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SYMPLECTIC SUBMANIFOLDS AND
ALMOST-COMPLEX GEOMETRY

S. K. DONALDSON

1. Introduction

In this paper we develop a general procedure for constructing sym-
plectic submanifolds. Recall that if (V, ω) is a symplectic manifold, a
submanifold W C V is called symplectic if the restriction of ω to W
is non-degenerate. Paradigms are complex submanifolds of complex
Kahler manifolds. In general questions about complex submanifolds of
high codimension can be intractable, but one has a rather good grip on
submanifolds of complex codimension 1, which can be studied through
the familar aparatus of line bundles, linear systems and cohomology—
effectively linearising the problem. The idea of this paper is to extend
these techniques in complex geometry to general symplectic manifolds.
The main result we prove is the following existence theorem.

Theorem 1. Let (V,ω) be a compact symplectic manifold of dimen-
sion 2n, and suppose that the de Rham cohomology class
[ω/2π] € H2(V;R) lies in the integral lattice H2(V;Z)/Torsion. Let
h e H2(V;Z) be a lift of [ω/2π] to an integral class. Then for suffi-
ciently large integers k the Poincare dual of kh} in iΪ2n-2(^; Z), can be
realised by a symplectic submanifold W C V.

In the case when V is a Kahler manifold and ω is the Kahler form,
this reduces to a standard, but central, result in complex geometry. In
that case one would argue that h is the first Chern class of a positive
line bundle L over V, having a connection with curvature —iu;, and
then show that for large k the tensor power Lk has many holomorphic
sections. The zero set of a generic section would provide the desired
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submanifold W, a complex codimension-1 submanifold of V. The re-
sult is closely related to the famous Kodaira Embedding Theorem: for
large k the holomorphic sections of Lk define an embedding of V in
a projective space CPN and the submanifold W is obtained as a hy-
perplane section V Π C P ^ " 1 . Our approach, for a general symplectic
manifold (V,α;), is to choose a compatible almost-complex structure J
on V, and then to extend familiar results about positive line bundles,
suitably formulated, to the almost-complex case. There are similarities
in style between our work and the ideas developed by Gromov and many
other authors, studying pseudo-holomorphic curves in general symplec-
tic manifolds: both approaches extend techniques from complex geome-
try to almost-complex manifolds. A simple corollary of our main result
is a general existence theorem for pseudo-holomorphic curves, see Cor.
7 below. However the two theories move in some respects in opposite
directions. In Gromov's theory one studies submanifolds of complex
dimension 1, obtained as the images of maps / : Σ —> V, where Σ is
a Riemann surface. The dimension of Σ is rather fundamental, since
the relevant "Cauchy-Riemann" equations become over-determined in
higher dimensions, and one does not expect to find any solutions for
generic almost-complex structures on V. In this paper, by contrast, we
study submanifolds "cut out" in V as the zeros of suitable line bundle
sections, and the theory is specific to complex codimension one. The two
points of view illustrate the elementary principle that one can present
a submanifold either as the image of a map or as the set of solutions of
a system of equations.

One situation in which the interaction between thse two points of
view is particularly interesting is that in which the symplectic manifold
V has real dimension 4, so complex dimension one and codimension
one co-incide. It is easy to see that in this case a submanifold W2 C
V4 is symplectic if and only if it is a pseudo-holomorphic curve for
some compatible almost-complex structure. This situation, leading to
a vista of interactions between 4-dimensional topology and symplectic
geometry, was the principle motivation for the present work, and the
earlier article [1] contains a discussion of some of these ideas (together
with a preliminary attack on the central problem solved in this paper).
The pregnancy of these interactions was heightened, some while after
[1], by the work of Kronheimer and Mrowka on the genus of embedded
surfaces in 4-manifolds. Kronheimer and Mrowka showed in [5] that
for a large class of smooth 4-manifolds X, with b+(X) > 1, there is a
set of preferred "basic" classes in H2(X). These were obtained from
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the instanton invariants of X. If /c is a basic class and Σ C X is an
embedded surface of positive self-intersection and genus g, then

On the other hand it is a rather elementary fact that if X is symplectic
and Σ is a symplectic submanifold, then

where Kx 6 H2(X) is the "canonical class": minus the first Chern class
of the tangent bundle of X, with any compatible almost-complex struc-
ture. Thus the existence of symplectic submanifolds realising kω/2π for
large k leads to the constraint:

(2) \κ.ω\ < Kχ.ω.

This can be used to make various deductions. Consider triples (X, K, φ)
where X is a compact oriented 4-manifold, K and φ are classes in H2(X)
such that K = w2(X) mod 2, K2 = 2χ(X) + 3σ{X), φ2 > 0. These are
the elementary conditions required for if, φ to be realised as .Kχ,[(j]
respectively, for some symplectic structure on Σ. Using (2), together
with calculations of the basic classes for specific manifolds, one could
write down for the first time triples (X, If, φ) which cannot be realised
by any symplectic structure, for example any case where K.φ < 0 and X
has non-trivial instanton invariants. However these applications have, to
a large extent, been overtaken by subsequent events. A few months after
the proof of Theorem 1 was completed the Seiberg-Witten invariants of
4-manifolds were introduced in [10], and these were applied by Taubes
[6] to prove a stronger version of the inequality (2) (in this case for the
Seiberg- Witten basic classes, but there is overwhelming evidence that
these are the same as those of Kronheimer and Mrowka). Moreover,
Taubes has established a direct link between the Seiberg-Witten basic
classes and the pseudo-holomorphic curves of Gromov's theory [7], [8];
which leads in particular to a different existence theorem for symplectic
submanifolds: if X is a symplectic 4-manifold with b+(X) > 1, then the
Poincare dual of Kx is realised by a symplectic submanifold.

We will now explain some of the ideas involved in the proof in more
detail, and formulate our results more precisely. We begin with a little
linear algebra. Let C n have its standard metric and symplectic form
ω, and let G be the Grassmannian of oriented real 2n — 2-planes in
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C n . Write G + c G for the open set of "symplectic" (2n - 2)-planes Π,
those for which the restriction of ωn~ι to Π is positive, relative to the
orientation on Π. Clearly G+ depends only on the symplectic structure
on C n . Given the metric, and hence a volume form Ωπ on each subspace,
we can define a map—the "Kahler angle"— θ : G -» [0, π] by

One can show, although we do not need this, that θ completely classifies
the orbits of U(n) acting on G. The complex-linear subspaces are just
those with θ(ΐΐ) = 0, so θ measures the amount by which a subspace
fails to be complex-linear. Clearly the set G+ is θ~ι[0,π/2).

Now suppose that a linear subspace Π in C n is obtained as the kernel
of an R-linear map A : C n —> C. We can write A as the sum α' + α"
where a1 is complex linear and a" is antilinear. We let |α'|, \a"\ be the
standard norms defined by the Hermitian metric. A little calculation
shows that

1. A has (real) rank 2 unless a" = eιaa' for some real α,

2. if A has rank 2 and Π = fcer(-A), then

tan(0(Π)) = V '
\a'\2 - | α " | 2

One sees from this that
α"1

Θ(U) < 2 ^ ,

so the ratio |a"|/|a'| controls the deviation of the kernel from being a
complex linear subspace. For key observation we need for our main
result is the following:

Proposition 3. If a', a" : C n -> C are respectively complex linear
and anti-linear maps and if\a"\ < \a'\, then the subspace ker(af + a") C
C n is symplectic.

Of course it is easy to verify this directly, without introducing the
function θ. Now consider a symplectic manifold (V, ω) with a compat-
ible almost complex structure. If W C V is a C°° submanifold of real
codimension 2, we can define at each point p of W a number ΘP(W),
by applying the above discussion to the tangent space of W in V. This
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measures the extent to which W fails to be a pseudo-holomorphic sub-
manifold. Suppose that L -> V is a complex line bundle, and s is a
smooth section of ξ. The derivative Vs is well defined on the zero-set
of 5 and can be split into the complex linear and antilinear parts ds,ds.
We see then that if

(4) \ds\ < \ds\

everywhere on the zero-set, then this zero set is a symplectic codimen-
sion 2 submanifold of V, with orientation compatible with the sym-
plectic structure. The homology class of the zero set is of course the
Poincare dual of the first Chern class of L. This is the way in which
we will construct symplectic submanifolds. However we will actually be
able to manage rather more. Recall first that, given the hypotheses of
Theorem 1, there is a line bundle L over V with c\(L) = /ι, an inte-
gral lift of [ω/2π]. We can endow L with a unitary connection having
curvature form —zu;, which will play a fundamental role in the proof,
although it is not actualy involved in the statement of the main result,
as follows:

Theorem 5. Let L -+ V be a complex line bundle over a compact
symplectic manifold V with compatible almost-complex structure, and
with C\{L) = [ω/2π]. Then there is a constant C such that for all large
k there is a section s of L®k with

\ds\ < ^=\ds\

on the zero set of s.

