SUTURED MANIFOLD HIERARCHIES, ESSENTIAL LAMINATIONS, AND DEHN SURGERY

YING-QING WU

0. Introduction

A compact orientable surface F with nonnegative Euler characteristic is either a sphere, a disk, a torus, or an annulus. If a 3-manifold M contains such an essential surface, then it is said to be reducible, ∂-reducible, toroidal, or annular, respectively. Any such surface can be used to decompose the manifold further into simpler manifolds. We say that M is a simple manifold if it has no such surfaces. A simple manifold is expected to have a nice geometric structure. If M has nonempty boundary, then the Geometrization Theorem of Thurston for Haken manifolds says that M with boundary tori removed admits a finite volume hyperbolic structure with totally geodesic boundary. When M has no boundaries, Thurston's Geometrization Conjecture asserts that M is either hyperbolic, or is a Seifert fiber space with orbifold a sphere with at most 3 cone points.

Suppose T is a torus boundary component of M. We use $M(\gamma)$ to denote the manifold obtained by Dehn filling on T so that the slope γ on T bounds a disk in the Dehn filling solid torus. When $M=E(K)$ is the exterior of a knot K in S^{3}, denote $M(\gamma)$ by $K(\gamma)$, and call it the manifold obtained by γ surgery on the knot K. It is well known that if M is simple, then there are only finitely many Dehn fillings on

[^0]T which produce nonsimple manifolds. If $M\left(\gamma_{1}\right)$ and $M\left(\gamma_{2}\right)$ are nonsimple manifolds, then the geometric intersection number between γ_{1} and γ_{2}, denoted by $\Delta\left(\gamma_{1}, \gamma_{2}\right)$, is proved to be at most 8 by Gordon [10]. There are 10 different cases, according to the types of nonnegative Euler characteristic surfaces in $M\left(\gamma_{i}\right)$. In many cases, the upper bounds for $\Delta\left(\gamma_{1}, \gamma_{2}\right)$ have been established; see Table 0.1.

${\mathrm{M}\left(\mathrm{r}_{7}\right)}_{\mathrm{M}\left(\mathrm{r}_{2}\right)}$	A	T	D	S
S	2	3	0	1
D	5* (2)	2	1	
T	5* (3)	8		
A	5* (2)			

Table 0.1. Upper bounds of $\Delta\left(\gamma_{1}, \gamma_{2}\right)$
In the table, the left column and the top row denote the types of $M\left(\gamma_{1}\right)$ and $M\left(\gamma_{2}\right) ; D, S, A, T$ mean that $M\left(\gamma_{i}\right)$ contains an essential disk, sphere, annulus, or torus, respectively. The numbers without star are known to be the best possible, while those with star are best results so far (till June 1996). The numbers in parenthesis are the maximal values of known examples. The results can be found in the following papers: $T-T, T-A, A-A$ and $D-A$ are proved by Gordon [10]; $S-T$ is proved independently by Wu [32] and $\mathrm{Oh}[24] ; D-D$ by $\mathrm{Wu}[31] ; S-D$ by Scharlemann [28]; $S-S$ and $D-T$ by Gordon and Luecke [13], [15]; $S-A$ is to be proved in this paper:

Theorem 5.1. Suppose M is a simple manifold with torus T as a boundary component. If $M\left(\gamma_{1}\right)$ is annular, and $M\left(\gamma_{2}\right)$ is reducible, then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 2$.

The theorem is sharp. Hayashi and Motegi [19] gave an example of a hyperbolic 3 -manifold M, such that $M\left(\gamma_{1}\right)$ is reducible and ∂-reducible, $M\left(\gamma_{2}\right)$ is toroidal and annular, and $\Delta\left(\gamma_{1}, \gamma_{2}\right)=2$.

Remark. More recently, Gordon and I [16], [17] settled the remaining cases in Table 0.1. It turns out that for type $D-A$ the bound is 2 , and for types $A-T$ and $A-A$ the bound 5 given by Gordon in [10] is
the best possible. Furthermore, we showed that if $M\left(r_{1}\right)$ is annular and $M\left(r_{2}\right)$ is toroidal, then $\Delta\left(r_{1}, r_{2}\right) \leq 3$, except for three specific manifolds M.

There are many examples showing that a generic hyperbolic manifold admits very few nonhyperbolic Dehn fillings. The following theorem shows that if the manifold is "large", then stronger results than those in Table 0.1 hold.

Theorems 4.1 and 4.6. Let M be a simple 3 -manifold with torus T as a boundary component, such that $H_{2}(M, \partial M-T) \neq 0$. If γ_{1} and γ_{2} are slopes on T such that
(1) $M\left(\gamma_{1}\right)$ is annular and $M\left(\gamma_{2}\right)$ is reducible, or
(2) $M\left(\gamma_{1}\right)$ is toroidal, and $M\left(\gamma_{2}\right)$ is reducible, or
(3) $M\left(\gamma_{1}\right)$ is toroidal, and $M\left(\gamma_{2}\right)$ is ∂-reducible, then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Note that the condition $H_{2}(M, \partial M-T) \neq 0$ is true unless M is either a rational homology solid torus or a rational homology cobordism between two tori. In particular, it is true if M either has a boundary component with genus ≥ 2, or if it has more than two boundary tori. Similar to Table 0.1, we have the following table of upper bounds of $\Delta\left(\gamma_{1}, \gamma_{2}\right)$ for such manifolds:

$M\left(r_{7}\right)$	A	T	D	S
S	1	1	0	0
D	$?$	1	1	
T	$?$	$?$		
A	$?$			

TABLE 0.2 . Upper bounds of $\Delta\left(\gamma_{1}, \gamma_{2}\right)$ when $H_{2}(M, \partial M-T) \neq 0$

The entries with question marks are unsettled. The case $S-S$ is proved by Luecke [22], others follow from Theorems 4.1, 4.6 and Table 0.1. The results here are also sharp; see Examples 4.7 and 4.8 .

The following is an application of the above theorems to Dehn surgery on knots K in S^{3}. It was conjectured that if K is hyperbolic and $K(\gamma)$ is
nonhyperbolic then $r=p / q$ with $|q| \leq 2$. Corollary 4.5 proves this conjecture in the case that the knot complement contains an incompressible surface F cutting $E(K)$ into anannular manifolds.

Corollary 4.5. Let K be a hyperbolic knot in S^{3}. Suppose there is an incompressible surface F in $E(K)$, cutting $E(K)$ into anannular manifolds X and Y. Then $K(\gamma)$ is hyperbolic for all non-integral slopes γ.

The proofs of these results use a combination of sutured manifold theory, essential laminations, essential branched surfaces, and some combinatorial arguments. In Section 1 we defined cusped manifolds, and show that if there are some essential annuli connecting T to some components of $\partial_{h} M$, then $M(\gamma)$ has some nice properties whenever γ has high intersection number with the boundary slope of those annuli (Theorems 1.6, 1.8 and 1.9). Section 2 is devoted to the study of intersections between essential surfaces and essential branched surfaces. We show that they can be modified to intersect essentially on both of them.

Theorem 2.2. Suppose B is an essential branched surface which fully carries a lamination λ, and suppose F is an essential surface in M. Then there is an essential branched surface B^{\prime} which is a λ-splitting of B, and a surface F^{\prime} isotopic to F, such that $F^{\prime} \cap B^{\prime}$ is an essential train track on F^{\prime}.

This theorem is fundamental in our proofs, and should be useful in the future. Combining with a result of Brittenham, it gives the following theorem. Recall that a closed orientable 3-manifold is hyperbolike if it is atoroidal, irreducible, and is not a small Seifert fiber space [11].

Theorem 2.5. Suppose M is a hyperbolic manifold with torus boundary T. Let B be an essential branched surface in M such that $M-$ Int $N(B)$ contains an essential annulus with one boundary on $\partial_{h} N(B)$ and the other a curve on T of slope γ_{0}. Then $M(\gamma)$ is hyperbolike for all γ with $\Delta\left(\gamma_{0}, \gamma\right)>2$.

Gabai and Mosher [8] showed that any hyperbolic manifold M with torus boundary contains an essential branched surface satisfying the condition in the theorem. This implies that all nonhyperbolike surgery slopes lie on 5 lines in the Dehn surgery space.

In Section 3 we use sutured manifold hierarchy to prove Theorems 4.1 and 4.6 in the case that ∂M consists of tori. The general version of these theorems is proved in Section 4, by using a construction of

Luecke. In Section 5 we prove Theorem 5.1. Here we use a combinatorial argument to deal with the cases in which the essential annulus in $M\left(\gamma_{1}\right)$ intersects the Dehn filling solid torus at most twice, then we use β taut sutured manifold hierarchy and a generalized version of Gabai disk argument to prove the theorem in the general case.

Some problems arise in this research. A challenging problem is to establish the lower limit of $\Delta\left(\gamma_{1}, \gamma_{2}\right)$ for the remaining cases in Table 0.2 . Some other problems can be found in the paper.

Notation and Convensions. All 3-manifolds and surfaces below are assumed orientable. Surfaces in 3 -manifolds are assumed properly embedded unless otherwise stated. 3 -manifolds are compact and connected unless it is the exterior of some essential lamination in a compact manifold. A non-sphere surface F in a 3 -manifold M, then it is essential if it is incompressible, ∂-incompressible, and not parallel to a surface on ∂M. A sphere in M is essential if it is a reducing sphere. We refer the reader to the books of Hempel [20] and Jaco [21] for standard definitions and basic results on 3-manifold topology, to the paper of Gabai-Oertel [9] for those of essential lamination and essential branched surface, and to the papers of Gabai [5]-[7] and Scharlemann [27]-[28] for sutured manifold theory.

We use $N(B)$ to denote a regular neighborhood of a set B in M. If F is a surface in M, we use $M \mid F$ to denote the manifold obtained by cutting M along F, i.e. $M \mid F=M-\operatorname{Int} N(F)$. A train $\operatorname{track} \tau$ is a branched compact 1-manifold on a surface. A small neighborhood of a branched point is cut into 3 pieces, one of which contains a cusp at that branched point. A branched surface is a 2-dimensional generalization of train tracks, see [9] for more details. If B is a branched surface in a 3 -manifold M, then its exterior is defined as $E(B)=M-\operatorname{Int} N(B)$.

Acknowledgement

I would like to thank Martin Scharlemann for his very interesting and stimulating lectures on sutured manifold theory given several years ago at Santa Barbara, which has been of great influence to this work, and thank David Gabai for some helpful conversations on sutured manifolds and essential laminations.

