension of P,,
and thus there are four possibilities for the rank of a vector v € T1X:

(i) rank(v) =1, then ¢, is not contained in a 2-flat.
(ii) rank(v) = 2, then ¢, is contained in exactly one 2-flat.

(iii) rank(v) = 3, then P, = ) X R with a complete 2-dimensional
factor Q).

(iv) rank(v) =4, then X = P,, i.e., X is reducible.

We denote the set of unit tangent vectors in X of rank > k by
Ry i= {v eTlx ‘ rank(v) > k },

and put Ryp(oo) := {v(o0) | v € Ry }. Since we assumed that X is
irreducible, we have that R»4 = @. Then there are three types of higher
rank submanifolds: 2-flats, 3-flats and spaces of the form W = ) x R,
where (0 is not flat.

We denote by V the set of all mazimal higher rank subspaces of X,
and by W C V the subset of all W with W =2 @ x R, @) not flat.

For a higher rank subspace V' € V, the boundary V(co) is a path
connected subset of drX. Tits geodesics in OV are also Tits geodesics
in drX. If V is a 2- or 3-flat, then V(oo) is an S! of length 27 or
a standard round sphere S2%, respectively. If W = Q x R € W, then
W (oo) C 07X is a graph with two vertices, and for each point in ()(o0)
an edge of length 7 connecting these two vertices. The union of any
two different edges in this graph is a closed Tits geodesic. These closed
Tits geodesics are precisely the Tits boundaries of the 2-flats in W. The
vertices of this graph are called the singular points of W(oo) and they
are the limit points of the geodesics of rank 3 in W.

It is proved in [8] that modulo ¥ there are only finitely maximal
higher rank submanifolds and all of them are closed. We now describe
the possible intersection properties of maximal singular submanifolds
(compare [8]):

(i) If Fis a 3-flat and V € V with V # F, then FNV = @.

(ii) If F € Visa 2-flat and FNV # @ for some V # F and V C V,
then V is also a 2-flat and F NV is a single point.

(iii) f W € Wand WNV # @ for some V € V\ {W}, then V e W
and W NV is a 2-flat.
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Suppose Wi, Wy € W intersect in a 2-flat F. This intersection is re-
flected in 07X as follows: Wi (o0) NWy(o00) = F(oo) and F(oo) contains
both, the singular points of Wj(oco) and W;(oco). Notice also that the
singular points of Wj(oo) do not coincide with the singular points of

W3 (o0). We write
Fne = { WO W | Wi, Wo € W, dim Wy 0 W, =2}

for the set of intersection flats.
In the following Lemma, we describe the intersection of maximal
higher rank subspaces in more detail (see also Lemma 3.4 in [8]).

Lemma 1.1 (Discreteness Lemma). There exist positive constants
D and a with D > 2a such that the following holds:

(1) If Vi,V € V with dim V; = 3 and d(p,V;) < D for i = 1,2 and
some p € X, then Vi,Vo e W and Vi NV, £ @.

(2) For p € X there are at most two mazximal higher rank subspaces

Vi,Vo € V with dimV; =3 and d(p,V;) < D fori=1,2.

(3) Let v1,vy € TIX with rank(vy) = rank(vy) = 3. If d (v, v2) < 2a
then P, = P,,.

(4) If vi,v2 € R and d'(vy,ve) < 2a, then vy,v9 € TV for some
V €V or there are Wi, Wy € W with vy € TWi,ve € TW, and
Wi W, 75 .

(5) Let p € X with d(p, W) < a for some W ¢ W. Ifd(p,V) < a for
some VeV thenV eW and VW # Q.

(6) Let ¢:[0,{] — X be a geodesic of length ¢ > D. Assume
d(e(t),V) < a for some V €V and for all t € [0,(]. Further-
more suppose that d*(¢(0),R>2) < d(c(0),V); Then there exists
some W € W with d(c(),W) < d(c((),V). furthermore, V. € W
and VNW #£ .

(7) Let Wi, Wy € W such that F' := Wy N Wy € Fin. Denote by
z, 27 the two singular points of W;(o0), i = 1,2. If p € X with

d(p, F) =D and d(p,Wy) < a, then Z,(2§,27) <7 — a.

Proof. Note that (1), (2) and (3) are proved in [8, Lemma 3.6]. We
choose D > 0 such that (1) and (2) are satisfied. We will show that
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for each item (3), ... ,(7) there are constants as,...,ar € (0, D/2) such
that (i) is satisfied with ¢ = a;. Finally define a := min{as,...,ar}.
As already mentioned, the existence of a3 follows from [8].

In order to show (4) we assume the contrary. Then there exist
sequences (V;);>1 and (V/);>1in V with V; # V/, v; € T'V;, vl € T'V! for
each i and lim;_, ., d* (vs, vz’»)_: 0 such that V; ¢ Wor V;nV/ = @. By the
co-compactness of 2 we can assume that, after passing to subsequences,
(vi)i>1 and (v!);>; converge to the same vector v. Moreover, by the
finiteness of V modulo ¥ we can assume that V; =: V and V/ =: V/
are independent of 7. Consequently, v € TV N TV’'. It follows that
V,V'eWand VNV’ # @, a contradiction.

By (iii) above, we can choose as > 0 such that d(W, F) > 2a5 for
each W € W and each flat I/ € V since modulo 3 there are only finitely
many maximal higher rank subspaces of X. Now (5) is a consequence
of (1).