This Theorem, together with Proposition 3, implies Theorem 1, but
it shows further that there exist submanifolds Wk realising kh which are
very close to being pseudo-holomorphic submanifolds, in that

2C
<

for allp € W^. The existence of these "approximately pseudo-holomor-
phic" submanifolds is not obvious even locally in F, and is perhaps
counter to ones intuition about almost-complex structures, given the
over-determined nature of the Cauchy-Riemann equations in higher di-
mensions. The point is that these submanifolds become extremely com-
plicated everywhere, "filling out" all of V. In fact we will show in Section
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6 that the sequence of currents k~~ιWk converges to the symplectic form
ω as k —> oo.

Using Theorem 5 we can prove a version of Theorem 1 without
the integrality hypothesis. If (V,ω) is any compact symplectic mani-
fold there is symplectic structure ω' arbitrarily close to ω such that a
multiple of ω' satisfies the integrality hypothesis. Fix almost-complex
structures J,J' compatible with ω,ω' respectively. Then one can ap-
ply Theorem 5 to get submanifolds which are everywhere close to being
J'-pseudo-holomorphic, and hence also symplectic with respect to ω.
Another simple extension is obtained by repeating the constuction, re-
placing V by its symplectic submanifold W) to get submanifolds of arbi-
trary codimension (the analogues of "complete intersections" in complex
geometry). Putting everything together we have

Corollary 6. // {V^ω) is any compact symplectic manifold, then
the following hold:

1. V contains symplectic submanifolds of any even codimension

2. If J is a compatible almost-complex structure on V, then there are
almost-complex structures J1 arbitrarily close in C° to J such that
V contains J'-pseudo-holomorphic curves.

The construction of sections s satisfying the inequality in Theorem
4 will involve two parts. The first, and easier, part is to construct
a suitable family of "approximately holomorphic" sections 5 with ds
everywhere small, where ds is defined over V using the connection on
Lk. This is done in Section 2. The other task is to select a section
where the other part ds of the derivative is not small on the zero set.
This task forms the core of the paper. The lack of integrability of the
almost complex structure is not particularly relevant here: the essential
problem is already present in the classical case of complex geometry,
and in Section 6 we will modify our set-up slightly to obtain new results
on the geometry of complex submanifolds of high degree inside a Kahler
manifold. The selection of the good sections is essentially a question of
"quantative transverality". There is a "local-to-global" aspect which is
covered in Section 3, the crucial local result being proved in Section 4.
This local result in turn depends on considerations from real algebraic
geometry, following the method of Yomdin [11], which we review for
completeness in Section 5.

Looking beyond the existence question, one can hope to use similar
techniques to mimic various familar topics in complex geometry in the
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symplectic, almost-complex case. One that we consider here, in Section
6 below, is the analogue of the Lefschetz hyperplane theorem. In a
sequel to this paper we will discuss other topics involving families of
symplectic submanifolds.

The author is extremely grateful to M. Gromov for suggestions and
help with the material described in Sections 4 and 5 below, and for his
interest in this work in general. The author would like to thank the De-
partment of Mathematics at the University of Maryland for hospitality
while part of this work was carried out.

2. Local theory

In this section we study the interaction between "almost-complex"
geometry and the curvature of line bundles. Our goal is to construct
approximately holomorphic sections of our line bundle Lk —> V, when
k is large. We begin by reviewing some background in these two areas.

We start with linear algebra. A complex structure on a real vector
space W may be viewed as a decomposition of the complexified space
W* ® C as a sum of complex conjugate subspaces, the complex linear
and anti-linear functionals. If we fix one reference complex structure,
so W = C n , these are the familiar 1-forms of types (1,0) and (0,1):

Any other complex structure J on C n may be specified in terms of this
reference by a complex linear map

μ : Λ1 '0 -> Λ°>\

such that the J-complex linear forms Λj° are those of the shape φ +
μ{φ); i.e., Λj is the graph of the linear map μ. Taking conjugates,
the subspace Λj1 is the graph of μ : A0'1 -» Λ1)0, and the condition
that A J ^ J Λ J 1 be transverse is that (1 — μμ) be invertible. For any
α 1 ' 0 e Λ1'0,**0'1 e A0'1 the A0/ component of α 1 ' 0 + α 0 ' 1 is φ + μ{φ)
where

Now consider an almost-complex structure J on a neighbourhood
Ω of the origin in C n . By the above discussion this is specified, in
terms of the reference structure, by a map μz : Λ1)0 -> Λ0)1 which varies
smoothly with z G Ω. In other words μ is now a bundle map. The
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d-operator dj of this almost-complex structure maps a function / to

the Λj 1 component of its derivative df: thus if we identify Λj 1 with

Λ0)1 by the map τuj : A°jl -> Λ0)1 given by projection followed by the

endomorphism (1 — μμ)" 1 , we can write

dj(f) =df - μ(θf),

where d, d are the ordinary operators defined by the standard complex
structure on Cn.

It is clear that we can change co-ordinates to make the two structures
agree at 0 £ C n : that is, to make μo = 0. The Nijenhius tensor N of
the almost complex structure J appears as the obstruction to removing
the first derivative of μ; thus we cannot in general make μ vanish to
higher order. The fundamental, and very elementary, mechanism that
we will exploit is the effect of scaling. For p < 1 let δp : C n -> C n be
the dilation δp(z) = pz, and let J be the almost-complex structure over
p~ιΩ defined by pulling back J using δp. This structure is defined by a
bundle map μ which is just

βz = μPz-

So it is clear that, if we restrict J to an interior ball in Ω and hence J
to a ball of radius O(p~ι), we have:

(8) \μz\ < Cp\z\ , |Vμ| < Cp,

for some constant C, related to the norm of the Nijenhius tensor and
its derivative. (Throughout the paper, we use the convention that C
represents a positive constant which is allowed to vary from line to
line.) These inequalities just reflect the fact that examined through
a microscope the almost-complex structure J appears close to the flat
structure.

We now turn to the second topic, the relation between curvature
and complex geometry. Consider the standard Kahler form

n

ωo = - 22 dzadza
OL—\

on C n . We can write ωo = id A where

n

A = \(^2 zadza - zadza),
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so —iωo is the curvature form of a U(l) connection on the trivial complex
line bundle over C n with connection matrix A. Expressed rather more
invariantly, if ξ -» C n is a line bundle with connection having curvature
α o there is a preferred trivialisation of £, up to an overall scalar, defined
by radial parallel transport from the origin, and the connection matrix
in this trivialisation is A. The connection A defines a coupled <9-operator

where A0)1 is the (0,1) component of A, and we observe that

adza - zadza)e-\*\2l* = 0.

The other component of the covariant derivative is

(9) (d + il^Je-WV*

In other words, the line bundle ξ—which is endowed with a holo-
morphic structure by its connection—has a holomorphic section σ with
norm \σ\2 = e~lzl /2. (Another way of going about things is to use the
formula dd(log(\σ\2)) for the curvature of a Hermitian holomorphic line
bundle with a holomorphic section σ.) Thus the effect of the positive
curvature tensor UQ is to give a holomorphic section which decays rapidly
at infinity in C n . Replacing α o by kωo, for an integer k > 0, we get a
holomorphic section of ξk with norm e"^*!2/4 = e""^*!2/4: so the effect
of replacing ξ by ξk is the same as applying a dilation with scale factor
λr1/2 to C n .

We now bring these two discussions together. Let (V, ω) be the com-
pact symplectic manifold of Section 1, with a fixed compatible almost-
complex structure J, and a line bundle L -> V with a 17(1) connec-
tion having curvature — iω. We let g be the Riemannian metric de-
termined by ω and J, and g^ = kg be that determined by kω and J.
For any point p E V we can, by Darboux's Theorem, choose a chart
X = χp : B2n -> V, where B2n is the unit ball in C n , with χ(0) = p and
such that χ*(ω) is the standard form ωo on C n . We may suppose that
all derivatives of χ—measured with respect to the metric g and its Levi-
Civita connection—are bounded, independent of p. (For this we need
to apply a version of Darboux's Theorem which incorporates smooth
dependence on parameters.) We may also suppose that the derivative
of x at 0 is complex-linear with respect to the complex structure J on
TVP. Thus if we pull back the almost-complex structure J using χ we
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get a structure represented by a bundle map μ over i? 2 n, as envisaged
above, and all derivatives of μ satisfy bounds, independent of the point
p. Given k we now compose the chart χ with the dilation map with
scale factor k~ιl2\ thus we put

On the one hand, the almost-complex structure is represented, in the
chart x, by a bundle map μ, which satisfies bounds coming from (8):

\βz\ < c *
<Ck~ιl2,

where the constant C does not depend on p. On the other hand, the
pull-back χ*(—ikω) of the curvature of the line bundle Lk over V is the
standard form — IUQ on C n , so we may lift χ to a connection-preserving
bundle map, which we will also denote by x, from the standard line
bundle ξ, with connection matrix A, to the line bundle Lk (restricted
to a neighbourhood of p). Therefore we may regard the section σ of ξ
as a local section of Lk.

