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Abstract 

Let G P be a compact simple Poisson-Lie group equipped with a Poisson 
structure V, and (M, cu) be a symplectic manifold. Assume that M carries 
a Poisson action of G P, and there is an equivariant moment map in the 
sense of Lu and Weinstein which maps M to the dual Poisson-Lie group 
G P , m : M —> G P . We prove that M always possesses another symplectic 
form Co so that the G-action preserves Co and there is a new moment map 
/i = e~1 o m : M —> G*. Here e is a universal (independent of M) invertible 
equivariant map e : G* —> G P . We suggest new short proofs of the convexity 
theorem for the Poisson-Lie moment map, the Poisson reduction theorem 
and the Ginzburg-Weinstein theorem on the isomorphism of G* and G P as 
Poisson spaces. 

The main goal of this paper is to compare Hamiltonian and Poisson 
actions of compact simple Lie groups on symplectic manifolds. We 
prove that one can always exchange the Poisson action to a Hamiltonian 
one by an appropriate change of the symplectic structure. This trick 
reduces many questions concerning Poisson actions to their well known 
counterparts from the theory of Hamiltonian G-actions. In particular, 
we suggest new simple proofs of the convexity theorem for the Poisson-
Lie moment map [5], Poisson reduction theorem [10] and the Ginzburg-
Weinstein theorem [7]. The results of this paper were announced in 
[2]. 
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Compact Poisson-Lie groups 

Definit ion 1. Let G be a simple connected simply connected com
pact Lie group and P be a Poisson bracket on G. This pair defines a 
Poisson-Lie group if the multiplication map G X G —> G is a Poisson 
map. 

Up to a scalar factor Poisson-Lie structures on G are in one to one 
correspondence with Manin triples (d,G,G*). 

Definit ion 2. A triple of Lie algebras (d, G, G*) is called a Manin 
triple if d has an invariant nondegenerate bilinear form k, and G and G* 
are maximal isotropic subalgebras of d which together span d: 

(1) k(G1G) = k(G*1G*) = 0. 

The algebra d is also called a Drinfeld double of G. For G being a 
compact simple Lie algebra the double d of G coincides with its com-
plexification G considered as an algebra over real numbers. The scalar 
product k is given by the imaginary part of the Killing form K on G . 

(2) k(a,b) = Im K(a,b). 

Up to isomorphism, the isotropic subalgebras G*u C G are classified 
by real valued antisymmetric bilinear forms on the Cartan subalgebra 
H of G [9]. For each such a form u there is a splitting 

(3) d = Gc = G + G u , 

where the dual Lie algebra G*u is defined as a semi-direct sum of two 
subalgebras 

(4) G*u = n + H*u. 

Here n is the maximal nilpotent subalgebra in G . We can always assume 
that it is generated by all positive root vectors of G . The other subspace 
H*u C H is defined as follows: 

(5) Ku = {i(a+iu(a)),a e H}, 

where u(a) is the image of a under the map H —> H* corresponding to 
the form u , composed with the isomorphism H* —> H corresponding to 
the form k. Antisymmetry of u implies 

(6) K(a,u(b)) + K(u(a),b) = 0. 
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Let us denote a Poisson structure corresponding to the Manin triple 
(3) by P u. Rescaling this Poisson bracket by a real factor t we get a 
family parametrized by pairs (t,u): 

(7) P{t}u) = tP u/t. 

This family provides a complete classification of Poisson structures on 
compact simple Lie groups (up to isomorphisms). The Poisson bracket 
P t,u) behaves smoothly at the point t = 0. However, in the main part 
of this paper we always assume that t / 0 and treat the case t = 0 in 
Appendix. 

Let us remark that the Lie algebras G and G* enter the picture in 
a symmetric way. This means that the connected simply connected 
group G* corresponding to the Lie algebra G*u also carries a Poisson-Lie 
structure defined by the Manin triple. 

In our example the group G u is a semi-direct product of the maximal 
nilpotent group N in G C and the subgroup H* of the complexification 
of the Cartan torus 

(8) H* = {exp(a),aen*u}. 

In particular, for G = SU(N) and u = 0, the group HQ is formed by 
diagonal matrices of unit determinant with real positive eigenvalues. 
The elements of G* may be visualized by the embedding into G . 

