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0. Introduct ion 

A compact orientable surface F with nonnegative Euler character
istic is either a sphere, a disk, a torus, or an annulus. If a 3-manifold 
M contains such an essential surface, then it is said to be reducible, 
9-reducible, toroidal, or annular, respectively. Any such surface can be 
used to decompose the manifold further into simpler manifolds. We say 
that M is a simple manifold if it has no such surfaces. A simple mani
fold is expected to have a nice geometric structure. If M has nonempty 
boundary, then the Geometrization Theorem of Thurston for Haken 
manifolds says that M with boundary tori removed admits a finite vol
ume hyperbolic structure with totally geodesic boundary. When M has 
no boundaries, Thurston's Geometrization Conjecture asserts that M is 
either hyperbolic, or is a Seifert fiber space with orbifold a sphere with 
at most 3 cone points. 

Suppose T is a torus boundary component of M. We use M(j) to 
denote the manifold obtained by Dehn filling on T so that the slope 7 
on T bounds a disk in the Dehn filling solid torus. When M = E(K) 
is the exterior of a knot K in S 3 , denote M (7) by K(y), and call it 
the manifold obtained by 7 surgery on the knot K. It is well known 
that if M is simple, then there are only finitely many Dehn fillings on 
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T which produce nonsimple manifolds. If M (71) and M(72) are non-
simple manifolds, then the geometric intersection number between 71 
and 72, denoted by A (71, 72), is proved to be at most 8 by Gordon [10]. 
There are 10 different cases, according to the types of nonnegative Euler 
characteristic surfaces in M(ji). In many cases, the upper bounds for 
A(71, 72) have been established; see Table 0.1. 
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T a b l e 0 .1 . Upper bounds of A(71, 72) 

In the table, the left column and the top row denote the types of 
M(71) and M(72); D, S, A, T mean that M(ji) contains an essential 
disk, sphere, annulus, or torus, respectively. The numbers without star 
are known to be the best possible, while those with star are best results 
so far (till June 1996). The numbers in parenthesis are the maximal 
values of known examples. The results can be found in the following 
papers: T-T, T-A, A-A and D-A are proved by Gordon [10]; S-T is 
proved independently by Wu [32] and Oh [24]; D-D by Wu [31]; S-D 
by Scharlemann [28]; SS and D-T by Gordon and Luecke [13], [15]; 
S-A is to be proved in this paper: 

T h e o r e m 5 .1 . Suppose M is a simple manifold with torus T as a 

boundary component. IfM(ji) is annular, and M(72) is reducible, then 

A(71, 72) < 2 . 

The theorem is sharp. Hayashi and Motegi [19] gave an example of a 

hyperbolic 3-manifold M, such that M(71) is reducible and 9-reducible, 

M(72) is toroidal and annular, and A(71, 72) = 2. 

Remark . More recently, Gordon and I [16], [17] settled the re
maining cases in Table 0.1. It turns out that for type D-A the bound is 
2, and for types A—T and A—A the bound 5 given by Gordon in [10] is 
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the best possible. Furthermore, we showed that if M{r\) is annular and 
M(r2) is toroidal, then A ( r i , r2) < 3, except for three specific manifolds 

M. 

There are many examples showing that a generic hyperbolic mani
fold admits very few nonhyperbolic Dehn fillings. The following theorem 
shows that if the manifold is "large", then stronger results than those 
in Table 0.1 hold. 

T h e o r e m s 4.1 and 4.6. Let M be a simple 3-manifold with torus 

T as a boundary component, such that H2{M,dM — T) / 0. If Ji and 

72 are slopes on T such that 

(1) M(ji) is annular and M(72) is reducible, or 

(2) M (71) is toroidal, and M (72) is reducible, or 

(3) M(71) is toroidal, andM(j2) is d-reducible, then A(ji,j2) < 1-

Note that the condition H2(M,dM - T) / 0 is true unless M is 
either a rational homology solid torus or a rational homology cobordism 
between two tori. In particular, it is true if M either has a boundary 
component with genus > 2, or if it has more than two boundary tori. 
Similar to Table 0.1, we have the following table of upper bounds of 
A(71, 72) for such manifolds: 

^\M(r 2) 

S 

D 

T 

A 

A 

1 

? 

? 

? 

T 

1 

1 

? 

D 

0 

1 

S 

0 

T a b l e 0.2. Upper bounds of A(71, 72) when H2{M, dM - T) / 0 

The entries with question marks are unsettled. The case S—S is 
proved by Luecke [22], others follow from Theorems 4.1, 4.6 and Table 
0.1. The results here are also sharp; see Examples 4.7 and 4.8. 

The following is an application of the above theorems to Dehn surgery 
on knots K in S 3 . It was conjectured that if K is hyperbolic and K(7) is 
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nonhyperbolic then r = p/q with |q| < 2. Corollary 4.5 proves this con
jecture in the case that the knot complement contains an incompressible 
surface F cutting E(K) into anannular manifolds. 

Corollary 4 .5 . Let K be a hyperbolic knot in S3. Suppose there 
is an incompressible surface F in E(K), cutting E(K) into anannular 
manifolds X and Y. Then K(j) is hyperbolic for all non-integral slopes 

7-

The proofs of these results use a combination of sutured manifold 
theory, essential laminations, essential branched surfaces, and some 
combinatorial arguments. In Section 1 we defined cusped manifolds, 
and show that if there are some essential annuli connecting T to some 
components of dh M, then M(j) has some nice properties whenever 7 
has high intersection number with the boundary slope of those annuli 
(Theorems 1.6, 1.8 and 1.9). Section 2 is devoted to the study of inter
sections between essential surfaces and essential branched surfaces. We 
show that they can be modified to intersect essentially on both of them. 

T h e o r e m 2.2 . Suppose B is an essential branched surface which 
fully carries a lamination X, and suppose F is an essential surface in 
M. Then there is an essential branched surface B' which is a X-splitting 
of B, and a surface F' isotopic to F, such that F' n B' is an essential 
train track on F'. 

This theorem is fundamental in our proofs, and should be useful in 
the future. Combining with a result of Brittenham, it gives the following 
theorem. Recall tha t a closed orientable 3-manifold is hyperbolike if it 
is atoroidal, irreducible, and is not a small Seifert fiber space [11]. 

T h e o r e m 2.5. Suppose M is a hyperbolic manifold with torus 
boundary T. Let B be an essential branched surface in M such that M — 
IntN(B) contains an essential annulus with one boundary on dh N(B) 
and the other a curve on T of slope 70. Then M (7) is hyperbolike for 
all 7 with A(70, 7) > 2. 

Gabai and Mosher [8] showed that any hyperbolic manifold M with 
torus boundary contains an essential branched surface satisfying the 
condition in the theorem. This implies that all nonhyperbolike surgery 
slopes lie on 5 lines in the Dehn surgery space. 

In Section 3 we use sutured manifold hierarchy to prove Theorems 
4.1 and 4.6 in the case that dM consists of tori. The general version 
of these theorems is proved in Section 4, by using a construction of 
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Luecke. In Section 5 we prove Theorem 5.1. Here we use a combinatorial 
argument to deal with the cases in which the essential annulus in M(ji) 
intersects the Dehn filling solid torus at most twice, then we use ß-
taut sutured manifold hierarchy and a generalized version of Gabai disk 
argument to prove the theorem in the general case. 

Some problems arise in this research. A challenging problem is to 
establish the lower limit of A (71, 72) for the remaining cases in Table 
0.2. Some other problems can be found in the paper. 

N o t a t i o n and Convens ions . All 3-manifolds and surfaces below 
are assumed orientable. Surfaces in 3-manifolds are assumed properly 
embedded unless otherwise stated. 3-manifolds are compact and con
nected unless it is the exterior of some essential lamination in a compact 
manifold. A non-sphere surface F in a 3-manifold M, then it is essential 
if it is incompressible, 9-incompressible, and not parallel to a surface on 
dM. A sphere in M is essential if it is a reducing sphere. We refer the 
reader to the books of Hempel [20] and Jaco [21] for standard definitions 
and basic results on 3-manifold topology, to the paper of Gabai-Oertel 
[9] for those of essential lamination and essential branched surface, and 
to the papers of Gabai [5]-[7] and Scharlemann [27]-[28] for sutured 
manifold theory. 

We use N(B) to denote a regular neighborhood of a set B in M. 
If F is a surface in M, we use M\F to denote the manifold obtained 
by cutting M along F , i.e. M\F = M — IntN(F). A train track r is a 
branched compact 1-manifold on a surface. A small neighborhood of a 
branched point is cut into 3 pieces, one of which contains a cusp at tha t 
branched point. A branched surface is a 2-dimensional generalization 
of train tracks, see [9] for more details. If B is a branched surface in a 
3-manifold M, then its exterior is defined as E(B) = M — IntN(B). 

