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Abstract
Let G be the rank-2 semisimple Lie group PSL2(R) x PSL2{R). In this
paper we give a canonical isomorphism between the quasi-isometry group
and the commensurator group of an irreducible, nonuniform lattice in G.
The most familiar of these lattices are the classical Hubert modular groups
PSL,2(Pd), where Od is the ring of integers in the real quadratic field
Q(y/d). As corollaries to this theorem we obtain the following results:

1. The complete quasi-isometry classification of lattices in G.

2. Let Γ be any finitely generated group. If Γ is quasi-isometric to an
irreducible, nonuniform lattice Λ in G, then Γ is a finite extension
of an irreducible, nonuniform lattice commensurable with Λ in G.

3. Two irreducible, nonuniform lattices in G are quasi-isometric iff they
are commensurable. In particular, no two distinct classical Hubert
modular groups are quasi-isometric.

1. Introduction

This paper introduces a new technique for studying rigidity of lat-
tices in semisimple Lie groups, in particular for studying quasi-isometries
without the usual equivariance assumptions as in Mostow Rigidity. The
idea is to develope coarse metrical versions of some basic topological
principles, for example Alexander duality and Jordan separation, and to
apply these principles to pinning down the structure of quasi-isometries
of a given lattice. This theory of "coarse topology" is developed and
applied in §4 and §5. As a consequence we will prove the first known
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quasi-isometric rigidity result for nonuniform lattices in a higher rank
semisimple group, where the lack of negative curvature (as in rank-one)
makes explicit geometric methods for nonuniform lattices (as in [4])
quite intractible.

Another new idea essential to our work is that of "shadows", which
also allows one to drop the usual group equivariance assumptions. The
notion of shadow is given in §3, and is developed and applied in §6 and
§7.7.

1.1. Background
A quasi-isometry is a map that distorts distances by a (uniformly)

bounded amount; this relation captures the large-scale geometry of a
space. Quasi-isometries are the maps one considers when studying the
geometry of finitely generated groups endowed with the word metric.
For many finitely generated groups, the quasi-isometry type of the group
actually determines its algebraic structure; for example, a celebrated
theorem of Gromov states that any group quasi-isometric to a nilpotent
group is virtually nilpotent.

In his plenary address to the I.CM. in 1983, Gromov laid out a
program of studying and classifying infinite discrete groups up to quasi-
isometry (see his recent paper/book [1] for an extensive discussion).
Much of the motivation for this line of research came from the ideas of
Furstenburg and Mostow in their approaches to rigidity (See Mostow's
book [2] for a reference.) In all of the cases above, lattices in semisimple
Lie groups are the basic examples considered.

A group acting properly discontinuously by isometries on a (proper)
metric space X is quasi-isometric to X if and only if the action is co-
compact. Hence all uniform (i.e., cocompact) lattices in a Lie group G
are quasi-isometric to G (with its left-invariant metric); hence to each
other. In this way the large-scale geometry of uniform lattices reduces to
that of the ambient Lie group; or what is the same thing, the associated
symmetric space.

For nonuniform lattices Γ acting on a symmetric space X, the story
is quite different. In this case one chops off every cusp of the quotient
X/Γ and looks at the lifts of each cusp to X, giving a Γ-equivariant
union of horoballs in X. These horoballs are disjoint precisely when
Γ is so-called Q-rank one (e.g. when X is a hyperbolic or any R-
rank-one symmetric space, or when Γ acts irreducibly on a product of
hyperbolic planes). Then Γ acts cocompactly by isometries on X with
these horoballs deleted, giving a quasi-isometry of Γ with this "neutered
space".
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Thus the geometry of Γ lies in the geometry of this packing of
horoballs. Two different nonuniform lattices acting on X look very
much alike since their associated packings and neutered spaces are qual-
itatively the same. For this reason, the large-scale geometry of nonuni-
form lattices has not, until recently, been well understood.

In [4], one of us gave the complete quasi-isometry classification of
lattices in rank-one lie groups (i.e., the lattices acting on the hyperbolic
spaces). As a consequence, in rank-one Lie groups, two nonuniform lat-
tices are quasi-isometric if and only if they are commensurable; equiv-
alently, two nonuniform lattices are quasi-isometric if and only if their
associated finite volume orbifold quotients have isometric finite covers.

