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SHORT TIME BEHAVIOR OF THE HEAT KERNEL
AND ITS LOGARITHMIC DERIVATIVES

PAUL MALLIAVIN & DANIEL W. STROOCK

Abstract
Let M be a compact, connected Riemannian manifold, and let pt(x,y) de-
note the fundamental solution to Cauchy initial value problem for the heat
equation ^ = ^Δu, where Δ is the Levi-Civita Laplacian. The purpose
of this note is to study the asymptotic behavior of derivatives of logp*( , y)
at x as t \ 0. In particular, we show that a dramatic change takes place
when x moves inside the cut-locus of y.

0. Introduction

Let M be a compact, connected, d-dimensional Riemannian manifold,
denote by O(M) with fiber map π : O(M) —> M the associated bundle of
orthonormal frames e, and use the Levi-Civita connection to determine the
horizontal subspace Ht(θ(M)) at each f G O(M). Next, given v G R d , let
C(v) be the basic vector field on O(M) determined by properties that

e(v)c G Ht(O(M)) and dπ£(v)t = ev for all e G O(M).

(Here, and whenever convenient, we think of e as an isometry from Wd onto
Tπ(e)(M).) In particular, if {ei,... ,e</} is the standard orthonormal basis
in IR̂ , then we set <£fc(e) = <£(efc)e. If, for O G O(d) (the orthogonal group
on Rd) Ro : O(M) —> O(M) is defined so that

Rotv = eOv, e G O(M) and v G Md,

then it easy to check that

(0.1) dRoe(v)t = e ( 0 τ v ) β c ? c , e G O{M) and v G Ed.
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Given a smooth function F on O(M), we define VF : O(M) —> Md,
Hess (F) : O(M) —• Hom(Md; Rd), and Δ F : O(M) —> R by

d

VF = ^ C ^ F e ^ , Hess(F) = ((<£* o C^F))-

(0.2)

and Δ F = V^ £^F.
1

In particular, when / is a smooth function on M, we set

V/ = V(/ o π), Hess (/) = Hess (/ o π), and Δ/ = Δ(/ o π).

Starting from (0.1), it is an easy matter to check that

(V/) o Ro = OτV/, (Hess (/)) oRo = Oτ Hess (/) O,

and (Δ/) o i? o = Δ/.

Hence, |V/|, | |Hess(/) | |H S (the Hilbert-Schmidt norm), and Δ/ are all
well-defined on M. In fact, Δ/ is precisely the action of the Levi-Civita
Laplacian on /.

Now consider the Cauchy initial value for the heat equation

du Λ— = ^Δw, tG(0, oo) with \imt\ou(t,x) = f(x), x G M.
ot

By standard elliptic regularity theory, one knows that there is a unique,
smooth function (ί, x, y) G (0, oo) x M x M \—> Pt{%-> y) G (0, oo) such that

u{t,x) = / f(y)pt{x,y)λM(dy), (ί,x) G (0,OO) X M, / G C(M R),

where λ^ denotes the normalized Riemann measure on M. Moreover, be-
cause Δ is essentially self-adjoint in L 2 (AM), Pt(%,y) = Pt{y,x)-

By any one of a number of different procedures, one can obtain Varad-
han's result:

(0.3) YιmJlogPτ(x,y) = -^f^-, x,yeM.

In fact, the limit in (0.3) is taken uniformly with respect to (x, y) G M 2 . The
probabilistic intuition behind Varadhan's result comes from the Feynman-
type path integral representation

(0.4) pr(x, y) = C(T) j exp (-± J* \p(t)\2 <ttj Vp,
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where the right-hand side is supposed to convey the idea that one is inte-
grating over all paths p G C([0,1];M) which run from x to y, and one is
weighting paths in a Gibbsian manner according to their energy. Consider-
ing what utter non-sense (0.4), as it stands, is, results like Varadhan's are
surprising. But, experience has taught us that, ridiculous as it appears, (0.4)
is, nonetheless, unreasonably correct; a conclusion for which the present ar-
ticle can be viewed as further corroboration. In fact, basing our reasoning on
the intuition coming from (0.4), our aim here is to examine what happens,
as T \ 0, to derivatives of logpτ( ,y). Obviously, as soon as one starts
taking derivatives, one should expect the behavior outside the cut-locus to
be different from that inside the cut-locus, where the distance function is
no longer smooth. In terms of (0.4), what one suspects is that the problems
will arise from a breakdown of the Laplace asymptotic method due to the
degeneracy of the minimization problem

min I / \p{t)\2 dt : p(0) = x and p(l) = y\

when x lies inside the cut-locus of y. As the development which we give
below makes manifest, this is precisely what happens.