A c k n o w l e d g e m e n t 

I would like to thank Martin Scharlemann for his very interesting and 
stimulating lectures on sutured manifold theory given several years ago 
at Santa Barbara, which has been of great influence to this work, and 
thank David Gabai for some helpful conversations on sutured manifolds 
and essential laminations. 
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1. C u s p e d manifolds 

Definit ion 1.1. A cusped manifold is a compact orientable 3-
manifold M with a specified (possibly empty) collection of annuli and 
tori on dM, denoted by dv M, called cusps or vertical surfaces. The 
surface dh M = dM — I n t ^ M is called the horizontal surface of M. 

E x a m p l e 1.2. If B is a branched surface in In tM, then E(B) has 
a natural cusped manifold structure. The horizontal surface of E(B) is 
dh E{B) = dh N(B)UdM, and the vertical surfaces of E{B) is dv E{B) = 
dv N(B), where dh N(B) and dv N(B) are the horizontal and vertical 
boundaries of N(B); see [9] for definitions. Sutured manifolds are also 
cusped manifolds; see Section 2. 

Definit ion 1.3. Let F be a surface in M such that F (~) dv M 
is a set of essential arcs and circles in dv M. We consider the arcs of 
Fndv M as cusps on dF. The cusped Euler characteristic of F is defined 
as Xc(F) = x(F) — ^C(F), where x(F) is the Euler characteristic of F, 
and C(F) is the number of cusps on dF. This number has an additivity 
property: If r is a train track on F, then x(F) = P X c ( F i), where F i 
are the components of F — In tN( r ) . In particular, the formula holds if 
B is a branched surface in In tM, F a surface transverse to B, and F i 
the components of F (~) E(B). 

Suppose M is a cusped manifold. A monogon in M is a disk D 
properly embedded in M, such that dD n dv M is a single essential arc 
in dv M. In this case D is also called a monogon of the horizontal surface 
dh M. If D Pi dv M consists of two essential arcs in dv M, then D is called 
a bigon. An annulus A properly embedded in M is cuspless if dA is 
disjoint from dv M. 

Definit ion 1.4. A cusped manifold M is Xc~irreducible if it con
tains no essential surface F with Xc(F) > 0. This is equivalent to that 
(i) M is irreducible, (ii) dh M is incompressible, and (iii) M has no 
monogons. 

Note that if M is connected then (i) and (ii) imply that either (iii) is 
true or M is a solid torus with dv M a longitudinal annulus. The proof 
is simple: If D is a monogon, then the frontier of N(dv M U D) is a disk 
with boundary on dh M, and hence is parallel to a disk on dh M, so M 
is homeomorphic to the solid torus N(dv M U D). 

We say that a branched surface B is intrinsically essential if (i) it 
has no disk of contact, (ii) it has no Reeb branched subsurface, (iii) no 
component of dh N(B) is a sphere, and (iv) it fully carries a lamination. 
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A branched surface B embedded in M is essential if it is intrinsically 
essential, and E(B) is Xc-irreducible. The intrinsic part is independent 
of the embedding of B. Thus to show an essential branched surface B 
in M remains essential after Dehn filling on a torus T disjoint from B, 
it would suffice to show that X (7) is a Xc-irreducible cusped manifold, 
where X is the component of E(B) containing T. 

An essential annulus A in M is called an accidental annulus if it has 
one boundary component in each of T and dh M. The curve A n T is 
the slope of A on T. Two such annuli A\, Ai are parallel if they are 
disjoint, and cut off a product region A\ X I containing no cusps of M. 
We need the following lemma. 

L e m m a 1.5. If A\,... , A n are mutually nonparallel, mutually dis
joint, accidental annuli in a Xc~irreducible cusped manifold M which is 
not aT2 xI with no cusps, then the frontier of X = N(TUAiU.. .L)A n) 
are essential annuli in M — dv M. 

Proof. Denote by A' = A[ U . . . U A'm the frontier of X . Since A i are 
essential, A'j are incompressible. Clearly there is no 9-compressing disk 
of A1j in X . If there is a 9-compressing disk D of A1 in X ' = M — Int X 
disjoint from dv M, then the frontier of N(D U A'j contains a disk A. 
Since M is Xc-irreducible, A must be parallel to a disk on dh M, which 
implies that A'j is parallel to an annulus on dh M. If n > 2, then the 
two annuli among the A i which are adjacent to A'j would be parallel. 
If n = 1, then M is a T2 X I without cusp. Both cases contradict the 
assumptions of the lemma. q.e.d. 

T h e o r e m 1.6. Let M be a Xc~irreducible cusped manifold, and T 
a torus component of dh M. Suppose M is not a T2 X I without cusp, 
and there is an accidental annulus A with slope l on T. 

(1) If A(l,j) > 1, then M(j) is Xc~irreducible. 
(2) If A(l,j) > 2, then M(7) is not an I-bundle over a surface S 

with dv M(j) the I-bundle over dS. 

(3) If A(l,j) > 2, any collection of bigons, tori and cuspless annuli 
in M(7) can be rel d isotoped into M. 

Proof. (1) Put X = N(T U A), and let A' be the frontier of X . 
By Lemma 1.5, A' is essential in M. After Dehn filling, X(j) is a solid 
torus with A' running A(l , 7) times along the longitude. So if A(l , 7) > 1 
then A' remains an essential annulus in M ( 7 ) . By an innermost circle 
outermost arc argument one can show that M(7) is Xc-irreducible, hence 
(1) holds. 
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(2) Suppose A(l,j) > 2, and suppose M (7) is an I-bundle over a 
surface S such that dv M(j) is the I-bundle over dS. Since the annulus 
A' above is incompressible, with dA' C dh M(j), it is isotopic to a 
vertical annulus, so after cutting along A', the manifold is still an I-
bundle over some surface S', with the two copies of A' and dh M(j) as 
the I-bundle over dS'. But this is impossible because X(j) is a solid 
torus with A' running along the longitude at least 3 times. 

(3) Suppose A(l , 7) > 2, and suppose F is a collection of bigons and 
cuspless annuli in M ( 7 ) . Since A' is essential, by an isotopy we may 
assume that A' (~) F consists of essential arcs and circles in F. Here an 
arc in a bigon B is essential if each component of B — A' intersects a 
cusp of M. Thus each component C of F fi X(j) is either an annulus 
with boundary disjoint from dA' or a disk intersecting A' twice. If C is 
an annulus, it can be pushed off the Dehn filling solid torus to lie in M. 
Since A( l ,7 ) > 2, a meridian disk of X(j) intersects A' at least three 
times, so if C is a disk, it cannot be an essential disk of X(j), hence 
again it can be isotoped into M. 

By restricting the above isotopies to M — N(dM) and extending 
continuously over M, we may assume that the restriction of the above 
isotopies to dM are identity isotopies. q.e.d. 

A stronger result than Theorem 1.6(1) holds if there is no accidental 
annulus in M. 

T h e o r e m 1.7. Let M be a Xc-irreducible cusped manifold, and T 
a torus component of dh M. Suppose there is no accidental annulus A 
in M. If M(71) and M(72) are Xc reducible, then A(71, 72) < 1. In 
particular, M(7) are Xc~irreducible for all but at most three 7 . 

Proof. If each M(ji) is reducible or has a compressing disk for dh M, 
the result follows from the main theorems of [31], [28], [13]. If M(71) 
has a monogon but no compressing disk for dh M or reducing sphere, 
then M(71) is a solid torus with dh M a longitude, in which case it is 
also easy to show that M(72) is Xc-irreducible when A(71, 72) > 2. See 
the last paragraph of the proof of Theorem 1 in [33]. q.e.d. 

If in Theorem 1.6 we can find two different annuli in M, then a 
stronger result holds: 

T h e o r e m 1.8. Let M be a Xc~irreducible cusped manifold, and T 
a torus component of dh M. Suppose there are two disjoint, nonparallel, 
accidental annuli A\ and Ai in M with slope l on T. 

(1) Ify^l, then M(7) is Xc-irreducible. 
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(2) If A(l,j) > 1, then M(j) is not an I-bundle over a surface S 
with dv M(j) the I-bundle over dS. 

(3) If A(l,j) > 1, then any collection of bigons, tori and cuspless 
annuli in M(j) can be rel d isotoped into M. 

Proof. The proof is similar to that of Theorem 1.6, only that we take 
X = N ( T U A i U A2). The frontier of X now consists of two annuli A1 

and A", which are essential in M by Lemma 1.5. If 7 / l then A' U A" 
is essential in X (7), and if A(l,j) > 1 then a meridian disk of X (7) 
intersects A'UA" more than two times, hence the argument in the proof 
of Theorem 1.6 applies here. q.e.d. 