We have the feeling that the principle "quasi-isometric iff commen-
surable" should hold for nonuniform lattices in a very wide class of Lie
groups, in particular for irreducible lattices in semisimple Lie groups.
(The "if" part is trivial.) It is one of the purposes of this paper to
verify this conjecture for the simplest higher rank Lie group, namely
G = PSL2(R)xPSL2(R).

1.2. Statement of results
It is natural to consider only irreducible lattices in G. A lattice

in G is said to be irreducible if it does not contain a finite index sub-
group which splits as a product of lattices in PSL2(R). Selberg showed
([6]) that every irreducible lattice in G is commensurable to one of the
classical Hubert modular groups; hence studying the coarse geometry
of irreducible lattices in G reduces to the study of the coarse geome-
try of Hubert modular groups. Prasad [3] proved strong rigidity for
these lattices, and more generally for irreducible Q-rank one lattices in
semisimple Lie groups.

Recall that a classical Hubert modular group is a group of the form
PSL2(Od), where Od is the ring of integers in the real quadratic field
Q(\/d). If M E PSL2(Od) is a matrix, then let M denote the matrix
obtained by replacing each entry of M by its Galois conjugate. Surpris-
ingly, the representation

PSL2{Od) —> PSL2(R) x PSL2{R)

M ^ Ή

is an irreducible lattice in G.
Given two irreducible lattices Λi,Λ2 C G, we say that an element

g e G commensurates Λi to Λ2 if the intersection Λ2 Π pΛig"1 has
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finite index in Λ2. Such a group element automatically induces a quasi-
isometry between Ai and Λ2. One of our main results states that every
quasi-isometry between Ai and Λ2 arises in this fashion.

Main Theorem. Suppose A\ and Λ2 are nonuniform irreducible
lattices in G — PSL2(R) xPSL,2(R). Then any quasi-isometry between
Λi and Λ2 is equivalent to a group element which commensurates A\ to
Λ2, and hence the natural map

Comm(h) —+ QI{A)

is an isomorphism for a nonuniform lattice A in G.
Roughly, two quasi-isometries are said to be equivalent if they differ

by a uniformly bounded additive constant (see [4] for a precise defini-
tion). We note here that the commensurator group Comm(SL2(Od))
contains PGL,2(Q(Vd)) as a subgroup of index 2; hence the Main The-
orem may be viewed as a concrete computation of the quasi-isometry
group QI(SL2(Od)).

The Main Theorem basically reconstructs the Lie group
G = PSL2(R) x PSL2{R) and the lattice A < G only from the quasi-
isometry type of A. Once this reconstruction is available, it is possible
to prove the following extremely general result, which characterizes each
irreducible, nonuniform lattice in G among all finitely generated groups
by its large-scale geometry.

Corollary 1. Let Γ be any finitely generated group. IfY is quasi-
isometric to an irreducible, nonuniform lattice A in G = PSL,2(R) x
PSL,2(R), then Γ is a finite extension of an irreducible, nonuniform
lattice commensurable with A in G.

Here are some other corollaries, all of which are rather immediate
from the Main Theorem and Corollary 1.

Corollary 2. Two irreducible, nonuniform lattices in PSL,2{R) x
PSL/2{R) are quasi-isometric if and only if they are commensurable.

In particular, two distinct classical Hubert modular groups cannot
be quasi-isometric.

The Main Theorem also holds for the groups PSL2{Od) with d < 0.
This is a consequence of [4] (Main Theorem), since these groups are
nonuniform lattices in PSL,2(C). We can combine our results with those
of [4] to make a definitive statement about the large-scale geometry of
2 x 2 matrix groups over quadratic fields:

Corollary 3a. Let Όdλ and Od2 be rings of integers over quadratic
fields, real or imaginary. Then SL2(Od1) and SL2(Od2) are quasi-
isometric if and only if d\ — d2>
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Corollary 3b. Let Γ be a finitely generated group which is quasi-
isometric to SL2(Od), where d is a square-free integer. Then Γ is com-
mensurable with SL2(Od).