To prove (6) we choose ag < a4 such that the following holds: if
c: [0,] — X is a geodesic of length ¢ > D and d(c(t),V) < ag for all
t € [0,0], then d* (¢(0), T'V) < a4. Consider now a geodesic c: [0, ] — X
with d(c(t), V) < ag for all ¢ € [0,(] and d'(¢(0), R>2) < d(c((),V).
Then there is a V/ € V\ {V} and v’ € T'V' with d'(¢((),v") < as. By
the choice of ag there exists v € TV with d*(¢(0),v) < a4, and thus
d'(v',v) < ag + ag < 2ay4. Hence by (4) we have that V, V' € W and
VvV £0o.

If (7) were not true, there would exist sequences (W, )n>1, ¢ = 1,2,
in W, points p,, € X with d(p,, W1,,) — 0 as n — oo and d(p,, I,) = D
with F,, = Wi, NW,,,. Furthermore, Lpn(z;n, zy ) — ™ as n — oo where
z;; and z;  denote the singular points of W;,. Since X is co-compact
and by part (2) we can pass to subsequences such that p, converges to
some p € X as n — oo and W;, =: W;, F,, =: F are independent of n.
Moreover, zi converge in the sphere topology to the respective points
z;t € W;NR3(00). Clearly, d(p, F) = 1, p € Wy and £,(25,2;) = 7 and
hence we see that dim P, = 4 for a geodesic ¢ in Wy with ¢(fo0) = 23,
This is a contradiction. q.e.d.

Notion. We call arguments as in the previous proof accumulation
arguments.

We let W: X — P(V) be the function from X to the power set of V
given by

U(p) ::{VEV‘d(p,V)ga},
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for p € X. We denote by |¥(p)| the number of elements in ¥(p) which
is clearly finite.

2. Standard components

In this section we investigate the standard connected components
of the metric space drX. It turns out that these are the components
which arise in a natural way from the boundaries at infinity of higher
rank submanifolds.

Recall that z € Ryq(o0) if 2 = ¢,(00) with rank(v) > 2. Thus
R>2(00) = Uy ey V(o). The main result of this section is

Proposition 2.1. et C be a connected component of the Tits

boundary 07 X. If CNRxq(00) # @ then C C Ryz(c0).

Actually, this proposition justifies the notion standard component for
a connected component C of the Tits boundary 07X with CNR>3(00) #
@. -

The proposition allows us to show that there are only three possible
types of standard components in dr.X.

Corollary 2.2. Assume that C is a standard component of 0rX.
Then exactly one of the following statements is true:

(i) C = F(o0), where F' C X is a 2-flat.
(i) C = F(o0), where F' C X is a 3-flat.

(iii) C = U ey W(oo) where W* C W is a subset which is mazimal
with respect to Property 2.3 stated below.

Property 2.3. If W, W' € W?*, then there exists a sequence
Wi, ...,Wg in W* such that W = Wy, W' = Wy and W; " Wiy # @
for1 <:<k—1.

Remark. It is clear that W* C W with Property 2.3 is maximal if
and only if Uy ¢y« W is a connected component of (Jy, oy W C X.

We need some preliminary results:

Lemma 2.4. For all 0 < £ < w/2 there exists some n > 0 such that
the following holds: Let xq1,29 € 07X with e < Z(x1,22) < 7 —¢, and
let p e X with £(z1,29) — ZLy(21,22) < 1. Then dl(ﬁE,Rzg) <e.

Proof.  Assume that the statement does not hold for some
e € (0,7/2). Then, using the co-compactness of the group X, the

539
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continuity of Z, and the semicontinuity of £, we obtain p € X and
x1,x9 € OrX with

(2.0.1) L(xy,29) = Ly(a1,22) € (0,7),

but d* (]E, R>2) > ¢ for some i € { 1,2 }. However, (2.0.1) implies that
the sector spanned by pZy and pzy is flat and totally geodesic and hence
by analyticity a part of a complete flat which implies rank(ﬁ) >2,a
contradiction.  q.e.d.

Lemma 2.5. Let £&:[0,0] — 97X be a unit speed geodesic with
0 <b< 7 andlet ¢ be a ray with c(oo) = £(0). Then there exists some
7 € R such such that for all points p = c(t) with t > 7, all geodesics
cs :=pE(s), s € [0,0], and all u > 0 we have d*(é¢5(u), R>2) < a.

Proof. Let £ and ¢ be as in the assumption of the lemma and choose
€ > 0 small enough, such that

0<2<Z£(£(0),£0)=b<7m—2¢ and e<a.

Choose 7 for € as in Lemma 2.4 and 7 > 0 such that for p = ¢(t) with
t>T

£(£(0),£(b)) = £,(£(0),£(0)) < .
Then we have for s € [0, b] that

£(&(5),£(0)) = £p(&(5),£(0)) <,
£(&(5),£(0)) = £p(E(s5),£(0)) <.

Thus for all s € [0,5] and all > 0 we have

es(w) (£(5),£(0)) <,

Lt
— L) (€(5),£(0)) <.

where ¢, = p&(s). Since for all s € [0, ]

0<e<Z(0),Es)=s<m—¢
or 0<e<Z(&(s),&)=b—s<m—¢,

we see by Lemma 2.4 that
dl(és(u),Rzz) <eg<a

for each s € [0, 6] and each u € [0,00). q.e.d.