The "two annuli" condition was first applied by Menasco to show 
that essential surfaces remain essential after Dehn surgery on certain 
knots [23]. If there are three such annuli in M, then we can get the 
strongest possible conclusion. The proof of the following theorem is 
similar to that of Theorem 1.8, and is omitted. 

T h e o r e m 1.9. If in Theorem 1.8 there are three disjoint, nonpar
allel, accidental annuli A i, then the conclusions of (1), (2) and (3) in 
Theorem 1.8 hold for all 7 / l. 

2. Intersect ion b e t w e e n essent ial surface and essent ial 
laminat ion 

Given two essential surfaces F\,F2, it is always possible to isotope 
one of them so that they intersect in circles essential on both surfaces. 
This is not possible in general if one of them is an essential branched 
surface B. However, Theorem 2.2 shows that after some splitting of B, 
it is possible to make them intersect essentially. As a corollary, it is 
shown that we can isotope an essential surface F so that its intersection 
with an essential lamination in M3 is an essential lamination on F. The 
results will be applied in Section 3 to prove Theorems 3.3 and 3.4. As 
a by-product, we will prove Theorem 2.5, which, when combined with 
a result of Gabai-Mosher, shows that all but 5 lines of surgeries on a 
hyperbolic knot produce hyperbolike manifolds. 

L e m m a 2 .1 . Suppose A is an essential lamination fully carried by 
a branched surface B. Then A is fully carried by an essential branched 
surface B' which is a X-splitting of B. 

Proof. This follows from the proofs of Lemma 4.3 and Proposition 
4.5 in [9]. The argument goes as follows. By thickening A if necessary 
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we may assume that dh N(B) C A. By a A-splitting we may assume 
that B has no compact surface of contact. Since A is essential, E(B) 
is irreducible, and dh E(B) is incompressible in E(B). Also, a monogon 
of E(B) could be extended to a monogon for A via some half-infinite 
vertical strip in N(B) — A, which would contradict the essentiality of 
A. It follows that the branched surface B satisfies all conditions of an 
essential branched surface except possibly the condition that it has no 
Reeb branched surfaces. Since A is essential, it has no vanishing cycle, so 
[9, Lemma 4.3], says that A is also fully carried by an essential branched 
surface B'. By examining the proof of that lemma, one can see that B' 
is actually obtained by a A-splitting of B. q.e.d. 

T h e o r e m 2.2 . Suppose B is an essential branched surface which 
fully carries a lamination X, and suppose F is an essential surface in 
M. Then there is an essential branched surface B' which is a X-splitting 
of B, and a surface F' isotopic to F, such that F' n B' is an essential 
train track on F'. 

Proof. By an isotopy we may assume that F is transverse to B. 
Thus F fi B is a train track r on F. We may further assume that 
FDN(B) = N(T), and the I-fibers of N(T) are also I-fibers of N(B); 
see [9, Lemma 2.6]. The train track r cannot have any monogon, because 
a monogon bounded by r would also be a monogon for the exterior of 
B, which is impossible since B is essential. We need to modify B and 
F so that T has no 0-gons either. 

Suppose D is a 0-gon of r in F. Let D\ be a small neighborhood of 
D in F. Then the train track r in D\ consists of a circle C bounding the 
0-gon D, and some arcs from some branch points on C to the boundary 
of D\, so it looks like that in Figure 2.1(a). The foliation F of N(B) 
induces a foliation F ^ = F l~l F on N(T); see Figure 2.2(b) for an 
example. We claim that F ^ has no noncompact leaf, otherwise there 
would be a circle 7 which is the limit of noncompact leaves. Let l be 
the leaf of F that contains 7. Since the lamination A is essential, l is TT\-
injective, so 7 is a trivial loop on l, which contradicts the Reeb stability 
of A, (see [9, Lemma 2.2].) 

It follows that there is an annulus 7 X I in D\, such that each leaf 
of Foo in 7 X I is a circle 7 X t for some t, 7 X 0 = dD, and 7 X 1 
intersects dh N(r). Since A is essential, 7 X 1 bounds a disk D' in a 
leaf l which intersects dh N(B), so there is an interstitial I-bundle J in 
M which contains the part of D' tha t is not on dh N(B). By splitting 
along a compact subbundle of J tha t contains J n D', we get a new 
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branched surface B', such that T' = B' n F is a train track obtained 
by splitting r , and r ' fl D\ is obtained by splitting T C\ D\ along 7 X 1, 
as shown in Figure 2.1(c). Note that splitting a train track with no 
monogon will not increase the number of 0-gons. Since M is irreducible 
(because it contains an essential lamination), DUD' bounds a 3-ball V. 
By pushing F off the ball V to the side of D', we get a surface F' such 
that F' fl B' has at least one less 0-gons than r ' on F. Repeating this 
process eliminates all 0-gons, so eventually F' f)B' becomes an essential 
train track on F', as requires. 

(a) (b) (c) 

F i g u r e 2.1 

By Lemma 2.1, B' can be further A-split to an essential branched 
surface B". The train track B" (~) F' is a splitting of B' (~) F', so it is still 
essential. q.e.d. 

Corollary 2 .3 . If X is an essential lamination, and F is an essen
tial surface in M, then F can be isotoped so that An F is an essential 
lamination on F. In particular, for any leaf l in X, each circle compo
nent of l fl F is essential on both F and l. 

Proof. By the theorem there is an essential branched surface B' 
fully carrying A, such that B' (~)F is an essential train track on F. Since 
A fl F is fully carried by the essential train track B(~)F, it is an essential 
lamination on F. If C is a circle component of A fl F, then it is essential 
on F. Since F is incompressible, C must also be essential on the leaf of 
A that contains C. q.e.d. 

Quest ion 2.4. Can Corollary 2.3 be generalized to the intersection 

of two essential laminations? 

Following Gordon [11], we say that a closed manifold M is hyperbo-

like if it is irreducible, atoroidal, and is not a small Seifert fiber space. 



418 YING-QING WU 

Thurston's geometrization conjecture [29] asserts that hyperbolike man
ifolds are hyperbolic. Gabai and Mosher [8] showed that a branched 
surface B as in the following theorem always exists. The slope 70 is 
called a degenerate slope. 

T h e o r e m 2.5. Suppose M is a hyperbolic manifold with torus 
boundary T. Let B be an essential branched surface in M such that 
M — IntN(B) contains an essential annulus A with one boundary on 
dh N(B) and the other a curve on T of slope 70. Then M(7) is hyper
bolike for all 7 with A(70, 7) > 2. 

Proof Let X = M - IntN(B), and assume A(70,7) > 2. By 
Theorem 1.6 we have (i) X (7) is a Xc-irreducible cusped manifold, and 
(ii) X (7) is not an I-bundle over a surface S with dv X(j) the I-bundle 
over dS. Now (i) implies that B remains essential in M ( 7 ) , so M(7) is 
irreducible; and by [2], (ii) implies that M(7) is not a small Seifert fiber 
space. To prove the theorem, it remains to show that M(7) is atoroidal. 

Assuming the contrary, let F be a torus in M ( 7 ) . Let A be an 
essential lamination fully carried by B. By Theorem 2.2, there is an 
essential branched surface B' which A-splits B, and a surface isotopic 
to F (still denoted by F), such that B' n F is an essential train track 
on F. Notice that the component of X' = M — IntN(B') containing T 
cannot be a T X I without cusp, otherwise T X 1 would be a leaf of A, so 
A would be inessential after all Dehn fillings on M; but since A is fully 
carried by B, which is essential in M ( 7 ) , this is impossible. 

Since B' is a splitting of B, the essential annulus A also lives in X', 
with d\ on dh X' — T. Since B' n F is an essential train track on F, 
each component of F (~) X'(j) is either a bigon or a cuspless annulus in 
X'(j). According to Theorem 1.6(3), the surface F(~)X'(y) can be rel d 
isotoped into X', which implies that F is isotopic to a torus in M. This 
contradicts the assumption that M is atoroidal, completing the proof. 

q.e.d. 

Corollary 2.6. Let M and B be as in Theorem 2.5. Then M(7) is 
hyperbolike for all but at most 20 slopes 7 . 

Proof. This follows from Theorem 2.5, the 27r-theorem of Gromov 
and Thurston [1], and the proof of [3]. Brit tenham showed that there 
are at most 20 slopes 7 which have A(j,l) < 2 and have length at 
most 2ir on T, and they contain all the reducible or small Seifert fibered 
slopes. Theorem 2.5 says that this set also contains all the toroidal 
slopes. q.e.d. 
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3. Sutured manifold decompos i t ion and essent ial 
branched surfaces 

A sutured manifold is a triple (M,j,ß), where M is a compact ori
entable 3-manifold, 7 a set of annuli or tori on dM, and ß a proper 
1-complex in M . The pair (M, 7) is a cusped manifold M such that 
each component of h M is oriented + or —, and each annulus cusp is 
adjacent to two components of h M with different orientation. In this 
case the cusps 7 are called sutures in [5], [27]. Denote by 9+ M (resp. 
d-M) the union of all components of h M with + (resp. —) orientation. 
We use d±M to denote "<9+ M or <9_M". They are denoted by R± in 
[5], [27]. In this section we assume ß = 0. 