1. Cusped manifolds

Definition 1.1. A cusped manifold is a compact orientable 3manifold M with a specified (possibly empty) collection of annuli and tori on ∂M, denoted by $\partial_{\nu} M$, called cusps or vertical surfaces. The surface $\partial_{h} M=\partial M-\operatorname{Int} \partial_{v} M$ is called the horizontal surface of M.

Example 1.2. If B is a branched surface in $\operatorname{Int} M$, then $E(B)$ has a natural cusped manifold structure. The horizontal surface of $E(B)$ is $\partial_{h} E(B)=\partial_{h} N(B) \cup \partial M$, and the vertical surfaces of $E(B)$ is $\partial_{v} E(B)=$ $\partial_{v} N(B)$, where $\partial_{h} N(B)$ and $\partial_{v} N(B)$ are the horizontal and vertical boundaries of $N(B)$; see [9] for definitions. Sutured manifolds are also cusped manifolds; see Section 2.

Definition 1.3. Let F be a surface in M such that $F \cap \partial_{v} M$ is a set of essential arcs and circles in $\partial_{v} M$. We consider the arcs of $F \cap \partial_{v} M$ as cusps on ∂F. The cusped Euler characteristic of F is defined as $\chi_{c}(F)=\chi(F)-\frac{1}{2} C(F)$, where $\chi(F)$ is the Euler characteristic of F, and $C(F)$ is the number of cusps on ∂F. This number has an additivity property: If τ is a train track on F, then $\chi(F)=\sum \chi_{c}\left(F_{i}\right)$, where F_{i} are the components of $F-\operatorname{Int} N(\tau)$. In particular, the formula holds if B is a branched surface in $\operatorname{Int} M, F$ a surface transverse to B, and F_{i} the components of $F \cap E(B)$.

Suppose M is a cusped manifold. A monogon in M is a disk D properly embedded in M, such that $\partial D \cap \partial_{v} M$ is a single essential arc in $\partial_{v} M$. In this case D is also called a monogon of the horizontal surface $\partial_{h} M$. If $D \cap \partial_{v} M$ consists of two essential arcs in $\partial_{v} M$, then D is called a bigon. An annulus A properly embedded in M is cuspless if ∂A is disjoint from $\partial_{v} M$.

Definition 1.4. A cusped manifold M is χ_{c}-irreducible if it contains no essential surface F with $\chi_{c}(F)>0$. This is equivalent to that (i) M is irreducible, (ii) $\partial_{h} M$ is incompressible, and (iii) M has no monogons.

Note that if M is connected then (i) and (ii) imply that either (iii) is true or M is a solid torus with $\partial_{v} M$ a longitudinal annulus. The proof is simple: If D is a monogon, then the frontier of $N\left(\partial_{v} M \cup D\right)$ is a disk with boundary on $\partial_{h} M$, and hence is parallel to a disk on $\partial_{h} M$, so M is homeomorphic to the solid torus $N\left(\partial_{v} M \cup D\right)$.

We say that a branched surface B is intrinsically essential if (i) it has no disk of contact, (ii) it has no Reeb branched subsurface, (iii) no component of $\partial_{h} N(B)$ is a sphere, and (iv) it fully carries a lamination.

A branched surface B embedded in M is essential if it is intrinsically essential, and $E(B)$ is χ_{c}-irreducible. The intrinsic part is independent of the embedding of B. Thus to show an essential branched surface B in M remains essential after Dehn filling on a torus T disjoint from B, it would suffice to show that $X(\gamma)$ is a χ_{c}-irreducible cusped manifold, where X is the component of $E(B)$ containing T.

An essential annulus A in M is called an accidental annulus if it has one boundary component in each of T and $\partial_{h} M$. The curve $A \cap T$ is the slope of A on T. Two such annuli A_{1}, A_{2} are parallel if they are disjoint, and cut off a product region $A_{1} \times I$ containing no cusps of M. We need the following lemma.

Lemma 1.5. If A_{1}, \ldots, A_{n} are mutually nonparallel, mutually disjoint, accidental annuli in a χ_{c}-irreducible cusped manifold M which is not a $T^{2} \times I$ with no cusps, then the frontier of $X=N\left(T \cup A_{1} \cup \ldots \cup A_{n}\right)$ are essential annuli in $M-\partial_{\nu} M$.

Proof. Denote by $A^{\prime}=A_{1}^{\prime} \cup \ldots \cup A_{m}^{\prime}$ the frontier of X. Since A_{i} are essential, A_{j}^{\prime} are incompressible. Clearly there is no ∂-compressing disk of A_{j}^{\prime} in X. If there is a ∂-compressing disk D of A_{j}^{\prime} in $X^{\prime}=M-\operatorname{Int} X$ disjoint from $\partial_{v} M$, then the frontier of $N\left(D \cup A_{j}^{\prime}\right)$ contains a disk Δ. Since M is χ_{c}-irreducible, Δ must be parallel to a disk on $\partial_{h} M$, which implies that A_{j}^{\prime} is parallel to an annulus on $\partial_{h} M$. If $n \geq 2$, then the two annuli among the A_{i} which are adjacent to A_{j}^{\prime} would be parallel. If $n=1$, then M is a $T^{2} \times I$ without cusp. Both cases contradict the assumptions of the lemma. q.e.d.

Theorem 1.6. Let M be a χ_{c}-irreducible cusped manifold, and T a torus component of $\partial_{h} M$. Suppose M is not a $T^{2} \times I$ without cusp, and there is an accidental annulus A with slope l on T.
(1) If $\Delta(l, \gamma)>1$, then $M(\gamma)$ is χ_{c}-irreducible.
(2) If $\Delta(l, \gamma)>2$, then $M(\gamma)$ is not an I-bundle over a surface S with $\partial_{v} M(\gamma)$ the I-bundle over ∂S.
(3) If $\Delta(l, \gamma)>2$, any collection of bigons, tori and cuspless annuli in $M(\gamma)$ can be rel ∂ isotoped into M.

Proof. (1) Put $X=N(T \cup A)$, and let A^{\prime} be the frontier of X. By Lemma 1.5, A^{\prime} is essential in M. After Dehn filling, $X(\gamma)$ is a solid torus with A^{\prime} running $\Delta(l, \gamma)$ times along the longitude. So if $\Delta(l, \gamma)>1$ then A^{\prime} remains an essential annulus in $M(\gamma)$. By an innermost circle outermost arc argument one can show that $M(\gamma)$ is χ_{c}-irreducible, hence (1) holds.
(2) Suppose $\Delta(l, \gamma)>2$, and suppose $M(\gamma)$ is an I-bundle over a surface S such that $\partial_{v} M(\gamma)$ is the I-bundle over ∂S. Since the annulus A^{\prime} above is incompressible, with $\partial A^{\prime} \subset \partial_{h} M(\gamma)$, it is isotopic to a vertical annulus, so after cutting along A^{\prime}, the manifold is still an I bundle over some surface S^{\prime}, with the two copies of A^{\prime} and $\partial_{h} M(\gamma)$ as the I-bundle over ∂S^{\prime}. But this is impossible because $X(\gamma)$ is a solid torus with A^{\prime} running along the longitude at least 3 times.
(3) Suppose $\Delta(l, \gamma)>2$, and suppose F is a collection of bigons and cuspless annuli in $M(\gamma)$. Since A^{\prime} is essential, by an isotopy we may assume that $A^{\prime} \cap F$ consists of essential arcs and circles in F. Here an arc in a bigon B is essential if each component of $B-A^{\prime}$ intersects a cusp of M. Thus each component C of $F \cap X(\gamma)$ is either an annulus with boundary disjoint from ∂A^{\prime} or a disk intersecting A^{\prime} twice. If C is an annulus, it can be pushed off the Dehn filling solid torus to lie in M. Since $\Delta(l, \gamma)>2$, a meridian disk of $X(\gamma)$ intersects A^{\prime} at least three times, so if C is a disk, it cannot be an essential disk of $X(\gamma)$, hence again it can be isotoped into M.

By restricting the above isotopies to $M-N(\partial M)$ and extending continuously over M, we may assume that the restriction of the above isotopies to ∂M are identity isotopies. q.e.d.

A stronger result than Theorem 1.6(1) holds if there is no accidental annulus in M.

Theorem 1.7. Let M be a χ_{c}-irreducible cusped manifold, and T a torus component of $\partial_{h} M$. Suppose there is no accidental annulus A in M. If $M\left(\gamma_{1}\right)$ and $M\left(\gamma_{2}\right)$ are χ_{c}-reducible, then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$. In particular, $M(\gamma)$ are χ_{c}-irreducible for all but at most three γ.

Proof. If each $M\left(\gamma_{i}\right)$ is reducible or has a compressing disk for $\partial_{h} M$, the result follows from the main theorems of [31], [28], [13]. If $M\left(\gamma_{1}\right)$ has a monogon but no compressing disk for $\partial_{h} M$ or reducing sphere, then $M\left(\gamma_{1}\right)$ is a solid torus with $\partial_{h} M$ a longitude, in which case it is also easy to show that $M\left(\gamma_{2}\right)$ is χ_{c}-irreducible when $\Delta\left(\gamma_{1}, \gamma_{2}\right) \geq 2$. See the last paragraph of the proof of Theorem 1 in [33]. q.e.d.

If in Theorem 1.6 we can find two different annuli in M, then a stronger result holds:

Theorem 1.8. Let M be a χ_{c}-irreducible cusped manifold, and T a torus component of $\partial_{h} M$. Suppose there are two disjoint, nonparallel, accidental annuli A_{1} and A_{2} in M with slope l on T.
(1) If $\gamma \neq l$, then $M(\gamma)$ is χ_{c}-irreducible.
(2) If $\Delta(l, \gamma)>1$, then $M(\gamma)$ is not an I-bundle over a surface S with $\partial_{v} M(\gamma)$ the I-bundle over ∂S.
(3) If $\Delta(l, \gamma)>1$, then any collection of bigons, tori and cuspless annuli in $M(\gamma)$ can be rel ∂ isotoped into M.

Proof. The proof is similar to that of Theorem 1.6, only that we take $X=N\left(T \cup A_{1} \cup A_{2}\right)$. The frontier of X now consists of two annuli A^{\prime} and $A^{\prime \prime}$, which are essential in M by Lemma 1.5. If $\gamma \neq l$ then $A^{\prime} \cup A^{\prime \prime}$ is essential in $X(\gamma)$, and if $\Delta(l, \gamma)>1$ then a meridian disk of $X(\gamma)$ intersects $A^{\prime} \cup A^{\prime \prime}$ more than two times, hence the argument in the proof of Theorem 1.6 applies here. q.e.d.