TITS GEOMETRY 541

Lemma 2.6. Let c: R> — X be a ray with ¢(cc) € V(o0) for some
V e V. Assume that limy_,., d(c(t),V) > 0. Then there exists some
W C W such that limy_,o d(c(t), W) = 0 and c(o0) is a singular point
of W(co). Furthermore, V.€é W and VW # @.

Proof. We first use the co-compactness of 3 to show that

lim d*(¢(t = 0.

Jim d*(é(t), Ra) = 0

It suffices to show that for any sequence t; — oo and any isometries
o; € Ysuch that £ (o; o ¢)(t;) converges, the limit vector has rank 3. Let
cit Ry — X be the ray ¢;(t) = a; 0 c(t; +1), i.e., ¢;(0) = & (070 ¢)(t;).
Consider the convex function

tes d(ei(t), 0V) = d(e(t + 1), V),

an accumulation ray € of ¢; and an accumulation higher rank subman-
ifold V of o;V. It follows that d(¢(¢),V) is a positive constant. Thus
the complete geodesic which extends  has a parallel in V, and since V
itself has higher rank, this geodesic is of rank 3.

Since d'(é(t), R3) — 0 as t — oo, we see by part (3) of Lemma 1.1
that there exists some W := P, € W such that d'(¢(t), RsNT'W) — 0
as t — 0o. Thus d(c(t), W) — 0 and ¢(o0) is a singular point of W (oo).

q.e.d.

Lemma 2.7. There exists a constant 1 > 0 with the following
property. Let x1 = ¢,(00) € 07X with rank(v) = 3, and let x3 € 07X
with Z(z1,22) <e1. Then x4 € P,(0).

Proof.  Assume the contrary. Then there are v; € Rs,
z; € OrX \ P (o0), where ¢; = ¢, with Z(¢;(00),2;) < 1/i and
i=1,2,....

Choose p; € P, and let ¢; be the ray p;z;. Since a; ¢ P.,(c0), there
are t; € [0,00) with d(%(t;), P;;) = 1. Note that ¢; — oo as ¢ — oo. Let

¢; = T;(t;). Since Z(c¢;(00), 2;) < 1/i we have

a; = Ly (ci(00), 2;) — 0,

Bi = Ly, (ci(=00),pi) £ 7 = Ly, (ei(=00), ;) < l -0

as ¢ — oo. We now use a similar accumulation argument as in Lemma 2.6.
Choose o; € X such that o;¢; converges to some ¢ € X, % (0; ) (t;)
converges to some v € quX7 and o;F,, to some P.. Since a;,3; — 0
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we have ¢,(00) = ¢*(00) and ¢,(—o0) = ¢*(o0), and hence ¢, is parallel
to ¢* with d(c,(-), P-x) = 1. Thus ¢, has rank 4 in contradiction to the
irreducibility of X. q.e.d.

Lemma 2.8. Let &: [0,b] — 07X be a unit speed Tits geodesic with
0 <b<mw Let&0) € V(co) for some V €V and &(s) ¢ V(oo) for
s > 0. Then there exists some W € W\ {V} such that £(0) € W (o0)
and £(0) is a singular point of W(oo); furthermore, V € W.

Proof.  Consider a ray c:R> — X with ¢(cc) = £(0). If
limy_yoo d(c(t),V) > 0, the claim follows by Lemma 2.6. Thus we can
assume that

tlggo d(e(t),V)=0.

If t > 0 is sufficiently large, then for p = ¢(¢) and ¢; = p€(s) we have
d(p,V) < a and d'(¢5(u), R>2) < @

for each s € [0,b] and each u > 0. The second inequality follows from
Lemma 2.5. This implies that |U(cs(u))| > 1 for each s € [0,b] and
u > 0. For s € [0, b] define

o(s) = sup{ u>0|d(es(u),V) < a} .

Note that ¢(0) = oo, and that ¢(s) < oo for all s € (0,b] since
cs(00) ¢ V(o0). The function ¢ is continuous, since d(-,V) is convex
and d(p,V) < a. Now fix a small s > 0 such that ¢(s) > D. Note that
V ¢ U(cs(u)) for u > ¢(s), but V € W(es(¢p(s))). Since

d'(e4((5)), Rz2) < a = d(es(p(s)), V),

by part (6) of Lemma 1.1 there exists some W € W with
W € U(cs(e(s))), WnNV # @. From the same lemma we also have
that Ve W.

By continuity of ¢(s) and part (1) of Lemma 1.1 we see that
W e W(cs(p(s)) for all small s > 0, so that £(0) € W(cc). Again
by the use of Lemma 2.6 we can assume that lim ., d(c(t), W) =0
and hence also that d(p, W) < a.

We now claim that £([0,0,]) C W (oo) for some by > 0. If not the
same arguments as above will yield V' € W, then V" # V. W with
£(0) € V"’(00) and lim¢_y, d(c(t), V") = 0. This is a contradiction to
part (1) of Lemma 1.1.
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Now &](o,4,1: [0,01] — W (o0) is a geodesic with £(0) € V(o0). By
the discussion in Section 1, W (oo) N V(co) consists of two geodesics
p1,p2 (of length ) between the singular points of W(oo). If £(0) is an
interior point of one of the p;, then £(s) lies on p; for small s and hence
is contained in V' (o0) N W (oo). This contradiction shows that £(0) is a
singular point of W(o0). q.e.d.

