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CONSTANT MEAN CURVATURE SURFACES IN A
HALF-SPACE OF R3 WITH BOUNDARY IN THE

BOUNDARY OF THE HALF-SPACE

ANTONIO ROS & HAROLD ROSENBERG

The structure of the set of compact constant mean curvature sur-
faces whose boundary is a given Jordan curve in R 3 seems far from
being understood. We shall consider a simple, but interesting, situation
concerning this problem: Assume that M be an embedded compact H-
surface in R\ = {x3 > 0} with dM = Γ C P = {z3 = 0}. Then, there
is little known about the geometry and topology of M in terms of Γ.
For example, z/Γ is convex, is M of genus zero? When Γ is a circle, it
follows from Alexandrov [1] that M is neccesarily a spherical cap or the
planar disk bounded by Γ.

We first show that if Γn C P is a sequence of embedded (perhaps
nonconnected) curves converging to a point p, and Mn C R+ is a se-
quence of 1-surfaces (H = 1), with dMn = Γn, then some subsequence
of Mn converges to either p or the unit sphere tangent to P at p (the
convergence being smooth in R 3 — p). The same kind of result was
obtained by Wente [8] when Γn is an arbitrary Jordan curve in R 3 con-
verging to a point p and Mn is an immersed topological disc bounded
by Γn which minimizes area among disks bounding a fixed algebraic
volume.

Our second result gives a partial answer to the question above. Given
a convex Jordan curve Γ C P and an embedded compact ϋΓ-surface
M C R+ bounded by Γ, we shall show that, for H sufficiently small
(depending on Γ), M is a topological disc. Moreover, we can give a
rather complete description of the shape of M, even near its boundary.
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As a consequence we obtain an upper bound, which depends on Γ but
not on if, for the area of the above surfaces with positive genus.

Finally we remark that our assumptions about M hold under dif-
ferent geometric restrictions. For general Γ C P, if we denote by Ω
the compact domain in P bounded by Γ, then the maximum principle
shows that any constant mean curvature graph over Ω bounded by Γ,
lies in R+ (or R/L). When Γ is convex, there are two other conditions
for embedded compact ίf-surfaces M with dM — Γ which imply that
M lies in one of the half spaces bounded by P; this holds if either M is
transversal to P along Γ (see Earp, Brito, Meeks and Rosenberg [2]) or
Area(M)H2 < 2π (see Lopez and Montiel [5]).

Preliminaries

Let P(t) denote the horizontal plane {xs = £}, and P = P{0). Ver-
tical planes will be denoted by Q. Let a = (0,0,1) and let B(p,r)
(respectively D(p, r)) denote the closed Euclidean ball in R 3 (respec-
tively in P) centered at p, of radius r. If the ball is centered at the
origin p = 0, we will write simply B(r) (resp. D(r)). In this paper an
if-surface M will mean an embedded compact constant mean curvature
(equal to H) surface in the half-space R+ with dM C P. If M is mini-
mal, then the maximum principle implies that M is a domain in P. So
we assume H φQ.

We orient ίf-surfaces by their mean curvature vector H; so if n is
the unit normal vector field along M, then \n,H] = H > 0. Γ is
oriented by the orientation of M and bounds a compact region Ω in P
so that M U Ω is a 2-cycle of R3. The maximum principle for surfaces
with nonnegative mean curvature implies that int(M) Πint(Ω) = 0 and
thus MUΩ is an embedded piecewise smooth surface without boundary.
Let W denote the closure of the bounded component of R 3 — (M U Ω).
Notice that we do not assume Γ is connected.

We say that M is a small H-surface if M C B(p, r) for some p £ R 3

and r < 1/ίf, otherwise we will say that M is a large H-surface. It
follows from the maximum principle that, for small ίf-surfaces M, one
has M C ΠBa, where Ba denotes the family of balls Blq,p) such that

a

ςΈ R3, ρ< 1/H and dM C B{q,p).
One of our main tools will be the Alexandrov reflection technique.