In Section 1, we develop explicit formulae (cf. (1.8) and (1.9)), in terms
of integrals with respect to Wiener's measure, for the first two spatial deriva-
tives of log pτ( , y). Consideration of the cut-locus does not affect the valid-
ity of these formulae, but its potential role is already evident in the expres-
sion (1.9) for the logarithmic Hessian. Namely, that expression segregates
naturally into terms of order T~ι and terms of order T~2. Terms of order
T~ι are what one should expect on the basis of (0.3). In particular, if one
hopes to exchange two derivatives with the limit in (0.3), then one must
show that the terms of order T~2 in (1.9) disappear in the limit. Remark-
ably, these terms of order T~2 can be recognized as a variance. Hence, if, in
a sufficiently strong sense, the Wiener integral is concentrating (as T \ 0)
along a single path, then this term should tend to 0 because the random
variable of which it is the variance is becoming constant. On the other hand,
if there is more than one path to which the Wiener integral is giving mass in
the limit, then this variance should remain positive and the terms of order
T~2 will become the dominant ones. Thus, the existence of more than one
minimizing geodesic (or even of a non-trivial Jacobi field) has the potential
to radically change the behavior of the logarithmic Hessian.

The asymptotic analysis of (1.8) and (1.9) is carried out in Section 2.
What is involved is an application of the theory of large deviations, as de-
veloped in [3]. (Closely related applications are given in [4].) What we show
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(cf. Corollary 2.29) is that as long as x stays outside the cut-locus of y
(0.3) holds, even after taking derivatives up to the second order. On the
other hand, if x lies at the cut-locus of y, then (cf. Theorem 2.35) (0.3) may
break down, even after taking only one derivative. In fact, under additional
technical conditions, we show that the second derivatives of logpτ( , y) will
be of order T~2 at the cut-locus of y.

1. Logarithmic derivatives of the heat flow semigroup

In this section, we re-formulate some results from [5] in a way which
makes them more amenable to the theory of large deviations as it was de-
veloped in [3].

Let 2U be the separable Banach space (with respect to the uniform con-
vergence) of continuous paths w : [0,1] —> Rd satisfying w(0) = 0, and
use Byj to denote the Borel field over 2U. In addition, for each t E [0,1], Bt
will denote the σ-algebra generated by w E 2U ι—> w(τ) E IRd as r varies
over [0, t]. Finally, we will use μ to denote the standard Wiener measure
on (2H,£?2π), and, for each T E (0,1] we take μr to be the distribution of
w E 2Π i—> Vf w E 2Π under μ.

Next, given a frame e E O(M) and T E (0,1], define £ e : [0, oo) x 2Π —>
O(A4) to be the /i^-almost surely unique, progressively measurable (relative
to {Bt '• t>0}) solution to the Stratonovich stochastic differential equation1

d

dϊe(*,w) = ΣC*(Se(ί,w)) odw(t)* With &(0,w) - C.
J f e = l

As an easy application of Itό's formula and (0.2), one sees that, for any
Te [0,1] and/EC(M;R),

(1.1) B^[(/oπ)(jc(l))] = [Pτf]{Φ)) = JMf(y)pτ{π(t),y) λM(dy).

We will next use the procedure developed in [2] and [5] to pass from (1.1) to
representations of derivatives of log pτ{ , y) Unfortunately, this will require
some additional notation.

The solder form ω :T(θ(M)) —>Rd is the 1-form defined so that, for
each e E O{M) and Xt E Tt(O(M)), dπXt = tω(Xt). Thus, the vertical
subspace at e is precisely the null space of ω \ Te(O(M)). Next, let o(d)

Obviously, the full definition of w G 2ϋ •—> 5e( , w) E C([0,1]; M) really depends on
T, but we have chosen to suppress this dependence in the interest of simplifying notation.
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stand for the Lie algebra of skew symmetric d x d-matrices, remember that
o(d) can be identified with the Lie algebra of left-invariant vector fields on