Let dA j denote the 9-operator defined by the almost complex struc-

ture J over the large ball kι/2B2n in C n and the connection matrix A.

Thus, using the map τσj we can write

9Aj(f) = (df + A0'1/) + β(df + A1'0/)-

and, in consequence of (9),

(10) \dAjfz\ < \μz\ \df + A1'0/! < Ck

This inequality (10) is the crucial estimate which makes precise the

sense in which the Gaussian section in the flat model becomes an ap-

proximately holomorphic section of the line bundle Lk. We can also

bound the derivative of dA j / , in these co-ordinates and bundle trivial-

isation:

z|e-l*l2/" + \μ\

<Ck-ι'2{\z\ + \zγ)e-W
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We now introduce a cut-off function, βk : Cn —> R depending on
the (large) parameter k. Let β be a standard cut-off function of a single
variable, with β(x) = 1 when x < ^ and β(x) = 0 when x > 1. Then
set

βk(z)=β(k-1/6z).

Thus /?£ is supported in the large ball of radius k1/6 in C n , which is
nevertheless much smaller than the ball of radius A;1/2 on which the co-
ordinate chart x is defined. The derivative Vβk is 0{k~~1/^), supported
on an annulus where \z\ is O(kι/&), so

and we have

|9Λij()9fc/)| < \dAjί\ + \Vβk\f <

Similarly,

since

In short, the cut-off function does not affect the estimates.
We can now define a smooth section σp of the line bundle Lk over V

to be equal to χ{βkcr) in the image of the co-ordinate chart x, extended
by 0 over V. Thus σp is supported in a ball of radius O(k~1^2k1/6) =
O(k~1/3) about p, measured in the fixed metric g on V. It will however
be more convenient to state the estimates in terms of the rescaled metric
Qk- We write dk for the distance function in this metric (so d^ = kι'2d),
and set

d < > 2 / 5 if

= 0

We have then

Proposition 11. For eαc/i point p in V and any sufficiently large
integer k there is a smooth section σp of Lk over V such that at a point
q in V:

1. for fixed R, \σp(q)\ > C~ι ifdk{p,q) < R,
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2. \σp(q)\<ek(p,q),

3. |Vyσp| < C{\ +dk(p,q))ek(p,q),

I \dσp{q)\ < Ck-ιl2dk(jp,q)2ek(p,q),

5. \WvdLσp(q)\ < Ck

where ΘL is the d-operator on Lk, Vy denotes the coυariant derivative
defined by the Levi-Civita connection on V and the connection on Lk,
and the constants are independent of k.

This result follows easily from the discussion above. The main point
is that the chart χ is an approximate isometry with respect to the
metric g^ on V. All that is required is to compare the estimates in the
co-ordinate chart, used above, with the invariant estimates on V. So,
for example, if q G V is the point corresponding to z G C n under the
co-ordinate chart χp we have

which means that \z\2/A > dk(p,q)2/5, for q in the support of σp, once
k is sufficiently large.

The most complicated case is (5). In the co-ordinate chart χ7

Vv(dLσ) = (V + A + Γ)(SAjσ),

where Γ is the connection matrix for the connection on Ty C TVC

induced by the Levi-Civita connection and the bundle map Wj. Thus
the essential point is that A and Γ are bounded on the ball of radius A;1/6

in Cn—the support of σp. For A this is clear from the formulae above.
For Γ one only needs to use the fact that the derivative of the chart x,
and hence the ordinary Christoffel symbols, are bounded, along with μ
and its first derivatives. In fact it is not at all essential to introduce the
covariant derivative Vy here: all we really need is that the derivative
estimate in one co-ordinate chart χp gives a corresponding estimate in
any other such chart χpι.

3. The global construction

In this section we present the main construction of the paper, leading
to a section of our line bundle Lk -> V satisfying the condition of
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Theorem 5. The building blocks are the sections σp of the previous
section. We now choose a collection of points pi in V such that the
balls of p^-radius 1 about the pi cover V. We emphasise again that the
whole procedure depends on the parameter &, which appears now via
the metric gk on V. So we have to choose a separate collection pi for
each k. The points pi must be chosen in a sensible way, so that the cover
by unit balls is reasonably economical. Nothing very subtle is required
however.

Lemma 12. There is a constant C such that for each k we can
cover V by a collection of gk-unit balls with centres pι,i — 1,... M such
that for any point q in V

M

Y,dk{pi,q)rek{puq)<C, /or r = 0,1,2,3.

To prove this Lemma we reduce to the Euclidean case. The essential
point is that if Λ is a lattice in C n , then for any a,r > 0 and w E Cn

the infinite sums

] Γ \μ - w\re-a\μ~w\2

μ€Λ

are bounded uniformly in w. Now fix a finite cover, independent of A:,
of V by charts φs : Os —> V, 5 = 1,.. . , S, where Os C C n is bounded,
such that for all x,y e Os

\\x-y\<d{φx,φy)<2\x-y\.

We may choose slightly smaller open sets O" CC O^ CC O s, such that

V is covered by the images of the O". Let Λ be the lattice a(Zn 0 iZn)

in C n where a = i (S) ' A;"1/2. This is chosen so that the Euclidean2

balls of radius \k~1/2 centred on lattice points cover C n . Let Λ s c F
be the image under φs of Λ Π O's. Then when k is large, the balls of
g radius A;""1/2—i.e., of <7fc-radius 1—centred on the points of Λs cover
Φs{Qs). We define the set {pi} C V to be the union of the Λs, as s
runs from 1 to 5. So the j^-unit balls centred on the pi cover V, by
construction. To bound the sums appearing in (12) it suffices to bound
the individual contributions
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since S does not depend on k. Now recall that ek{p,q) vanishes if
dk{p,q) > k1/4, i.e., if d(p,q) > Λr1/4. So, when A; is sufficiently large,
Rs(q) vanishes if q is not in φs{Os). On the other hand if q = φs(z) is
in φs(Os) we have a bound

R.(q) <
λ€Λ μ€Λ0

where Λo is the fixed lattice ± (f ) 1 / 2 (Z n φ iZ n ) , and it; = kι/2z.
Prom now on we suppose that we have, for each fc, fixed a collection

Pi, t = 1,. . . , M, satisfying the conditions of Lemma 12. We change our
notation to write

To generate the desired section we simply consider an appropriate linear

combination of the α*. Thus for complex numbers wi,i = 1,. . . ,M,

making up a vector w_, we have a section

M

(13) 5 = 5 ^ =

of Lk. We will always consider co-efficients Wi with \w{\ < 1.

Lemma 14. For any choice of co-efficients w with \wi\ < 1, the
section s = s M satisfies

\BLS\ <Ck-ι/\
\VvdLs\ <Ck~ιl2

everywhere on V.

The proof of this lemma is an immediate consequence of (11), (12).

We now reach the nub of the problem, whose solution will take up

the remainder of this section.

Proposition 15. There is an e > 0 such that for all large k we
can choose w_, with \wi\ < 1, so that 5 = 5^ satisfies the transυersality
condition

\ds\ > e

on the zero-set W(s).

Combining with the second inequality of Lemma 14, this Proposition

plainly completes the proof of the main result, Theorem 5.
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We will construct the desired coefficient vector in a series of stages.
At each stage we will adjust some of the co-efficients Wi and leave others
fixed. The problem we have to overcome is that the total number M
of co-efficients grows with the parameter k (at least as fast as k2n).
The key to our approach is that the number of adjustment stages will
be independent of k, so we need to divide up the set of points pi in a
suitable way. In turn this requires us to retrace ours steps slightly, to
the choice of the set of centres pi.

L e m m a 16. Given any D > 0 there is a number N = N(D)}

independent of fc; such that for any large k we can choose a collection
of centres pi satisfying the conditions of Lemma 12 in addition with the
property that there is a partition of the set I = {1,2,... , M} into N
disjoint subsets I = I\ U 7*2 U U IN such that for each a

d(pi,Pj) >D ifpuPj e la-

More precisely we can take N(D) = CD2n.

To prove this we follow the same scheme as for Lemma 12. For
integral D, the standard lattice Λ = Z n Θ i Z n can be partioned into the
D2n cosets Λ/DΛ, and the distance between any two members of the
same coset is at least D. Now, following the construction of Lemma 12,
it suffices to partition each collection Λs of centres, since the number
S of these collections is independent of k. Then an appropriate coset
partition of the corresponding lattice does the trick.

Prom now on we assume that D is fixed, that we have chosen the
centres pi as in the Lemma above, and that we have fixed a correspond-
ing partition {Ia} of the index set. Of course we may also regard this
as a partition of the set of co-efficients W{, and of the set of balls B{
covering V. ( I t may help, in keeping track of the construction, to think
of the partition as a "colouring" of the balls, using N(D) colours.) The
parameter D will be chosen at the end of the proof.