(9) G*u = {N exp{i(a + iu(a))}, N G N , a G « } . 

Let a —T- a be an anti-involution of G which singles out the compact 
form. It is convenient to introduce a map 

(10) f : a —> aa; 

which maps G* into a certain subspace P of G , 

(11) P = {exp{ia}, a G G}. 

Observe that though the dual group G u depends on the choice of u, the 
target of the map f is always the same space P. 

There is another way to characterize P: 

(12) P= {x G G C,x = x}. 

The bar operation being an anti-involution, P is not a group. Using 
the fact that any element of P may be brought to the maximal torus by 
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conjugation by some element of G, the Iwasawa decomposition and the 
uniqueness of a positive square root of a positive real number one easily 
proves that the map f is in fact invertible. Let us define the following 
map e tfu\ from G* to G*: 

(13) e(tiu) = f-1oj1j = Eo K = exp{2it •} o K. 

Here K stands for the Killing form which converts G* to G, the expo
nential map E with additional i maps G to P and the last map f~l 

identifies P with G*. Let a be an element of G* and A = e t tu\(a). Then 
the definition (13) implies 

(14) A = AA = j(a) = exp{2itK(a)}. 

Both spaces G* and G* carry natural actions of the group G. The 
dual space to the Lie algebra carries the coadjoint action Ad*: 

(15) K(Ad*(g)a) = gK(a)g~1. 

The G-action on the group G* is defined by using a somewhat gen
eralized version of the Iwasawa decomposition: 

(16) g-A = A g-g'. 

This is an equality in G . On the right-hand side g' G G and A g G G*. 
Existence and uniqueness of A g and g' are ensured by the corresponding 
properties of the Iwasawa decomposition. For historical reasons this 
action of G on G* is called dressing action [13]. To make notation 
closer to the case of G* we sometimes denote 

(17) A g = AD*(g)A. 

Observe that 

(18) A g = A g A g = gAAg-1 = gAg'1. 

This simple observation proves the following lemma. 

L e m m a 1. The map e tfu\ intertwines coadjoint and dressing ac
tions of G on G* and G* : 

(19) AD*(g)e{t:u)(a) = e{ttu)(Ad*(g)a). 
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The map eufU\ has been introduced in [5]. We shall discuss some 
new properties of this map in the next sections. 

T h e M o m e n t map in the sense of Lu and Weins te in 

Let us recall the definitions of the moment map for Hamiltonian and 
Poisson group actions on symplectic manifolds. 

Let M be a symplectic manifold equipped with an action A of a 
compact Lie group G: 

(20) A : G X M -> M, A{g, x) = x g. 

To each element a G G one can associate a vector field va on M: 

(21) va = A*{a). 

On the left-hand side we consider a as an element of the Lie algebra G 
whereas on the right-hand side we treat it as a right invariant vector 
field on G. 

It is convenient to introduce a universal vector field v taking values 
in the space G* so that 

(22) va = < v,a > . 

Definit ion 3 . The action A is called symplectic if it preserves the 
Poisson structure on M: 

(23) A*(P M) = P M. 

Here the Poisson tensor P is the inverse of the matrix of the symplectic 
form uj on M. 

Definit ion 4. The action A is called Hamiltonian if there is a Hamil
tonian fj,a for each vector field va: 

(24) u(-, va) = dfia , P M{-, dßa) = va. 

The family of Hamiltonians fj,a can be assembled into the moment map 
fi : M —» G* such that 

(25) fia = < /i, a > . 

For further generalizations to Poisson-Lie groups we rewrite the defini
tion of the moment map in the following form. 
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Definit ion 5. The map fj, : M —> G* is called a moment map if it 
satisfies the following property: 

(26) u(-,v) = fj,*(da). 

Here a G G*, and da is the natural linear 1-form on G* with values in G*. 

Existence of a moment map ensures the invariance of the symplectic 
form with respect to the G-action. 

We are specifically interested in symplectic manifolds equipped with 
the G-action and an equivariant moment map. 

Definit ion 6. A moment map fj, is said to be equivariant if 

(27) Ad*{g)n{x) = n{x g). 

Let (G, PQ) be a compact Poisson-Lie group, the Poisson structure 
P Q being one of the standard list parametrized by pairs (t, u) (see the 
previous section). 