Proof of Proposition 2.1 and Corollary 2.2. Let C be a connected
component of 97X and assume that F'(co) NC # @ for some flat /' € V.
Then F(oo) C C. If there were a point 21 € C \ F(c0), then there would
be a geodesic &: [0,b] — C with £(0) € F(o0), {(b) = x1 and £(s) ¢ F'(o0)
for all s > 0. By Lemma 2.8 we get F' € W, a contradiction.

Now let C be a connected component and Wy(oo) NC # @ for some
Wy € W. Let W* be the maximal set with Property 2.3 and Wy €
W*. Obviously C C Uy epy= W(c0). We claim equality. We will show
the following: if 23 € W(oo) for some W € W* and 22 € 97X with
Z(xq,22) < 1 (the constant of Lemma 2.7), then 2o € W/(o0) for some
W’ with W N W' # @. This gives the result. Let &: [0,0] = 97X be
the geodesic from xy to x3 and let so = sup{s €[0,b]|&(s) € W }.
If so = b we are finished. If not, Lemma 2.8 implies that £(sg) is a
singular point of some W’ with W' N W # @. Hence Lemma 2.7 yields
that £([0,0]) C W'(o0). q.e.d.

3. Diameter estimate for nonstandard components

In this section we prove part (1) of Theorem 1, i.e., the diameter of
each nonstandard component of 0y X is uniformly smaller than = and
that nonstandard components are intervals. Recall that we say that a
component of Oy X is nonstandard if it is not standard and not a single
point.

To begin with, we state two lemmas which follow immediately from
accumulation arguments. We omit the proofs.

Lemma 3.1. For any ¢ > 0 there ewists some § > 0 such that the
following is true. Assume F' C X is a2-flat, ¢;: [0, D] — X, i=1,2, are
two geodesic segments parametrized by arc length with ¢1(0) = c2(0) =:
p, d(p, F) = D and d(c;(t), F) < D for each t € [0, D] and i = 1,2. If
Z(¢1(0),¢2(0)) > © — & then d*(¢1(0), R3) < e.

Lemma 3.2. For each ¢ > 0 there exists some § > 0 such that
the following is true: Suppose that o,p,q,0,p', ¢ € X with d(o,p) > 1,
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d(o,q) > 1 and d(o,0") < &, d(p,p’) < 6, d(q,q') <. Then |Z,(p,q) —
Zo(p',q)| < e.

For a point « € dr X we denote by C(z) the connected component of
Jdr X containing z. By definition and Proposition 2.1, C(z) is standard if
and only if z € R>3(00). Furthermore, from the previous section we see
the following: Given a ray ¢ in drX, its limit point ¢(co) is contained
in a standard component of dr X if and only if

m\Iloc;éQ

t>t0

for some t; > 0. We now investigate the function ¥ o ¢ for rays ¢
representing points in nonstandard components.

Lemma 3.3. Suppose that x € dr X and C(x) is nonstandard. Let
c: Ry — X be a ray representing x. Then there exists some 7 > 0 such
that the following are true:

(i) For eacht > 7, Woc(t) CW.
(i) For eacht > 1, |Woc(t) € {1,2}.
(i1)) (Nyse, Yo c =D for each t; > 0.

For a ray ¢ as in the lemma, we denote by 7(c¢) the minimal 7 > 0
such that (i) and (ii) in the lemma hold.

Proof. Lemma 2.5 implies in particular that there exists some 7 € R
such that for ¢t > 7, d'(¢(t), R>2) < a and hence |W o ¢(t)| > 1 for ¢t > .
Thus there exists some V € V with d'(é(t), T'V) < a. Since C(z) is
nonstandard, we see that c¢(oo) ¢ V(oo) and thus d(c(t), V) — oo as
t — oo. Hence 7y := sup{t >7|d'(¢(t),T'V) = a} < oo and let
v e T'V with d'(¢(1),v) = a. Since d'(é¢(m1), R>2) < a, there exist
some V' € V\ {V} and some v/ € T'V’' with d'(é¢(m),v) < a. By
part (4) of Lemma 1.1 we see that V, V' € W.

This shows that C' := {t> 7| ¥ o c(t)NW # T} is not empty.
Clearly, C'is closed. We claim that it is an open subset of [7,00). Let
t e Cand W € Uoe(t)nW. Since t > 7, there exists some V € V
with d(c(t),V) < a. By part (5) of Lemma 1.1 we have V € W. Since
V € ¥ o ¢(s) for s in an open neighbourhood of ¢, we see that C' is
open. Hence we have proved that W o ¢(t) "W # @ for each ¢t > 7. Now
part (5) of Lemma 1.1 implies that ¥ o ¢(t) C W. By part (2) of that
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lemma, |W o ¢(t)] < 2 and by our assumption € R>(00) we have that
ﬂt>t1 Voc=@ foreacht; > 0. q.ed.

Under the assumption of Lemma 3.3 we consider the set

A(e) = {t € (r(e),00) | W e e(t)] =1},
The set A(c) has the following properties:

(i) A(c) = U2 (a;, b;) where a; < b; — D < b; < a;q and Wo ¢,
is constant. We denote the value of W o c on (a;, b;) by {W*(c)}.

(ii) There is a unique sequence i1 < i3 < -++ < i < fpq1 < --- such
that {¢ | Wi (c) = Wi(e)} = {i]in < 1@ < dpy1 ). We define

W, (c) := W[ (c) for each integer n > 1.