The "two annuli" condition was first applied by Menasco to show that essential surfaces remain essential after Dehn surgery on certain knots [23]. If there are three such annuli in M, then we can get the strongest possible conclusion. The proof of the following theorem is similar to that of Theorem 1.8, and is omitted.

Theorem 1.9. If in Theorem 1.8 there are three disjoint, nonparallel, accidental annuli A_{i}, then the conclusions of (1), (2) and (3) in Theorem 1.8 hold for all $\gamma \neq l$.

2. Intersection between essential surface and essential lamination

Given two essential surfaces F_{1}, F_{2}, it is always possible to isotope one of them so that they intersect in circles essential on both surfaces. This is not possible in general if one of them is an essential branched surface B. However, Theorem 2.2 shows that after some splitting of B, it is possible to make them intersect essentially. As a corollary, it is shown that we can isotope an essential surface F so that its intersection with an essential lamination in M^{3} is an essential lamination on F. The results will be applied in Section 3 to prove Theorems 3.3 and 3.4. As a by-product, we will prove Theorem 2.5, which, when combined with a result of Gabai-Mosher, shows that all but 5 lines of surgeries on a hyperbolic knot produce hyperbolike manifolds.

Lemma 2.1. Suppose λ is an essential lamination fully carried by a branched surface B. Then λ is fully carried by an essential branched surface B^{\prime} which is a λ-splitting of B.

Proof. This follows from the proofs of Lemma 4.3 and Proposition 4.5 in [9]. The argument goes as follows. By thickening λ if necessary
we may assume that $\partial_{h} N(B) \subset \lambda$. By a λ-splitting we may assume that B has no compact surface of contact. Since λ is essential, $E(B)$ is irreducible, and $\partial_{h} E(B)$ is incompressible in $E(B)$. Also, a monogon of $E(B)$ could be extended to a monogon for λ via some half-infinite vertical strip in $N(B)-\lambda$, which would contradict the essentiality of λ. It follows that the branched surface B satisfies all conditions of an essential branched surface except possibly the condition that it has no Reeb branched surfaces. Since λ is essential, it has no vanishing cycle, so [9, Lemma 4.3], says that λ is also fully carried by an essential branched surface B^{\prime}. By examining the proof of that lemma, one can see that B^{\prime} is actually obtained by a λ-splitting of B. q.e.d.

Theorem 2.2. Suppose B is an essential branched surface which fully carries a lamination λ, and suppose F is an essential surface in M. Then there is an essential branched surface B^{\prime} which is a λ-splitting of B, and a surface F^{\prime} isotopic to F, such that $F^{\prime} \cap B^{\prime}$ is an essential train track on F^{\prime}.

Proof. By an isotopy we may assume that F is transverse to B. Thus $F \cap B$ is a train track τ on F. We may further assume that $F \cap N(B)=N(\tau)$, and the I-fibers of $N(\tau)$ are also I-fibers of $N(B)$; see [9, Lemma 2.6]. The train track τ cannot have any monogon, because a monogon bounded by τ would also be a monogon for the exterior of B, which is impossible since B is essential. We need to modify B and F so that τ has no 0 -gons either.

Suppose D is a 0 -gon of τ in F. Let D_{1} be a small neighborhood of D in F. Then the train track τ in D_{1} consists of a circle C bounding the 0 -gon D, and some arcs from some branch points on C to the boundary of D_{1}, so it looks like that in Figure 2.1(a). The foliation \mathcal{F} of $N(B)$ induces a foliation $\mathcal{F}_{\infty}=\mathcal{F} \cap \mathcal{F}$ on $N(\tau)$; see Figure $2.2(\mathrm{~b})$ for an example. We claim that \mathcal{F}_{∞} has no noncompact leaf, otherwise there would be a circle γ which is the limit of noncompact leaves. Let l be the leaf of \mathcal{F} that contains γ. Since the lamination λ is essential, l is $\pi_{1^{-}}$ injective, so γ is a trivial loop on l, which contradicts the Reeb stability of λ, (see [9, Lemma 2.2].)

It follows that there is an annulus $\gamma \times I$ in D_{1}, such that each leaf of \mathcal{F}_{∞} in $\gamma \times I$ is a circle $\gamma \times t$ for some $t, \gamma \times 0=\partial D$, and $\gamma \times 1$ intersects $\partial_{h} N(\tau)$. Since λ is essential, $\gamma \times 1$ bounds a disk D^{\prime} in a leaf l which intersects $\partial_{h} N(B)$, so there is an interstitial I-bundle J in M which contains the part of D^{\prime} that is not on $\partial_{h} N(B)$. By splitting along a compact subbundle of J that contains $J \cap D^{\prime}$, we get a new
branched surface B^{\prime}, such that $\tau^{\prime}=B^{\prime} \cap F$ is a train track obtained by splitting τ, and $\tau^{\prime} \cap D_{1}$ is obtained by splitting $\tau \cap D_{1}$ along $\gamma \times 1$, as shown in Figure 2.1(c). Note that splitting a train track with no monogon will not increase the number of 0 -gons. Since M is irreducible (because it contains an essential lamination), $D \cup D^{\prime}$ bounds a 3 -ball V. By pushing F off the ball V to the side of D^{\prime}, we get a surface F^{\prime} such that $F^{\prime} \cap B^{\prime}$ has at least one less 0 -gons than τ^{\prime} on F. Repeating this process eliminates all 0 -gons, so eventually $F^{\prime} \cap B^{\prime}$ becomes an essential train track on F^{\prime}, as requires.

Figure 2.1
By Lemma 2.1, B^{\prime} can be further λ-split to an essential branched surface $B^{\prime \prime}$. The train track $B^{\prime \prime} \cap F^{\prime}$ is a splitting of $B^{\prime} \cap F^{\prime}$, so it is still essential. q.e.d.

Corollary 2.3. If λ is an essential lamination, and F is an essential surface in M, then F can be isotoped so that $\lambda \cap F$ is an essential lamination on F. In particular, for any leaf l in λ, each circle component of $l \cap F$ is essential on both F and l.

Proof. By the theorem there is an essential branched surface B^{\prime} fully carrying λ, such that $B^{\prime} \cap F$ is an essential train track on F. Since $\lambda \cap F$ is fully carried by the essential train track $B \cap F$, it is an essential lamination on F. If C is a circle component of $\lambda \cap F$, then it is essential on F. Since F is incompressible, C must also be essential on the leaf of λ that contains C. q.e.d.

Question 2.4. Can Corollary 2.3 be generalized to the intersection of two essential laminations?

Following Gordon [11], we say that a closed manifold M is hyperbolike if it is irreducible, atoroidal, and is not a small Seifert fiber space.

Thurston's geometrization conjecture [29] asserts that hyperbolike manifolds are hyperbolic. Gabai and Mosher [8] showed that a branched surface B as in the following theorem always exists. The slope γ_{0} is called a degenerate slope.

Theorem 2.5. Suppose M is a hyperbolic manifold with torus boundary T. Let B be an essential branched surface in M such that $M-\operatorname{Int} N(B)$ contains an essential annulus A with one boundary on $\partial_{h} N(B)$ and the other a curve on T of slope γ_{0}. Then $M(\gamma)$ is hyperbolike for all γ with $\Delta\left(\gamma_{0}, \gamma\right)>2$.

Proof. Let $X=M-\operatorname{Int} N(B)$, and assume $\Delta\left(\gamma_{0}, \gamma\right)>2$. By Theorem 1.6 we have (i) $X(\gamma)$ is a χ_{c}-irreducible cusped manifold, and (ii) $X(\gamma)$ is not an I-bundle over a surface S with $\partial_{v} X(\gamma)$ the I-bundle over ∂S. Now (i) implies that B remains essential in $M(\gamma)$, so $M(\gamma)$ is irreducible; and by [2], (ii) implies that $M(\gamma)$ is not a small Seifert fiber space. To prove the theorem, it remains to show that $M(\gamma)$ is atoroidal.

Assuming the contrary, let F be a torus in $M(\gamma)$. Let λ be an essential lamination fully carried by B. By Theorem 2.2 , there is an essential branched surface B^{\prime} which λ-splits B, and a surface isotopic to F (still denoted by F), such that $B^{\prime} \cap F$ is an essential train track on F. Notice that the component of $X^{\prime}=M-\operatorname{Int} N\left(B^{\prime}\right)$ containing T cannot be a $T \times I$ without cusp, otherwise $T \times 1$ would be a leaf of λ, so λ would be inessential after all Dehn fillings on M; but since λ is fully carried by B, which is essential in $M(\gamma)$, this is impossible.

Since B^{\prime} is a splitting of B, the essential annulus A also lives in X^{\prime}, with ∂_{1} on $\partial_{h} X^{\prime}-T$. Since $B^{\prime} \cap F$ is an essential train track on F, each component of $F \cap X^{\prime}(\gamma)$ is either a bigon or a cuspless annulus in $X^{\prime}(\gamma)$. According to Theorem 1.6(3), the surface $F \cap X^{\prime}(\gamma)$ can be rel ∂ isotoped into X^{\prime}, which implies that F is isotopic to a torus in M. This contradicts the assumption that M is atoroidal, completing the proof.
q.e.d.

Corollary 2.6. Let M and B be as in Theorem 2.5. Then $M(\gamma)$ is hyperbolike for all but at most 20 slopes γ.

Proof. This follows from Theorem 2.5, the 2π-theorem of Gromov and Thurston [1], and the proof of [3]. Brittenham showed that there are at most 20 slopes γ which have $\Delta(\gamma, l) \leq 2$ and have length at most 2π on T, and they contain all the reducible or small Seifert fibered slopes. Theorem 2.5 says that this set also contains all the toroidal slopes. q.e.d.

3. Sutured manifold decomposition and essential branched surfaces

A sutured manifold is a triple (M, γ, β), where M is a compact orientable 3 -manifold, γ a set of annuli or tori on ∂M, and β a proper 1-complex in M. The pair (M, γ) is a cusped manifold M such that each component of $\partial_{h} M$ is oriented + or - , and each annulus cusp is adjacent to two components of $\partial_{h} M$ with different orientation. In this case the cusps γ are called sutures in [5], [27]. Denote by $\partial_{+} M$ (resp. $\partial_{-} M$) the union of all components of $\partial_{h} M$ with + (resp. -) orientation. We use $\partial_{ \pm} M$ to denote " $\partial_{+} M$ or $\partial_{-} M$ ". They are denoted by $R_{ \pm}$in $[5],[27]$. In this section we assume $\beta=\emptyset$.