A sutured manifold M is taut if it is Xc-irreducible, and both d±M 
minimize the Thurston norm in H2(M,dv M). Note that since each 
annular cusp is adjacent to two different component of h M, it is auto
matically true that M has no monogon. 

If F is an oriented surface properly embedded in M , such that dF 
intersects each torus component of dv M in coherently oriented circles, 
then when cutting along F, the manifold M\ = M\F = M — I n t N ( F ) 
has a natural sutured manifold structure (Mi, 71); see [5], [27]. Such 
process of obtaining a new sutured manifold from the old one by cutting 
along an oriented surface is called a sutured manifold decomposition, and 
is denoted by (M, 7) ~~» (Mi, 71). The decomposition is taut if both M 
and Mi are taut sutured manifolds. 

T h e o r e m 3.1 (Gabai ) . Let M be a Haken 3-manifold with toroidal 
boundary. Let P be a specified component of dM. Suppose M is atoroidal, 
and H2(M, dM — P) / 0. Then there exists a sequence 

(M, P) = (Mo, 70) S (Mi, 7 l ) S • • • S (M n, ln) 

of sutured manifold decompositions with the following properties: 
(1) Each (M i,ji) is taut and each separating component of S i+\ is 

a product disk. 
(2) Some component of jn is the torus P. 
(3) (M n, jn) is a union of a product sutured manifold and a sutured 

manifold (H, 5) = T2 X I where P = T 2 x O , and S n (T2 X 1) / 0. 

Proof. When dM = P, this is exactly Step 1 in the proof of [6, 
Theorem 1.7]. Since dM is incompressible, the sutured manifold (M, P) 
is taut , with 9 + M = dM — P. Hence (M, P) satisfies the assumption of 
[6, Theorem 1.8]. As remarked in the paragraph before [6, Theorem 1.8], 
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the proof of Theorem 1.7 there applies verbatim to this more general 
setting. q.e.d. 

Given any sequence of sutured manifold decomposition of M, there 
is an associated branched surface B. The construction is obvious: B is 
the union of dM — P and all the S i in the sequence, smoothed at dS i 
according to its orientation. See [7, Construction 4.16] for details. The 
following theorem is also due to Gabai. 

T h e o r e m 3 .2 . The branched surface B associated to the sequence 
in Theorem 3.1 fully carries an essential lamination A. 

Proof. The construction of A was described in [7, Construction 4.17]. 
The lamination extends to taut foliations after all but one Dehn filling 
on P, so it is essential in all but one M(j). It follows that A is also 
essential in M. 

One can also prove the essentiality of A directly from the construc
tion. From Description 2 of [7, Construction 4.17], we see that the only 
compact leaves of A are dM — P, which are incompressible by our as
sumption. As usual, let M\ = M — Int Ai, where Ai is a thickening of 
A. Then M\ is the union of E(B) and a noncompact product sutured 
manifold (W, ß) along the annular sutures ß of B. Since E(B) is a taut 
sutured manifold, E(B) is Xc-irreducible, so M\ is irreducible, and dM\ 
is incompressible and end-incompressible. By definition A is essential. 
q.e.d. 

T h e o r e m 3 .3 . Let M be an atoroidal, irreducible, d-irreducible, 
compact 3-manifold with dM a set of tori. Let T be a specified compo
nent of dM. Suppose H2(M, dM — T) / 0. Let 71 and 72 be slopes on 
T such that M(71) is toroidal, and M(72) is reducible or d-reducible. 
Then A(71, 72) < 1. 

Proof. Let 

(M, dM) = (M0 , 70) S (Mi, 7 l ) S • • • S (M niln) 

be a sequence of sutured manifold decomposition given by Theorem 3.1. 
Let B and A be the branched surface and essential lamination given by 
the Theorem. By Lemma 2.1, B can be A-split into an essential branched 
surface B'. Let X (resp. X') be the component of E(B) (resp. E(B')) 
containing T. Note that since B' is a splitting of B, we have X C X'. 

According to Theorem 3.1(3), X is a sutured manifold T2 X I with 
T = T2 X 0, and dv Xn(T2 X 1) / 0. Thus dv X consists of (at least two) 
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annuli, cutting T2 X 1 into d+X and d-X. Hence there are two essential 
annuli A± in X, each having one boundary component on T, and the 
other on different components of d±X. After splitting the component 
X' may no longer be a T2 X I , but since X C X1, the above annuli 
A± are also essential annuli in X'. Let y' be the slope A+ n T on T. 
Applying Theorem 1.8 to X', we see that if y / y' then X ' (7 ) is \c 
irreducible, hence B' remains an essential branched surface in X'(y) for 
all 7 ^ y'. Since we assumed that M(72) is reducible or 9-reducible, we 
must have 7 ' = 72. 

Now consider an essential torus F in M(71). By Lemma 2.1, after an 
isotopy of F we may assume that there is a branched surface B" which 
is a A-splitting of B', such that F fi B " is an essential train track r on 
F. Since the Euler number of F is zero, all components of F — IntN(r) 
are bigons or cuspless annuli. Let X" be the component of E(B") tha t 
contains T. Then in particular Y = Ff)X"(y) is a union of bigons and 
cuspless annuli. By Theorem 1.8, if A(71, 72) > 2, then Y can be rel d 
isotoped into M. But then F would be isotopic to an essential torus in 
M, contradicting the assumption that M is atoroidal. q.e.d. 

T h e o r e m 3.4 . Let M be a simple compact 3-manifold with dM a 
set of tori. Let T be a specified component of dM. Suppose H ̂ ( M , dM — 
T) / 0. Let 71 and 72 be slopes on T such that M(71) is annular, and 
M(72) is reducible or d-reducible. Then A(71, 72) < 1. 

Proof. The proof is the same as that of Theorem 3.3, with the essen
tial torus F in M(71) replaced by an essential annulus A. Since dM(yi) 
is contained in the branched surface B" in that proof, we can assume 
that A Pi B" is an essential train track r in A containing dA. Hence 
A — IntN(r) consists of bigons and cuspless annuli. So if A(71, 72) > 2, 
then A can be rel d isotoped into M, which would contradict the as
sumption that M is simple. q.e.d. 

4. Surgery on manifolds w i th large boundary 

In [32] and [24] it was proved that if M is a hyperbolic manifold with 
T a torus boundary component, and if M(71) is reducible and M(72) 
toroidal, then A(71, 72) < 3. Theorem 3.3 says that if dM consists of 
tori, and H ̂ ( M , dM — T) / 0, then we actually have a much stronger 
conclusion that A (71, 72) < 1. The following theorem shows that the 
first condition can be removed. Note that if dM is not one or two tori, 
then M automatically satisfies the condition that H ̂ ( M , dM — T) / 0. 
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T h e o r e m 4 .1 . Let M be an irreducible, d-irreducible, atoroidal 3-
manifold with torus T as a boundary component, such that HiiM^ dM — 
T) / 0. Let 7i and 72 be slopes on T such that M(71) is toroidal, and 
M(72) is reducible or d-reducible. Then A(71, 72) < 1. 

Proof. First assume that M(72) is reducible. Since M is atoroidal, 

by a theorem of Scharlemann [28], we see that M(7) remains 9-irreducible 

if 7 / 72-
For each component F of dM with genus > 2, choose a simple 

manifold M F with 9 M F = F, and H2{M F) / 0. Such a manifold 
can be constructed as follows: Let g =genus(F) . Choose a compact 
manifold X such that 9 X is a surface of genus g — 1, and H2{X) has 
rank > 2. (For example, let X = V # ( T 2 x S 1 ) , where V is a handlebody 
of genus g — 1.) According to Myers [26], there is an arc a in X, such 
that Y = X — IntN(a) is a simple manifold. Clearly, dY = F. The 
Meyer-Vietoris sequence of the pair (Y, N(a)) gives the following exact 
sequence: 

0 - • H2(Y) -> H2(X) - > H i ( Y n N ( a ) ) - • • • • 

Since Y Pi N(a) is an annulus, it follows that H2(Y) / 0. Hence we can 
take M F = Y. 