This idea was first introduced in [1] to show that the sphere is the
unique compact iϊ-surface (without boundary) embedded in R3. Now
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we sketch the main steps of this method, adapted to our situation. A
detailed version of it can be found, for instance, in [6]. Let Q be a
vertical plane disjoint from M, and b a nonzero vector normal to Q.
Suppose that one parallel translates Q in the direction of b until the
new plane Q\ touches M for the first time. Then when one translates
Q\ slightly further (always in the direction of 6), to a position Q25 the
closure of the part of M swept out, M2, is a graph over a part of Q27
and the reflection, M^, of M<ι in the plane Q2 is contained in W. This
is clear if Qi touches M only at the interior points. To see that the
same is true in the case that some boundary point of M lies in Q1? we
only need to observe that, thanks to the boundary maximum principle
for mean convex surfaces, the angle (on the W side) between M and Ω
along Γ is everywhere positive (notice that this angle may be equal to
π, since we are not assuming that M is transverse to P). Denote by Γ2
the part of Γ left behind the plane ζ>25 and by Γ2 its symmetric image
by Q2 Thus Γ̂  C Ω.

Now one continues parallel displacement of Q2 until the last position
Qs such that, following the notation above, the reflection M3 of M3 in
the plane Q3, is contained in W. Then M3 is a graph over a domain
in Q3 and, using the (interior and boundary version of the) maximum
principle for iί-surfaces, one proves that Q3 is also the last position
such that Γ3 C Ω. So Qs depends only on Γ. Moreover we obtain that,
either M is symmetric whith respect to Q3.or int(M^) does not meet
M. Notice that Γ3 is necessarily nonempty and that, if Γ is a convex
curve, then the part of M outside Ω x [0, 00[ is a graph over a part of
Γ x [0, oo[; in particular, each component has genus zero.

Now consider a horizontal plane P(t) and put M(t) = MΠ{xs > t}.
If we assume P(t) is very high, then the above reflection argument works
when one moves P(t) down, if we change W to W = WU(Ωx] — 00,0]).
In this case, if P(tχ) is the highest plane touching M, then M Π P{t\)
contains only interior points of M. Let P(*3) be the lowest horizontal
plane in R̂ _ such that the reflected image Mfo)* of Mfo) in P(h) is
contained in W. Then Mfo) is a vertical graph over a part of P, and
either £3 = 0, in which case M is a graph over Ω, or £3 occurs exactly
at the first time that the reflected surface touches Γ. In the latter case,
either M is a spherical cap or snί(M(£3)*) meets M only at points of Γ
and always transversally. Remark that, in particular, the highest point
of M must lie in the cylinder int(Ω) x]0,oo[. Moreover, it follows from
the height estimate below that £3 < l/H and, so the height of M is at
most 2/H.
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Finally note that, if M C Ω x [0, oof, or more generally, if {n(p),a) <
0 for all p E Γ, then doing Alexandrov reflexion with horizontal planes
we get that M is a graph over Ω.

Estimates of height, area and curvature for ϋΓ-surface graphs

Serrin [7] observed that one has height estimates for ϋΓ-graphs with
zero boundary values. Suppose M C R+ is an ϋf-graph over a compact
domain Ω C P with dM = 5Ω. Then we can see that the highest point
of M is below height 1/H as follows: let φ = Hx$ + n3. Thus, if K
denotes the Gauss curvature of M, then

Aφ = {H(2H) - {4H2 - 2K))n3 = -2{H2 - K)n3 > 0,

since our choice of n makes 7Ί3 < 0. Prom φ — n3 < 0 on 5M, it follows
that φ < 0 on M. So Hx3 < —713 < 1, and £3 < 1/iϊ, as desired.

We claim that M satisfies area and curvature estimates (depending
only on H) on compact subsets of m£(R+). To see this, let ε > 0 and
M(ε) denote the part of M above P(ε). Assume M(ε) is not empty.
Since φ is subharmonic and φ = Hε/A + ns < Hε/A on <9M(|), we have
that, on M ( | ) ,

n3 < Hεβ - Hx3 < Hε/4 - Hε/2 < -Hε/4.