), and let λ be the map of o{d) into the T(O(M)) given by

\(A)t = ^RetAt , A G o(d) and c G O(M).
at toat t=o

Clearly, A G o(d) ι—> λ(A)e G Tt(O(M)) provides an isomorphism be-

tween o(d) and the vertical subspace at e. Thus, we can define the con-

nection 1-form φ : T(O(M)) —> o(d) so that, for each e G O(M) and

XteTt(O(M)),

d

Xt — λ((/>(Xe)) = y^u;(Xe)fc£fc(O is the horizontal part of Xe.
k=l

Equivalently, \(φ(Xt)) is the vertical part of Xt. Finally, the Riemann curv-
ature 2-form Φ : T(O(M))2 —> o(d) is the horizontal part of the exterior
derivative dφ of φ. We set

(1.2) Φ(v,v')e = Φ(<E(v)c,e(v')e), t G O(M) and v,V G Ed,

define the Ricci curvature matrix Ric : O(M) —> Hom(Md;IRd) by

d

(v,Ric(e)v')R d =

and, for each T G (0,1], determine the progressively measurable map
Ae,τ : [0,1] x 2Π —> Hom(Md; Rd) by

(1.3) Aβ>τ(ί,w) + ^ / Ric(ffe(r,w))Ae|r(T,w)dr = I.

The following equation is a minor generalization of (2.2) in [5], when one

takes into account the use of μr in place of μ:
(1.4)

T [e(v)logPΓ/o7r](e)

1

for any / 6 C(M; (0, oo)) and η e C1 ([0,1]; Rd) with η(0) = 0 and η(l) =
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We next want to make the analogous translation of (2.12) in [5]. For this
purpose, let η € H be given, and define the progressively measurable map
φt,τ,η : [0,1] x 2Π •—> o(rf) so that

(1-5) = jf (φ(*,Oj.(τ,w)Ae,r(τ, w)(77(l) -

Then, for / G C(M; (0,oo)) and η G C2([0, l];Ed) with η(0) = 0 and
ί7(l)=v:

T (v, [Hess log Pτf ° π] (e)v^

=T[€(v)2logPτ/oπ](e)

0

1

)
Λ R

(1.6)

+ Γ j ί 1 (w(l) - w(t), Re,τ,r,(ί, w))Rd ̂  / o π(ϊ«(l,
R d

r -i -|2\

- (Pτf(x))~2Eμτ \ iAe,T(*,w)iy(t),(iw(tn d/oπ(ϊ t(l,w)) j ,

where Re,τ,τ; [0,1] x 23J —> Rd is a progressively measurable function
which satisfies

(1.7)

for some C < oo.
Clearly (1.4) and (1.6) can be interpreted in terms of conditional expec-

tations. In fact, because all the functionals involved are smooth in the sense
of the Sobolev calculus on Wiener space and, in addition, the map 3̂ (1? )
is non-degenerate, one can, for each y G M, take / in both (1.4) and (1.6) to
be the Dirac delta function δy (relative to the Riemannian volume measure
on M), in which case (1.4) becomes

T[C(v)logpτ( :,y)](e)
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and (1.6) becomes

=T[<£(v)2logpτ(.,y)](ή

\2dt

(1.9)

- J (^,r>n(ί,w)Ae,r(ίϊw)fϊ(t)ϊ

[jf (Ae|r(ί,w)f|(t),ciw(t))

Remark 1.10. Note that, in (1.8) and (1.9), there are no almost ev-
erywhere statements accompanying the conditional expectations. This is
because, as alluded to above, we know that these conditional expectations
exist as continuous (in fact, smooth) functions of y G M.

2. Some large deviation results

Starting from (1.8) and (1.9), we will apply in this section results from
[3] to analyze the limit behavior of the first two logarithmic derivatives of
pτ{ ,y) as Γ \ 0; and for this purpose, we must begin by reviewing some
terminology. In particular, recall (cf. Sec. 2 of Chap. 13 in [1]) that, for a
given y E M, the cut-locus Cm(y) of y is the set of x e M for which at least
one of the following conditions obtains:

(i) There exists more than one minimizing geodesic 7 : [0,1] —> M
joining x to y.

(ii) There is precisely one minimizing geodesic 7 : [0,1] —> M from x
to y, and there exists along 7 a non-trivial Jacobi field t E [0,1] 1—> W(t) E
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which vanishes at both end points; that is:

D2W
and - ^ - ( ί ) ( 7 ( ) l (

Equivalently, x G Cm(y) if and only if either exp" 1^) contains more than
one element or exp~λ(y) = {Xx} for some Xx G TX(M) and the map
expx(Xx)^ : TXχ(Tx(M)) —> Ty(M) is singular. From this latter descrip-
tion, it is an easy matter to see that Cm(y) is closed.