Indeed, the previous lemma implies that A(c) has infinitely many con-
nected components. Moreover, for a connected component (a’,d’) we
have | o ¢(a')| = |V o ¢(b')| = 2, and thus &’ — a’ > D by Lemma 1.1.
Let (a;,b;),7=1,2,..., with a; < a;41 be the connected components of
A(c). This shows (i). In order to see (ii), suppose that W7 (c) = W7 (c)
for some 7 and some [ > 0. Since the function d(W>(c), -) is convex on
X, d(Wi(e),c(t)) < afor each t € (aj,bj4). Thus Wi (e) = W,
kE=1,2,...,1L

Let ¢ and ¢ be rays in X. We call the corresponding sequences
(Wo(€))n>1 and (W, (c'))n>1 equivalent if there exist ng, mg € Z with
ng > —mg such that W, (¢) = Wiy, (/) for each n > nyg.

The next proposition states a property of nonstandard components
which is of interest itself, but not directly needed for the proof of The-
orem 1. For that purpose Lemma 3.5 below is enough.

for

Proposition 3.4. Let C be a nonstandard component of 0r X . Let
c and ¢ be two rays in X with c(oo),c'(oc) € C. Then (W, (c))n>1 is
equivalent to (W, (c'))p>1.

Proof. Tn the first step we consider two rays ¢ and ¢ with ¢(o0) =
¢’(00) we show that the corresponding sequences of higher rank sub-
spaces are equivalent. We parametrize ¢ and ¢ by arc length, and
we may clearly assume that ¢(0) and ¢/(0) lie on the same horosphere
around c¢(oco) = ¢/(c0). We first assume that d(c(t), ¢/(t)) — 0 as t — oc.
Let A(c) = U;2,(ai, b;) as above with |b; — a;| > D. Again an accu-
mulation argument shows that there exists an £ > 0 such that the

following holds: If d(c(b;),V) = a = d(¢(a;), V) and |b; — a;| > D, then
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d(c((bi+ai)/2),V) < a—e. Since finally d(c(t), d(t)) < e, we easily see
that the corresponding sequences are equivalent.

If we assume that ¢t — d(c(t),c/(t)) is bounded from below by a
positive constant, then “asymptotically” ¢ and ¢’ bound a flat strip.
More precisely, an accumulation argument shows that for ¢ large enough,
¢(t) and ¢/(t) are close to the same higher rank submanifold, i.e., there
exists some ¢ > 0 such that

(3.0.1) Voct)NWod(t)# @ foreacht>t.
Pick some kg > 0 such that for each integer k > kg,
inf(Woc) " {Wi(c)} > 1.

We claim that for each k > kg there exists some integer [ such that
Wi(e) = Wi(d) and Wipi(e) = Wigi(¢) which imply that
(Wi(€))n>1 is equivalent to (W, (¢))n>1.

To prove this claim, we pick any k& > ko and abbreviate Wy := Wy(c)
and Wy := Wryi(c). Observe that (¥ o) L ({ Wy, Wy }) =: [t1,t5] is a
closed interval. By (3.0.1) we have that W; € W o ¢/(t;) for i = 1,2. Put

ty ::sup{t‘Wle\I/oc’(t)}, t_ ::inf{t‘WQE\IIOC/(t)}v

and claim that t_ < t;. Otherwise there exists some t3 € (t4,1_) C
(t1,t2) with W o /(t3) = {W} for some W € W\ {W;,Wy}. Thus
by (3.0.1), { W, Wy, W3} C W o ¢(t3) in contradiction to part (2) of
Lemma 1.1.

Therefore, U o ¢/(t) = {W;} for each ¢t < t_ sufficiently close to ¢_
and W o /(t) = {Wy} for each t > t sufficiently close to t;. This
proves the above claim.

With the result proved so far, the proposition is now an immediate
consequence of (ii) in the next lemma. q.e.d.

Lemma 3.5. Let & [0,b] = 07X be a Tits geodesic with 0 < b <7
which is contained in a nonstandard component. Then there exists a

point p € X such that for the geodesic variation cs := p&(s), s € [0,b],
the following are true:

(i) T(cs) =0 for each s € [0, b)].
(ii) For each integer n > 1, W, (cs) =: W, is independent of s € [0, 0].

(iit) d(p,V) > D for each V € V \ {Wi}.
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Proof. We pick any ray ¢ with ¢(co) = £(0). By Lemma 3.3 and
part (2) of Lemma 1.1, there exists an arbitrary large ¢ such that
|W o c(tp)| =1 and (iii) is satisfied with p = ¢(tg) and Wy = W o ¢(t).

If to with these properties is sufficiently large, we see from Lemma 2.5
that d'(é¢s(u), R>2) < a for all s € [0,6] and all u > 0. Now the proof
of Lemma 3.3 shows that 7(c,) = 0 for each s € [0, b].

With this choice of p it remains to prove (ii). To that end, we
consider for each integer n > 1 the set

I, = {s € 0,5 | W(es) = Wa(co) } :

By the above, Iy = [0,b]. Given n > 2, we prove by induction that I,, =
[0,b]. By Lemma 1.1, I,, and [0, 6]\ I,, are open subsets of I,_y = [0, b].
Since I,, # @ this finishes the proof of the lemma. q.e.d.

After these preparations, we now prove part (1) of Theorem 1.