A sutured manifold M is taut if it is χ_{c}-irreducible, and both $\partial_{ \pm} M$ minimize the Thurston norm in $H_{2}\left(M, \partial_{v} M\right)$. Note that since each annular cusp is adjacent to two different component of $\partial_{h} M$, it is automatically true that M has no monogon.

If F is an oriented surface properly embedded in M, such that ∂F intersects each torus component of $\partial_{v} M$ in coherently oriented circles, then when cutting along F, the manifold $M_{1}=M \mid F=M-\operatorname{Int} N(F)$ has a natural sutured manifold structure $\left(M_{1}, \gamma_{1}\right)$; see [5], [27]. Such process of obtaining a new sutured manifold from the old one by cutting along an oriented surface is called a sutured manifold decomposition, and is denoted by $(M, \gamma) \stackrel{F}{\rightsquigarrow}\left(M_{1}, \gamma_{1}\right)$. The decomposition is taut if both M and M_{1} are taut sutured manifolds.

Theorem 3.1 (Gabai). Let M be a Haken 3-manifold with toroidal boundary. Let P be a specified component of ∂M. Suppose M is atoroidal, and $H_{2}(M, \partial M-P) \neq 0$. Then there exists a sequence

$$
(M, P)=\left(M_{0}, \gamma_{0}\right) \stackrel{S_{1}}{\sim}\left(M_{1}, \gamma_{1}\right) \stackrel{S_{2}}{\sim} \ldots \stackrel{S_{n}}{\sim}\left(M_{n}, \gamma_{n}\right)
$$

of sutured manifold decompositions with the following properties:
(1) Each $\left(M_{i}, \gamma_{i}\right)$ is taut and each separating component of S_{i+1} is a product disk.
(2) Some component of γ_{n} is the torus P.
(3) $\left(M_{n}, \gamma_{n}\right)$ is a union of a product sutured manifold and a sutured manifold $(H, \delta)=T^{2} \times I$ where $P=T^{2} \times 0$, and $\delta \cap\left(T^{2} \times 1\right) \neq \emptyset$.

Proof. When $\partial M=P$, this is exactly Step 1 in the proof of $[6$, Theorem 1.7]. Since ∂M is incompressible, the sutured manifold (M, P) is taut, with $\partial_{+} M=\partial M-P$. Hence (M, P) satisfies the assumption of [6, Theorem 1.8]. As remarked in the paragraph before [6 , Theorem 1.8],
the proof of Theorem 1.7 there applies verbatim to this more general setting. q.e.d.

Given any sequence of sutured manifold decomposition of M, there is an associated branched surface B. The construction is obvious: B is the union of $\partial M-P$ and all the S_{i} in the sequence, smoothed at ∂S_{i} according to its orientation. See [7, Construction 4.16] for details. The following theorem is also due to Gabai.

Theorem 3.2. The branched surface B associated to the sequence in Theorem 3.1 fully carries an essential lamination λ.

Proof. The construction of λ was described in [7, Construction 4.17]. The lamination extends to taut foliations after all but one Dehn filling on P, so it is essential in all but one $M(\gamma)$. It follows that λ is also essential in M.

One can also prove the essentiality of λ directly from the construction. From Description 2 of [7, Construction 4.17], we see that the only compact leaves of λ are $\partial M-P$, which are incompressible by our assumption. As usual, let $M_{\lambda}=M-\operatorname{Int} \lambda_{1}$, where λ_{1} is a thickening of λ. Then M_{λ} is the union of $E(B)$ and a noncompact product sutured manifold (W, β) along the annular sutures β of B. Since $E(B)$ is a taut sutured manifold, $E(B)$ is χ_{c}-irreducible, so M_{λ} is irreducible, and ∂M_{λ} is incompressible and end-incompressible. By definition λ is essential. q.e.d.

Theorem 3.3. Let M be an atoroidal, irreducible, ∂-irreducible, compact 3-manifold with ∂M a set of tori. Let T be a specified component of ∂M. Suppose $H_{2}(M, \partial M-T) \neq 0$. Let γ_{1} and γ_{2} be slopes on T such that $M\left(\gamma_{1}\right)$ is toroidal, and $M\left(\gamma_{2}\right)$ is reducible or ∂-reducible. Then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Proof. Let

$$
(M, \partial M)=\left(M_{0}, \gamma_{0}\right) \stackrel{S_{1}}{\rightsquigarrow}\left(M_{1}, \gamma_{1}\right) \stackrel{S_{2}}{\cdots} \cdots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

be a sequence of sutured manifold decomposition given by Theorem 3.1. Let B and λ be the branched surface and essential lamination given by the Theorem. By Lemma 2.1, B can be λ-split into an essential branched surface B^{\prime}. Let X (resp. X^{\prime}) be the component of $E(B)$ (resp. $E\left(B^{\prime}\right)$) containing T. Note that since B^{\prime} is a splitting of B, we have $X \subset X^{\prime}$.

According to Theorem 3.1(3), X is a sutured manifold $T^{2} \times I$ with $T=T^{2} \times 0$, and $\partial_{v} X \cap\left(T^{2} \times 1\right) \neq \emptyset$. Thus $\partial_{v} X$ consists of (at least two)
annuli, cutting $T^{2} \times 1$ into $\partial_{+} X$ and $\partial_{-} X$. Hence there are two essential annuli $A_{ \pm}$in X, each having one boundary component on T, and the other on different components of $\partial_{ \pm} X$. After splitting the component X^{\prime} may no longer be a $T^{2} \times I$, but since $X \subset X^{\prime}$, the above annuli $A_{ \pm}$are also essential annuli in X^{\prime}. Let γ^{\prime} be the slope $A_{+} \cap T$ on T. Applying Theorem 1.8 to X^{\prime}, we see that if $\gamma \neq \gamma^{\prime}$ then $X^{\prime}(\gamma)$ is $\chi_{c^{-}}$ irreducible, hence B^{\prime} remains an essential branched surface in $X^{\prime}(\gamma)$ for all $\gamma \neq \gamma^{\prime}$. Since we assumed that $M\left(\gamma_{2}\right)$ is reducible or ∂-reducible, we must have $\gamma^{\prime}=\gamma_{2}$.

Now consider an essential torus F in $M\left(\gamma_{1}\right)$. By Lemma 2.1, after an isotopy of F we may assume that there is a branched surface $B^{\prime \prime}$ which is a λ-splitting of B^{\prime}, such that $F \cap B^{\prime \prime}$ is an essential train track τ on F. Since the Euler number of F is zero, all components of $F-\operatorname{Int} N(\tau)$ are bigons or cuspless annuli. Let $X^{\prime \prime}$ be the component of $E\left(B^{\prime \prime}\right)$ that contains T. Then in particular $Y=F \cap X^{\prime \prime}(\gamma)$ is a union of bigons and cuspless annuli. By Theorem 1.8, if $\Delta\left(\gamma_{1}, \gamma_{2}\right) \geq 2$, then Y can be rel ∂ isotoped into M. But then F would be isotopic to an essential torus in M, contradicting the assumption that M is atoroidal. q.e.d.

Theorem 3.4. Let M be a simple compact 3-manifold with ∂M a set of tori. Let T be a specified component of ∂M. Suppose $H_{2}(M, \partial M-$ $T) \neq 0$. Let γ_{1} and γ_{2} be slopes on T such that $M\left(\gamma_{1}\right)$ is annular, and $M\left(\gamma_{2}\right)$ is reducible or ∂-reducible. Then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Proof. The proof is the same as that of Theorem 3.3, with the essential torus F in $M\left(\gamma_{1}\right)$ replaced by an essential annulus A. Since $\partial M\left(\gamma_{1}\right)$ is contained in the branched surface $B^{\prime \prime}$ in that proof, we can assume that $A \cap B^{\prime \prime}$ is an essential train track τ in A containing ∂A. Hence $A-\operatorname{Int} N(\tau)$ consists of bigons and cuspless annuli. So if $\Delta\left(\gamma_{1}, \gamma_{2}\right) \geq 2$, then A can be rel ∂ isotoped into M, which would contradict the assumption that M is simple. q.e.d.

4. Surgery on manifolds with large boundary

In [32] and [24] it was proved that if M is a hyperbolic manifold with T a torus boundary component, and if $M\left(\gamma_{1}\right)$ is reducible and $M\left(\gamma_{2}\right)$ toroidal, then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 3$. Theorem 3.3 says that if ∂M consists of tori, and $H_{2}(M, \partial M-T) \neq 0$, then we actually have a much stronger conclusion that $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$. The following theorem shows that the first condition can be removed. Note that if ∂M is not one or two tori, then M automatically satisfies the condition that $H_{2}(M, \partial M-T) \neq 0$.

Theorem 4.1. Let M be an irreducible, ∂-irreducible, atoroidal 3manifold with torus T as a boundary component, such that $H_{2}(M, \partial M-$ $T) \neq 0$. Let γ_{1} and γ_{2} be slopes on T such that $M\left(\gamma_{1}\right)$ is toroidal, and $M\left(\gamma_{2}\right)$ is reducible or ∂-reducible. Then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Proof. First assume that $M\left(\gamma_{2}\right)$ is reducible. Since M is atoroidal, by a theorem of Scharlemann [28], we see that $M(\gamma)$ remains ∂-irreducible if $\gamma \neq \gamma_{2}$.

For each component F of ∂M with genus ≥ 2, choose a simple manifold M_{F} with $\partial M_{F}=F$, and $H_{2}\left(M_{F}\right) \neq 0$. Such a manifold can be constructed as follows: Let $g=\operatorname{genus}(F)$. Choose a compact manifold X such that ∂X is a surface of genus $g-1$, and $H_{2}(X)$ has rank ≥ 2. (For example, let $X=V \#\left(T^{2} \times S^{1}\right)$, where V is a handlebody of genus $g-1$.) According to Myers [26], there is an arc α in X, such that $Y=X-\operatorname{Int} N(\alpha)$ is a simple manifold. Clearly, $\partial Y=F$. The Meyer-Vietoris sequence of the pair $(Y, N(\alpha))$ gives the following exact sequence:

$$
0 \rightarrow H_{2}(Y) \rightarrow H_{2}(X) \rightarrow H_{1}(Y \cap N(\alpha)) \rightarrow \cdots
$$

Since $Y \cap N(\alpha)$ is an annulus, it follows that $H_{2}(Y) \neq 0$. Hence we can take $M_{F}=Y$.