Finally, we can classify all lattices in G = PSL2(R) x PSL2{R) up
to quasi-isometry:

Corollary 4 [Q.i., classification of lattices]. There are 3
distinct quasi-isometry classes of lattices in G — PSL^^K) x PSL<i{R):

1. Uniform lattices.

2. Nonuniform, reducible lattices.

3. Nonuniform, irreducible lattices.

Class 1 has a single quasi-isometry class. Class 2 has two quasi-
isometry classes: one for products of noncocompact and cocompact fuch-
sian groups, and one for products of noncocompact fuchsian groups.
Class 3 consists of infinitely many distinct quasi-isometry classes, pre-
cisely one for each (commensurability class of) nonuniform, irreducible
lattice in G.

1.3. Overview of the proof of the Main Theorem
As is done in [4], we construct a geometric model of the irreducible

lattice Γ in PSL,2(R) x PSL,2{R), called a neutered space. The neutered
space Ω is formed by taking the product of two hyperbolic planes X —
H2 x H2, deleting a Γ-equivariant disjoint union of horoballs in X, and
giving the resulting 4-manifold Ω with boundary the path metric. The
lattice Γ acts properly and cocompactly by isometries on Ω, hence Γ is
quasi-isometric to Ω. The point of using the neutered space in place of
the lattice is that it has more geometric and topological structure.

The first main step in the proof is showing that the quasi-isometry
between neutered spaces (roughly) takes boundaries to boundaries. In
contrast to the rank-one case of [4], we have to contend with directions
of zero sectional curvature. As far as we can see, the zero curvature di-
rections make explicit geometric methods quite intractible. Instead, we
develop a "large-scale (algebraic) topology", and exploit the rough anal-
ogy between quasi-isometries and homeomorphisms. The arguments in
this step are coarse versions of familiar homological arguments from al-
gebraic topology. (Incidentally, this large-scale topology can be used to
give new proofs of the corresponding results in [4].)

The components of the boundary of the neutered space Ω are horo-
spheres in X\ these horospheres naturally carry the structure of the
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three-dimensional solvable Lie group Sol. By the first part of the proof,
we know that a quasi-isometry between neutered spaces induces a quasi-
isometry of Sol. One key idea is that the structure of the neutered space
places a priori constraints on the nature of this induced quasi-isometry.
The next part of the proof exploits this fact in a detailed analysis of
these special quasi-isometries of Sol. We look at the action of the quasi-
isometry on an "internal boundary" of Sol, which philosophically plays
a similar role as the boundary at infinity in proofs of Mostow Rigidity.
It is this internal boundary, not the Tits boundary of X, that is our
central object of study here. We show that the map on this internal
boundary is a product of bilipshitz maps.

The third part of the proof consists of zooming-in at a pair of points
of differentiability on the internal boundary, in order to find an isometry
to commensurate one lattice to another. While similar in spirit to the
geometric limiting arguments given in [4], several interesting difficulties
arise.

1.4. Comments

B.F. supplied the insight that the results of [4] should extend to the
case of Q-rank one lattices, as well as a geometric understanding of these
lattices. R.S. supplied the topological techniques used in the proof, the
analysis of the induced quasi-isometries of Sol, and the geometric limit
argument.

We view the results of this paper as an interesting special case in
the attempt to understand the large-scale geometry of lattices in Lie
groups. The essential feature of the lattices here are that they have Q-
rank one, which puts certain restraints on their large-scale topology. We
hope that the techniques developed in this paper may also shed some
light on the perplexing case of higher Q-rank lattices in semisimple Lie
groups.

Thanks go to Michael Preedman, Slava Krushkal, Pierre Pansu,
Christophe Pittet, and Peter Teichner for helpful conversations about
this paper.

2. Background

In this short chapter we provide some necessary background material
that we will use throughout the paper.



THE LARGE-SCALE GEOMETRY OF HILBERT MODULAR GROUPS 441

The word metric

A finitely generated group Γ may be endowed with the word metric
by declaring the distance between two elements #1,02 € Γ to be the
minimum value k such that the group element gig^1 can be expressed
as the product of k generators. (The generating set is assumed to be
symmetrical, in the sense that g is a generator iff g~ι is a generator.)

Quasi-isometries
Let M be a metric space. A subset N C M is called a K-net if

every point of M is within K of some point of N. Two metric spaces
(Mi,di) and (M2,d2) are said to be K-quasi-isometric if there are K-
nets Nι C Mi and N2 C M2 and maps φj : Nj —>• JVj+i having the
following properties:

1. dj+ι{φj{x),φj{y)) E [l/A^A^-foy) provided that dj(x,y) > K.