Gluing an M F to M along F for each nontorus boundary component 
F of M, we get a manifold M, which is atoroidal and Haken, with dM 
a set of tori. Since M F has only one boundary component, H2(M F) / 0 
implies that M F contains a closed nonseparating surface, which is then 
nonseparating in M; hence H ^iM^dM — T) / 0. If S is a reducing 
sphere in M(72), then since M F contains a nonseparating surface, gluing 
M F to M(72) — IntN^S) will not produce a 3-ball bounded by S. Hence 
S remains a reducing sphere in M(72). Since dM is incompressible in 
M(71), an essential torus P in M(71) remains essential in M(71), so 
M(71) is toroidal. We have thus shown that M satisfies all conditions 
of Theorem 3.3, hence by that theorem we have A(71, 72) < 1. 

Now assume that M(72) is 9-reducible. Let F be a component 
of dM — T which is compressible in M(72), and let C be a curve on 
F bounding a compressing disk D in M(72). If F is a torus, then 
the frontier of N(F U D) is a 2-sphere S. If S is an essential sphere, 
then M(72) is reducible, and the result has been proved above. If S 
is inessential, then dM consists of two tori, so the result follows from 
Theorem 3.3. Hence we can assume that F has genus > 2. 
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Let P be a planar surface having at least three boundary compo
nents. Let ip : dP X I —> F be a map such that dP is sent to curves 
parallel to C. Denote by Y = M Uv (P X I ) , the manifold obtained by 
gluing P X I to M using ip as gluing map. By a standard innermost 
circle outermost arc argument it can be shown that Y is irreducible, 
9-irreducible and atoroidal. Since dY — T is not a torus, we also have 
H2(Y, dY — T) / 0. The surface P extends to a sphere in Y (72) having 
some boundary components on each side, hence Y (72) is reducible. If 
the annuli dP X I are incompressible in M(71), then an essential torus 
in M(71) remains essential in Y (71). Hence the result follows from the 
first case proved above, with M replaced by Y. If dP X I is compress
ible in M(71), then Y(ji) is also reducible. By the Reducible Surgery 
Theorem of Gordon-Luecke [13], we also have A(71, 72) < 1. q.e.d. 

R e m a r k 4 .2 . The idea of gluing a large simple manifold to M to 
get the result is due to John Luecke. If M is an irreducible atoroidal 
manifold with torus boundaries, such that H2(M, dM — T) / 0, then a 
theorem of Gabai [6, Corollary 2.4] says that at most one Dehn filling 
on T could be reducible. Using the above trick, Luecke showed that this 
is true even if dM has some higher genus components. 

E x a m p l e 4 .3 . (1) If W is a solid torus, and K is a hyperbolic 
knot in W with winding number 0, then M = W — IntN(K) satisfies 
the conditions of Theorems 3.3 and 3.4. Hence if 7 surgery on K pro
duces toroidal or annular manifold, then 7 is a longitudinal slope, i.e., 
A(j,m) = 1, where m is the meridional slope of K. Together with re
sults of [31] and [28], it shows that non-integral surgeries on such knots 
always produce hyperbolic manifolds. 

(2) As noticed above, the condition H2(M,dM — T) is true unless 
dM — T is empty or a single torus. This condition cannot be removed. 
Hayashi and Motegi [19] have an example of a simple manifold M, such 
that dM is a union of two tori, M(71) is reducible and 9-reducible, 
M(72) is toroidal and annular, and A(71, 72) = 2. 

(3) If W is a handlebody of genus > 2, and K is a knot in W such 
that W — IntN(K) is irreducible, 9-irreducible and atoroidal, then only 
integral surgeries on K can yield toroidal manifolds. 

Quest ion 4 .4 . Are there any hyperbolic knots in a solid torus 
which admits some non-integral toroidal or annular surgeries? 

This has recently been answered in positive by Miyazaki and Motegi 
[25]. 
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Corollary 4 .5 . Let K be a hyperbolic knot in S3. Suppose there 
is an incompressible surface F in E(K), cutting E(K) into anannular 
manifolds X and Y. Then K(j) is hyperbolic for all non-integral slopes 

7-

Proof. Let X be the component of E(K) — IntN(F) containing 
T = dN(K). Let 7 be a non-integral slope on N(K), and let m be the 
meridional slope. Clearly, F is compressible in X(m). Therefore, by [31] 
and [28], X(j) is irreducible and 9-irreducible. Hence K(j) = YUX(y) 
is a Haken manifold. Since Y is anannular, any essential torus S in K(j) 
can be isotoped to be disjoint from F. Since K is hyperbolic, S cannot 
be in Y, otherwise it would be an essential torus in E(K). By Theorem 
4.1, X(j) is atoroidal, so S cannot be in X(j) either. Thus K(j) is also 
atoroidal. If K(j) were a Seifert fiber space, then F would be isotopic 
to a surface transverse to the fibers, hence K(j) — IntN(F) would be 
an I-bundle over surface, which is impossible because X is anannular. 
It now follows from Thurston's Geometrization Theorem [29] that K(j) 
is hyperbolic. q.e.d. 

By a theorem of Gordon [10, Theorem 1.1], if Y(ji) and Y(72) are 
nonsimple, then A(71, 72) < 5. Since i are integral, there are at most 
6 such slopes. Hence those knots K in Corollary 4.5 admit at most 6 
nontrivial, nonhyperbolic surgeries. 

T h e o r e m 4.6. Let M be a compact simple 3-manifold with torus 
T as a boundary component, such that Hi{M, dM — T) / 0. Let 71 and 
72 be slopes on T such that M(71) is annular, and M(72) is reducible. 
Then A(71, 72) < 1. 

Proof. Let A be an essential annulus in M(71). If dM consists of 
tori, the theorem follows from Theorem 3.4. If dA lies on torus boundary 
components of M, we can glue M F to M to get a simple manifold Y 
with toroidal boundary, as in the proof of Theorem 4.1, then apply 
Theorem 3.4. Hence we may assume that A has at least one boundary 
on a nontorus component of dM. 

Suppose both components of dA lie on nontorus boundary compo
nents of M. Let X = P X I, where P is an annulus. Gluing (dP) X I to 
a neighborhood of dA on dM, we get a manifold Y. One can check that 
Y is still a simple manifold, H2{Y , dY — T) / 0, the manifold Y(^f\) is 
toroidal, and Y(72) is reducible. Hence the result follows from Theorem 
4.1. 

Now suppose that dA has one component on a non-torus boundary 
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component F of M, and the other on a torus G on dM. Notice that the 
above construction fails, because then G pushed into M would be an 
essential torus in Y. We proceed as follows: Let A\, Ai be two parallel 
copies of A. Glue the above manifold X = P X I to M with dP X I 
identified to a neighborhood of the two curves of dA{ on the nontorus 
component F of dM. Then the resulting manifold Y again satisfy all 
the conditions of the theorem, and A\ U Ai U P is an essential annulus 
in Y (71) with both boundary on the torus G. Hence the result follows 
from the first case proved above. q.e.d. 

The following examples show that the results of Theorems 4.1 and 
4.6 are the best possible. 

E x a m p l e 4.7. Let M be the exterior of the Borromean ring L 
shown in Figure 4.1, and let T be a specified component of dM. It is 
well known that M is hyperbolic. The trivial surgery M(m) is reducible 
and 9-reducible, and the longitudinal surgery M(l) is toroidal because 
a component of L bounds a punctured torus disjoint from the other 
components, which extends to a torus F in M (l). Notice that F is 
nonseparating, so if it were compressible in M (l), then M (l) would be 
reducible, which would contradict the theorem of Gabai that M admits 
at most one reducible Dehn filling [6, Corollary 2.4]. 

F i g u r e 4.1 

E x a m p l e 4 .8 . It is more difficult to construct an example of large 
manifold M with M(71) annular and M(72) reducible, and A(71, 72) = 
1. Here is a sketch of such an example. 

Let L = K\ U Ki be the link in a handlebody H as shown in Figure 
4.2(a). Let Mx = H - In tN(L) , with Tt = dN(Kt). 
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(a) (b) 

F i g u r e 4.2 

It is easy to show that M\ is irreducible, 9-irreducible, and atoroidal. 
There is an essential annulus, however, from T2 to dH. We need to 
modify the manifold to make it anannular. 

Let C\,C2 be the curves on dH as shown in Figure 4.2(b). Then 
P = dH — In tN(Ci U C2) is a sphere with 4 punctures. Choosing a 
simple manifold X with dX a genus 2 surface, and gluing it to M\ 
along P, we get a M. One can show that M is a simple manifold. 

Let m be the meridian of K\ on T\, and let l be the longitude, i.e., the 
blackboard framing slope. Clearly, M(m) is reducible. We claim that 
C\L)C2 bounds an essential annulus in M (l). To see the annulus, choose 
a Möbius band F i on each handle of H, with dF i = C i. Tubing F\ and F2 

together, we get a twice punctured Klein bottle F. Isotope F so that it 
contains K\ and is disjoint from K2. Then F fi M is a twice punctured 
annulus, which can be capped off in M(l) to become an annulus A 
bounded by C\ U C2. Since C\ and C2 are on different components of 
dM, A is 9-incompressible. It must also be incompressible, otherwise 
M(l) would be 9-reducible; but since M(m) is reducible, this would 
contradict Scharlemann's Theorem [28]. 