The relevance of these considerations to us is most easily seen after one
introduces the following constructions. Namely, let x G M and e G π~ι(x)
be given, and take We2 (O(Λ1)) to be the space of absolutely continuous
curves $e : [0,1] —> O{M) with the properties that

&(0) = e, ω($e{')) e L2([0,l];Rrf), and φfa( )) = 0 a.e..

Equivalently, if H = WQ^O^ ) is the space of absolutely continuous

valued functions h on [0,1] with h(0) = 0 and h G L2([0,1]; Md), then

where t G [0,1] ι—> ^ ( ^ h ) G O(M) is determined by2

j c ( ί , h) = f (h( t ) ) Λ ( t f h ) with &(0, h) = e.

In fact, we can give W$ {O{M)) the structure of a Polish space by declaring

h G H H—> 5e( , h) G W^J (O(Λ<)) to be an isometry. Notice that

(2.1) h n ^ h i n H = » ffeί ^ h n ) — • ϊ c ( - , h ) i

In particular, for each y e M,

(2.2) H(e,y) = { g 6 H : π o & ( l , g ) = y }

is closed in the weak topology.

2For each v G Rd, £(v) is the vector field on O ( J M ) such that, for each e G
f (v) e is the horizontal lift of ev G Tπ(e)(M) to e.
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Next, given (g, h) G H 2 , there is (cf. Theorem 2.5 in [2]) a unique ab-
solutely continuous path s e R ι—> [# e j h ( , g)] (s) G W$ {O(M)) with the
properties that 3

(2.3) [3r ,h(ί ϊg)](0)=ffe(ί ϊg) and ω( [&*(*, g)]'(*)) = h(t)

for all ί G [0,1] and s E R In fact4, if, for g G H,

is determined by the equation

(2.4) [θe,h(ί,g)]'(s) = h(ί) -

with θe>h(0,g) = 0 and [θ t )h(ί,g)](0) = g(ί), then

(2.5) [&,h(t,g)]00 =&(«, [θ«,h( ,g)](β))

Finally, set

(2.6) H 0 = { h G H : h(l) = θ},

and notice that, for any y G M,

(2.7) (g ,h)GH(e,y)xH 0 = • [θe,h( ,g)] (*) G H(e,y) for all a G R

Lemma 2.8. Given (e,y) G O(M) x M and g G H(e,y), de/ine Φ e ) g :
H ^ H s o tfm* ĉ/. ^ . ^ and (2.5)) Φe>g(h) = [Θc,h( ,g)] (1). TΛen Φe,g

maps Ho info H(e,y); and, for each ro > 0, there exist (ri,Γ2) G (0,oo)2

such that Φ C j g f Ho Π # H ( 0 , Γ I ) 5 W a diffeomorphism onto a neighborhood
o/H(e,y) n £ H ( g , r 2 ) whenever | |g| |H < r0.

Proof. First observe that

Thus, by (2.4) and the second structural equation,

A [Z?hΦ«,g(O)] (ί) = h(ί) - Φ{ [$Φ(t, g)]'(

= h(ί) - f Φ(g(τ),h(r))J<(t>g)g(t)dτ,
«/0

3In the following, and hereafter, we use prime to indicate differentiation with respect
to s.

4See Lemma 2.5 in [2] for more details.
5We use BE(a,r) to denote the ball of radius r around a in the metric space E.
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and therefore the homomorphism

h g H .—> £>Φe,g(O)h = £>hΦe,g(O) € H

admits an inverse whose bound can be made to depend on ||g||H alone.
In particular, by the Implicit Function Theorem, for each ro > 0, there
is an ri > 0 and an open neighborhood U of 0 in H such that Φe,g maps
£ H ( 0 , Γ I ) diίfeomorphically onto a neighborhood of g + U whenever ||g||H <
ro. Furthermore, since, by (2.7), we already know that Φε,g takes Ho into
H(e, g), we will have completed the proof of the first part once we show that
there is an r2 > 0 such that Φ"£ (H(e, y)nJ3H(g, r2)) C H o for all | |g| |H < r0.
To this end, we apply the form of the Implicit Function Theorem given in
Theorem A.2 of [3] to the map h G H ι—> Fc(h) = 5^(1, h) G M. Indeed,
because the Jacobian DFt(g) : H —> Ty(M) has full rank, that theorem
states that there is a smooth map Ξe,g : ker(DF(g)) —> keτ{DFt(g)) and
positive r2 and δ such that