Definit ion 7. The action of A : G X M —> M is called a Poisson 
action if it preserves the Poisson structure in the following sense: 

(28) A4P G + P M) = P M. 

Notice the difference with the standard definition (23). If M is 
equipped with a Poisson action of G, the symplectic structure on M is 
not invariant with respect to the G-action. 

A Poisson counterpart of the notion of the moment map has been 
defined in [10]. 

Definit ion 8. Let G be a compact Poisson-Lie group equipped with 
a Poisson structure P t,u)- Let A : G X M —»M be a Poisson action of 
G on the symplectic manifold M. The map m : M —> G* is called a 
moment map in the sense of Lu and Weinstein if 

(29) cj(-,v) = -m*(dAA-1), 

where dAA-1 is a right-invariant Maurer-Cartan form on G*. 

The equivariance condition for the Poisson moment map m looks as 
follows: 

(30) AD*(g)(m(x)) = m(x g). 
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Compar ing Hami l ton ian and Po i s son act ions 

Here we formulate and prove the main result of the paper. 

T h e o r e m 1. Let (M,UJ) be a symplectic manifold which carries an 
action A of a compact Poisson-Lie group G equipped with a Poisson 
bracket P t,u)- Assume that there exists an equivariant moment map 
m : M —> G*. Then one can define another symplectic form û on M 
with the following properties: 

1) uj is preserved by A; 
2) UJ belongs to the same cohomology class as UJ; 
3) the map \± = e~t . o m provides an equivariant moment map for 

the G-action A with respect to the symplectic structure UJ. 

The main technical tool for proving this theorem is provided by the 
following lemma. 

L e m m a 2. There exists a 2-form Q(t,u) on G* such that the follow
ing two properties are fulfilled: 

1) The form fi/t ) is closed, i.e., dÇtt^u\ = 0. 

2) n(t,u)(-,v) = le t u dAA-1 - da. 

Here v is the universal vector field corresponding to the coadjoint 
action of G on G*, a G g* and A = e t^u\(a) G G*. 

Proof of Lemma. It is convenient to introduce a special notation for 
a = K(a) G G. Let us consider the following 2-form on G*: 

oo k 1 (2it) 
% u ) =Jit^K* YJ k - K { a d k-2(a)da A da) 

k=2 

(31) +e*{tu)K(A-1dAAdAA-1)}. 

We claim that it satisfies both conditions of Lemma 2. 
It is convenient to split fi/t ) into two pieces: 

(32) Q{t)u) = cji +cj2, 

where 

ui= —K*y^y
 %k K(ad k~2(a)daAda), 
k=2 (33) 

CJ2 = — e % uAK(A~1dA A dAA~l) 
4it ( ' > 
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1) A direct calculation shows 

du2 = —e*^u^ d{K(A~1dAAdAA~1)} 

= - e u { K d A - ' d A ) 2 AdAA-1) 

(34) +K((A-1dA)A(dAA-1)2)} 

1 j K i d A A - 1 A ( d A A " 1 ) 2 ) . 
I2it 

Let us recall tha t A = AA = j(a). 
Using equation 

e2it\ _ ^ 
(35) d A A " 1 = (E'1)* da 

* \ = ad(a) 

one can easily show that 

duj1= d < —K* ^2 k K(ad k~2(a)da A da) > 
I k=2 ) (36) 

1 j K i d A A ' 1 A ( d A A " 1 ) 2 ) 
12it 

Together (34) and (36) imply the first statement of the lemma. 
2) To evaluate the form Q(t,u) on the universal vector field v we 

notice that 

(37) da(vf) = —K(ad(a)e) 

for any e £ Q. Taking into account (35) we infer 

(38) wi(-,ve) = —j*K(dAA-1 + A _ 1 d A , e ) - < da, e > . 

Another straightforward computation leads to 

(39) 

Combining the last two equations we conclude 

(40) 

% u ) ( - , ve) = —e*(tu)K{dAA-1 + A ^ d A , e ) - < da, e > . 

w2(-,ve) = — e^u K A - ^ A - d A A - S A - ^ A - AeA'1 
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Taking into account the definition (2) of the nondegenerate scalar prod
uct on G C one can rewrite this formula as 

(41) % u ) ( - , v) = t e*(tu)dAA~l - da. 