2. dj o dj+ι does not move any point more than K units in My

The indices here are taken mod 2. Two metric spaces are said to be
quasi-isometric if there is a if-quasi-isometry between them for some
K>\.

What we call a quasi-isometry is called a coarse quasi-isometry by
some authors. Quasi-isometric equivalence is easily seen to be an equiv-
alence relation on metric spaces.

Examples.

1. A group endowed with the word metric for one finite generating
set is quasi-isometric to the same group with the word metric for
any other finite generating set.

2. A finite extension of a finitely generated group Γ and a finite index
subgroup of Γ are both quasi-isometric to Γ.

3. It is a fundamental observation (made by Svarc and Milnor) that if
M is a closed Riemannian manifold, then πi (M) is quasi-isometric
to the universal cover M. This observation holds more generally:
let X be a proper geodesic metric space and let Γ be a discrete
group of isometries acting properly discontinuously on X. If T\X
is compact, then Γ is finitely generated and is quasi-isometric to
X.

Suppose qj : Aj —ϊ Bj are quasi-isometries from M to itself, defined
relative to the nets Aj and Bj. Then q\ and q<ι are said to be equivalent
if there are constants if, K1 having the following properties:
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1. The nets Aχ? A2,B\,B2 are if-nets.

2. If x G A\ and y € A2 are within K of each other, then qι(x) and
92(2/) are within K' of each other.

3. If x E J?i and y G £2 are within If of each other, then gf 1(x) and
q^iy) are within if' of each other.

It is routine to verify that the above relation is an equivalence rela-
tion, and that, modulo this relation, the quasi-isometries of the metric
space M form a group. We will call this group the quasi-isometry group
of M, and denote it by QI(M).

A path a : [0,p] —> X is a K-quasi-geodesic if it is a If-quasi-
isometric embedding of [0,p] into X.

3. The geometry of cusps

In this chapter we describe some of the geometry underlying the
Hubert modular groups. The geometry of horospheres in H2 x H2 will
play a particularly important role.

3.1. Special horospheres
Let G denote the six-dimensional Lie group PSL,2{R) x PSL,2{R),

and let X denote the symmetric space X = G/K for G, where K =
50(2) x 50(2) is a maximal compact subgroup of G. Hence X is a
product of hyperbolic planes X = H2 x H2. The full group Isσm(X)
of isometries of X is an extension of G by the cyclic group of order 2
generated by the isometry of X which exchanges its H2 factors.

In general, a horoball of X is defined to be the geometric limit of
unboundedly large metric balls, provided that this limit exists, and it
not all of X. However, for concreteness, we shall confine ourselves to
certain special horospheres. The remainder of this section is devoted to
describing these special horospheres.

A horocircle of H2 is said to be based at a point p E dH2 if it is
tangent to p. This is the usual description. Given a horocircle ψ based
p, we define φn to be the horocircle with the following properties:

1. ψn is based at p.

2. The signed distance from ψn to φ is n.

As a convention, we will say that n > 0 means that φn is contained in
the horoball which is bounded by φ. We will sometimes call φ and φn

parallel horocircles.



THE LARGE-SCALE GEOMETRY OF HILBERT MODULAR GROUPS 443

A special horosphere is indexed by a quadruple (a, a, &,/?). Here, a
and b are points of diJ2, and a and β are horocircles based respectively
at these points. The special horosphere σ = (α, α, 6, β) C X is defined
to be the set

σ = {{x,y) e H2 x iϊ 2 |x e auy e β-Ut e R}.

We equip σ with the path metric induced from X. In this metric,
σ carries the geometry of the three dimensional Lie group Sol. In fact,
if we use the induced path metric along at and β-t, we can identify σ
with JR3 = (rr, y, t) equipped with the metric:

The number 5 depends on the choice of a and β. Also, there is the
usual ambiguity as to which point is identified to the "origin" of Sol.
We will use σ and Sol interchangeably.

It is a well known fact, mentioned in [1], and easy to prove, that
the induced path metric on σ is lipschitz equivalent to the metric on
X restricted to σ. This fact, incidentally, is in marked contrast to the
situation in rank-one symmetric spaces - e.g. the hyperbolic plane.