Gluing an M_{F} to M along F for each nontorus boundary component F of M, we get a manifold \widehat{M}, which is atoroidal and Haken, with $\partial \widehat{M}$ a set of tori. Since M_{F} has only one boundary component, $H_{2}\left(M_{F}\right) \neq 0$ implies that M_{F} contains a closed nonseparating surface, which is then nonseparating in \widehat{M}; hence $H_{2}(\widehat{M}, \partial \widehat{M}-T) \neq 0$. If S is a reducing sphere in $M\left(\gamma_{2}\right)$, then since M_{F} contains a nonseparating surface, gluing M_{F} to $M\left(\gamma_{2}\right)-\operatorname{Int} N(S)$ will not produce a 3 -ball bounded by S. Hence S remains a reducing sphere in $\widehat{M}\left(\gamma_{2}\right)$. Since ∂M is incompressible in $\widehat{M}\left(\gamma_{1}\right)$, an essential torus P in $M\left(\gamma_{1}\right)$ remains essential in $\widehat{M}\left(\gamma_{1}\right)$, so $M\left(\gamma_{1}\right)$ is toroidal. We have thus shown that \widehat{M} satisfies all conditions of Theorem 3.3, hence by that theorem we have $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Now assume that $M\left(\gamma_{2}\right)$ is ∂-reducible. Let F be a component of $\partial M-T$ which is compressible in $M\left(\gamma_{2}\right)$, and let C be a curve on F bounding a compressing disk D in $M\left(\gamma_{2}\right)$. If F is a torus, then the frontier of $N(F \cup D)$ is a 2 -sphere S. If S is an essential sphere, then $M\left(\gamma_{2}\right)$ is reducible, and the result has been proved above. If S is inessential, then ∂M consists of two tori, so the result follows from Theorem 3.3. Hence we can assume that F has genus ≥ 2.

Let P be a planar surface having at least three boundary components. Let $\varphi: \partial P \times I \rightarrow F$ be a map such that ∂P is sent to curves parallel to C. Denote by $Y=M \cup_{\varphi}(P \times I)$, the manifold obtained by gluing $P \times I$ to M using φ as gluing map. By a standard innermost circle outermost arc argument it can be shown that Y is irreducible, ∂-irreducible and atoroidal. Since $\partial Y-T$ is not a torus, we also have $H_{2}(Y, \partial Y-T) \neq 0$. The surface P extends to a sphere in $Y\left(\gamma_{2}\right)$ having some boundary components on each side, hence $Y\left(\gamma_{2}\right)$ is reducible. If the annuli $\partial P \times I$ are incompressible in $M\left(\gamma_{1}\right)$, then an essential torus in $M\left(\gamma_{1}\right)$ remains essential in $Y\left(\gamma_{1}\right)$. Hence the result follows from the first case proved above, with M replaced by Y. If $\partial P \times I$ is compressible in $M\left(\gamma_{1}\right)$, then $Y\left(\gamma_{1}\right)$ is also reducible. By the Reducible Surgery Theorem of Gordon-Luecke [13], we also have $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$. q.e.d.

Remark 4.2. The idea of gluing a large simple manifold to M to get the result is due to John Luecke. If M is an irreducible atoroidal manifold with torus boundaries, such that $H_{2}(M, \partial M-T) \neq 0$, then a theorem of Gabai [6, Corollary 2.4] says that at most one Dehn filling on T could be reducible. Using the above trick, Luecke showed that this is true even if ∂M has some higher genus components.

Example 4.3. (1) If W is a solid torus, and K is a hyperbolic knot in W with winding number 0 , then $M=W-\operatorname{Int} N(K)$ satisfies the conditions of Theorems 3.3 and 3.4. Hence if γ surgery on K produces toroidal or annular manifold, then γ is a longitudinal slope, i.e., $\Delta(\gamma, m)=1$, where m is the meridional slope of K. Together with results of [31] and [28], it shows that non-integral surgeries on such knots always produce hyperbolic manifolds.
(2) As noticed above, the condition $H_{2}(M, \partial M-T)$ is true unless $\partial M-T$ is empty or a single torus. This condition cannot be removed. Hayashi and Motegi [19] have an example of a simple manifold M, such that ∂M is a union of two tori, $M\left(\gamma_{1}\right)$ is reducible and ∂-reducible, $M\left(\gamma_{2}\right)$ is toroidal and annular, and $\Delta\left(\gamma_{1}, \gamma_{2}\right)=2$.
(3) If W is a handlebody of genus ≥ 2, and K is a knot in W such that $W-\operatorname{Int} N(K)$ is irreducible, ∂-irreducible and atoroidal, then only integral surgeries on K can yield toroidal manifolds.

Question 4.4. Are there any hyperbolic knots in a solid torus which admits some non-integral toroidal or annular surgeries?

This has recently been answered in positive by Miyazaki and Motegi [25].

Corollary 4.5. Let K be a hyperbolic knot in S^{3}. Suppose there is an incompressible surface F in $E(K)$, cutting $E(K)$ into anannular manifolds X and Y. Then $K(\gamma)$ is hyperbolic for all non-integral slopes γ.

Proof. Let X be the component of $E(K)-\operatorname{Int} N(F)$ containing $T=\partial N(K)$. Let γ be a non-integral slope on $N(K)$, and let m be the meridional slope. Clearly, F is compressible in $X(m)$. Therefore, by [31] and [28], $X(\gamma)$ is irreducible and ∂-irreducible. Hence $K(\gamma)=Y \cup X(\gamma)$ is a Haken manifold. Since Y is anannular, any essential torus S in $K(\gamma)$ can be isotoped to be disjoint from F. Since K is hyperbolic, S cannot be in Y, otherwise it would be an essential torus in $E(K)$. By Theorem 4.1, $X(\gamma)$ is atoroidal, so S cannot be in $X(\gamma)$ either. Thus $K(\gamma)$ is also atoroidal. If $K(\gamma)$ were a Seifert fiber space, then F would be isotopic to a surface transverse to the fibers, hence $K(\gamma)-\operatorname{Int} N(F)$ would be an I-bundle over surface, which is impossible because X is anannular. It now follows from Thurston's Geometrization Theorem [29] that $K(\gamma)$ is hyperbolic. q.e.d.

By a theorem of Gordon [10, Theorem 1.1], if $Y\left(\gamma_{1}\right)$ and $Y\left(\gamma_{2}\right)$ are nonsimple, then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 5$. Since γ_{i} are integral, there are at most 6 such slopes. Hence those knots K in Corollary 4.5 admit at most 6 nontrivial, nonhyperbolic surgeries.

Theorem 4.6. Let M be a compact simple 3-manifold with torus T as a boundary component, such that $H_{2}(M, \partial M-T) \neq 0$. Let γ_{1} and γ_{2} be slopes on T such that $M\left(\gamma_{1}\right)$ is annular, and $M\left(\gamma_{2}\right)$ is reducible. Then $\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 1$.

Proof. Let A be an essential annulus in $M\left(\gamma_{1}\right)$. If ∂M consists of tori, the theorem follows from Theorem 3.4. If ∂A lies on torus boundary components of M, we can glue M_{F} to M to get a simple manifold Y with toroidal boundary, as in the proof of Theorem 4.1, then apply Theorem 3.4. Hence we may assume that A has at least one boundary on a nontorus component of ∂M.

Suppose both components of ∂A lie on nontorus boundary components of M. Let $X=P \times I$, where P is an annulus. Gluing $(\partial P) \times I$ to a neighborhood of ∂A on ∂M, we get a manifold Y. One can check that Y is still a simple manifold, $H_{2}(Y, \partial Y-T) \neq 0$, the manifold $Y\left(\gamma_{1}\right)$ is toroidal, and $Y\left(\gamma_{2}\right)$ is reducible. Hence the result follows from Theorem 4.1.

Now suppose that ∂A has one component on a non-torus boundary
component F of M, and the other on a torus G on ∂M. Notice that the above construction fails, because then G pushed into M would be an essential torus in Y. We proceed as follows: Let A_{1}, A_{2} be two parallel copies of A. Glue the above manifold $X=P \times I$ to M with $\partial P \times I$ identified to a neighborhood of the two curves of ∂A_{i} on the nontorus component F of ∂M. Then the resulting manifold Y again satisfy all the conditions of the theorem, and $A_{1} \cup A_{2} \cup P$ is an essential annulus in $Y\left(\gamma_{1}\right)$ with both boundary on the torus G. Hence the result follows from the first case proved above. q.e.d.

The following examples show that the results of Theorems 4.1 and 4.6 are the best possible.

Example 4.7. Let M be the exterior of the Borromean ring L shown in Figure 4.1, and let T be a specified component of ∂M. It is well known that M is hyperbolic. The trivial surgery $M(m)$ is reducible and ∂-reducible, and the longitudinal surgery $M(l)$ is toroidal because a component of L bounds a punctured torus disjoint from the other components, which extends to a torus F in $M(l)$. Notice that F is nonseparating, so if it were compressible in $M(l)$, then $M(l)$ would be reducible, which would contradict the theorem of Gabai that M admits at most one reducible Dehn filling [6, Corollary 2.4].

Figure 4.1
Example 4.8. It is more difficult to construct an example of large manifold M with $M\left(\gamma_{1}\right)$ annular and $M\left(\gamma_{2}\right)$ reducible, and $\Delta\left(\gamma_{1}, \gamma_{2}\right)=$ 1. Here is a sketch of such an example.

Let $L=K_{1} \cup K_{2}$ be the link in a handlebody H as shown in Figure 4.2(a). Let $M_{1}=H-\operatorname{Int} N(L)$, with $T_{i}=\partial N\left(K_{i}\right)$.

Figure 4.2
It is easy to show that M_{1} is irreducible, ∂-irreducible, and atoroidal. There is an essential annulus, however, from T_{2} to ∂H. We need to modify the manifold to make it anannular.

Let C_{1}, C_{2} be the curves on ∂H as shown in Figure $4.2(\mathrm{~b})$. Then $P=\partial H-\operatorname{Int} N\left(C_{1} \cup C_{2}\right)$ is a sphere with 4 punctures. Choosing a simple manifold X with ∂X a genus 2 surface, and gluing it to M_{1} along P, we get a M. One can show that M is a simple manifold.