This observation completes the proof of Lemma 2. 

Remark . One can guess the expression (31) for the 2-form Q(t,u) 
comparing Kirillov symplectic forms on the coadjoint orbits to the sym-
plectic forms on the orbits of dressing transformations computed in [4], 
[3]. 

Proof of Theorem. By the assumptions of the theorem the manifold 
M is equipped with two maps m : M —> G* and fj, : M —> G*, where m 
is the moment map in the sense of Lu and Weinstein and /j = e7 , o m . 
Let us define a 2-form ô) on M by the formula 

(42) Q = u - fj,*Q{ttu). 

In fact, the form û provides the new symplectic structure on M which 
we are looking for. 

First, observe that w i s a closed 2-form on M: 

(43) duj = duj — iJ*dÇtitu\ = 0. 

Moreover, û belongs to the same cohomology class as u. Indeed, Q(t,u) 
is a closed 2-form on the linear space G*. Hence, it is exact, and its 
pull-back ii*Çtit^u\ is also an exact form. 

Let us evaluate û on the universal vector field v. 

ù)(-,v) = u(-,v) - fi*Q(ttu)(-,v) 

-m^dAA-1)-/!*t 

jj*(da). 

(44) = m ( d A A - 1 ) - ^(-e t u i d A A - 1 ) - da) 

In particular, this implies that û is G-invariant: 

(45) Cvuj = (di v + i v d)uj = dfj,*(da) = 0. 

So, if uj defines a symplectic structure on M, it is G-invariant and pos
sesses an equivariant moment map fj, : M —» G*. 
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The last point is to check the nondegeneracy of UJ. Assume that at 
some point x £ M the form û is degenerate. This means that there 
exists a nonvanishing vector £ so that 

(46) x(•,£) = 0, 

which implies 

(47) Ox(;0 = m*(e ^u ) )*n ( t i u ) ( - ,m,£) = m*r,. 

The right-hand side is a pull-back of a certain 1-form TJ on G* along the 
map m. Any such a form TJ can be represented as 

(48) T]=<dAA-1,C> 

with some ( G Q. Now consider a vector 

(49) | = e - t vC 

at the point x G M . It is easy to see that the form UJ annihilates this 
vector: 

(50) ux(-,$ - t vc) = ri-tX-< dAA-\( > = 0. 

This means that the form UJ is also degenerate at x which contradicts 
the assumptions of the theorem. So, û defines a symplectic structure 
on M. This completes the proof of Theorem 1. 

Remark . It is easy to see that we can exchange the roles of 
Hamiltonian and Poisson actions in Theorem 1 . Moreover, we can 
directly compare Poisson actions with different values of parameters t 
and u. 

Corollaries for Po i s son act ions 

Here we give new short proofs of several results on the actions of 
Poisson-Lie groups on symplectic manifolds. 

Recently Flaschka and Ratiu [5] proved the following convexity the

orem for the moment map in the sense of Lu and Weinstein (see also 

[8], [H])-
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Corollary 1. Let M be a compact symplectic manifold which car

ries a Poisson action A of the compact group G equipped with the Pois

son structure P t,u)- Assume that there exists an equivariant moment 

map m : M —T- G*u, and define the map \± = e7t •. o m . Then the 

intersection of ß{M) with the positive Weyl chamber W+ 

(51) fi+(M) = fi(M)nW+ 

is a convex polytop. 

Proof. As we know, the map fj, provides a Hamiltonian equivariant 
moment map for some symplectic structure on M. Convexity property 
for the map m as stated above coincides with the standard convexity 
for the Hamiltonian moment map fj, [1], [6]. 

The technique of Hamiltonian reduction has been generalized to 
Poisson actions by Lu [10]. Here we need some new notation and defi
nitions to formulate a statement. 

Definit ion 9. The value y G G* is called a regular value of the 
moment map m : M —> G* if some quotient of G over a discrete (pos
sibly trivial) subgroup F of the center of G acts freely on the preimage 
m - 1 ( O ) o f the dressing orbit O = AD*(G)y. 