Our main strategy will now be to adjust the co-efficients W{ "be-
longing" to the same Ia (i.e., with i € /α) at the same stage in the
construction scheme. Thus we start with any co-efficient vector w° (for
example ufi — 0) and corresponding section 5° = s^o. At the first stage
in the construction we will change the co-efficients w^ belonging to 7χ,
leaving the others unchanged, to get a vector wx and section s1 = s^i.
At the second stage we change the co-efficients of w_ι belonging to I2 to
get a section s2, and so on. Thus the total number N of stages in the
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construction depends on D but not on k. (Of course at each stage we
will maintain the bound \wf\ < 1.)

With this framework in place, we can begin the discussion of the
criteria we will use in adjusting the co-efficients. The essential idea is
that at stage α we will achieve a controlled amount of transversality
over the balls belonging to Ia (the balls "coloured by α"). We write

iel0iβ<a

so 0 = VQ C V\ C V2 C VN = V. What we want to achieve is that,
for a suitable e, the section sa satisfies \dsa\ > e on W(sa) Π Va where
W(sa) is the zero-set, as before. Broadly speaking, this leads to two
requirements at each stage:

1. The change in the co-efficients belonging to Ia must achieve con-
trolled transversality over the balls belonging to Ia.

2. The change in the co-efficients belonging to Ia should not destroy
the control of the transversality over the balls belonging to Iβ for
β<a.

To take the discussion further we need to pin down precisely a notion
of "controlled transversality".

Definition 17. Let / : U —> C be a smooth map on an open set
U C C and let w £ C. For η > 0 we say that / is 77-transverse to w
over U if for any z € U such that \f(z) — w\ < η the derivative satisfies

I (0/),| > η
This definition is most clearly relevant to holomorphic functions,

but we will need to apply it also in the case where / is approximately
holomorphic. An obvious point to note about this definition is stability
under C 1 perturbations. If / is η transverse to w, and g : U —• C is
another map with ||/ — g\\cι < δ, then g is η — J-tansverse to w. Of
course this statement is a vacuous if 77 < δ.

We pause now to consider any section s of our line bundle Lk —> V.
Write Xi = χPi for the co-ordinate chart centred on pi chosen in Section
2. This chart is defined on a large ball of radius A;1/6 in C n , but from
now on we can fix attention on bounded regions of Cn. We may suppose
that χ~ι(Bi) is contained in the ball Δ = }$B2n, and we fix a larger
set Δ + C C n , say the poly disc {\zQ\ < 22/10}. Over χ<(Δ) we have a
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standard trivialisation of Lk furnished by the section σ^ and we write
s = fid for a function fi, which we regard as a function on Δ + . We say
that the section s is 77-transverse over B{ if the map fi is 77-transverse
to 0 over the corresponding set Δ in Cn*

The next two lemmas express the salient properties of the sections
Sw_ in terms of their representation by the functions fi.

L e m m a 18. // s = s^_ is a section of Lk with \u)i\ < 1, and fi are
the corresponding functions on Δ + C Cn, then the following hold:

3. If \dfi\ > e on f~λ{0) Π Δ, then (once k is sufficiently large)
\dLs\ >C~ιe onW(s)ΠBi.

L e m m a 19. Let s = s m for a co-efficient vector w with \w{\ < 1.
For any a, let u/ be another vector which agrees with w_ except for the
co-efficients belonging to / α ; i.e.,

w'j = WJ if j $ I*,

and suppose that \w'j — Wj\ < δ for j E Ia Write sf = 5^/, and let
fύfi be the functions representing these sections, as above. Then the
following hold:

1. For any i,

Wfί-fi\\cHA+)<Cδ.

2. Ifie Ia and w'i = Wi + θi then

Wfί ~fi- ft|lσi(Δ+) < Cexp(-D2/5)δ.

The proofs of these lemmas are straightforward. The main point is
that \σ{\ is bounded below on <£(Δ+); then we have for example:

dL(*) = Mfi°i) = (djfi)σi

so, dividing by σ^ bounds on d^s^b^Gi give corresponding bounds on

djfi. Similarly for the full covariant derivative. Thus we go from the d-

operator dj of the almost complex structure to the standard 9-operator

using the fact that dj = d + μd where μ is of order k~1/2 over Δ+.
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We will now bring in the local result, for functions on a ball, which
will be the fuel for our global construction. The proof will be given in
Sections 4 and 5. As a piece of notation, for an integer p we will write
Qp for the function

) - ^ δ>0.

Theorem 20. For σ > 0, let Hσ denote the set of functions f on
such that

i- II/IIC°(Δ+) < i,

& \\df\\cHA+) < σ.

Then there is an integer p, depending only on the dimension n, such
that for any δ with 0 < δ < \, if σ < Qp{δ)δ, then for any f G
Hσ there is a w G C with \w\ < δ such that f is Q(δ)δ-transverse to
w over the interior region Δ C Δ + . Moreover, if ζ is any non-zero
complex number, we can suppose that w lies in the half-plane {w G C :
Re {wζ) > 0 } .

All the ingredients are now in place for the main global construction.
We suppose that, at the beginning of stage a in the construction, we
have chosen u/*"1 so that sα_i is ryQ_i-transverse over the set Va-\ C V,
(the balls coloured with all the earlier colours) for some small positive
77Q_i, say with 0 < ηa-ι < P We want to choose the coefficients wf,
for i G Ia- We will require that \wf — w?~ι\ < δa for some δa to be
specified shortly. For any choice of w* satisfying this condition, (1) of
Lemma 19 implies that sa is ηa-ι — C5Q-transverse over Va-u f° r some
fixed C. Thus if

δa = C~ιηa-\,

we can assume that sa is still \ηa-i" transverse over Va-i- Now consider
the situation over a single ball B^ for i G Ia- Here the section sa~1

is represented by a function fc = f?~l = sa~1/σi. The function /» is
bounded by a fixed constant C over the larger set Δ + , and the estimates
(18) show that C~ιfi lies in Uσ for σ = C " ^ " 1 / 2 . For suitably small
p, we can apply (20) to C~ιfi, with δ = C~ιδa, so long as

(21) AT1/2 < CδaQp(δa).

Assuming this, we find a v = Vi with |ι;| < δa such that fi is Qp(δa)δa-

transverse to V{ over the unit ball. (We can absorb constants into the
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factor Qp, by changing p suitably, since we may as well suppose that δa

is small.) Equivalently fc — V{ is Qp(ία)ίQ-transverse to 0. But f{ — V{
is the function representing the section sm> where

So we conclude that, assuming the side condition (21), we can, by
changing a single co-efficient W{ by at most <5Q, make a new section s—
which is Qp(5Q)ία-transverse over the ball B\. Furthermore, by choosing
Vi in a suitable half-plane, we can assume that \w[\ < 1.

We now define wQ, and hence the new section sα, by making all
these changes simultaneously, for all i G /Q. Thus

w? =w<*-ι-Vj if jela

To control the transversality of sa over a typical ball i?ΐ, for i G / α ,
we want to regard it as a small perturbation of the section sw considered
above. By (2) of Lemma 19 the C1-norm of the difference of these two
sections over B{ is bounded by Cexp(—D2/5)δa. So sa is ^Qp{δa)δa-
transverse over B^ say, so long as

Cexp(-£>2/5)<Sa < \Qp(δa)δa.

We can cancel a factor δa from each side of the equation and again ab-
sorb the constant by redefining p suitably. Then the condition becomes

(22) exp(-L>2/5) < QP(δ«).

Suppose this condition is met. We may assume—by choosing p

small—that Qp(δa)δa < ηa-ι\ then the new section sa is r/Q-transverse

everywhere on Va, where ηa = ^Qp{δa)δa. Finally, we have δaQp(δa) >

C~1ηa-ιQp(r)a-ι), so by redefining p again we may suppose that

Va = QP{Va-l)Va-l-

We can summarise this discussion in the following statement:

Proposition 23. There are constants p < 1 and p such that if

s 0 " 1 = Sya-i is a section of Lk which is ηa-\-transverse over Va-\

with ηa-\ < p, and if
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ί. fc~1/2 < Qp(Va-l)Va-l,

2. exp(-£>2/5) < Qp(ηa-ι),

then there is another section sa = sma which is ηa-transverse over Va,
where

Va = Va-lQpiVa-l)-

Notice that ηa < 7/Q_i, so the condition ηa < p holds rather trivially.
Notice also that the argument needs to be reshaped slightly at the first
stage, when a — 1. In this case the construction produces a section s1

which is ηι-transverse over Vί, for some small 771.
We claim now that this iterative construction will produce the de-

sired section sN, starting from any initial 5°, provided D is chosen
suitably and k is sufficiently large. To verify this claim we have to work
through the book-keeping of the iterative definition in (23) of the ηa,
and the constraints involving k and D.