M is the graph of a certain function u € C°°(Ω). Consider the compact
subdomain Ω(ε) = {x E Ω/u(x) > ε}. The above estimate of 713 yields
an estimate of the gradient of u in Ω(|), which , in turn, we can use (in
an obvious way) to show that the (Euclidean) distance between Ω(ε) and
<9Ω(|) is larger than some positive constant δ depending only on H and
ε. Thus, for each p E Ω(ε) we have that D(p, δ) C Ω(|) and we control
u and |V?i| on D(p,δ). Then standard results in elliptic equations (see
[3], Theorems 13.1 and 6.2) show that we have C2 ) Q estimates for u on
Ω(ε) depending on H and ε. Hence the claim follows directly.
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The main results

Theorem 1. Let Mn C R+ be H-surfaces with H = 1, and Γn =
dMn C D(rn) = {(xι,X2,0)/xl + x\ < r%}, with rn a sequence converg-
ing to zero. Then there is a subsequence of Mn, which converges either
to the origin 0 G R 3 or to the sphere S C R+ of radius one tangent
to P at 0. In the first case the surfaces converge as subsets and in the
second one the convergence is smooth (any Ck) on compact subsets of
R3-0.

Proof. From the height estimates and the Alexandrov reflection
technique it follows that all the Mn are contained in a fixed compact
subset of R3. Let r > 0 and let Q be a vertical plane outside this
compact subset. For n large, dMn C D(r) so, using the Alexandrov
method, one can parallelly translate Q until it meets dD(r), and the
part of Mn swept out by Q is a graph over a part of Q. Therefore one has
uniform area and curvature estimates for this part of Mn. Alexandrov
reflection with horizontal planes gives that the part of each Mn above
P(l) is a vertical graph, so one has uniform area and curvature estimates
for the Afn(l + ί), δ > 0.

Standard compactness techniques yield a subsequence (which we
also call) Mn that converges on compact subsets of R 3 — /, where / =
0 x [0,1]; see for instance [9]. The limit is either empty, or a surface M
of mean curvature one, properly embedded in R 3 — / (embeddedness
follows because the part of M contained in each one of the half-spaces
{ax\ + βx2 > 0}, a2 + β2 = 1, and {#3 > 1} is a graph). If the limit
is empty, then for n large, Mn is uniformly close to /. Thus Mn is a
small 1-surface and, as Γn C B(rn), it follows that Mn C B(rn). So,
Mn converges to 0.

Now we assume the Mn converges to a surface M properly embedded
in R 3 - /. If one does Alexandrov reflection, for each r > 0 vertical
planes can be moved up to dD(r), and the reflected images of M by
these planes lie in the domain enclosed by M (since this holds for Mn,
n large). So this works up till r = 0 by continuity, M is a rotational
surface about the vertical line through 0, and each component of M has
multiplicity one. M has height at most two so it is neither a Delaunay
surface nor a stack of spheres of radius one. So M is the sphere S of
radius one passing through 0.

Finally we show the convergence is uniform on compact subsets of
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R 3 — 0. Given ε > 0, there exists r > 0 so that for n large,

Mn Π (Z>(r)x]|,oo[) = MnΠ (D(r)x}2 - ε,2 + ε[),

and this intersection is a graph above D{r). Coming down with horizon-
tal planes P(t) from t = 2 to t = 1 we see that MnΠ(D(r) x [ε, 2-ε]) = 0.
So we have uniform estimates for Mn on compact subsets of R 3 — 0, not
just on compact subsets of R3 — /.

Remark 1. Prom Theorem 1 we conclude that given a positive
integer k and ε, δ > 0, there exists r = r(fc, ε, δ) > 0 ŝ cΛ that any large
H-surface M C ΈL3

+ with H = 1 and <9M C D(r) C P satifies that
M — B(δ) is the graph (with respect to the normal lines of the sphere)
of a function u, defined on a domain of S, with \\u\\Ck < ε. In fact,
if this statement were false we could construct a sequence Mn which
would contradict Theorem 1.