hG£H(O,r2)nker(L>Fc(g)) = •

Ξejg(h) is the unique element of JE?H(0, δ) Π ker(DFc(g))

withFc(g + h + Ξe,g(h)) = y

whenever ||g||H ^ ô Further, by making δ smaller if necessary, we may
assume that Φe,g maps a neighborhood of 0 diffeomorphically onto a neigh-
borhood of {g + h + Ξe?g(h) : h G JBH(0,Γ)} and that the size of these
neighborhoods does not depend on e G O(M) or g G Bn(O,ro). Now
let (e,g) G O{M) x Bn(0,r0) and f G BH(g,r2) Π H(t,y) be given, set
k equal the orthogonal projection of f — g onto keτ(DFt(g)), and define
fs = g + 5k + Ξ(sk) for 5 G [0,1]. Clearly, f0 = g, fi = f, and f5 G H(e, y)
for all s G [0,1]. Thus, if h s = Φ^g(fβ), then

f - Φe,g(hi), ho G Ho, and π o [ϊe,hβ(l,g)] (1) = V for each s G [0,1].

In particular,

and so Φ^g(f) = hi G H o . q.e.d.
Lemma 2.9. There is a unique minimal geodesic j x : [0,1] —> M from

x to y if and only if for each e G π~λ(x), there is a unique ίt G H(e,y) with
114||H = dist(α;,y), in which case

(2.10) £t(t) = tθt, t G [0,1], where θt = e " 1 ^ ^ ) .
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In fact, if there is only one such minimal geodesic ηx and if θt and ίt are
defined accordingly, as in (2.10), then x £ Cm(y) if and only if there exists
an ex > 0 for which the symmetric quadratic form given by

satisfies

(2.11) [S"(e,y)](h,h)>e I | |h | |^, h € Ho.

Finally, the ex in (2.11) can be chosen to be uniformly positive on compact
subsets of M\ Cm(y).

Proof. Observe that because

dist(z,y)2 = minfllgHli : g G H(e,y)}

and the minimum is achieved at ίt G H(e,y) only if ίt is linear, the first
assertion follows from the fact that π o #e( , g) is a geodesic if and only if g
is linear.

To prove the second assertion, assume that there is only one minimal
geodesic ηx from x to y on [0,1], and define θt and ίt as in (2.10). By (2.7),
(2.5), and (2.3), we know that, for all h G H o :

(2.12) fj\{%^it)]{s))\2 dt =

vanishes at s = 0 and that

5 = 0

=2 j ί 1 (h(ί) - φ([ffe,h(ί,*e)]'(0))θti h(t))Rd dt,

which, after integration by parts and an application of the second structural
equation, means that

(2.13)

h € Ho.

In particular, (2.13) implies that, for any h € Ho,

[E"(e, y)] (h, h) = 0 ^ [£"(e, y)] (h, g) = 0 for all g G Ho,
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which, after integration by parts and elementary analysis, leads to

(

^ 14> and h(t) = Φ(β , h ( t ) ) J β ( t A ) β e ϊ ί e [0,1].

To complete the proof from here, observe that t G [0,1] ι—> Y(t) G
TΊφ(M) is a Jacobi field along 7 if and only if h = $t(- ,έt)~ιY satisfies
the equation on the right-hand side of (2.14). In particular, if (2.11) holds
for some e > 0, then there is no Jacobi field along 7 which vanishes at both
ends. Conversely, suppose no such Jacobi field exists. Then

(2.15) h E H 0 \ { 0 } ^ [£"(e, y)] (h, h) > 0.

Finally, suppose that K is a compact subset of π~ι{M \ Cm(y)) and that
there were sequences {en}i° C K and {hn}^° C Ho with the properties that

| | h n | | H = l and [ £ " ( e n , y ) ] ( h n , h n ) ^ 0 .

Then, without loss in generality, we will assume: en —> e E π " 1 (M\Cm(y))
and hn -^> h G Ho

Note (cf. (2.1)) that

H < !imn_>Oo||hn||H and

r
In particular,

0 < [E"(t, y)] (h, h) < Uffin-voo [E"(tn, y)} (hn, hn) = 0,

and therefore h = 0. But this means that

0 = | | h | | ^ = [E"(t,y)](h,h) = lim [E"(tn,y)](hn,K) = lim Hhnl^ = 1,

which is impossible. Thus there must exist an e > 0 for which (2.14) obtains
for all x G K. q.e.d.