Lemma 24. Let p > 0 and let xa,a = 1,2,..., be a sequence of
real numbers such that

xa = xa-ι +p\ogxa-χ.

Then for any q > p there is an integer a\, depending only on q and x\,
such that

xa < q(a + αi) log(α

To prove the Lemma we define a sequence ya by

ya = qa log α;

then

Va - Va-ι = q{a\oga- (a - 1) log(α - 1))
= q((a - (a — 1)) log(α — 1) + α(log a — log(α — 1))
>9( log(α-l) + l).

While
plogyQ_i = p(log(α - 1) + loglog(o: - 1) + logg),

so ya — Va-ι > plogyα o n c e a is large, say if a > αo Now if we choose
OL\ so that ot\ > αo and that xa < q(a + OL\) log(α = OL\) when α = 1,
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then the same inequality holds for all a > 1 by comparison of the two
sequences (sα),(j/Q + α i).

We apply this Lemma to the sequence xa = — log ηa where the ηa

are defined inductively by ηa — Qp(ηa-ι)Va-ι &s in Proposition 23, with
770 < p. We get the rough bound

Qp{Va-l) > J—λ ΓΓ,

(a log a)p

for some constant C depending on p. Hence
Q

Qp{ηa-l] - (NlogNr
where N is the number of "colours", as above. Now we know that
N < const.D2n where D is the separation parameter. So

QP(ηa-i) >

say, once D is large. Since

- £)2np+l '

for large D, we conclude that if we make the parameter D large enough,
then condition (2) of Proposition 23 will be satisfied at each stage. Now
the other condition (1) of Proposition 23 has a different status, it only
involves k and not D, and the parameter k does not affect the value of
ηjsi. Thus having fixed D we can choose k large enough for (1) to hold
at all stages and we get a section sN which is ηx transverse over the
whole of V. This conpletes the proof of the existence result, Theorem
5.

4. Transversality with estimates

In this Section we will prove Theorem 20: a refinement of Sard's
theorem for approximately holomorphic functions. The input for this
proof, following the method of Yomdin [9], [3], is a result on the com-
plexity of real algebraic sets which we state first, and which in turn will
be proved in Section 5. Let P : R m :-> R be a polynomial function of
degree d. Let S C R n be the subset

S = {xeRn : \x\ < l ,P(x) <!}•



SYMPLECTIC SUBMANIFOLDS AND ALMOST-COMPLEX GEOMETRY 687

and let S(θ) = {x : |x| < 1, P(x) < 1 + θ}. The result we will use is

Proposition 25. There are constants C,v, depending only on the
dimension m, such that for any polynomial P there are arbitrarily small,
positive θ so that S may be decomposed into pieces

S = Si U S2 - U 5A,

where A < Cdv, in such a way that any pair of points in the same piece
Sr can be joined by a path in S(θ) of length less than Cdv.

The statement of this Proposition is slightly complicated: a simpler
statement, which is also true, is that the number of components of 5,
and the diameter of each component in the induced path-length metric
are bounded by Cdu. We have chosen the more complicated statement
because the proof is easier and suffices for our application.

We begin the proof of Theorem 20 by considering the case of holo-
morphic functions. Thus we wish to prove

Proposition 26. There is a constant p such that if f is any holo-
morphic function on Δ + C C n with \f(z)\ < 1 everywhere, and ifη<^,
then there is a w in C with \w\ < η and Re (w) > 0 such that f is
ηQp(η)-transverse to w over the interior region Δ.

Here, as in Section 3, Qp{η) = log(η~ι)~p. The first step is the
following Lemma.

Lemma 27. Let f : Δ + -» C be a holomorphic map with \f(z)\ < 1.
Then for any e with 0 < e < 1/2 there is a complex polynomial function
g on C n of degree less than Cloge""1 such that \f{z)— g(z)\, \df — dg\ < e
on the interior region Δ.

To prove this Lemma we truncate the ordinary Taylor series of /.
Recall that Δ+ is the polydisc {\za\ < 22/10}. A holomorphic function
/ on Δ4" has a Taylor expansion

and the co-efficients are given by the Cauchy formula:

where the contour Γ is the distinguished boundary \za\ = 22/10. For
any integer 5 > 0 let g be the polynomial given by ignoring all terms
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in the series which contain any power zr

a with r > s, so g has degree at
most ns. The interior region Δ is the ball {|;z| < 11/10}. If z lies in Δ
we write

f{z) = , o Λ n / 7 r-^7 rd^i . . Ai>n.
(*7Γ2j'ft JY [Wι — Z\) . . . ( tϋ n — 2 nJ

Then we expand the denominator in the familiar way; just as in the
ordinary proof of the Taylor theorem. Using the fact that for z E Δ
and w E Γ, \za/wa\ < 1/2, one obtains that

f(z) - g(z) = w / f(w)E(w)dwι . . . dwn,
(2m) JΓ

where \E(w)\ < n2~s, and it follows that

\f(z)- g(z)\ <n2~s on Δ.

By a similar, straightforward, argument one finds that \df — dg\ <
y/n(s + n)2~s. Thus in sum we see that

\f-g\,\df-dg\<Ce-χd,

for some λ, where d = ns is the degree of g. Inverting this, to approxi-
mate / in C 1 with error e < 1/2 we can take a polynomial of degree d
where we need Ce~χd < e and d to be an integer divisible by n. We can
do this with

Λ

which is bounded by a multiple of loge"1, once e < 1/2, as required.
We now come to the central argument of this Section, which will

prove Proposition 26. Let / be, as above, a holomorphic function on
Δ + with I/I < 1. Given a small e > 0 we use Lemma 27 to approximate
/ in C 1 to within e over the interior ball Δ by a polynomial g of degree
d < Cloge""1. Now consider the set

Sf = {ze B2n C C n : |<9/| < e}.

Clearly S^ is a subset of S9 where

S9 = {ze B2n : \dg\ < 2e}.

Thus the image f(S^) C C is contained in f{S9), which is in turn
contained in the e-neighbourhood of g(S9). Now the set 5^ is a semi-
algebraic set of the kind considered in Proposition 25, where we identify
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C n with R 2 n and take P = (2e)-2|<9#|2, which is a real polynomial of
degree 2(d-1). We takes θ < 3, say, and decompose S9 into A pieces as
in Proposition 25. If z\, z2 are in the same piece of Sg then, integrating
the derivative of g over a path of length less than L = Cdv in P(θ)
joining z\ to z2, we have \g(zχ) - g(z2)\ < 4eL. Thus g{S9) is contained
in the union of A discs in C each of radius 4Le. Hence /(5^), and so
also /(5*0, is contained in the union of A slightly larger discs of radius
(2L + l)e. The condition on w in C that / is e-transverse to w is that
w lie ouside the e-neighbourhood of f(Sf), and this neighborhood is
contained in the union of A discs of radius (4L + 2)e. The total area in
C of these discs is at most Aπ(4L + 2)2e2. If we choose p such that the
area of the half-disc

Ω = {w e C : \w\<ρ, Re (p) > 0}

is bigger than the total covered by these discs, then there is w in Ω not
contained in the e-neighbourhood of f(S^). The condition on p is

that is
p>

Now we know that A and L are bounded by powers of the degree of
P, hence of the degree d of g which is bounded by a power of \og{e~ι).
Putting everything together, we see that for any sufficiently small e
there is a w in C such that / is e-transverse to w) w lies in the half
plane SRiu > 0 and

\w\

for some p. To obtain the result stated in Proposition 26 we only need to
re-organise the parameters. Observe that, if C,p are fixed, the function
h given by h(e) = Ce\og(e~ι)p is increasing for small e and tends to
zero as e ->• 0. If η = h(e) then

Γ P = Ce

which is less than 2Ce, say, once e is sufficiently small. Inverting the
function Λ, we see that for small η there is a w with \w\ < η such that
/ is ^^(logr/"1)""^ transverse to w, and finally by increasing p, and
assuming η to be sufficiently small, we can replace the factor 1/2C by
1, to get the result stated in Proposition 26.
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We now move on to consider approximately holomorphic functions,
and to prove Proposition 25. We need the following result from linear
analysis:

Lemma 28. For each r < 1 there is a constant K = K(r) such that
if f is any smooth complex-valued function on Δ + C C n , then there is
a holomorphic function f on the interior region r Δ + C Δ + such that

11/ - /Ίlci(rΔ+) <

This is a standard fact. One approach is to use the Hormander
theory of weighted L2 spaces [4]. Using a suitable weighted L2 norm on
Δ + , which compares uniformly with the standard norm on an interior
region r'Δ""1", where we choose r < r' < 1, one obtains a bounded solution
to the d-problem: i.e., for any 9-closed (0,1) form p on the ball there is
a function T(p) with dT(p) = p and

We take p = df, so / = / - T(p) is holomorphic. Write h for T(ρ),
i.e., / — /. Then the £2-norm of h and the C1-norm of dh = df over
the region r ' Δ + are bounded by multiples of ||#/||c7i(Δ+)> a n c^ s o ^
standard elliptic theory (in Holder or Sobolev spaces) the same is true
for the C1-norm of h over the interior ball r Δ + .