Proof (Diameter estimate).  Arguing indirectly, we assume there
exist z,y € 07X \ R>2(00) such that

T —0p < ZL(z,y) <,

where we can choose §y as small as we wish. With & := Ty parame-
trized on [0, 1] we choose p € X according to Lemma 3.5 and such that
T—060 < Zy(x,y). Welet ¢,, s € [0,1], and (W;);>1 be as in the previous
lemma. Then we denote by t;, ¢+ = 0, 1, the real numbers such that

d(Ci(ti), Wy n Wg) =D and Vo Ci(ti) = {WQ} .

By Lemma 3.1 applied to the geodesic segments co(to)c1(t1), ol t0+D]
and to the flat W, N W5 we see that d*(¢o(to), vo) < & for some vy € Ra,
and in the same way that d'(é((¢1),v1) < &; for some v; € R3. Here we
can choose é; € (0, a) as small as we wish, provided §y > 0 is sufficiently
small. Part (4) of Lemma 1.1 shows that v; € T1W; for i = 0, 1.

Let ¢; denote the base point of v;. Since clearly t; > D, applying
Lemma 3.2 yields that

Ly(giyci(ty)) < 8 and Ly, (p,vi(00)) > 7 — 0y

for some §y as small as we wish, provided &; is small enough. Conse-
quently,
Ly (v1(00), v9(0)) > 7 — b — 403,
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in contradiction to part (7) of the Discreteness Lemma 1.1  q.e.d.

Proof (Nonstandard components are intervals). Suppose there exist
Ty, 22,23 € X(00)\R>2(00) with 0 < ZL(x;,2;) < mforeachi,j=1,2,3.
Pick p € X and let ¢; := p7;.

By the previous results, there exist a sequence (Fn)nZI C Fint of

intersection flats, for each 1 = 1,2, 3 a sequence (tin)nZI in R and v;, €
T'F, such that

tim — 00 and dl(éi(tm), Vi) > 0 asn — oo.

Indeed, dl(éi(t)77€22) — 0 ast — oo and any Wi, Wy € W with Wi N
W, € Fine intersect orthogonally.

Claim 1. lim v;,(c0) = #; in the sphere topology.
n— 0o

Let @ > 0 and F; == {q€ X | £,(¢,2;) < a}, and let o, be the
base point of v;,. Arguing indirectly, we may assume w.l.o.g. that
v, (Rs) ¢ F; for some ¢ and each n. Thus there exists some e, €
OF; OEUM(RZ). Lemma 3.2 implies that Z,, (p,e,) — 7 as n — oo.
Since Z, (04, c(t;n)) — 0, we conclude that the sum of the interior an-
gles of the triangle (p, 04, ¢€,) is greater than = for each large n. This
shows Claim 1.

Claim 2. lim Z(v;,(00), vj,(00)) = Z(z;, ;).

n—0oo

FIGURE 1
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We put
Qp 1= écl‘(tm)(p7 C](t]n))v ﬁn = éc](tjn)(p7 Ci(tin))7
O‘;z =T éom (Uin (OO), OJN)v ﬁ?lz =T éojn(vjn (OO), OiN)v

as illustrated in Figure 3. Clearly, Z(z;,2;) = lim,o0 (7 — @y, — B,).
We conclude from Lemma 3.2 that |, —al,| = 0 and |3, — (| = 0 as
n — oo. Since ® — oy, — B, > ZLy(24, ;) > 0, we have that of, + 5], <7
for n large enough. Thus the geodesics ¢,,, and ¢, are not parallel
and intersect at a point ¢y, (Sin) = ¢y, (5j,) With negative s;, and s;,.
Therefore Z(v;;,(00), v, (00)) =7 — af, — 8. Thus Claim 2 holds.

Claims 1 and 2 imply that nonstandard components are intervals.
Indeed, assume that Z(z;,z;) < 7/2 for each ¢,j. Then, after renum-
bering, we have that Z(z1,z3) + £(x2, x3) = Z(21, 23) and in particular
that x5 is contained in the geodesic segment ZT7z3. q.e.d.

4. Existence of nonstandard components

In this section we show the existence of nonstandard components in
the case that X contains intersection flats. This is part (2) of Theorem 1
and it follows from Proposition 4.1 below.

We assume that there exist different higher rank submanifolds
Wo, W1 € W with Fy = Wy N Wy being a 2-flat. For v = 0,1 we
choose one singular point z, € W, (c0). Then zg, 21 € Fp(o0).

Proposition 4.1. Given £ > 0, there exists a nonstandard compo-
nent with diameter larger than Z(xg, z1) — 2¢.

Proof. We call a sequence (cq, ... ,cx) of geodesic segments
¢t [0, ti] — X

with ¢;41(0) = ¢;(t;) a polygon. We also consider infinite polygons
(c1,¢2,...). For a geodesic segment ¢;: [0,¢;] — X let ¢: R — X be
the complete geodesic with Gjo;) = ¢;. For a given ¢ > 0 we will
construct a sequence (0;);>1 in ¥ and two polygons, the ‘even’ polygon
(co, €2, €4, . ..) and the ‘odd’ polygon (cq, ¢s3, ¢5,...) where ¢;: [0,¢;] = X
for = = 0,1,2,.... The whole construction will satisfy the following
conditions (see also Figure 4):

(i) Let Wy, Wy be as above. Then (0;);>1 satisfies: o;W; = W; and
o;x; = x; where we define inductively W11 (= o;W;_q, 241 =
oxi—1 and F; == o0;F;_1 = W, N W;41. The W, are all distinct.