Lemma 2.16. Let x £ Cm(y) and e G π~λ(x) be given, and define
Ίx £ C°°([0,1];M), θt G Rd, and iteH as in Lemma 2.9. Then, for each
v G Rd there is a unique £ e > v G C2([0, l];R d) such that

(2.17) *e,v(0) = v, €C|V(1) = 0, and $CfV(t) =
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In fact, (e, v) G π"1 (M\Cm(y)) x ί i — • ξ c v G C2([0, l];Md) w continuous.
Finally,

Vt,v = v ~ ίe,v

1

s 0

/or all h G H o .

Proo/. To prove that £e v exists and is a continuous function, set
σC)V(s) = expπ(e) (stv) for e G π'-^M \ Cm(y)) and sGR. Next, let r > 0
and a compact subset K of π~ι (M \ Cm(y)) be given, and choose δ > 0 so
that σc,v(s) 0 Cm(y) for e G If, |v| < r, and |s| < δ. Now define

Σe>vW = exp^ v W (y) and [Γe|V(t)](θ) = exp σ β i v W (tΣ e | V (θ)), ί G [0,1]

for z € K, |v| < r, and |s| < δ. Then, as is well-known,

t G [o, l] ^ > y t , v (ί) = [r e > v(ί)]'(0) G τ 7 π ( e ) ( ί ) ( M )

is a Jacobi field along 7π(e), and, by construction, yc,v(0) = ev while y(l) =
0. Hence, we can take £e>v(t) = 3r

e(<J^e)~1ye,v(*)j a n d clearly (e,v) G
if x £?Ed(0,r) i—>• ξ e v G C2([0, l];Rd) is continuous. Moreover, to prove
uniqueness, simply observe that if Δ(ί) is the difference of two solutions and
Z(t) — $t(t, 4)Δ(ί), then Z is a Jacobi field along ηx which vanishes at both
ends.

Turning to (2.18), observe (cf. (2.4)) that

I
= / (h(t)-

1 (ft - j f ( φ ( f l , , v - ϊ . , v ( i ) ) Λ ( t A ) ^ h ( < ) ) d at

dt = 0,

where we have used integration by parts, the second structural equation,
and the symmetry
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Theorem 2.19. For e <Ξ π~1(M \ Cm(y)), define θt € Rd and it G H
accordingly, as in (2.10), and set (cf. (2.18) and (2.2))

(2.20) [^v(e,

Then, for each compact subset K of π~ι(M\ Cm(y)), there is a δ > 0 with
the properties that

(e, v) G K x BRd(O,δ) = » lt is the only g G H(e,y)
α£ which Ev(t,y) achieves its minimum value and

> 0

for h 6 Ho=\ {O}

Proof. Because of the equality in (2.13) and the estimate in (2.11), we
know that there is an e > 0 and a δ\ > 0 for which

;=θ"2

whenever (e,v,h) G K x BRd(Q,δι) x HQ. Moreover, by Lemma 2.8, one
knows that there exist positive r\ and Γ2 such that

(2 22) h G Ho Π BH(0, ri) .—> [Θe,h( , Q] (1) 6 H(e, y)

is diίfeomorphic onto a neighborhood of H(e, y) Π Bn(O, Γ2)

for every e G O(M). Hence, by (2.18) and Taylor's Theorem, for some r > 0,

(2.23) gGH(e,y)n(BH(<e,r)\{<e}) = » [#v(e,y)] (g) > [Sv(e,y)] (ίe)

whenever (e,v) e K x BRd(0,δι).
Starting from (2.23), one can now show that there is an a > 0 with the

property that

CGK, gGH(e,y)\{£ e},
and [£v(e,y)l(g) > ΪEv(t,y)]{ίt) => ||g||H > IKIIH + O,

whenever |v| < ^i. In fact, if this were not the case, then we could use

(2.23) to find a {en}f° C K and {gn}f C H(en,y) \ BH{itn,r) such that

en-^eeK, (cf. (2.2)) gn 4 ^ g € H(e,y), and ||gn | |H —»• | |4 | |H Since
this means that
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gn —> g, ||g||H — IKellHj a n d therefore g = ίt. On the other hand, since,
||gn ~ ^C||H > ^ this is impossible.