The proof of Theorem 20 follows easily from this. If / is a function
in Hσ we approximate / by a holomorphic function / on a slightly
smaller region, with ||/ — f\\c\ < Cσ. Then we apply Proposition 26
to /. Here we need to modify the statement of Proposition 26 slightly
to take account of the smaller region on which / is defined, but it is
clear that this will just make a small change to the constants involved.
Hence we find a w with |tu| < η such that / is 7jQp(^-transverse to w: if
σ < ^ηQpiη), then / is also i7?Qp(^-transverse to w. Again the factor
of 1/2 is absorbed by a change of p. Finally the requirement that w
lie in a given half-plane is obtained from the corresponding condition in
Proposition 26, multiplying / by a complex number ζ of unit modulus.

5. Complexity of real algebraic sets

In this Section we prove Proposition 25. As a piece of terminology,
we will say that a quantity defined by a polynomial function P : R m —•
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R is p-bounded if it is bounded by a function Cdv', where the constants
C, ̂  depend only on the dimension m. We will use the word diameter,
for a subset of Rn, to mean the diameter in the induced path-length
metric. Now our main goal is to prove:

Proposition 29. Let P : R m —>• R be a polynomial function such
that 0 is a regular value of P on the unit ball Bm and of the restriction
of P to the boundary sphere 5 m - 1 . Then the number of components
of {x e Bm : P(x) < 1} and the diameters of the components are
p-bounded.

We make a number of simple remarks:

1. Proposition 29 implies Proposition 26. For any P we choose regu-
lar values 1 -f e of P\B™ and P|sm-i, for arbitrarily small positive
e, and apply Proposition 29 to P — e.

2. It is the the same to prove Proposition 29 as to prove the corre-
sponding bounds on the number and diameter of the components
of the hypersurface

Σ = {xeBm: P{x) = 1}.

3. Under the hypotheses of Proposition 29, Σ is an (m — l)-manifold
with boundary, whose topology is not changed by small pertuba-
tions of P. Since the diameter of a compact Riemannian manifold
with boundary varies continously with the Riemannian metric (in
the C°° topology), it suffices to prove Proposition 29 for any dense
set of polynomials P.

4. To prove Proposition 29 it suffices to decompose Σ into any p-
bounded collection of sets of p-bounded diameter.

Now our proof follows the argument of Gromov in [3, p. 124]. Before
diving into the main proof we bring to the centre of the stage the princi-
ple geometric ingredient in the argument, which is the Crofton formula
from integral geometry.

Let H be the set of affine hyperplanes in R m . There is a smooth
measure on if, unique up to scale, which is invariant under the transitive
action of the affine Euclidean group. If C is any compact, smooth, arc
in R m , then almost all hyperplanes Π G H meet C transversely in a
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finite number i(Π, C) of points. The Crofton formula states that, with
a suitable normalisation of the measure, the length of C is

1{C)= ί i(U,C)dU.
JH

The set of hyperplanes which meet the ball Bm is compact, so has finite
volume V say. If C is the intersection of Bm with a real algebraic curve
of degree 5, then the intersection number i(Π,C) is at most δ (almost
everywhere) and it follows that the length of C is at most Vδ.

We now begin the main proof, which goes by induction on the di-
mension m. We choose co-ordinates (ί,yi,... ym-2,z) on R m . We will
regard the first co-ordinate t a s a parameter and the last co-ordinate z
as a "height" function, in the manner of Morse theory. Write π for the
projection from R m onto the first co-ordinate and decompose Σ into
"slices"

Σ t = π - 1 ( t ) c Σ .

For fixed t the critical points of the height function z on Σt are the
solutions of the polynomial equations | ^ = 0. Let Qo : Bm —> R m - 1

be the map with components (P — 1, ̂ ) . Let C be QQ1(0)—the union
of the critical sets, as the parameter t varies over [—1,1]. As we shall
show below, it suffices to treat the case where the following general
position conditions are met:

General position conditions (30).

1. The points (±1,0,0) are not in Σ.

2. The set C is a smooth curve in Bm which meets the boundary
sphere transversally in a finite number of points.

3. The slices Σ^ are smooth manifolds, transverse to the boundary
sphere for all but finitely many parameter values t.

4 For all but finitely many t, the height function z is a Morse func-
tion on Σt.

If these conditions hold we get a finite set E C [— 1,1] of exceptional
parameter values: the union of the finite sets in (3),(4) and the projec-
tion of the set in (2). We also include the end points ±1 in E. Then
the complement of E is a finite union of open intervals Jβ C [—1,1]
and the restriction of π to each π~ι{Jβ) C Σ is a fibration of manifolds
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with boundary. Moreover the fibration is compatible with the family of
Morse functions, and the index of the critical points is constant along
each component of Cβ = C Π π~ι(Jβ).

L e m m a 31. For an open dense set of polynomials of a given degree
d the general position conditions (30) hold, and the number of points in
the set E is p-bounded.

We assume this lemma for the moment, and complete the proof.
Remark (3) following Proposition 29 shows that it suffices to prove the
result for polynomials satisfying (30). For such P the set C is a portion
of a real algebraic curve of degree at most dm~ι, given by the equations
P = 1, | ^ = 0, so its length is p-bounded by the Crofton formula.

We now apply induction on the dimension m. First, the boundary
sphere Sm~ι is a rational variety, and can be covered by the images
of two balls under maps / : R771"1 —> 5 m - 1 whose components are
rational functions. It follows that the main result (29) for the ball Bm~ι

implies that the number and diameter of the components of Σ Π Srn~1

are p-bounded. We now fix attention on a single interval Jβ. Let us
say that a point x in π~ι(Jβ) is accessible from the boundary if x lies
in a slice Σ*, and the component of Σ* containing x also meets the
boundary. Applying the main result in dimension m — 1 to the slice
Σt we see that in this case x can be joined to a boundary point by a
path of p-bounded length. So the set of points which are accessible from
the boundary can be covered by a p-bounded number of sets (just the
number of components of Σ Π S™'1) each of p-bounded diameter. Now
let Σ*(β) C π~λ(Jβ) be the set of points which are not accessible from
the boundary, and let x\ be in Σ*(/3), lying on a slice Σ^. We minimise
the height function z on the component of Σtι which contains x\. The
minimum is not a boundary point since x\ is not accessible from the
boundary, so it must be a critical point of index 0, a point, c\ say, of the
curve Cβ. Again by induction, applying the main result to the slice Σ ί l 5

x\ can be joined to c\ by a path of p-bounded length. If X2 is another
point in the same portion Σ*(β) which lies in a slice Σt2, we can similarly
join X2 to a point C2 in Cβ by a p-bounded path. If ci, C2 are in the same
component of the curve C/j, then we would succeed in joining x\ to X2
by a p-bounded path, since the total length of C is p-bounded as we
have seen. Thus we can decompose Σ*(/3) into pieces, labelled by the
components of C(β) of index 0, each of p-bounded diameter. Now the
number of components of Cβ is the same as the number of intersection
points Cΐλπ~ι(tι), hence bounded by the degree of C, and so p-bounded.
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So we conclude that Σ*(/3) is covered by ap-bounded family of sets of p-
bounded diameter. Adding the points accessible from the boundary and
summing over the p-bounded collection of intervals Jβ we deduce that
the same is true for the set Σo = \Jβ^~l{Jβ) Finally, any point in Σ
lies in the closure of Σo (because the transversality conditions prevent
Σ containing an open set in a hyperplane π~ι(t), and the end-points
(±1,0,0) are not in Σ), and since Σ is locally path-connected we obtain
the corresponding result for Σ.

We will now prove Lemma 31. This follows rather standard lines; it
is clear that each condition is open, so it suffices to show that each one
individually is satisfied by a dense set of polynomials of fixed degree.
First condition (1) of (30) is clear. Now consider condition (2), that
C be a curve, transverse to the boundary sphere. Recall that C is the
zero-set of the map Qo = {P - 1, f j) : Bm -> R™"1. We consider
a n m - 2 dimensional family of variations of the polynomial P, with a
parameter s = (si,..., sm_2)

and define a map F : Bm x R m " 2 -> R m " 1 by F{x,s) = (P£, ^ f
Then the derivative of F at any point (x,0), for x in Σ, is surjective
by construction, so F - 1 (0) is cut out transversally in a neighbourhood
of Σ x {0}. Now apply Sard's theorem to choose an arbitrarily small
regular value s of the projection from F~ι(0) to the s co- ordinate;
then the corresponding map P £ has a critical set CL which is a smooth
curve. Finally choose a regular value p < 1, arbitrarily close to 1, of the
radius function on C£. Then CL meets the p-sphere transversally, and
composing PL with the dilation with factor p we get a small variation
which satisfies (2). Clearly, in the transverse situation, the contribution
to the exceptional set E from condition (2): the number of intersection
points of C with the boundary sphere is p-bounded: it is at most twice
the degree of C since the boundary sphere is an algebraic surface of
degree 2.