Quest ion 4 .9 . (1) If M(72) in Theorem 4.6 is 9-reducible instead 
of reducible, is the theorem still true? It is true if the boundary of a 
9-reducing disk lies on a torus. 

(2) If both M(ji) are toroidal or annular, what is the upper bound 
of A(71, 72)? For general M, Gordon [10] proved that A < 8, and A < 5 
if dM - T / 0. With the extra assumption that H2(M, dM - T) / 0, 
the upper bound could be much smaller. 

5. Annular surgery and toroidal surgery 

T h e o r e m 5 .1 . Suppose M is a simple manifold with torus T as a 

boundary component. IfM(ji) is annular, and M(72) is reducible, then 
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A ( 7 l , 7 2 ) < 2 . 

This whole section is devoted to the proof of this theorem. By 
Theorem 4.6, we may assume that dM — T is a torus. We may also 
assume that M (71) is irreducible and 9-irreducible, otherwise the result 
follows from the Reducible Surgery Theorem of Gordon and Luecke [13] 
or Scharlemann's theorem [28]. We will further assume A(71, 72) > 3. 
The theorem will follow from the contradiction in the conclusions of 
Lemma 5.6 and 5.7. 

Let Fi be an essential annulus in M(71). Let Fi be either a reducing 
sphere in M(72), or a disk embedded in IntM(72). Denote by J i the 
attached solid torus in M(ji). Let P i = F i (~) M. Let u\,... , u ni (resp. 
v\,... , v n2) be the disks of F\ n J\ (resp. Fi n J2), labeled successively 
when traveling along J i. Let T\ be the graph in F\ with u i as (fat) 
vertices, and the arc components of Pi n Pi as edges. Similarly, T2 is a 
graph in F ̂  with v j as vertices and the arcs of Pi n P2 as edges. Notice 
that if F2 is a disk, and e is an arc component of Pi n P2 with an end 
on 9F2, then that end of e is not attached to any fat vertices. We say 
that e is a ghost edge, so I i are actually graphs with ghost edges. The 
end of e which is not on a vertex is called a ghost end. On F2 all ghost 
ends are on 9F2, while on F i the ghost ends are in the interior of P i . 

Each vertex of I i is given a sign according to whether the J i passes 
F i from the positive side or negative side at this vertex. Two vertices of 
Ti are parallel if they have the same sign, otherwise they are antiparallel. 
An edge of I i is a positive edge if it connects parallel vertices, otherwise 
it is a negative edge. The parity rule of [4] says that an edge of Pi n P2 
is a positive edge in Ti if and only if it is a negative edge in T2-

A trivial loop in I i is an edge cutting off a disk in P i with interior 
disjoint from I i . Such a disk can be used to 9-compress the surface F j , 
j zfz i. We choose F i so that n\ is minimal, which guarantees that T2 
has no trivial loops. In the following, F2 is either a reducing sphere of 
M(72)) or a disk in the interior of M(72) such that all vertices of T2 
are parallel. In the first case, we choose n ̂  to be minimal among all 
reducing spheres. In the second case, by the parity rule Ti cannot have 
any loops. In any case, we have that neither I i has any trivial loop. 
Doing some disk swappings if necessary, we may also assume that all 
circle components of Pif lP2 are essential in both P i. In particular, each 
disk face of I i has interior disjoint from P j , j / i. 

We may assume that each circle du i intersects each dv j exactly A 
times. If e is an edge of Ti with an end x on a fat vertex u i, then x 
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is labeled j if x is in Ui n v j . The labels in T\ are considered mod n i 
integers. In particular, n i + 1 = 1. When going around du i, the labels 
of the ends of edges appear as 1, 2 , . . . , n i repeated A times. Label the 
ends of edges in ^ similarly. Each label in ^ is a mod n\ integer. 
Ghost ends are not labeled. 

A set of positive edges { e i , . . . , e k g on I i is called a Scharlemann 
cycle if (1) they bound a disk on P i with interior disjoint from I i , (2) 
all the vertices on the ends of e j are parallel, and (3) the two labels at 
the ends of e j are the same as that of e\. The two labels of e i must be 
{j, j + 1g for some j . We call { j , j + lg the label pair of the Scharlemann 
cycle. 

If {ei, e2, e , e ̂  g are four parallel positive edges with e i adjacent to 
e i-i-i for i = 1, 2, 3, and if the two middle edges {e2, e g form a Scharle
mann cycle, then the set of these four edges is called an extended Scharle
mann cycle. This is enough for our purpose. We refer the reader to [13] 
for more general definition. 

L e m m a 5.2. Suppose Fi is a reducing sphere. Then the following 
hold: 

(1) T\ cannot have n ̂  parallel edges. 
(2) T\ cannot have an extended Scharlemann cycles. 
(3) Any two Scharlemann cycles on T\ have the same label pair. 
(4) Ti cannot have more than (n2/2) + 1 parallel positive edges. 
(5) IfTi has a Scharlemann cycle, then Fi bounds a punctured lens 

space. In particular it is separating. 

Proof. (1) is proved by Gordon and Litherland in [12, Proposition 
1.3]. (2)-(4) follow from the proof of [30, Lemma 2.2-2.4]. 

(5) is well known: If Ti has a Scharlemann cycle, then we can find 
another sphere F'2 which has two fewer intersections with Dehn filling 
solid torus, and cobounds with Fi a punctured lens space. By the 
minimality of n ̂  the surface F'2 must bounds a 3-ball. See the proof of 
[4, Lemma 2.5.2(a)] for more details. q.e.d. 

Note that since M is a simple manifold, we have n ̂  > 2. 

L e m m a 5.3 . Theorem 5.1 is true if n\ < 2. 

Proof. If n\ = 1, all edges of Ti are parallel. Since A > 3, this 
contradicts Lemma 5.2(1). 

Suppose n\ = 2. Consider the reduced graph Ti obtained by replac
ing a family of parallel edges in Ti with a single edge. By calculating 
the Euler number, one can see that Ti has at most 4 edges. Since by 
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Lemma 5.2(1) there are no n i parallel edges, each of the two vertices in 
Ti must have valency 4, so the graph looks like that in Figure 5.1(a). 
The edges a and d are positive edges, hence each represents at most 
(n2/2) + 1 edges in T\. Since each of b and c represents at most n2 — 1 
edges, and the valency of each vertex in T\ is 3n2, it follows that each 
of a and d represents exactly (n2/2) + 1 edges, and each of b and c 
represents n2 — 1 edges. See Figure 5.1(b) for the case that n i = 6. We 
separate two cases. 

(a) 

(b) (c) 

F i g u r e 5.1 

C a s e 1. The two vertices ofT\ are not parallel. 
It is clear that any family of (n2 /2)+ 1 parallel positive edges contain 

a Scharlemann cycle {ei,e2J. Moreover, they must lie on one side of 
the family, for otherwise there would be an extended Scharlemann cycle. 
Since n i > 2, the Scharlemann cycles cannot be on the side near the 
boundary of P i . Also, by Lemma 5.2(3) we may assume that both 
Scharlemann cycles have the same label pair, say {1 ,2} . It is now 
clear that the labeling of the graph looks like that in Figure 5.1(c). 
In particular, for each label j there is a negative edge in T\ with ends 
labeled j and j + 1. By the parity rule, v j and v j+i are parallel. Thus 
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all vertices of ^ are parallel. But then there cannot be any positive 
edges in T\, contradicting the existence of family a and d. 

Case 2 . The two vertices ofY\ are parallel. 

Since the families of edges in a and d contain Scharlemann cycles, 
by Lemma 5.2(5) Fi is a separating sphere. Hence n i is even. In this 
case all edges on T\ are positive, so b and c also represents at most 
(n2/2) + 1 edges, and we have 4[(n2/2) + 1] > 3n2. Since n i is even, 
and n i > 2, this holds only if n i = 4, and each family contains 3 edges. 
Thus the graph looks like that in Figure 5.1(c). One can see that there 
is an edge with both ends labeled 4, which is impossible by the parity 
rule. q.e.d. 

L e m m a 5.4. (1) If Y2 has a Scharlemann cycle, then F\ is a 
separating annulus. 

(2) Y2 cannot have two Scharlemann cycles with different label pairs. 
(3) Y2 cannot have an extended Scharlemann cycle. 

Proof. (1) Let { e i , . . . , e n g be a Scharlemann cycle in T2 with label 
pair {1,2g, bounding a Scharlemann disk D on the surface F2. Let V 
be the part of the Dehn filling solid torus J\ in M(71) lying between 
the two meridian disks u\,u2, and containing no other u j . If F\ is a 
nonseparating annulus, then the frontier of N(Fi U V U D) in M(71) 
consists of two nonseparating annuli Fi and F[. The annulus F[ has 
2 less intersection with J\ than F\. Since M(71) is irreducible and d-
irreducible, any nonseparating annulus is essential. Hence F[ is essential 
in M(71), contradicting the minimality of n\. 