Remark 2. Theorem 1 remains true if one assumes that the surfaces
Mn C R+ are compact, embedded, have constant mean curvature H = 1
and no neccesarily planar boundary dMn C B(rn), with rn —> 0 as n —>•
oo. To prove that, instead of using vertical planes, one does Alexandrov
reflection with planes that are ε-tilted from the vertical, i.e., planes Q
whose unit normal vector b(ε) satisfies (6(ε),α) = ε. Given ε,r > 0, one
can choose rn small enough so that Alexandrov reflection works with
ε-tilted planes Q + ί6(ε), t coming from —oo, up till the plane reaches
B(r). Taking ε ->• 0 we get the assertion in Theorem 1; see [4] for more
details in a related situation.

Theorem 2. Let Γ C P be a strictly convex curve. There is an
H(Γ) > 0, depending only on the extreme values of the curvature of
Γ, such that whenever M C R̂ _ is an H-surface bounded by Γ, with
0 < H < H(Γ), then M is topologically a disk and either M is a graph
over the domain Ω bounded byΓorN = MΠ(Ωx]0, oo[) is a graph over
Ω and M — N is a graph over a subannulus o/Γx]0, oo[, with respect to
the lines normal to Γx]0,oo[. In the latter case (i.e., when M is not a
graph over ΩJ; given any θ, 0 < θ < π/2, and H-surface M as above,
one can also ensure that the angle between n and a is less than θ along
Γ (so H(Γ) will also depend on θ).

Before proving Theorem 2, we state a lemma whose proof we will

give later. We remark that the radius r of the lemma is independent of

the value of H.
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Lemma 3. Let Γ C P be strictly convex. Then there is an r > 0,
depending only upon the extreme values of the curvature of Γ, such
that whenever M C R+ is an H-surface with boundary Y, there is a
point p G Ω (p depends on M) such that D(p,r) C int(Q) and M Π
(D(p, r)x]0, oof) is a graph over D(p,r).

Proof of Theorem 2. Let M be an iϊ-surface as in Theorem 2 and
let us first suppose that M is small. In this case, if H is smaller than the
curvature values of Γ, then M C Π£?Q, where Ba is the family of closed

a

Euclidean balls of radius 1/H centered at points of P with T C Ba.
Prom the relation between the curvatures of Γ and J9Q, it is clear that
each point of Γ lies in the boundary of some Ba. In particular, ΠBa is
contained in the solid cylinder Ω x [0, oof, and thus M is a graph over
Ω.

Suppose now that M is a large iϊ-surface. Let r > 0 and let p G Ω be
given by Lemma 2.1. Let Σ' be the unique vertical catenoid meeting P in
the circle Co = dD(p, p) where p < r and p is smaller than the smallest
radius of curvature of Γ (the latter condition allows us to translate Co
horizontally in Ω so as to touch every point of Γ), and such that the
angle between Σ' and P along Co is θ. Here the angle θ is the angle
between Σ' and the noncompact component of P — Co; so Σ' is a graph
over this noncompact component. Let Σ = Σ' Π {0 < x% < 1} and let
C\ be the circle of Σ at height one. Let V = {v e P/CQ + v C Ω} and
let D(R) be a sufficiently large disk in P so that the translated disc
D(R) + a C {#3 = 1} contains the circle C\ + υ for all v G V. Clearly
V is compact and convex.

Now consider Alexandrov reflection of M with horizontal planes
coming down from above M. A rescaled version of Theorem 1 will
imply that if H is small enough, the part of the reflected surface which
is in D(R) x [0, oof is uniformly near D(R); it is a graph above D(R) of
height less than 1/2, and M Π {D(R) x f^,oo[) is a graph above D(R)
of height larger than 1/H. We make this precise in the next paragraph.