The arguments for the other conditions are similar. For condition (3)
we consider the map Qx = {P-1, f̂ , ^ ) : Bm -> R m . The zeros of Qι
are the singular points of slices Σ .̂ One constructs a family of variations
just as in the case of Qo above to arrange that, after arbitrarily small
perturbation, Q\ is transverse to 0. In that case the zero-set of Q\ is
finite, and the number of points is bounded by the degree d(d— I) 7 7 1" 1 of
Q\. Condition (3) also requires that, with a finite number of exceptions,
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the slices Σ* are transverse to the boundary. To arrange this it suffices to
arrange that the function on Σ Π Sm~~ι given by the spherical distance
from (1,0,0) is a Morse function. One can achieve this by a small
rotation of the axes (i.e., the complement of the set of "focal points" of
a submanifold of the sphere is open and dense: the proof is just the same
as in the Euclidean case). To bound the number of points where Σ^ fails
to be transverse to the boundary sphere we can suppose, by making a
small rotation of the (yi,z) co-ordinates if necessary, that none of these
points lies on the hyperplane section z = 0. Then the non-transverse
points are solutions of the m — 1 equations

p i d P d P n

dyi dz

on 5771"1, and the number of such solutions is at most 2<fn~1, by con-
sidering the degrees of the equations involved.

Next we consider condition (3). Given a polynomial P we let H be

the polynomial function given by the Hessian H(t, yi,z) = det ί ^ Γ j ?

and let Q2 : Bm -» R m be the map {P - 1, f ^ , # ) . The degenerate
critical points of the height function z are the zeros of Q2 We consider
the variation of P by quadratic terms Pu = P + Σ u^yiyj , where
u = (uij), and put

The derivative of the last component of G in the u variable is given by

u ^ Tr (u adj (A)),

where A = (gL5f. \ and adj (A) is the "adjugate" matrix of co-factors.
It follows that the derivative of G is surjective so long as adj (A) is not
zero, that is, so long as the rank of A is at least m — 3. However if
we have chosen P as above so that the derivative of QQ is surjective, a
short calculation of the partial derivative shows that the rank of A is
indeed at least m — 3. (More geometrically, the kernel of A is at most
1-dimensional, consisting of the tangent space to the curve C.) Thus we
can proceed as before, perturbing P to make the corresponding map Q2
transverse to 0. In this transversal situation, the number of degenerate
critical points is bounded by the degree d(d - l)™-1^ - 2 ) m " 2 of the
map Q2-
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6. Further results

In this Section we consider three topics beyond the main result of
the paper. As the referee has pointed out, some of the results are very
similar to those proved by Tian in [9].

The integrable case
We will here consider the special case where our symplectic manifold

admits a compatible complex structure. In this case L is a holomorphic
line bundle over V, and large powers L®k have many global holomorphic
sections: this is the essence of the standard Kodaira embedding theorem.
As we explained in Section 1, the existence theorem (5) is a standard
result in this case, but we can use the techniques of our proof to obtain
result—perhpas new—on the geometry of hypersurfaces of high degree.

Proposition 32. Let (V, ω) be a compact Kάhler manifold and
L -» V be a Hermitian holomorphic line bundle having a connection
with curvature —iω. Then there is a constant η > 0 such that for large
enough k, Lk has a holomorphic section s such that \s\ < 1 everywhere
on Vj and \ds\ > ηy/k on the zero set of s.

A more vivid statement is:

Corollary 33. There is a constant c such that for large k there is
a complex hypersurface W^ in V representing the Poincare dual of k[ω]
whose first fundamental form βw and Riemann curvature tensor
(for induced metric induced from the fixed metic on V) satisfy

\βw\ <cVk, \RW\ <ck.

To derive Corollary we let Wk be the zero-set of the section s given
in Proposition 32. As we shall see below, over any ball in V of radius
A;"1/2 there is a holomorphic section σ of Lh with A~ι < \σ\ < A Over
such a ball we let / = s/σ, so / is holomorphic function bounded by A.
Choose a local holomorphic co-ordinate chart θ (similar to the charts χ
used in Section 2) which dilates by a factor A;1/2, so maps the unit ball

B2n i n C n t 0 a neighbourhood of diameter 0{k~ll2) in V. Then we
get a holomorphic function / = / o θ on B 2 n , bounded by A. We get
bounds on all the derivatives of / on an interior ball, and also a lower
bound on the derivative of / on its zero set. Then it is clear that the
fundamental form β of the zero set in the rescaled metric g^ is bounded
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and, scaling back, this goes over to \βw\ < Ck1/2. Finally the estimate
on the curvature tensor of Wk arises from the fact that

Rw = Rv\w — βwβw

Observe that the volume of Wk is proportional to A;, and the integral
of the form Tr (R\vk) Λ ωn~2, which represents cι(Wk) U /ιn"2, over Wk

grows quadratically with A;, since

n-1U hn~\ Wk) = (kCι(TV)hn-1 - k2hn, [V]),

so
/ \Rwk\>C~ιk,

JWuVol(Wk) JWk

and the estimate of Corollary 33 is optimal, to the extent that the
maximum value of the curvature of the Wk grows at the same rate as
the average value. It is an interesting exercise to write down explicit
equations defining a sequence Wk satisfying the estimates of (32) in
the case where V = C P 2 say. It would be interesting to find the best
constants in (32) and (33)—what are the "smoothest" curves of high
degree?

To adapt our results to prove Proposition 32 we need to replace
the approximately holomorphic sections constructed before by genuine
holomorphic sections. We will prove:

Proposition 34. There are positive constants α, 6, e such that for
all sufficiently large k and each point p in V there is a holomorphic
section σ of Lk over V with \σ(p)\ = I,

e-bdk(p,Q)2

if dk{p,q) < ek1/6, and

\σ(q)\<Ce-akl/3

ifdk(p,q)>ek1/e.

Given this Proposition, the proof of (32) follows from the argument
used for our main result. We cover V with balls as before and obtain
a finite collection of sections σ{. We need to show first that ^ Wi(q)\
is bounded, independent of k. To see this, we split up the sum into
the sum over sections σ{ where the corresponding centre pi has distance
less than eA;1/6 from q, and the part where the distance is greater than
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The first part is estimated just as in Section 3. The second
part is bounded by the fact that there are only O(kn) balls in total so
the contribution is less than Ckne~ak , which is certainly bounded as
k —> oo. The other crucial point comes where we need that for any D,
and sufficiently large k:

if dk(q,pi) > D, and this follows immediately from the statement of
(34).

To construct these "concentrated" holomorphic sections we use stan-
dard Hodge Theory methods. Recall that there is a Weitzenbock for-
mula on Ω0)1(Lfc) of the shape

Δ^ = D" + R + fc,

where Δg is the Laplacian d d + dd , D" is a semi-positive operator,
and R is an algebraic operator involving the Ricci tensor of V, indepen-
dent of fc; see the discussion in [1] for example. It follows that once k
is sufficiently large Δ^ is invertible, and the L2 operator norm of the
inverse G = Δ^ 1 is 0(k~ι); here we are working with the fixed metric
gonV. Now if 5 is any smooth section of Lk, and ξ is the section

ξ = -d*Gd 5,

then 5 + ξ is holomorphic, and we have an L2 estimate

\\ξ\\2

L2 = φ*Gd~s,d*Gd~s) = (Gds.ds) < Ck~l\\B s | | | 2.

For the rest of the proof we will work in the rescaled metric <?£, where
the estimate transforms to:

(35) U

This gives a way to construct holomorphic sections 5 + ξ starting
with approximately holomorphic sections 5, where ξ is a small correction
term. We manufacture suitable approximately holomorphic sections by
a variant of the mathod of Section 2.

Lemma 36. There are constants α, b such that for any point p of
V there is a holomorphic section r of Lk over the g^-ball of radius A;1/3

such that

exp(-bdk(p,q)2) < \τ(q)\ < exp(-adk(p,q)2).
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We begin by considering a holomorphic section u of L in a neigh-
bourhood of p, with \u(p)\ = 1. Recall that the curvature form ω is
given by ddlog \u\2. It is clear first that we can choose u so that the
derivative of log \u\2 vanishes at p. So, in local co-ordinates ζa centred
atp,

log \u\2 = 1 + Σgaβζaξβ + Σhaβζaζβ + ΣKβζaζβ + O(|C|3).

The condition that ω = dd log \u\2 means that gaβ is the metric tensor.
Multiplying u by a suitable holomorphic, quadratic, function, we can
suppose that the co-efficients haβ all vanish, so that

Now consider the holomorphic section uk of L®k over this ball, and
change to the dilated co-ordinates za = \fkζa- Then we have:

c 4 = ) < | u ι < ( i + σ = ) .