Let 7α and 75 be geodesies of H2 which emanate, respectively,
from a and b. The set (ja x 75) Π σ is called a vertical line. Un-
der the identification above, this vertical line is identified with a line
x = constl.,j/ = const2. in Sol. Prom either description, it is clear that
the space of vertical lines is topologically equivalent to R2.

We will let Tn(σ) denote the n tubular neighborhood of σ in X.
Given a vertical line / C σ, we let Tn(l) denote the n tubular neighbor-
hood of / in σ. The following lemma is easy to verify:

Lemma 3.1 (Shadow Lemma). Suppose σ\ and 02 are two special
horospheres indexed by (αi,ί*i,&i,/3i) and (α2,α25&2)/?2) with a\ φ a<ι
and 61 φ &2 Let V(k) = σ\ ΓΊTfc(σ2). Then there is a unique vertical
line I C σ\ such that for any k with V(k) nonempty, there exists n such
that :

lCV(k)cTn(l).

The number n also depends on the horospheres.

The line I guarenteed by Lemma 3.1 (Shadow Lemma) is called the
shadow of 02 on σ\. The notion of a shadow is probably the central
concept of this paper.
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3.2. The Geometry of Sol
In this subsection we recall some properties of the 3-dimensional

solvable Lie group Sol endowed with its left invariant metric. As a Lie
group Sol is a split extension of R2 by R and is topologically just Λ3. It
is useful to think of Sol as the 3-manifold R3 endowed with the metric

where we think of the t-direction as vertical. Sol has two foliations
by totally geodesic hyperbolic planes: The foliation by the planes y =
const, and the foliation by "upside down" hyperbolic planes x = const..
Each leaf of each of these foliations is a totally geodesic hyperbolic
plane. Sol is also foliated by the horizontal planes t = const.. One
interesting feature of Sol is that its sectional curvature is positive along
these horisontal planes.

The group Isom(Sol) has eight connected components; the iden-
tity component being Sol itself. The other components come from the
isometries (#,y,£) *-> (±x,±y,t) and (#,y,£) •-» (±y, ±x, — t).

3.3. Neutered spaces
We define a neutered space to be the complement of any disjoint

collection of special horospheres in X such that, for any two of the
horospheres, if they are indexed by (αi,αi,&i,/3i) and (α2,<22j&2?/%)
respectively, then a\ φ a,2 and b\ φ 62- Such a collection is at most
countable. It is understood that the neutered space is equipped with
the path metric, induced from the metric on X.

There is a second metric on a neutered space, given by the restric-
tion of the metric of X. In contrast to the cases in [4], this metric is
(uniformly) lipschitz equivalent to the path metric. This essentially fol-
lows from the fact that, on individual horospheres of X, the two metrics
are lipschitz equivalent. For more details, see [1].

Hubert modular groups
Hubert modular groups are among the simplest and most concrete

examples of irreducible (nonuniform) lattices in a higher rank semisim-
ple Lie group.

Let d > 1 be a square-free integer, and let Od denote the ring of
integers in the real quadratic number field Q(Vd). Explicitly, Od has
the following Z-basis:

Όά = Z + Z[Vd\ if d = 2,3 mod 4,

Όά = Z + Z\^φ\ if d = 1 mod 4.
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The group PSL2(Od) arises from the group of automorphisms of the

CVmodule Od®Od, and is called a (classical) Hilbert modular group.

Denote by η the Galois conjugate of η G C?|-; so if η = a + 6\/3,

then η = a — b\fd. Denote by A the matrix in PSL2(Od) formed from

the matrix A G PSL,2(Od) by replacing each entry of A by its Galois

conjugate. Then the image of the representation

PSL2(Od) —> PSL2(R) x PSL2{R),

M ι—

is a nonuniform irreducible lattice in G. PSL,2(Od) has only finitely
many orbits of parabolic fixed points; hence the quotient of H2 x H2

by this lattice gives a 4-dimensional orbifold with finitely many cusps,
called a Hilbert modular surface. It is well-known (see, e.g., [7]) that the
number of cusps of this orbifold equals the class number Q{\fd).