Finally, to complete the proof, suppose that (e,v) G K x BRd(O,δι)
and that g G H(e,y) satisfies [£v(e,y)](g) > [£v(e,y)] (ίc) Then, by
Schwarz's inequality and elementary manipulation of quadratics, ||g||H <
PCIIH + 6|lr7e,vllH Hence (cf. Lemma 2.16) we can choose 0 < δ < δι so that
(2.24) guarantees that we are done, q.e.d.

We are now ready to formulate the conclusions of Theorem 2.1 and
Theorem 3.12 in [4] so that they may be easily applied to the expressions in
(1.8) and (1.9). In the following statement, g : (0,1] x 2U x Rd —>R will
be a function of one of the following forms:

ίι

/ φ(t, w,
°1

), A e > Γ (*, dt,

( / φ(ϊe(r,w),Ae,τ(τ,w)α(τ);5'e(t?w),

Ae,τ(t,w)/3(t)) odw(τ),odw(t)) ,

where6

and Φ G

x

x Md x

R d ; l ) ,

and α and β are smooth Revalued paths on [0,1]. Finally, for I G H, we
take, respectively,

Jo

Obviously, g(0, t, e) = lim^^o g(T, I, e) when one adopts the convention that
Stratonovich calculus reverts to ordinary calculus when dealing with abso-
lutely continuous paths.

5f G Cy! if / G C°° and all its derivatives have tempered growth.
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Theorem 2.25. Define θe € Md, lt G H, and ηtv 6 H, v G Md, for
e G π - ^ M \ Cm{y)) as in (2.10) and (2.18), and set

(2.26) /v(T,w,e) = I (Ae)Γ(ί,w)^eiV(ί),dw(ί))Rd - («?.,vΛ)H
•/ 0

ΛΓea ί, ẑi/en a compact K C π - 1 ( M \ Cm{y)), choose δ > 0 as in Theo-
rem 2.19. Then, for v G BRd(0,1) and a G (-δ,δ),

lim sup \&τ I g { T i w > C ) e x p ^ α / ^ W ' c ) )

= 0,
(2.27)

-c(α,t)j(0Λ,e)

where z ζ K \—)• c(α, e) E (0, oo) is a continuous function which is equal to
1 when a — 0.

Proo/. The proof of (2.27) comes down to checking that the hypotheses
of Theorem 4.21 in [3] are met. In matching the notation there with that
here, one should use the following table:

there
s

y

θ

f(s,θ,y)
F(s,θ,y)

p(y)

here
T

e

w

α/v(T,w,e)

πoye(l,w)

-έPellH

The critical fact to be observed is that, because |αv| < δ and α/ v = /Q V,
(2.21) guarantees that the conditions in (4.14) and (4.22) of [3] are satisfied.
In addition, one should note that, because Aτ{t,w)ηtv(t) is continuously
differentiate with respect to t G [0,1], there is no problem coming from the
Itό stochastic integral, which can, in fact, be replaced by a Riemann-Stieltjes
integral. In particular, for each v G R d , one can use (1.3) to see that there
is a B(v) < oo for which

|/v(T,w,e)| <B(v)(Γ||w||aD + | |w-£elM, e G K.
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Knowing that Theorem 4.21 of [3] applies, we conclude that there is, for
each \a\ < 5, a continuous e G K \—> C(a, c) G (0, oo) such that

p ( ^ ) [9(T,w,e)exp

= C(α,e) 5 (0Λ,e)

uniformly in e G if for each choice of the functions φ, ψ, and Φ entering
the definition of g. In particular, by applying this result again when a = 0
and g — 1 and then taking ratios to get the conditional expectation value,
one arrives at (2.27). q.e.d.