Now we have elementary inequalities:

e~χ-χ2/k < (1 - χ/k)k < e~x

when x/k is sufficiently small. Putting these together we get

e-\z\2-C\z\3/Vk < | u |2 < e-\z

if z/y/k is small enough. Now the estimate stated in the Lemma follows
immediately.

We now define a section s by multiplying by a cut-off function β
with derivative supported in the annulus of outer radius A;1/6 and inner
radius \kιl^, as in Section 2. We have

So we get a global holomorphic section σ = s + ξ of Lk with

We can go from this L2 estimate to a L°° estimate. It is easy to see
that on any (fc-ball of radius 1 the L2 norm of a holomorphic section of
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L®k controls the L°° norm. There are two cases to consider. If q is a
point with dk(p, q) < \kι/& - 1, then the unit ball about q does not met
the support of d 5, so ξ is holomorphic there. Thus we get

(37) \ξ(q)\ < Ck^-^6e-akl/3 Xdk(p,q) < \

On the other hand, if dfc(p, q) > \k1^ — 1, then in the g^-unit ball about

q we have \s\ < exp{-a{\kιl^ - 2)2) < Ce~akl/\ so working with the

holomorphic section s + ξ yields

(38) \(S + ξ)(q)\ < Cexp(-ak1^) if dk(p,q) > \

Now (34), with a suitable choice of constants, follows from (36), (37),
(38) by elementary inequalities.

The Lefschetz hyperplane theorem
We shall now prove the analogue of the Lefschetz Theorem on the

topology of hypersurfaces, in our symplectic setting.

Proposition 39. Let Wk be the zero-set of a section s of Lk -> V,
satisfying the conditions of Theorem 5. When k is sufficiently large the
inclusion i : Wk —> V induces an isomorphism on homotopy groups πp

for p < n — 2 and a surjection on πn_χ.

For example, in the case where n = 2, so Wk is a surface in a 4-
manifold V, we see that Wk is connected when k is large.

The proof of Proposition 39 is a small modification of the usual
"Morse Theory" proof in the Kahler case [2]. We consider the function

on V\Wk This tends to -oo at Wk, and the standard Morse theory
arguments show that it suffices to prove that at any critical point p G
V\Wk the index of the Hessian Hp (the dimension of a maximal negative
eigenspace) is at least n. Note that it is not necessary to suppose that φ
has non-degenerate critical points. Now consider a real quadratic form
H on a complex vector space C n . Let Π be the quadratic form

U{x) = H{x)+H{Ix),

and suppose that Π is negative definite. If the index of H were less than
n, there would be a real subspace P C Cn with dimP > n on which H
is positive semi-definite. But then, by the dimension formula, P Π IP is
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non-trivial, and Π is non-negative on P Π IP giving a contradiction. So
it suffices to show that the form Πp obtained from the Hessian Hp of φ
is negative definite, for each critical point p.

Now recall that we have operators dy,dy on the differential forms
on V, defined by the almost-complex structure. If we choose osculating
co-ordinates centred on a critical point p as in Section 2, we can express
these as d + /Id, d + μ<9, where <9, d are the usual operators in these co-
ordinates, and μ vanishes at p. One sees then that if the first derivative
of φ vanishes at p, then dydyφ = ddφ at the critical point p. It follows
that the quadratic form ΐlp can be identified with dydyφ, just as in
the case of a complex manifold. Now we can compute, in terms of the
operators defined by the connection on Lk and then Hermitian inner
product ( , ) on the fibres,

dyφ = dy log |s |2

and, at a critical point p,

dydyφ = —|2 ((dLdLs,s) - (dLs,dLs) + (dLs,dLs) + (s,dLdLs)) .

Now (<9L<9L + OLΘ^S — iωs so

dydyφ = ikω + —^ ( -(dLdLs, s) + (5, dLdLs)
\s\

- (dLS,dLs) + (dLs,dLs)) .

Go, as usual, to rescaled co-ordinates on a ball around p. We know
that kω is positive definite and close to the standard form in these co-
ordinates. We also know that dj^s and V9L5, hence also didLS are
small, in fact 0{k~ll2). So dydyφ is negative definite (for large A;) so
long as \s\ is not small, in fact so long as \s\ > C~ιk~ιl2 for a suitable
constant. To see that this holds, we use the controlled transversality
condition once again. Since p is a critical point of φ we have

\dLs\ = \dLs\ < constk-1'2.

Now over our ball we represent sections in terms of the standard triv-
ialisation, s — gσi where \σι\ is bounded below and |Va»| is bounded
above. The controlled transversality condition we achieved in Section 3
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says that the function g and its derivative dyg cannot both be small at
the same point. Now

dvs = (dyg) σi + g(dLσi),

so the fact that 3LS is O(k~1/2) implies that \g\ > η for some fixed 77,
once k is large. This completes the proof.

Convergence of currents
We will now consider the asymptotic behaviour of the submanifolds

Wk we have constructed, as k —> 00. We will show that, considered as
currents of degree 2 (the dual of the space of smooth (2n — 2)-forms on
F), we have Wk ~ kω/2π. More precisely we show:

Proposition 40. There is a constant C such that for any test form
Φ e Ω2"-2(V),

1/ ψ-^ [ ωAψ <C*1/2||#||Loo(v).
\Jwk

 2 π Jv

Here the L°°-norm is computed with the fixed metric gonV.
Let s be the section of Lk cutting out Wk- The 1-form A = s~~ιVs on

the complement of Wk has an integrable singularity (since the function
\z\~λ is integrable in a neighbourhood of the origin in C), so may be
regarded as a current on V. It is a singular connection form for Lk. The
relation between this connection form, the curvature kω and the zero
set Wk is encapsulated in the equation of currents:

dA = Wk - A ω .

That is, for any test form φ,

/ Ψ ψ Λω = - AΛdψ.
Jwk

 2 π Jv Jv

So our result follows if we show that

/ \A\dμ < CVk,
Jv

for some constant C independent of k. Now transform to the dilated
metric gk, and the standard cover of V by fffc-iinit balls. The volume
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form of V scales by k~n and the number of balls is O(kn), while the
norm of Vs scales by k~ιl2. So it suffices to show that the contribution

(defined with the metric gk) from each ball is uniformly bounded. We
know that the covariant derivative Vs is uniformly bounded, so it suf-
fices to control the integral of \s\~λ. As usual, we can represent the
section s in terms of our standard trivialisation of Lh over the ball,
and reduce to considering functions. In sum, the result we want can be
obtained easily from the following:

Proposition 41. Given p > 0 let Kp be the set of complex-valued
functions f on 2B2n C Cn with \\df\\ci < p/2, | | / | | c o < 1 and such that
\df\ > p at all points where \f\ < p. Then for any p there is a constant
C such that

ί Tfχdμ<C
JB*n I/I

for all f in Kp.

For any / we first divide the integral of I/I" 1 into the contribution
I\ from the region in B2n where \f\<p and the contribution, J2, from
the region where | / | > p. Clearly I2 is bounded by 2Vol ( β 2 n ) p ~ 1 , so
it suffices to control I\. For σ E C with |σ| < p let Zσ = f~ι{σ) Π
B2n. Now we know that at a point where | / | < p we have \df\p/2 <
P ^ l^/l> s o the derivative of / is surjective, by the discussion in the
introduction. Thus the sets Zσ are smooth codimension-2 submanifolds.
At any point on Zσ(p) we let J/{p) be the modulus of the determinant
of the derivative of /, restricted to the 2-dimensional subspace in C n

normal to Zσ at that point (defined by the area forms on this normal
plane and C). Then we have a "co-area" formula::

l\f\<p\J\ •/|σ|<p

where

I(σ) = I J]ιdv,
Jzσ

 J

and dv is the usual induced measure on the submanifold Zσ C B2n.

Now it is simple linear algebra to show that

Jf = ((\df\2 + \df\2)2 -M(df,df)\2)1/2 > \df\2 - \df\2 > 3P

2/4,
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and this lower bound on Jy gives

I(σ) < const,Vol(Zσ).

Thus it suffices to find a bound on the volume of the Zσ for all |σ| < p
and f E K,p. To get this we argue by contradiction. If there is a sequence
fi in Kp and a sequence σ; so that the volume of Zσi(fi) increases to
infinity we may suppose, choosing a subsequence if necessary, that the
fi converges in Cι over the interior region B2n (by the usual elliptic
estimates for the <9-operator), to some C 1 limit / and that the σι con-
verge to a limit σ. Then the crucial point is that the volumes of f~ (σ;)
converge to that of /~1(σ), giving a contradiction. This continuity of
the volume of the zero set with respect to C1 convergence (given the
bounds \dfi\ < p/2, \df\ > p) follows easily from the usual implicit
function theorem, which shows that Zσi(fi) is obtained from Zσ(f) by
a map which is C1-close to the identity.
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