Let m be the meridian of K_{1} on T_{1}, and let l be the longitude, i.e., the blackboard framing slope. Clearly, $M(m)$ is reducible. We claim that $C_{1} \cup C_{2}$ bounds an essential annulus in $M(l)$. To see the annulus, choose a Möbius band F_{i} on each handle of H, with $\partial F_{i}=C_{i}$. Tubing F_{1} and F_{2} together, we get a twice punctured Klein bottle F. Isotope F so that it contains K_{1} and is disjoint from K_{2}. Then $F \cap M$ is a twice punctured annulus, which can be capped off in $M(l)$ to become an annulus A bounded by $C_{1} \cup C_{2}$. Since C_{1} and C_{2} are on different components of $\partial M, A$ is ∂-incompressible. It must also be incompressible, otherwise $M(l)$ would be ∂-reducible; but since $M(m)$ is reducible, this would contradict Scharlemann's Theorem [28].

Question 4.9. (1) If $M\left(\gamma_{2}\right)$ in Theorem 4.6 is ∂-reducible instead of reducible, is the theorem still true? It is true if the boundary of a ∂-reducing disk lies on a torus.
(2) If both $M\left(\gamma_{i}\right)$ are toroidal or annular, what is the upper bound of $\Delta\left(\gamma_{1}, \gamma_{2}\right)$? For general M, Gordon [10] proved that $\Delta \leq 8$, and $\Delta \leq 5$ if $\partial M-T \neq \emptyset$. With the extra assumption that $H_{2}(M, \partial M-T) \neq 0$, the upper bound could be much smaller.

5. Annular surgery and toroidal surgery

Theorem 5.1. Suppose M is a simple manifold with torus T as a boundary component. If $M\left(\gamma_{1}\right)$ is annular, and $M\left(\gamma_{2}\right)$ is reducible, then
$\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 2$.
This whole section is devoted to the proof of this theorem. By Theorem 4.6, we may assume that $\partial M-T$ is a torus. We may also assume that $M\left(\gamma_{1}\right)$ is irreducible and ∂-irreducible, otherwise the result follows from the Reducible Surgery Theorem of Gordon and Luecke [13] or Scharlemann's theorem [28]. We will further assume $\Delta\left(\gamma_{1}, \gamma_{2}\right) \geq 3$. The theorem will follow from the contradiction in the conclusions of Lemma 5.6 and 5.7.

Let F_{1} be an essential annulus in $M\left(\gamma_{1}\right)$. Let F_{2} be either a reducing sphere in $M\left(\gamma_{2}\right)$, or a disk embedded in $\operatorname{Int} M\left(\gamma_{2}\right)$. Denote by J_{i} the attached solid torus in $M\left(\gamma_{i}\right)$. Let $P_{i}=F_{i} \cap M$. Let $u_{1}, \ldots, u_{n_{1}}$ (resp. $v_{1}, \ldots, v_{n_{2}}$) be the disks of $F_{1} \cap J_{1}$ (resp. $F_{2} \cap J_{2}$), labeled successively when traveling along J_{i}. Let Γ_{1} be the graph in F_{1} with u_{i} as (fat) vertices, and the arc components of $P_{1} \cap P_{2}$ as edges. Similarly, Γ_{2} is a graph in F_{2} with v_{j} as vertices and the arcs of $P_{1} \cap P_{2}$ as edges. Notice that if F_{2} is a disk, and e is an arc component of $P_{1} \cap P_{2}$ with an end on ∂F_{2}, then that end of e is not attached to any fat vertices. We say that e is a ghost edge, so Γ_{i} are actually graphs with ghost edges. The end of e which is not on a vertex is called a ghost end. On F_{2} all ghost ends are on ∂F_{2}, while on F_{1} the ghost ends are in the interior of P_{1}.

Each vertex of Γ_{i} is given a sign according to whether the J_{i} passes F_{i} from the positive side or negative side at this vertex. Two vertices of Γ_{i} are parallel if they have the same sign, otherwise they are antiparallel. An edge of Γ_{i} is a positive edge if it connects parallel vertices, otherwise it is a negative edge. The parity rule of [4] says that an edge of $P_{1} \cap P_{2}$ is a positive edge in Γ_{1} if and only if it is a negative edge in Γ_{2}.

A trivial loop in Γ_{i} is an edge cutting off a disk in P_{i} with interior disjoint from Γ_{i}. Such a disk can be used to ∂-compress the surface F_{j}, $j \neq i$. We choose F_{1} so that n_{1} is minimal, which guarantees that Γ_{2} has no trivial loops. In the following, F_{2} is either a reducing sphere of $M\left(\gamma_{2}\right)$, or a disk in the interior of $M\left(\gamma_{2}\right)$ such that all vertices of Γ_{2} are parallel. In the first case, we choose n_{2} to be minimal among all reducing spheres. In the second case, by the parity rule Γ_{1} cannot have any loops. In any case, we have that neither Γ_{i} has any trivial loop. Doing some disk swappings if necessary, we may also assume that all circle components of $P_{1} \cap P_{2}$ are essential in both P_{i}. In particular, each disk face of Γ_{i} has interior disjoint from $P_{j}, j \neq i$.

We may assume that each circle ∂u_{i} intersects each ∂v_{j} exactly Δ times. If e is an edge of Γ_{1} with an end x on a fat vertex u_{i}, then x
is labeled j if x is in $u_{i} \cap v_{j}$. The labels in Γ_{1} are considered $\bmod n_{2}$ integers. In particular, $n_{2}+1=1$. When going around ∂u_{i}, the labels of the ends of edges appear as $1,2, \ldots, n_{2}$ repeated Δ times. Label the ends of edges in Γ_{2} similarly. Each label in Γ_{2} is a mod n_{1} integer. Ghost ends are not labeled.

A set of positive edges $\left\{e_{1}, \ldots, e_{k}\right\}$ on Γ_{i} is called a Scharlemann cycle if (1) they bound a disk on P_{i} with interior disjoint from Γ_{i}, (2) all the vertices on the ends of e_{j} are parallel, and (3) the two labels at the ends of e_{j} are the same as that of e_{1}. The two labels of e_{i} must be $\{j, j+1\}$ for some j. We call $\{j, j+1\}$ the label pair of the Scharlemann cycle.

If $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ are four parallel positive edges with e_{i} adjacent to e_{i+1} for $i=1,2,3$, and if the two middle edges $\left\{e_{2}, e_{3}\right\}$ form a Scharlemann cycle, then the set of these four edges is called an extended Scharlemann cycle. This is enough for our purpose. We refer the reader to [13] for more general definition.

Lemma 5.2. Suppose F_{2} is a reducing sphere. Then the following hold:
(1) Γ_{1} cannot have n_{2} parallel edges.
(2) Γ_{1} cannot have an extended Scharlemann cycles.
(3) Any two Scharlemann cycles on Γ_{1} have the same label pair.
(4) Γ_{1} cannot have more than $\left(n_{2} / 2\right)+1$ parallel positive edges.
(5) If Γ_{1} has a Scharlemann cycle, then F_{2} bounds a punctured lens space. In particular it is separating.

Proof. (1) is proved by Gordon and Litherland in [12, Proposition 1.3]. (2)-(4) follow from the proof of [30, Lemma 2.2-2.4].
(5) is well known: If Γ_{1} has a Scharlemann cycle, then we can find another sphere F_{2}^{\prime} which has two fewer intersections with Dehn filling solid torus, and cobounds with F_{2} a punctured lens space. By the minimality of n_{2} the surface F_{2}^{\prime} must bounds a 3 -ball. See the proof of [4, Lemma 2.5.2(a)] for more details. q.e.d.

Note that since M is a simple manifold, we have $n_{2}>2$.
Lemma 5.3. Theorem 5.1 is true if $n_{1} \leq 2$.
Proof. If $n_{1}=1$, all edges of Γ_{1} are parallel. Since $\Delta \geq 3$, this contradicts Lemma 5.2(1).

Suppose $n_{1}=2$. Consider the reduced graph $\widehat{\Gamma}_{1}$ obtained by replacing a family of parallel edges in Γ_{1} with a single edge. By calculating the Euler number, one can see that $\widehat{\Gamma}_{1}$ has at most 4 edges. Since by

Lemma $5.2(1)$ there are no n_{2} parallel edges, each of the two vertices in $\widehat{\Gamma}_{1}$ must have valency 4 , so the graph looks like that in Figure 5.1(a). The edges a and d are positive edges, hence each represents at most $\left(n_{2} / 2\right)+1$ edges in Γ_{1}. Since each of b and c represents at most $n_{2}-1$ edges, and the valency of each vertex in Γ_{1} is $3 n_{2}$, it follows that each of a and d represents exactly $\left(n_{2} / 2\right)+1$ edges, and each of b and c represents $n_{2}-1$ edges. See Figure 5.1 (b) for the case that $n_{2}=6$. We separate two cases.

Figure 5.1

Case 1. The two vertices of Γ_{1} are not parallel.

It is clear that any family of $\left(n_{2} / 2\right)+1$ parallel positive edges contain a Scharlemann cycle $\left\{e_{1}, e_{2}\right\}$. Moreover, they must lie on one side of the family, for otherwise there would be an extended Scharlemann cycle. Since $n_{2}>2$, the Scharlemann cycles cannot be on the side near the boundary of P_{1}. Also, by Lemma $5.2(3)$ we may assume that both Scharlemann cycles have the same label pair, say $\{1,2\}$. It is now clear that the labeling of the graph looks like that in Figure 5.1(c). In particular, for each label j there is a negative edge in Γ_{1} with ends labeled j and $j+1$. By the parity rule, v_{j} and v_{j+1} are parallel. Thus
all vertices of Γ_{2} are parallel. But then there cannot be any positive edges in Γ_{1}, contradicting the existence of family a and d.

Case 2. The two vertices of Γ_{1} are parallel.
Since the families of edges in a and d contain Scharlemann cycles, by Lemma $5.2(5) F_{2}$ is a separating sphere. Hence n_{2} is even. In this case all edges on Γ_{1} are positive, so b and c also represents at most $\left(n_{2} / 2\right)+1$ edges, and we have $4\left[\left(n_{2} / 2\right)+1\right] \geq 3 n_{2}$. Since n_{2} is even, and $n_{2}>2$, this holds only if $n_{2}=4$, and each family contains 3 edges. Thus the graph looks like that in Figure 5.1(c). One can see that there is an edge with both ends labeled 4, which is impossible by the parity rule. q.e.d.

Lemma 5.4. (1) If Γ_{2} has a Scharlemann cycle, then F_{1} is a separating annulus.
(2) Γ_{2} cannot have two Scharlemann cycles with different label pairs.
(3) Γ_{2} cannot have an extended Scharlemann cycle.