(2) Use the notation above. On the annulus F\ consider the subgraph 
G = e\ U . . . U e k U u\ U u2 of Y1. If G is contained in a disk D\, then as in 
the proof of [4, Lemma 2.5.2] it is easy to see that a regular neighborhood 
of D\ U V U D is a once punctured lens space. Since we have assumed 
that M(71) is irreducible, this is impossible. Hence we may assume that 
G cuts Fi into two annuli A\, A2 and some disk components. Let A'i 
be the closure of Fx - A i. Consider the manifold Y = N(A[ U V U D). 
Clearly, dY is a torus, so the frontier of Y in M(71) is an annulus Q. 

Claim. Q is an essential annulus in M(71). 

Proof. The central curve C of Q is isotopic to the central curve C of 
F i . Since F\ is incompressible, C" (and hence C) is not null homotopic 
in M(71), so Q is also incompressible. If Q is not essential, it has a 
boundary compressing disk D'. Put X = M(71) — IntY. We have 
assumed that M(71) is irreducible and 9-irreducible, so if X contains 
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D', then it is a solid torus with Q as a longitudinal annulus. Similarly 
for Y. 

First assume D' is in X. Notice that F\ can be isotoped into X. 
Choose D' so that D' n Ft is minimal. If D' D Ft = 0, then Ft would 
lie in a 3-ball. If D' (~) F\ / 0, an outermost component of D' — F\ 
disjoint from Q would be a boundary compressing disk of F\. Both 
cases contradict the essentiality of F\. 

Now assume D' is in Y. Then Y is a solid torus with Q a longitudinal 
annulus. Let Y be the manifold obtained by attaching a 2-handle H to 
Y along the longitudinal annulus dY — Q. Then Y is a 3-ball. Recall 
tha t Y = N^A^UVUD), so it can be considered as obtained by attaching 
a 2-handle H' = N(D) to the handlebody W = N(A[ U V) along the 
curve dD. Switch the order of the two 2-handle additions. It is easy to 
see that after attaching H to W, the manifold is a solid torus, with dD 
intersecting a meridian exactly k times, where k > 1 is the length of the 
Scharlemann cycle. Therefore Y is a punctured lens space, which is a 
contradiction. q.e.d. 

We continue with the proof of Lemma 5.4. Notice that if A[ contains 
m vertices of Ti (including u\ and u2), then the new essential annulus 
Q above intersects J\ exactly 2 m — 2 times. By the minimality of n \ 
we must have 2 m — 2 > n\. 

Suppose f e ^ , . . . , e't g is another Scharlemann cycle of T2 with label 
pair f p , p + 1g. Since the label pairs are different, they can have at most 
one label in common, say p = 2. Let G' = e ' 1 U. . .Ue t U u pU u p+i be the 
corresponding graph on F\. The two graphs G' and G are disjoint except 
possibly intersecting at their common vertex u p = ui- Like before, G' 
cannot be contained in a disk, hence we may assume that G' is contained 
in the annulus A\ Uu2-

By the above, the annulus A\ contains at most n\/2— 1 vertices, so 
the annulus A\ U u2 contains at most n i / 2 vertices. Applying the Claim 
to G", we see that the frontier of Y' = N((Ax U u2) U V ' U Dr) is an 
essential annulus in M(71) intersecting J\ at most 2{n\/2) —2 = n\—2 
times. This contradicts the minimality of n i , completing the proof of 
(2). 

(3) Let fe i , e2, e , e g be an extended Scharlemann cycle with label 
pair f2, 3g, say. Then as above, the set C\ = e ̂  ^e^u ^ ^u ^ cuts F\ into 
two annuli, each containing exactly n\/2 — l vertices of Y\ in its interior. 
The cycle C2 = e\ U e ̂  U u\ U u must lie on one of these two annuli. 
Like Ci , the cycle C ì cannot be contained in a disk, so F\ — C ì consists 
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of two annuli. Let A\ be the one which does not contain C\. Let D be 
the disk on Fi bounded by e\, e ̂  and two arcs on the boundary of fat 
vertices. Let V be the part of the Dehn filling solid torus J\ between u\ 
and u and which contains ui and u . By the same proof as in (2), one 
can show that the frontier of N(Ai U u\ U u U V U D) is an essential 
annulus in M(71) which intersects J\ less than n\ times, leading to a 
contradiction to the minimality of n\. q.e.d. 

Consider a disk Fi in the interior of M(72). We assume that dFi 
is disjoint from J \ . Recall tha t F\ PI Fi form the graph T2 in Fi which 
may have some ghost edges connecting the fat vertices of T2 to dFi-

Definit ion 5.5. (1) A disk Fi in M(72) is a generalized Gabai disk 
if all the fat vertices on Fi are parallel, and the number of ghost edges 
is less than A n i , the valency of fat vertices in Y 2-

L e m m a 5.6. If A = A(71, 72) > 3, then M(72) cannot have a 
generalized Gabai disk. 

Proof. Recall tha t a non-ghost edge of T2 is an i-edge if it has i as 
a label on one of its ends. An i-edge cycle in T2 is a cycle consisting of 
i-edges. 

Since there are less than An i ghost edges, at least one of the labels, 
say i, has the property that there are at most A — 1 ghost edges with 
label i on their non-ghost ends, so every fat vertex v j has a non-ghost 
edge with label i at v j . One can then find a cycle of edges in T2, each 
starting with the label i. Such a cycle is called a great i-cycle in [4]. 
By [4, Lemma 2.6.2] this implies that T2 has a Scharlemann cycle, so 
by Lemma 5.4(1) F\ is a separating surface. According to Lemma 2.2 
of [13], any disk D on Fi bounded by an i-edge cycle in T2 contains 
a Scharlemann cycle if In tD contains no vertices of T2- We are done 
by Lemma 5.4(2) unless all of these Scharlemann cycles have the same 
label pair {1 ,2} , say. 

Consider the subgraph Y'2 of T2 consisting of all i-edges. We may 
assume that T2 is connected, otherwise consider a smaller disk and follow 
the argument here. There are at least An2 — (A — 1) i-edges, with n ̂  
vertices. By calculating the Euler characteristic we see that there are 
at least 1 + An2 — (A — 1) — n ̂  faces. Since each of them contains at 
least one Scharlemann cycle, which contains at least 2 edges, there are 
at least 2(An2 — A — n ̂  + 2) edges in Ti connecting u\ to u ̂ . Since the 
valency of Ui is An2, we have 

2(An 2 - A - n 2 + 2) < An 2 , 
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i.e., (A - 2)(n2 - 2) < 0. Since A > 2, this holds only if n2 < 2. Recall 
tha t there is no trivial loop in T2, so n2 / 1, otherwise all edges would 
be ghost edges, contradicting the assumption that F2 is a generalized 
Gabai disk. If n2 = 2, all non-ghost edges must be parallel, and there 
are more than 3 n i / 2 such. This number is greater than n i / 2 + 2, so 
there exists an extended Scharlemann cycle by the proof of [30, Lemma 
2.2], which contradicts Lemma 5.4(3). q.e.d. 

L e m m a 5.7. If A > 3, then M(y2) contains a generalized gabai 
disk. 

Proof. We will use sutured manifold theory to prove this lemma. 
One is referred to [5]-[7] and [27] for definitions and theorems about 
sutured manifolds. In particular, we will use the planar surface Pi = 
Fi fi M as a parametrizing surface, and use Theorem 7.8 of [27]. 

Consider the sutured manifold (X,y,ß), where X = M(y2), the 
suture set y is empty, and ß is the knot which is the center of the Dehn 
filling solid torus J2 in X. Let dX = 9+X, which is denoted by R+ in 
[27]. Since X — ß is irreducible and 9-irreducible, and the norm of d+X 
is 0, by definition X is a /3-taut sutured manifold. 

Recall tha t a proper surface Q in M = X — IntN(/3) is a parametriz
ing surface if no component of Q is a disk with boundary in d±X. By 
extending over N(ß), Q can also be considered as an immersed surface 
in X with interior embedded in X, and with boundary on dX U/3. Iso
top Q so that dQ intersects y and dN(ß) in essential arcs or circles. 
The index of Q is defined as 

I(Q) = ti + u-2x(Q), 

where ß and v are the numbers of essential arcs of dQ in y and dN(ß) 
respectively. The index is additive over components of Q, and Q being 
a parametrizing surface means that the index of each component is 
nonnegative. If we view y and dN(ß) as cusps, then Q would be a 
surface with some cusp points on its boundary, and ß + v is exactly 
the number of cusps on dQ. Hence I(Q) = —2xc(Q), where Xc is the 
cusped Euler characteristic defined in Section 1. 