3.5. Canonical models
Given PSL2{Od)-> we know there are finitely many orbits of parabolic

points. Let Ω^ be the space formed from X by deleting a PSL,2{Od)-
equivariant disjoint union of special horospheres around every parabolic
fixed point, and give Ω^ the path metric. The result is that PSL,2{Od)
acts properly cocompactly by isometries on Ω ,̂ so that, choosing any
point x G Ω^, the natural map

PSL2(Od) -> Ωd,
7 H-» 7 x

is a quasi-isometry. We call Ω^ the canonical model associated to the
Hilbert modular group PSL,2(Pd)> It is easy to see that Ω^ is a neutered
space. Actually, Ω^ is note uniquely defined, for we may replace our
equivariant family by another one. However, we fix one such neutered
space, one for each d, once and for all.

4. Detecting boundary components

4.1. Overview
Let q : Ωi —> Ω2 be a quasi-isometry between neutered spaces, de-

fined relative to the nets Nj C Ωj. We say that Nj is adapted to Ωj if,
for every component σ C dΩj, Nj Π σ is a (uniform) net of σ.

We say that q is adapted to the pair (Ωχ,Ω2) if the following condi-
tions hold:
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1. q is defined on nets Nj adapted to Ω̂  .

2. For each horosphere σ\ C 5Ωi, there is a horosphere 02 C dΩ.2
such that q(Nι Π σi) C σ<ι.

3. Conditions 1 and 2 hold for the inverse map q~ι.

In other words, q is adapted to (Ωi,Ω2) if q takes horospheres to
horospheres. The goal of this chapter is to prove the following:

Theorem 4.1 (Boundary Detection Theorem). Suppose qo :
Ωi -> Ω2 is an arbitrary quasi-isometry. Then qo is equivalent to a
quasi-isometry q\ : Ωi -> Ω2 which is adapted to the pair (Ωχ,Ω2).

This result states that qo takes points of N\ Π σ\ into a uniformly
small tubular neighborhood of some unique horosphere σ^ C dΩ,2>

4.2. Coarse separation
Given any metric space X and a closed subset S C X, we say that

the inner radius of S is the largest value of s G [0,00] such that a
metric ball of radius s is contained in S. Let Tr(S) denote the r-tubular
neighborhood of S. We say that S has the strong separation property
if there is a fixed constant r < 00 having the following property: For
every K > 0, there are at least two distinct connected components of
X — Tr(S) which have inner radius at least K. We call r the separation
constant of S in X.

In Chapter 5, we will prove:

Theorem 4.2 (Coarse Separation Theorem, Special Case).
Let Ω C X be a neutered space, let σ be a horosphere of X, and let
q : σ -> Ω be a K-quasi-isometric embedding. Then q(σ) has the strong
separation property in X, and the separation constant only depends on
K.

Corollary 4.3 (Packing Theorem, Special Case). Let σ be a
horosphere of X, and q : σ —> σ a K-quasi-isometric embedding. Then
q is a Kf-quasi-isometry. Here Kf only depends on K.

4.3. Proof of the Boundary Detection Theorem
We begin with the following crucial lemma:

Lemma 4.4 (Avoiding a horosphere). Let σ be a horosphere
boundary component of the neutered space Ω C H2 x H2, and let p,q
be points in Ω which are a distance at least C > 0 from σ. Then there
is a path 7 from p to q in Ω lying outside the C-neighborhood of σ.
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Proof. Without loss of generality, we may assume that p and q are
the same distance k from σ. Let Φ denote the union of other horospheres
of Ω. Prom the Lemma 3.1 (Shadow Lemma) and the fact that the
horospheres in Φ are disjoint, the intersection

T*(σ)ΓlΦ

consists of a countable disjoint union of sets, each of which is contained
in a tubular neighborhood of a vertical line. Hence,

Tk{σ)ΠΩ

is connected, as desired, q.e.d.
The fact that shadows have codimension at least two inside horo-

spheres is essential to the proof of Lemma 4.5; indeed, the conclusion of
the lemma is not true for the hyperbolic plane.

Let q = qo We may assume that q is defined relative to a net iVΊ
which is adapted to Ωi Below, the constants K\, K2, UΓ3,.. will only
depend on the quasi-isometry constant of ς, and on the neutered spaces

Lemma 4.5. Letσ\ C 5Ωχ be a horosphere, then there is a constant
K\ and a horosphere 02 C ΘΩ.2 such that every point of 02 is within K\
of some point of q(N\ Πσi).