We know the highest point q of M is in Ωx]0, oof, hence q is in
D(R) x [0, oof. From Remark 1, if H is small enough, the image of
M{jj) by the homothety of ratio H centered at the origin is arbitrarily
near the unit upper half-sphere S Π {x% > 1} , with respect to the Ck-
distance, fe > 1. Thus the component G of M Π {D(R) x [0, oof), that
contains q is almost flat when H is small. In particular, since M is
horizontal at q, G is a graph above D(R), G C {xs > l/H} and the
total vertical oscillation of G is less than one half for H small enough
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(depending on R). Then when one does Alexandrov reflection with
horizontal planes, the last position of the reflected image G* of G is
a graph above D(R) of height less than one half (remenber that when
one does reflection coming down from g, the last position occurs just
the first time that a point of M reflects to a point of dM). Since the
oscillation of G is less than one half, G* lies below D(R) x \. Moreover,
as another consequence of the Alexandrov technique, we obtain that

Therefore Σ + a and C\ + ta, 0 < t < 1, are contained in int(W)
(recall W is the compact component bounded by MUΩ) and, as Lemma
2.1 gives Co + ta C int(W) for 0 < t < 1, it follows that Σ C W.
Otherwise when one translates Σ + a down to Σ, there would be a first
point of contact of Σ + ta with M. This contact point occurs on the
W side of M, the side to which the mean curvature vector of M points.
This is impossible since the point of contact is an interior point of both
M and Σ + ta and Σ 4- ta is a minimal surface.

We know that the boundary component of Σ + υ, for v G V, at
height one, is contained in int(W). Hence Σ + υ C W for each v G V
by similar reasoning as above: the family Σ + tv, 0 < t < 1, can have
no first point of interior contact with M a s t goes from 0 to 1.

Our choice of CQ guarantees that for each q G Γ, there is a υ G V
such that Co + v is tangent to Γ at q. Hence θ is strictly larger than the
outer angle that W makes with P at q. So this holds along Γ.

Since the horizontal translations of Σ, Σ + to, υ G V, 0 < ί < 1
are all in W and £>(r)x]0,1] C int(W) by Lemma 2.1, we know that
Ωx]0,1] C int(W). Also M meets D(R) x [^,oo[ in a graph above
D(R) of height larger than 1/iϊ, so M Π (Ωx]0, oo[) is a graph above
Ω of height larger than 1/H. The part of M outside Ωx]0, oo[ is a
graph over a subannulus of Γ x [0, oof, so M is topologically a disk and
Theorem 2 is established.

Proof of Lemma 2.1. Consider doing Alexandrov reflection with
horizontal planes, coming down from above M. If we can come down
to P, then M is a graph above Ω and 2.1 is clear. Otherwise there
is a height t > 0 where the reflected surface touches Γ for the first
time at a point q E T. So gx]0,oo[ intersects M exactly once and
gx]0,2ί[c int(W). Also the part of M above height t is a vertical
graph.

Now consider Alexandrov reflection with vertical planes Q, v normal
to Q, \υ\ = 1. Suppose one can do Alexandrov reflection of M, moving
the plane Q slightly beyond q, and denote by J(v) the open segment
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in m<t(Ω) joining q to its reflected image by this plane. Clearly the
vertical rectangle J(v)x]0,2t[c int(W). Suppose we could repeat this
reasoning for a family of directions F C {v G P',\υ\ = 1}, such that, for
some p G Ω and r > 0, we have D(p,r) C UυeFJ(v)> Then we would
have

D(p,r)x]0,2t[c UveFJ{v)x]0,2t[c int(W).

Hence D(p,r)x]0, oof would intersect M only at points above P(2£),
and this intersection would be a graph above D(p,r) as desired. So we
have to understand the horizontal directions v for which Alexandrov
reflection goes beyond a given point q G Γ.