549
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Note that the conditions imply that z; is a singular point of W;(o0),
and that Z(z;, z;41) = Z(20, 1) since o; is an isometry.

(i) We have tg = t; = 1, ¢9(0) = ¢1(0) = p € Fp and E;(c0) = 2, for
i=0,1,2,....

(iii) d(e;(t;), W) <efori=1,2,3,...

(iv) Ha (e.([0, £.1) Uaral[0, fugal) U---Ueioa([0, t;-2]) U (R ), B7) <

(1-2""efori=0,1,2,... where x is 0 for 7 even and 1 for 7 odd.

FIGURE 2

Let us assume that we have constructed the situation above. We
assume w.l.o.g. that ¢ < (1/2) min{ a, Z(2¢, 1) }. For ¢ > 0 let r; be
the ray pz;. Since d(c¢i(t;),p) — oo by (iil), we obtain from (iv) that
(72:(0))i>1 and (72i41(0));>1 are Cauchy sequences. Let r* (resp. r™)
be the limit ray of rq,r2,74,... (resp. ri,rs,rs,...). By (iv) we have
that

o0

Hd(UC%([o,t%]),ﬁ(RZ)) <e and

Hd (| e2i41([0, £2i11)), 7™ (R3)) < =
=0
Since to = 1 and d(co(to), 7T (Rs)) < € we have Z,(é0(0),77(0)) < ¢
and in the same way Z,(¢1(0),77(0)) < e. Since p € Fy and z, =
¢, (00) € Fy(oo), v = 0,1, we have Z,(¢9(0),é1(0)) = Z(zg,21). Since
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e < (1/2)4(wg, x1) the rays r* and r~ are distinct. Furthermore,

£(r¥(00),r7(00)) 2 £,(i7(0),77(0))
Z ép(00(0)7 01(0)) — 2= 4($07 $1) — 2¢.

Since x9; — 1t (o0) and 9,41 — 7 (00) in the sphere topology as i — oo
and Z(x;, xi41) = ZL(xo, 21), it follows from the semicontinuity of £ that

Z(rt(o0),r™(00)) < L(xg,21) -

In particular, r*(oc0) and r~ (oo) are in the same connected component.

We recall that ¥(p) = {V € V|d(p,V) < a}. By (iii) and (iv)
and since £ < a/2 we see the existence of ¢; € [0,00) for i = 2,4,6,...
with W; € ¥(r*(7;)). We want to show that r*(oco) is in a nonstandard
component. Arguing indirectly, there exists some W € W with W €
U o rt(¢) for each large enough ¢. This implies that W N Wy # & for
all large k. Thus we can find a configuration of four pairwise distinct
Wi, ..,Wy € W, with W/, nW/,, # @ and indices taken modulo 4.
Indeed, put W{ := W, W) := Wy, Wi := Wapyr and W) = Wapyo
for some large k. An easy argument using the distance nonincreasing
property of the geodesic projections onto higher rank subspaces shows
the existence of a flat totally geodesic quatrilateral with a vertex in
each W, N W[H_l. By analyticity, this quatrilateral is contained in a flat
intersecting W, MW/ ;. This contradicts part (5) of Lemma 1.1. Hence
rt(c0) is not contained in a standard component.

To finish the proof it remains to construct the required situation
which we do inductively. First we choose a point p € Fy and let
cp, c1: [0, 1] = Fy be the geodesics with ¢o(0) = ¢1(0) = p into the direc-
tion of zg, 2y, respectively. Then d(co(1),W,) = d(c1(1),W,) =0 < ¢

for v = 0,1. We now assume that we have already constructed ¢y, . . ., ¢
and o1, ...,0,_1 such that all the conditions (i) — (iv) are satisfied up
to index k.

We now construct o5 and cg4q. Note that by induction hypothesis
Wiy is already defined. Let

Ek::{UEE‘UWk:Wkandaxk:xk}.

Then i operates with compact quotient on Wy and by isometries on
OrWi. Since Wy, splits as Qr X R and @y has the visibility property, >
operates densely with respect to the sphere topology on the Tits geodes-
ics of length = connecting z, to the other singular point of Wy (c0). Thus

551
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there exists a sequence oy, € X, j = 1,2,... such that oy, (v3_1) #
Tgp—1 but op (vr_1) — xx_1 in the sphere topology as j — oo. We
can also assume oy, (Wy_1) € {Wi,..., Wy }. Let T, : R — X be the
geodesic with ; (0) = c,_1(tg—1) and T, (c0) = oy, (zg—1). We will
finally choose cgy1 := Tk, |[ ] for a suitable 7 and ¢x4+1. By induction
hypothesis we have

0,0k41

Hd (e.([0,t]) U---Ue_1 (Rs), parg) < (1—27¢D)e.

Since oy, (T5—1) — Tx_1 as j — 00, it is obvious that for j large enough

Hd (¢ ([0, £.])U- - Ucp—1 ([0, tr—1])UTs, (R3), pog, (2-1)) < (1_2—(k+1))€.

Choose o}, := Ok, for such j large enough and CTp4q := T, -

Then (i), (ii) and (iv) are satisfied for co, . . ., cx, Ck|jo g and o1, ... , 0%
where ¢t > 0 is arbitrary.