Take Q = F\ n M, the punctured essential annuli in M. Since X 
has no sutures, and since ß is a circle, ß = v = 0, so the index of Q 
is I(Q) = —2x(Q) = 2ni , where as before n\ denotes the number of 
times Fi intersects the Dehn filling solid torus J\. We refer the reader 
to [27] for the definition of taut sutured manifold decomposition, de
composition that respect a parametrizing surface, and sutured manifold 
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hierarchy. An important fact about parametrizing surface is that if a de
composition respect a parametrizing surface, then I(Q') < I(Q), where 
Q' is the parametrizing surface after the decomposition. The following 
is one of the fundamental theorems in sutured manifold theory. 

T h e o r e m [27, 7.8]. If Q is a parametrizing surface for the ß-taut 
sutured manifold (X, j), then there is a ß-taut sutured manifold hierar
chy for (X, 7) which respects Q. 

Applying the theorem to (X, 7, ß), with Q = F\C\M as a parametriz
ing surface, we get a sutured manifold hierarchy as in the theorem. By 
definition, each component of dM n is a sphere. Denote by Q n = Q(~)M n 
the parametrizing surface in M n. Since the hierarchy respects Q, we 
h a v e I ( Q n) < I ( Q ) = 2ni . 

There is a process called cancellation, see [27, Definition 4.1]. If 
D is a disk component of Q n which passes each of jn and ßn exactly 
once, then we can cut along D to reduce the number of components in 
ßn, the resulting sutured manifold is still /3-taut [27, Lemma 4.3], and 
the index of the parametrizing surface unchanged. After canceling all 
possible components in ßn, we get a new set ß'n, for which Q n has no 
cancellation disks. 

If ß'n = 0, then (M n,jn) would be 0-taut, so by Corollary 3.9 of [27], 
the original manifold X would also be 0-taut, (see Proof of 9.1 from 
9.7 on [27, p. 608] for more details.) This would be a contradiction 
because X = M(72) was assumed reducible. Therefore, there must be 
a component P of d+M n which contains some points of ß'n. 

There is a graph T(P) on P constructed in the obvious way: The 
vertices are P n J2 = P H N(ß'n), where J 2 = N{ß) is the Dehn filling 
solid torus, and the edges are the arcs in P(~)Q = P(~)Q n. The orientation 
of ß'n comes from that of the knot ß, and from the definition of sutured 
manifold decomposition we know that ß'n always intersect d+M n in the 
same direction. In particular, all the fat vertices of T(P) are parallel. 
Thus if P is a sphere, then by removing a small disk from P, the resulting 
surface is a generalized Gabai disk for Fi with no ghost edges, and we 
are done. 

Therefore we assume that P lies on a sphere S of dM n which contains 
some sutures. If P is not a disk, consider a disk component P' of 
Snd±M n. If P' has some intersection with ß'n, we can take P' instead of 
P. If P' does not intersect ß'n, then the existence of a nondisk component 
in Snd±M n implies that some components in S(~)d±M n is compressible 
in M n — ß'n, which contradicts the /3-tautness of M n. Therefore we may 
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assume that P is a disk in S. Since all fat vertices of T(P) are parallel, 
we need only show that T(P) has less than An i ghost edges. P would 
then be the required generalized Gabai disk for F\. 

Let W be the component of M n containing S. Let D\,... , D k be 
the components of Q n in W which intersect dP. Thus all ghost edges 
of T(P) are contained in UdD i. Recall tha t the index of D i is I(D i) = 
ßi + Vi — 2\(D i). Since each suture and each arc of ß'n connect two 
components of d±M n with different orientation, i + zi, the number 
of cusps on dD i, is always even. Since there is no cancellation disk 
anymore, either i -\-Vi > 4, or x(D i) < 0. In any case we have I (D i) > 
(fj,i + Vi)/2. Summing over all such disks we have 

Y^(i + vi) < 2 Y.I^ ^ 2I(Q) ^ 4ni-
The left-hand side is equal to the total number of arc components of 
UdD i on d±M n, exactly half of which are on 9 + M n. It follows that the 
number of ghost edges on T(P) is at most 2n\. Hence P is a generalized 
Gabai disk for F\, completing the proof of Lemma 5.7. q.e.d. 

The contradiction in the conclusion of Lemmas 5.6 and 5.7 completes 
the proof of Theorem 5.1. 

In [14] Gordon and Luecke showed that if M(j\) = S3 and M(72) is 
toroidal, then A = A(71, 72) < 2. Moreover, if A = 2 then the essential 
torus in M(72) intersects the Dehn filling solid torus exactly twice. 

Quest ion 5.8. If in Theorem 5.1 we have A(71, 72) = 2, is it true 
that n i = 2? 

References 

[1] S. Bleiler & C. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 
809-833. 

[2] M. Br i t t enham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 
61-85. 

[3] , Essential laminations, exceptional Seifert-fibered spaces, and Dehn filling, 
Prepr in t . 

[4] M. Culler, C. Gordon, J. Luecke & P. Shalen, Dehn surgery on knots, Ann. of Math . 
125 (1987) 237-300. 

[5] D. Gabai , Foliations and the topology of 3-manifolds, J. Differential Geom. 18 
(1983) 445-503. 



436 YING-QING WU 

[6] , Foliations and the topology of 3-manifolds. I I , J. Differential Geom. 26 
(1987) 461-478. 

[7] , Foliations and the topology of 3-manifolds. I I I , J. Differential Geom. 26 
(1987) 479-536. 

[8] D. Gabai & Lee Mosher, In preparat ion. 

[9] D. Gabai & U. Oertel, Essential laminations in 3-manifolds,, Ann. of Math . 130 
(1989) 41-73. 

[io: 

[11 

[12: 

[13: 

[14 

[15: 

[16 

[17: 

[is: 

[19 : 

[2°: 

[21 

[22 

[23: 

[24 

C. Gordon, Boundary slopes of punctured tori in 3-manifolds, Trans . Amer. Ma th . 
S o c , to appear . 

, Dehn filling: A survey, Prepr in t . 

C. Gordon & R. Litherland, Incompressible planar surfaces in 3-manifolds, Topol
ogy Appl. 18 (1984) 121-144. 

C. Gordon & J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996) 
385-409. 

, Dehn surgery on knots creating essential tori I, Comm. Anal. Geom. 3 

(1995) 597-644. 

, Toroidal and boundary-reducing Dehn fillings, Topology Appl. , to appear . 

C. Gordon & Y-Q. Wu, Toroidal and annular Dehn fillings, P roc . London Math . 
S o c , to appear . 

, Annular and boundary reducing Dehn fillings, In preparat ion. 

M. Gromov & W. Thurs ton , Pinching constants for hyperbolic manifolds, Invent. 
Ma th . 89 (1987) 1-12. 

C. Hayashi & K. Motegi, Dehn surgery on knots in solid tori creating essential 

annuli, Trans . Amer. Ma th . Soc. 349 (1997) 4897-4930. 

J. Hempel, 3-manifolds, Ann. of Math . Stud. No. 86, Pr inceton University Press, 
1976. 

W. Jaco, Lectures on three-manifold topology, Regional Conference Series in Math
ematics, Amer. Ma th . Soc. Vol. 43, 1977. 

J. Luecke, Pr ivate communicat ion. 

W. Menasco, Closed incompressible surfaces in alternating knot and link comple
ments, Topology 2 3 (1984) 37-44. 

S. Oh, Reducible and toroidal manifolds obtained by Dehn filling, Topology Appl. 
75 (1997) 93-104. 



s u t u r e d m a n i f o l d h i e r a r c h i e s 437 

[25] K. Miyazaki & K. Motegi, Toroidal and annular Dehn surgeries of solid tori, 
Prepr in t . 

[26] R. Myers , Simple knots in compact orientable 3-manifolds, Trans . Amer. Ma th . 
Soc. 2 7 3 (1982)75-91. 

[27] M. Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential 
Geom. 29 (1989) 557-614. 

[28] , Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990) 
481-500. 

[29] W. Thurs ton , Three dimensional manifolds, Kleinian groups and hyperbolic geom

etry, Bull. Amer. Ma th . Soc. 6 (1982) 357-381. 

[30] Y-Q. Wu , The reducibility of surgered 3-manifolds, Topology Appl. 4 3 (1992) 
213-218. 

[31] , Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992) 
271-279. 

[32] , Dehn surgeries producing reducible manifolds and toroidal manifolds, Topol
ogy 37 (1998) 95-108. 

[33] , Essential laminations in surgered 3-manifolds, P roc . Amer. Ma th . Soc. 

115 (1992) 245-249. 

University of Iowa 