First recall, that for horizontal directions v, one can always do
Alexandrov reflection up till Γ. Let k be the minimum curvature of
Γ and let C C P be a circle of curvature k. So if C is tangent to Γ at
g, then Γ is inside C. Take p > 0 smaller than the smallest radius of
curvature of Γ. Then the tubular neighbourhood of Γ in P of radius p
is an embedded annulus. Thus for each horizontal v, \v\ = 1, one can do
Alexandrov reflection with vertical planes orthogonal to v at least at a
distance p/2 beyond the first time the plane meets Γ and, so, at least at
a distance p/2 beyond the first time the vertical plane meets the circle
C.

Now consider those horizontal vectors v such that Alexandrov reflec-
tion with planes orthogonal to υ left behind q (this will hold for those
directions in some neighborhood F C {v G Pj \v\ — 1} of the inward
pointing normal to C at q). It is clear from the geometry of the circle,
that UV£FJ(V) contains a disk Z?(p, r), r > 0, where r depends on p and
C (but not on q G Γ). This completes the proof of Lemma 2.1. q.e.d.

Corollary 4. Let Γ C P be a strictly convex curve. Then there exist
V(T), A(T) > 0, depending only on the extreme values of the curvature
of Γ, such that any Hsurface M C R̂ _ bounded by Γ which either
encloses a volume Yo\(W) > V(Γ) or verifies Area(M) > A(Γ); is a
topological disk.

Proof. Prom the height estimate we have that M C B(r + jj) where
r > 0 is chosen such that Γ C D(r). So W is contained in the same ball
and

Vol(W)<c{r \

for a certain positive constant c. Thus if Vol(W) is big enough, we will
have H < H(T) and the result follows from Theorem 2.
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Computing the Laplacian of |X|2, X being the position vector, in R 3

and its restriction to M, using the divergence theorem twice we obtain,
the standard formulae:

3Vol(W) + / ( Λ » = 0 ,
JM

Area(M) +H [ (X,n) = \ ί (X,v),
JM * JdM

where v is the outward pointing conormal vector along ΘM. Thus

2Area(M) = QH Vol(M) + / (X, v).
JdM

As H is bounded above by 1/r', where r' > 0 is chosen so that
D(p,rf) C int(Ω) (note that some of the balls B(p,rf) + ία, £ coming
from — oo, will have a first contact with the positively curved side of
int(M) and thus the maximum principle gives H < 1/r1) it follows
that when Area(M) is big then Vol(VF) is big too. So we conclude our
argument using the step above, q.e.d.

Remark 3. The results of this paper extend to compact hypersur-
faces with constant mean curvature embedded in the Euclidean halfs-
pace R!J:+1 and with boundary in P = 5R++ 1.

To see that Theorem 1 extends, we only need to note that both
the Alexandrov reflection technique and the curvature estimates for H-
graphs work for any dimension.

Concerning Theorem 2, Γ C P = R n will be a strictly convex com-
pact hypersurface of P, and H(Γ) will depend on the maximum and
the minimum principal curvatures of Γ. The only change in our argu-
ments is that, as the height of the higher dimensional vertical Catenoid
Σ' is bounded, now the piece Σ C Σ' we use in our proof will be, not
Σ' Π {0 < xn+ϊ < 1}, but Σ = Σ' Π {0 < xn+1 < ε(0)}, where ε(θ) > 0
is small enough to assure the compactness of Σ.

Remark 4. An interesting problem is to understand the topology
and geometry of solutions to the isoperimetric problem for a convex
curve Γ C P. More precisely, given V > 0, we know from geometric
measure theory, that there exists an embedded constant mean curvature
surface M with dM = Γ, which (together with the planar domain Ω
enclosed by Γ) bounds a volume V, and minimizes area among such
surfaces. What is the nature of M as V goes from 0 to infinity? When
does M traverse the plane P?
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Another problem we wish to mention is the following: Let Γi and Γ2
be convex curves in parallel planes. Is there a constant mean curvature
surface M with boundary Γi U Γ2, M topologically an annulus?
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