It is convenient to introduce a special notation for the canonical projec
tion 

(52) K : M -> M/G 

to the quotient space M/G and for the embedding of m _ 1 ( 7 ) into M: 

(53) i 7 : m " 1 ( 7 ) ^ M . 

Corollary 2. Let M be a symplectic manifold which carries a Pois
son action A of the compact group G equipped with the Poisson structure 
P t,u)- Assume that there exists an equivariant moment map m : M —> 
G*. Choose some y G G* which is a regular value of the moment map. 
Then M 7 = 7r(m_ 1(7) is a symplectic manifold with symplectic struc
ture LO~f defined via 

(54) 7T*^7j m-l(7) = i V . 

Proof. Let us switch to the symplectic structure ô) on M and let 
c = e~t \(j)- The map e t^u\ being equivariant, the space M 7 coincides 
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with the reduced space obtained by the Hamiltonian reduction over the 
value c of the moment map fj,. In fact, symplectic structures of the 
Hamiltonian and Poisson reduced spaces also coincide, since 

(55) i*(w - Ù) = i*/i*fì (t iu) = 0. 

The latter is true because the embedding i1 chooses the point in c G G* 
and the pull-back of the 2-form fi/t ) to this point vanishes for dimen
sional reasons. 

By now we compared (M, UJ) and (M, UJ) as symplectic G-spaces. 
It is clear that they do not coincide in this category as the G-action 
preserves û and changes UJ. However, it possible that (M,UJ) and (M,UJ) 

are isomorphic as symplectic spaces (now we disregard the G-action). 
This is indeed the case, the isomorphism between (M, UJ) and (M, UJ) is 
called Ginzburg-Weinstein isomorphism [7]. 

Corollary 3 . For arbitrary values of parameters t and u, (M,UJ) 

and (M, UJ) are isomorphic as symplectic spaces. In particular, orbits 
of dressing transformations are symplectomorphic to the corresponding 
coadjoint orbits. 

Proof. Choose some primitive 07tju) of the 2-form Çlttuy. 

(56) tytiu) = da^uy 

We would like to vary parameters t and u of the Poisson bracket of G. 
For simplicity we change only t. When t varies, the symplectic form 
UJ = UJ + ii*Çtit^u\ changes as: 

/ -C-7N d * dCi(t,u) * da(tu) 

(57) ¥t" = » -^t = ^d ^t-
Denote 

(58) /*(t)u) - dt 

and construct a vector field V ttu\ 

(59) V{t,u) = VM(-^*ß(t,u))-

The vector field V ttu\ is a certain linear combination of the vector fields 
ve with coefficients E(m(x)) which depend only on the value of the 
moment map m(x) : 

(60) V{t)u) = < E(m(x)),v > , ß{t)u) = < E (A), dAA-1 > . 
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The Lie derivative of the symplectic structure UJ with respect to V ttu\ 
coincides with the t-derivative: 

fi 

(61) £V u)<*> = di V(t,u)u = dV*ß(t,u) = -gt-

Integrating the (t-dependent) field V ttu\ we construct a family of Ginzburg-
Weinstein isomorphisms which identify (M, UJ) and (M, UJ) for differ
ent values of t. One can construct symplectomorphisms between these 
spaces with different values of u in a similar fashion. 

Remark . Formula (60) for the vector field V tu\ makes it possible 
to extend the Ginzburg-Weinstein isomorphism to Poisson manifolds 
which carry a Poisson G-action and possess an equivariant moment map 
m : M —» G* in the following sense: 

(62) v = t P M(-,m*(dAA-1)). 

This condition implies that symplectic leaves are preserved by the G
action. Integrating the vector field (60) one can obtain a diffeomorphism 
D(t,u) of M which preserves symplectic leaves and replaces the Pois
son structure P M by the G-invariant Poisson structure P M- Restricted 
to each symplectic leaf D ttu\ coincides with the Ginzburg-Weinstein 
symplectomorphism described above. Thus the new Poisson G-space 
(M, P M) possesses an equivariant moment map fi = e7t , o m which 
arises from the equivariant moment maps on each symplectic leaf. 