Proof. (1) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a Scharlemann cycle in Γ_{2} with label pair $\{1,2\}$, bounding a Scharlemann disk D on the surface F_{2}. Let V be the part of the Dehn filling solid torus J_{1} in $M\left(\gamma_{1}\right)$ lying between the two meridian disks u_{1}, u_{2}, and containing no other u_{j}. If F_{1} is a nonseparating annulus, then the frontier of $N\left(F_{1} \cup V \cup D\right)$ in $M\left(\gamma_{1}\right)$ consists of two nonseparating annuli F_{1} and F_{1}^{\prime}. The annulus F_{1}^{\prime} has 2 less intersection with J_{1} than F_{1}. Since $M\left(\gamma_{1}\right)$ is irreducible and ∂ irreducible, any nonseparating annulus is essential. Hence F_{1}^{\prime} is essential in $M\left(\gamma_{1}\right)$, contradicting the minimality of n_{1}.
(2) Use the notation above. On the annulus F_{1} consider the subgraph $G=\epsilon_{1} \cup \ldots \cup e_{k} \cup u_{1} \cup u_{2}$ of Γ_{1}. If G is contained in a disk D_{1}, then as in the proof of [4, Lemma 2.5.2] it is easy to see that a regular neighborhood of $D_{1} \cup V \cup D$ is a once punctured lens space. Since we have assumed that $M\left(\gamma_{1}\right)$ is irreducible, this is impossible. Hence we may assume that G cuts F_{1} into two annuli A_{1}, A_{2} and some disk components. Let A_{i}^{\prime} be the closure of $F_{1}-A_{i}$. Consider the manifold $Y=N\left(A_{1}^{\prime} \cup V \cup D\right)$. Clearly, ∂Y is a torus, so the frontier of Y in $M\left(\gamma_{1}\right)$ is an annulus Q.

Claim. Q is an essential annulus in $M\left(\gamma_{1}\right)$.
Proof. The central curve C of Q is isotopic to the central curve C^{\prime} of F_{1}. Since F_{1} is incompressible, C^{\prime} (and hence C) is not null homotopic in $M\left(\gamma_{1}\right)$, so Q is also incompressible. If Q is not essential, it has a boundary compressing disk D^{\prime}. Put $X=M\left(\gamma_{1}\right)-\operatorname{Int} Y$. We have assumed that $M\left(\gamma_{1}\right)$ is irreducible and ∂-irreducible, so if X contains
D^{\prime}, then it is a solid torus with Q as a longitudinal annulus. Similarly for Y.

First assume D^{\prime} is in X. Notice that F_{1} can be isotoped into X. Choose D^{\prime} so that $D^{\prime} \cap F_{1}$ is minimal. If $D^{\prime} \cap F_{1}=\emptyset$, then F_{1} would lie in a 3 -ball. If $D^{\prime} \cap F_{1} \neq \emptyset$, an outermost component of $D^{\prime}-F_{1}$ disjoint from Q would be a boundary compressing disk of F_{1}. Both cases contradict the essentiality of F_{1}.

Now assume D^{\prime} is in Y. Then Y is a solid torus with Q a longitudinal annulus. Let \widehat{Y} be the manifold obtained by attaching a 2-handle H to Y along the longitudinal annulus $\partial Y-Q$. Then \widehat{Y} is a 3-ball. Recall that $Y=N\left(A_{1}^{\prime} \cup V \cup D\right)$, so it can be considered as obtained by attaching a 2-handle $H^{\prime}=N(D)$ to the handlebody $W=N\left(A_{1}^{\prime} \cup V\right)$ along the curve ∂D. Switch the order of the two 2-handle additions. It is easy to see that after attaching H to W, the manifold is a solid torus, with ∂D intersecting a meridian exactly k times, where $k>1$ is the length of the Scharlemann cycle. Therefore \widehat{Y} is a punctured lens space, which is a contradiction. q.e.d.

We continue with the proof of Lemma 5.4. Notice that if A_{1}^{\prime} contains m vertices of Γ_{1} (including u_{1} and u_{2}), then the new essential annulus Q above intersects J_{1} exactly $2 m-2$ times. By the minimality of n_{1} we must have $2 m-2 \geq n_{1}$.

Suppose $\left\{e_{1}^{\prime}, \ldots, e_{t}^{\prime}\right\}$ is another Scharlemann cycle of Γ_{2} with label pair $\{p, p+1\}$. Since the label pairs are different, they can have at most one label in common, say $p=2$. Let $G^{\prime}=e_{1}^{\prime} \cup \ldots \cup e_{t}^{\prime} \cup u_{p} \cup u_{p+1}$ be the corresponding graph on F_{1}. The two graphs G^{\prime} and G are disjoint except possibly intersecting at their common vertex $u_{p}=u_{2}$. Like before, G^{\prime} cannot be contained in a disk, hence we may assume that G^{\prime} is contained in the annulus $A_{1} \cup u_{2}$.

By the above, the annulus A_{1} contains at most $n_{1} / 2-1$ vertices, so the annulus $A_{1} \cup u_{2}$ contains at most $n_{1} / 2$ vertices. Applying the Claim to G^{\prime}, we see that the frontier of $Y^{\prime}=N\left(\left(A_{1} \cup u_{2}\right) \cup V^{\prime} \cup D^{\prime}\right)$ is an essential annulus in $M\left(\gamma_{1}\right)$ intersecting J_{1} at most $2\left(n_{1} / 2\right)-2=n_{1}-2$ times. This contradicts the minimality of n_{1}, completing the proof of (2).
(3) Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be an extended Scharlemann cycle with label pair $\{2,3\}$, say. Then as above, the set $C_{1}=e_{2} \cup e_{3} \cup u_{2} \cup u_{3}$ cuts F_{1} into two annuli, each containing exactly $n_{1} / 2-1$ vertices of Γ_{1} in its interior. The cycle $C_{2}=e_{1} \cup e_{4} \cup u_{1} \cup u_{4}$ must lie on one of these two annuli. Like C_{1}, the cycle C_{2} cannot be contained in a disk, so $F_{1}-C_{2}$ consists
of two annuli. Let A_{1} be the one which does not contain C_{1}. Let D be the disk on F_{2} bounded by e_{1}, e_{4} and two arcs on the boundary of fat vertices. Let V be the part of the Dehn filling solid torus J_{1} between u_{1} and u_{4} and which contains u_{2} and u_{3}. By the same proof as in (2), one can show that the frontier of $N\left(A_{1} \cup u_{1} \cup u_{4} \cup V \cup D\right)$ is an essential annulus in $M\left(\gamma_{1}\right)$ which intersects J_{1} less than n_{1} times, leading to a contradiction to the minimality of n_{1}. q.e.d.

Consider a disk F_{2} in the interior of $M\left(\gamma_{2}\right)$. We assume that ∂F_{2} is disjoint from J_{2}. Recall that $F_{1} \cap F_{2}$ form the graph Γ_{2} in F_{2} which may have some ghost edges connecting the fat vertices of Γ_{2} to ∂F_{2}.

Definition 5.5. (1) A disk F_{2} in $M\left(\gamma_{2}\right)$ is a generalized Gabai disk if all the fat vertices on F_{2} are parallel, and the number of ghost edges is less than Δn_{1}, the valency of fat vertices in Γ_{2}.

Lemma 5.6. If $\Delta=\Delta\left(\gamma_{1}, \gamma_{2}\right) \geq 3$, then $M\left(\gamma_{2}\right)$ cannot have a generalized Gabai disk.

Proof. Recall that a non-ghost edge of Γ_{2} is an i-edge if it has i as a label on one of its ends. An i-edge cycle in Γ_{2} is a cycle consisting of i-edges.

Since there are less than Δn_{1} ghost edges, at least one of the labels, say i, has the property that there are at most $\Delta-1$ ghost edges with label i on their non-ghost ends, so every fat vertex v_{j} has a non-ghost edge with label i at v_{j}. One can then find a cycle of edges in Γ_{2}, each starting with the label i. Such a cycle is called a great i-cycle in [4]. By [4, Lemma 2.6.2] this implies that Γ_{2} has a Scharlemann cycle, so by Lemma $5.4(1) F_{1}$ is a separating surface. According to Lemma 2.2 of [13], any disk D on F_{2} bounded by an i-edge cycle in Γ_{2} contains a Scharlemann cycle if $\operatorname{Int} D$ contains no vertices of Γ_{2}. We are done by Lemma $5.4(2)$ unless all of these Scharlemann cycles have the same label pair $\{1,2\}$, say.

Consider the subgraph Γ_{2}^{\prime} of Γ_{2} consisting of all i-edges. We may assume that Γ_{2}^{\prime} is connected, otherwise consider a smaller disk and follow the argument here. There are at least $\Delta n_{2}-(\Delta-1) i$-edges, with n_{2} vertices. By calculating the Euler characteristic we see that there are at least $1+\Delta n_{2}-(\Delta-1)-n_{2}$ faces. Since each of them contains at least one Scharlemann cycle, which contains at least 2 edges, there are at least $2\left(\Delta n_{2}-\Delta-n_{2}+2\right)$ edges in Γ_{1} connecting u_{1} to u_{2}. Since the valency of u_{i} is Δn_{2}, we have

$$
2\left(\Delta n_{2}-\Delta-n_{2}+2\right) \leq \Delta n_{2}
$$

i.e., $(\Delta-2)\left(n_{2}-2\right) \leq 0$. Since $\Delta>2$, this holds only if $n_{2} \leq 2$. Recall that there is no trivial loop in Γ_{2}, so $n_{2} \neq 1$, otherwise all edges would be ghost edges, contradicting the assumption that F_{2} is a generalized Gabai disk. If $n_{2}=2$, all non-ghost edges must be parallel, and there are more than $3 n_{1} / 2$ such. This number is greater than $n_{1} / 2+2$, so there exists an extended Scharlemann cycle by the proof of [30, Lemma 2.2], which contradicts Lemma 5.4(3). q.e.d.

Lemma 5.7. If $\Delta \geq 3$, then $M\left(\gamma_{2}\right)$ contains a generalized gabai disk.

Proof. We will use sutured manifold theory to prove this lemma. One is referred to [5]-[7] and [27] for definitions and theorems about sutured manifolds. In particular, we will use the planar surface $P_{1}=$ $F_{1} \cap M$ as a parametrizing surface, and use Theorem 7.8 of [27].