C o r o l l a r y 2.29. For x,yeM, let E{x, y) = \ dist(z, y ) 2 . Then E{ ,y)
is a smooth function on M\Cm(y). Moreover,

(2.30) lim [TV logpτ( •, y)] (e) = - [VE( •, y)] (e)

and

(2.31) Um

uniformly on compact subsets of M \ Cm(y).
Proof Define θteRd,ete H, as in (2.10), and v G Rd \—> ξ e ) V G H,

as in Lemma 2.16, for e G π~ι{M \ Cm(y)).
We begin by pointing out that when one translates the results in Section

2 of Chapter 9 [1] into the language of the orthogonal frame bundle, one
finds that

(2.32)

and

(v,[HessE(.,y)](e)v)

(2.33) [ ]

Thus, what we have7 to do is to show that —T[£(v)logpr( ,y)](e) and
—T\E(v) 2logpτ(* ?!/)](0 tend, uniformly on compacts, to the right-hand

7Actually, from general principles, (0.3) plus locally bounded convergence of the left
hands sides already guarantees that the right-hand sides of (2.32) and (2.33) must be what
they are.they are
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sides of (2.32) and (2.33), respectively. In particular, (2.30) is now an easy
consequence of (1.8), with η = 77C v , and (2.27) with a = 0 and

= J

since there is no distinction between Itό and Stratonovich integration here
and ηtw = -ξtv.

The verification of (2.31) is somewhat more involved and consists of
several steps. First one should notice that, when η = ηt v , the first two
terms of the right-hand side of (1.9) can be rewritten in the following ways:

and

Φe,r,v(r, ί, w) o dw(τ), odw(ί) J

where

( \

for 1 < z, jf < d. At the same time, the third term on the right of (1.9) is
dominated (cf. (1.7)) by a constant times

T / \w{l)-w{t)\2dt.
Jo

Hence, by taking a = 0 and #(T,w,e) appropriately, (1.9), with η = ηty

and (2.27) lead to

Urn [τ[έ:(v)2logpτ(.,y)](e) - IVar e > y | V(T)]

1 ^

/
o

€ ( * ) | 2 Λ + / (φ(^€.v(r)) , ( A )ff . ,^v(r))
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where the convergence is uniform on compact subsets of π 1{M \ Cm(y))
and (cf. (2.26))

VarC)ί/>v(T) = = y\

Thus, we will be done once we show that, for each compact

lim sup -Wτ [/V(T, w, e)21 π o # c ( l , w ) = y] = 0.

But, by (2.27) with g^ = 1, we know that there is a δ > 0 for which

π o # e ( l , w ) =y \ < oo
Γ6(0,l]

for a G (—ί, ί ) , which means, of course, that

(2.34) sup Eμτ

T6(0,l]

[ /v(Γ,w) p 1
< oo

for all p G [1, oo). q.e.d.

When x G Cm(y), we cannot, in general, say what are the limits of

the left-hand sides of (2.30) and (2.31) as T \ 0. Nonetheless, there are

circumstances in which we can say something; namely, set

M(x,y) = {Xx G TX{M) : y = exp x(X x) and dist(x,y) = \Xx\τx(M)}

and

M(x,y) x (TX(M) \ {0}) : ^ sWx)\s=Q= o

Clearly, x G Cm(y) if and only if either M(x,y) contains more than one

element or M(x,y) φ 0.
T h e o r e m 2.35. Assume that M(x,y) contains more than one element

and that there exists a submanifold M(x,y) 2 M(x,y) of TX(M) with the

property that
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Further, assume that M(x,y) has positive measure when M(x,y) is given
the measure determined by the Riemannian structure which it inherits as
a submanifold. If e G π~x(x), then there exists a non-degenerate (i.e., not
concentrated at a single point) Borel probability measure \t,y) o n ^ which
is supported on {θt E Rd : tθt € M(x,y)} and for which

(2.36) limT[ί(v) logpτ( -, y)] (e) = - J (v, θt)Rd \t,y){dθt), v € Rd.

In addition, for each v E

(2.37)

UmT2 [£(v)2logί>τ(-,y)](e)

In particular,

(2.38) UmΓ|Vlogpr( ,y)|(e) <dist(a;,y)

and

(2.39) lim T 2 [Hess logpr ( , y)} (e) φ 0.

Proof. Given v E S^"1, take η(t) = tv,t G [0,1], in (1.8) and (1.9).
After making the same sort of dictionary as we did in the proof of Theo-
rem 2.29, one can apply Theorem 2.1 in [4] to the expressions on the right-
hand sides of (1.8) and (1.9) to obtain (2.36) and (2.37). Moreover, given
these, (2.38) and (2.39) are simply expressions of the non-degeneracy of
λ(Cj2/). q.e.d.

Remark 2.40. As the reader has probably guessed, higher derivative
analogs of (2.30) and (2.31) hold and can be proved by the techniques used
here. In fact, sufficient diligence combined with the estimate in (2.34) are
all that is required.
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