Let us apply this construction to the Poisson space G* equipped 
with the Poisson structure P u \ from the standard list. The dressing 

(t,u) 

action of G preserves symplectic leaves, the moment map is equal to the 
identity m = id : G* —> G*. The Ginzburg-Weinstein diffeomorphism 
D tu\ endows G* with a new G-invariant Poisson structure P t N and 

a new moment map fi = e7 , : G* —> G*. Both maps D(t,u) and I1 

are invertible Poisson maps. Thus, an invertible Poisson map e7t u) o 

D(t,u) establishes a Poisson isomorphism of (G ̂ ,P tu\) and G* equipped 

with the standard Kirillov-Kostant-Sourieu bracket. In fact, we have 

recovered the original version of the Ginzburg-Weinstein isomorphism 

[7]-

A p p e n d i x . T h e case of t = 0 

Here we collect some details on the special family of Poisson struc-
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tures P(0)u) 

(63) P(o,u) = lim t_x) tP ujt 

on compact Lie groups. All results obtained in the main text generalize 
to this special family. In fact, calculations become much easier. For this 
reason, we provide only the basic definitions and formulas related to the 
proof of Lemma 2. The proofs of Theorem 1 and of all Corollaries do 
not change. 

For the special family of Poisson structures (63) the dual Lie algebra 
is a subset in the semi-direct product of the Cartan subalgebra H and 
the dual Lie algebra GQ considered as an Abelian Lie algebra: 

(64) G*{0)u) = {(ih + n,-u(h)),he H,ne n C}. 

The H component acts on the GQ component by the natural coadjoint 
action. 

The corresponding Lie group is a subgroup in the semi-direct prod
uct of the Cartan subgroup H C G and GQ (viewed as an Abelian group 
with addition playing the role of the group operation): 

(6 5) G*(o,u) = {{ih + n,exp{-u{h)}),h eH,ne n C}. 

The equivariant map e u : GQ —> G*,Q N is defined as 

(66) e u{ih + n) = {ih + n, exp{ — u(h)}). 

The inverse map e~l is a forgetting map which drops the second com
ponent of the pair. 

It is instructive to compare Maurer-Cartan forms for the Abelian 
group G*: 

(67) a = ih + n , da = idh + dn, 

and for the group GJ0 uy 

A = {ih + n, exp{ — u(h)}), 

(68) dAA~l = {idh + dn - [u{dh),n], -u{dh)). 

Let us mention that the second component in the pair describing dAA~l 

is disregarded in the pairing with elements of G. 
The definition of the moment map in the sense of Lu and Weinstein 

modifies as follows: 



o n p o i s s o n a c t i o n s o f c o m p a c t l i e g r o u p s 255 

Definit ion 10. Let G be a compact Poisson-Lie group equipped 
with a Poisson structure Pto,u)- Let A : G X M —»M be a Poisson 
action of G on the symplectic manifold M. The map m : M —> GJ0 N 
is called a moment map in the sense of Lu and Weinstein if 

(69) oj(-,v) = m*(dAA-1), 

where dAA-1 is a right-invariant Maurer-Cartan form on G?n %. 
(0,u) 

Lemma 2 in this situation is reformulated as: 

L e m m a 3. There exists such a 2-form Çtu on G*, so that the follow
ing two properties are fulfilled: 

1) The form Qu is closed, i.e., dQu = 0. 

2) Qu(-, v) = e*u dAA~x - da. 

Here v is the universal vector field corresponding to the coadjoint 

action of G on G*, a G g* and A = e u(a) G GJ0 N. 

Proof. The 2-form Çlu which fulfils these two properties looks as 

(70) Qu = -u(dhAdh), 

where h is a Cartan projection of (ih + n) G GQ. 
Obviously, Çtw is closed. Evaluating it on the universal vector field 

v one finds: 

tiu{-,va) = —K(u(dh),[a,n+n]) 

(71) = - < [u(dh),n],a > 

= < e ̂  dAA-1 — da, a > . 

This completes the proof of Lemma 3. 

A c k n o w l e d g e m e n t s 

This work was done during the Workshop on Geometry and Physics 
held in Aahrus in Summer 1995. I have been inspired by the work of 
Flaschka and Ratiu [5] on the convexity theorem for the Poisson-Lie 
moment map. I am indebted to P.Cartier, Y.Karshon and V.Rubtsov 
for fruitful discussions, and would like to thank the referees of this paper 
for useful remarks and comments. 
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