Consider the sutured manifold (X, γ, β), where $X=M\left(\gamma_{2}\right)$, the suture set γ is empty, and β is the knot which is the center of the Dehn filling solid torus J_{2} in X. Let $\partial X=\partial_{+} X$, which is denoted by R_{+}in [27]. Since $X-\beta$ is irreducible and ∂-irreducible, and the norm of $\partial_{+} X$ is 0 , by definition X is a β-taut sutured manifold.

Recall that a proper surface Q in $M=X-\operatorname{Int} N(\beta)$ is a parametrizing surface if no component of Q is a disk with boundary in $\partial_{ \pm} X$. By extending over $N(\beta), Q$ can also be considered as an immersed surface in X with interior embedded in X, and with boundary on $\partial X \cup \beta$. Isotop Q so that ∂Q intersects γ and $\partial N(\beta)$ in essential arcs or circles. The index of Q is defined as

$$
I(Q)=\mu+\nu-2 \chi(Q)
$$

where μ and ν are the numbers of essential arcs of ∂Q in γ and $\partial N(\beta)$ respectively. The index is additive over components of Q, and Q being a parametrizing surface means that the index of each component is nonnegative. If we view γ and $\partial N(\beta)$ as cusps, then Q would be a surface with some cusp points on its boundary, and $\mu+\nu$ is exactly the number of cusps on ∂Q. Hence $I(Q)=-2 \chi_{c}(Q)$, where χ_{c} is the cusped Euler characteristic defined in Section 1.

Take $Q=F_{1} \cap M$, the punctured essential annuli in M. Since X has no sutures, and since β is a circle, $\mu=\nu=0$, so the index of Q is $I(Q)=-2 \chi(Q)=2 n_{1}$, where as before n_{1} denotes the number of times F_{1} intersects the Dehn filling solid torus J_{1}. We refer the reader to [27] for the definition of taut sutured manifold decomposition, decomposition that respect a parametrizing surface, and sutured manifold
hierarchy. An important fact about parametrizing surface is that if a decomposition respect a parametrizing surface, then $I\left(Q^{\prime}\right) \leq I(Q)$, where Q^{\prime} is the parametrizing surface after the decomposition. The following is one of the fundamental theorems in sutured manifold theory.

Theorem [27, 7.8]. If Q is a parametrizing surface for the β-taut sutured manifold (X, γ), then there is a β-taut sutured manifold hierarchy for (X, γ) which respects Q.

Applying the theorem to (X, γ, β), with $Q=F_{1} \cap M$ as a parametrizing surface, we get a sutured manifold hierarchy as in the theorem. By definition, each component of ∂M_{n} is a sphere. Denote by $Q_{n}=Q \cap M_{n}$ the parametrizing surface in M_{n}. Since the hierarchy respects Q, we have $I\left(Q_{n}\right) \leq I(Q)=2 n_{1}$.

There is a process called cancellation, see [27, Definition 4.1]. If D is a disk component of Q_{n} which passes each of γ_{n} and β_{n} exactly once, then we can cut along D to reduce the number of components in β_{n}, the resulting sutured manifold is still β-taut [27, Lemma 4.3], and the index of the parametrizing surface unchanged. After canceling all possible components in β_{n}, we get a new set β_{n}^{\prime}, for which Q_{n} has no cancellation disks.

If $\beta_{n}^{\prime}=\emptyset$, then $\left(M_{n}, \gamma_{n}\right)$ would be \emptyset-taut, so by Corollary 3.9 of [27], the original manifold X would also be \emptyset-taut, (see Proof of 9.1 from 9.7 on [27, p. 608] for more details.) This would be a contradiction because $X=M\left(\gamma_{2}\right)$ was assumed reducible. Therefore, there must be a component P of $\partial_{+} M_{n}$ which contains some points of β_{n}^{\prime}.

There is a graph $\Gamma(P)$ on P constructed in the obvious way: The vertices are $P \cap J_{2}=P \cap N\left(\beta_{n}^{\prime}\right)$, where $J_{2}=N(\beta)$ is the Dehn filling solid torus, and the edges are the arcs in $P \cap Q=P \cap Q_{n}$. The orientation of β_{n}^{\prime} comes from that of the knot β, and from the definition of sutured manifold decomposition we know that β_{n}^{\prime} always intersect $\partial_{+} M_{n}$ in the same direction. In particular, all the fat vertices of $\Gamma(P)$ are parallel. Thus if P is a sphere, then by removing a small disk from P, the resulting surface is a generalized Gabai disk for F_{2} with no ghost edges, and we are done.

Therefore we assume that P lies on a sphere S of ∂M_{n} which contains some sutures. If P is not a disk, consider a disk component P^{\prime} of $S \cap \partial_{ \pm} M_{n}$. If P^{\prime} has some intersection with β_{n}^{\prime}, we can take P^{\prime} instead of P. If P^{\prime} does not intersect β_{n}^{\prime}, then the existence of a nondisk component in $S \cap \partial_{ \pm} M_{n}$ implies that some components in $S \cap \partial_{ \pm} M_{n}$ is compressible in $M_{n}-\beta_{n}^{\prime}$, which contradicts the β-tautness of M_{n}. Therefore we may
assume that P is a disk in S. Since all fat vertices of $\Gamma(P)$ are parallel, we need only show that $\Gamma(P)$ has less than Δn_{1} ghost edges. P would then be the required generalized Gabai disk for F_{1}.

Let W be the component of M_{n} containing S. Let D_{1}, \ldots, D_{k} be the components of Q_{n} in W which intersect ∂P. Thus all ghost edges of $\Gamma(P)$ are contained in $\cup \partial D_{i}$. Recall that the index of D_{i} is $I\left(D_{i}\right)=$ $\mu_{i}+\nu_{i}-2 \chi\left(D_{i}\right)$. Since each suture and each arc of β_{n}^{\prime} connect two components of $\partial_{ \pm} M_{n}$ with different orientation, $\mu_{i}+\nu_{i}$, the number of cusps on ∂D_{i}, is always even. Since there is no cancellation disk anymore, either $\mu_{i}+\nu_{i} \geq 4$, or $\chi\left(D_{i}\right) \leq 0$. In any case we have $I\left(D_{i}\right) \geq$ $\left(\mu_{i}+\nu_{i}\right) / 2$. Summing over all such disks we have

$$
\sum\left(\mu_{i}+\nu_{i}\right) \leq 2 \sum I\left(D_{i}\right) \leq 2 I\left(Q_{n}\right) \leq 4 n_{1}
$$

The left-hand side is equal to the total number of arc components of $\cup \partial D_{i}$ on $\partial_{ \pm} M_{n}$, exactly half of which are on $\partial_{+} M_{n}$. It follows that the number of ghost edges on $\Gamma(P)$ is at most $2 n_{1}$. Hence P is a generalized Gabai disk for F_{1}, completing the proof of Lemma 5.7. q.e.d.

The contradiction in the conclusion of Lemmas 5.6 and 5.7 completes the proof of Theorem 5.1.

In [14] Gordon and Luecke showed that if $M\left(\gamma_{1}\right)=S^{3}$ and $M\left(\gamma_{2}\right)$ is toroidal, then $\Delta=\Delta\left(\gamma_{1}, \gamma_{2}\right) \leq 2$. Moreover, if $\Delta=2$ then the essential torus in $M\left(\gamma_{2}\right)$ intersects the Dehn filling solid torus exactly twice.

Question 5.8. If in Theorem 5.1 we have $\Delta\left(\gamma_{1}, \gamma_{2}\right)=2$, is it true that $n_{1}=2$?

References

[1] S. Bleiler \& C. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809-833.
[2] M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61-85.
[3] , Essential laminations, exceptional Seifert-fibered spaces, and Dehn filling, Preprint.
[4] M. Culler, C. Gordon, J. Luecke \& P. Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237-300.
[5] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503.
[6] , Foliations and the topology of 3-manifolds. II, J. Differential Geom. 2 (1987) 461-478.
[7] , Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26 (1987) 479-536.
[8] D. Gabai \& Lee Mosher, In preparation.
[9] D. Gabai \& U. Oertel, Essential laminations in 3-manifolds,, Ann. of Math. 130 (1989) 41-73.
[10] C. Gordon, Boundary slopes of punctured tori in 3-manifolds, Trans. Amer. Math. Soc., to appear.
[11] , Dehn filling: A survey, Preprint.
[12] C. Gordon \& R. Litherland, Incompressible planar surfaces in 3-manifolds, Topology Appl. 18 (1984) 121-144.
[13] C. Gordon \& J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996) 385-409.
[14] , Dehn surgery on knots creating essential tori I, Comm. Anal. Geom. 3 (1995) 597-644.
[15] _, Toroidal and boundary-reducing Dehn fillings, Topology Appl., to appear.
[16] C. Gordon \& Y-Q. Wu, Toroidal and annular Dehn fillings, Proc. London Math. Soc., to appear.
[17] _, Annular and boundary reducing Dehn fillings, In preparation.
[18] M. Gromov \& W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1-12.
[19] C. Hayashi \& K. Motegi, Dehn surgery on knots in solid tori creating essential annuli, Trans. Amer. Math. Soc. 349 (1997) 4897-4930.
[20] J. Hempel, 3-manifolds, Ann. of Math. Stud. No. 86, Princeton University Press, 1976.
[21] W. Jaco, Lectures on three-manifold topology, Regional Conference Series in Mathematics, Amer. Math. Soc. Vol. 43, 1977.
[22] J. Luecke, Private communication.
[23] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37-44.
[24] S. Oh, Reducible and toroidal manifolds obtained by Dehn filling, Topology Appl. 75 (1997) 93-104.
[25] K. Miyazaki \& K. Motegi, Toroidal and annular Dehn surgeries of solid tori, Preprint.
[26] R. Myers , Simple knots in compact orientable 3-manifolds, Trans. Amer. Math. Soc. 273 (1982)75-91.
[27] M. Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557-614.
[28] \quad, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990) 481-500.
[29] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357-381.
[30] Y-Q. Wu , The reducibility of surgered 3-manifolds, Topology Appl. 43 (1992) 213-218.
[31] \quad, Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992) 271-279.
[32] _, Dehn surgeries producing reducible manifolds and toroidal manifolds, Topology 37 (1998) 95-108.
[33] _, Essential laminations in surgered 3-manifolds, Proc. Amer. Math. Soc. 115 (1992) 245-249.

University of Iowa

[^0]: Received January 28, 1997.
 Key words and phrases. Sutured manifolds, branched surfaces, Dehn surgery, simple manifolds.

 1991 Mathematics Subject Classification. 57N10, 57M55.