It remains to prove the existence of t;41 to show (iii). Note that
Tit1(00) = @p41 is a singular point in Wiy (oco). We claim that

Jim d(€t1 () Wier) = 0.

Otherwise, by Lemma 2.6 there would exist some W € W\ {Wj41} with
limy—yeo d(Cky1, W) = 0 and zx41 would be a singular point of W (o0).
Furthermore, W N Wy, # @. But the singular points of W and Wi,
have to be distinct. This proves the claim. It follows the existence of
tg+1 > 0 with d(Ek-H (tk+1),Wk+1) < e. Then ¢, = Ek+1|[07tk+1] is the
required geodesic.  q.e.d.

5. An application to the structure of quasi-flats

In this section we sketch an application of our results. As above,
we consider a Riemannian universal covering space X of a closed, real-
analytic manifold of nonpositive curvature and dimension 4. In addition
we require that X does not contain any 3-flat.

We consider a special class of quasi-flats. Let S' be the standard
circle of length 27 and let a: S* — 97X be a simple closed Tits geodesic
parametrized proportionally to arc length. Furthermore, let 0 € X be
given. Then define a map

fou: B2 = X
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in the following way. For # € R? with polar coordinates (r, 8) € R> X St
let f,o(2) = 0a(8)(r). We call such a map a conical quasi-flat. Tndeed,
fo,a is a quasi-flat and this fact is not obvious. So we sketch the main
arguments to prove this fact:

First one shows that a: S — 97X is a bilipschitz embedding. By
Theorem 1 it is clear that a(S') is contained in a standard component.
It follows that there are points #; < 63 < --- < @ in [0,27) which we
view as points in S' and points p; € X, ¢ =1,...,k, such that

Lpi(a(@iz1, a0i41)) = Z(@(bi1, a(Big1)) < 7

for each i, where the indices are taken modulo k. Thus the geodesic rays
from p; to the points in «([6;—1,6;+1]) form an isometrically embedded
flat sector .S; which is obviously quasi-isometric to a sector of angle
ds1(6;—1,0;11) in R Notice that f, ,(R?) is in finite Hausdorff distance
to Ule S;. Now it is not difficult to prove that f is a quasi-flat.

From our results in the previous section, we can deduce

Lemma 5.1. Suppose that a: S — 01X is a topologically embed-
ded loop. Then a(S') C drX is the image of a simple closed Tits geo-
desic. Furthermore, the length spectrum of simple closed Tits geodesics
in OrX 1is discrete.

Proof. Under the assumption of the lemma, «(S!) is contained in a
standard component of 97X by Theorem 1. The standard components
are described in Corollary 2.2. Since by assumption X contains no 3-
flats, this corollary implies the first part of the Lemma. To that end
recall also the description of the Tits geometry of the elements in W in
Section 1. By Lemma 1.1 and Lemma 2.7 the set { T'd(z1, z3) | 21,22 €
Rs(o00) } is discrete. This shows the final part of the lemma. q.e.d.

Now Theorem 2 is a consequence of B. Kleiner’s results on the struc-
ture of maximal dimensional quasi-flats in cocompact Hadamard spaces
(see [6]).

Proof of Theorem 2. Let g: R? — X be an (L,C)-quasi-flat.
By [6], the limit set g(co) C 9rX of the 2-dimensional quasi-flat is
a l-dimensional embedded sphere and its length is close to 27 if L is
close to 1. By Lemma 5.1 there exists a conical quasi-flat f: R? — X
with f(oo) = g(c0). Now Kleiner’s results for quasi-flats in [6] imply
that g(R?) is in finite distance to f(R?) and thus to a finite number of
flats in X. By the discreteness of { Td(z1, 22) | 21, 22 € Ra(oo) } and by
Lemma 5.1, we see that the number of these flats can be bounded in
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terms of the length of g(oo) and thus in terms of L. Moreover, g(o0)
has length 27 provided L is sufficiently close to 1. This completes the
proof. q.e.d.

Proof of Corollary 3.  We assume first that X; and X, do not
contain isolated flats. The results of Section 2 show that the standard
components of the Tits metric have the structure of a combinatorial
graph. In this graph we can distinguish between two types of edges
which we call short and long edges respectively. An edge is called long
if it is contained in a cycle of combinatorial length 2 and short otherwise.
The reader should observe that the long edges are exactly the edges of
length 7 in the Tits metric. The short edges have smaller Tits length.
However, the crucial point is that this property of an edge can be read
off purely from the combinatorial graph.

Each flat in X; or X, corresponds to a cycle in such a graph. The
cycles which correspond to flats can also be detected completely using
only the combinatorial data. These are precisely the following:

(i) The cycles of combinatorial length 2. The type of the sequence of
edges is (long, long).

(ii) The cycles of length 3. The type of the sequence of edges up to
cyclic permutation is (long, short, short).

(iii) The cycles of length 4 with type (short, short, short, short).

Theorem 2 shows that a quasi-isometry f: X; — X5 induces a map from
cycles in the standard components of d7 Xy to the cycles in the standard
components of drXs. Looking at finite intersections of conical quasi-
flats in X; and X, and at their images under f and f~' one can show
that f induces a combinatorial map between the respective graphs. By
the above it maps cycles corresponding to flats to cycles corresponding
to flats and therefore f maps flats to within finite distance of flats by
Theorem 2. It is now clear that the Corollary also holds if Xy or X,
contains isolated 2-flats.  q.e.d.
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