Proof. We will assume that the lemma is false, and obtain a con-
tradiction to the Coarse Separation Theorem. Let Tr be the r tubular
neighborhood of q(σ\)).

Let £i,#2 C X be any two points which are at least m away from
q{σ\). Provided that ra > r, these points will belong to X — Tr. We will
show that, if 771 is sufficiently large, these paths belong to the same con-
nected component of X — Tr, which contradicts the Coarse Separation
Theorem.

Let x = x\. Suppose that x does not belong to Ω2. This is to say that
x belongs to some deleted horoball a with da C Ω2. By assumption,
there is some point y G a which remains at least m — r from Tr. If
m is sufficiently large, then clearly there is a path connecting x to y
which avoids Tr. (The point is that Tr only penetrates r units into
the horoball a.) The same argument, applied to #25 says that we can
assume, without loss of generality, that Xj belongs to Ω2.

Since q is a quasi-isometry, there are points pj C Ωi such that
Zj = q{pj) is very close to yj. Note that any short path from yj to
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ZJ will avoid Tr, if m is sufficiently large. Hence, all we have to do is
connect z\ to z<ι.

Note that, if m is large, then pj is very far from σ. Prom Lemma 4.5
there is a path 7 connecting p\ to P2, which also remains very far from
σ. The path ^(7) connects z\ to Z2 and remains very far from g(σ), as
desired, q.e.d.

Lemma 4.6. Let σ\, 02 he as in Lemma 4-5. Then every point of
q{N\ Πσi) stays within K§ of 02-

Proof. Given a point x G σ2, we define φ(x) to be a point y E o\
such that q(y) is closest metrically to x. (If there is more than one,
choose randomly.) We assert that φ is a iϊVquasi-isometry. To do this,
we will show that φ is bi-lipschitz when defined relative to a sufficiently
sparse net of 02

Choose two points x\,X2 E 02- From Lemma 4.5 are points p\,p2 C
σ\ such that q(pj) = yj, and yj is within K\ of Xj. If x\ and X2 are
sufficiently far apart, then the distance from y\ to 2/2 is within a factor
of 2 of the distance from x\ and X2> Furthermore, once x\ and X2 are
sufficiently far apart, then the map q~ι (choosing any inverse images)
is K2 bi-lipschitz on the pair {xi,^}- Hence φ is 2K2 bi-lipschitz on

Thus, φ is a i^-quasi-isometric embedding from 02 into σ\. It fol-
lows from the Packing Theorem that φ is a ^-quasi-isometry. But this
immediately implies that every point of N\ Π σ\ gets mapped to within
some K5 of θ2> q.e.d.

For each point x G N\ Πσi, define q\(x) to be the point of 02 which
is closest (within i^) of q(x). The same reasoning as in Lemma 4.6
yields that q\ is a .Ke-quasi-isometry. By construction, q\ is adapted to
the pair (Ωi, Ω2). This completes the proof of the Boundary Detection
Theorem.

5. Coarse topology

The purpose of this chapter is to give a proof of the Coarse Sepa-
ration Theorem and the Packing Theorem, which were used in Chapter
4. Before stating these theorems, we will develop some topological no-
tions which allow us to state and prove a quite general theorem. After
introducing each general notion, we will prove a lemma showing that
the relevant special case is indeed an example.
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5.1. Unpinched spheres
Let (M, d) be a smooth Riemannian (n + l)-manifold. Let Sn denote

the standard unit sphere of jRn+1. Fix, once and for all, some small
constant SQ = π/100. (The precise value of SQ is rather arbitrary.) We
say that a piecewise smoothly embedded sphere Σ c M i s r-unpinched if
there is a homeomorphism h : Σ —> 5 n , where Sn is the unit sphere, such
that the Euclidean distance from h(x) to h(y) is less than δo provided
that d(x,y) < r. Note that d is not the path metric on Σ, but the
ambient metric in M.

We say that M has an expanding sphere provided that M contains
an r-unpinched sphere for every r > 0. We remark that having an
expanding sphere is an extremely weak condition.

Lemma 5.1. Let σ be a special horosphere in X = H2 x H2,
equipped with the invariant Riemannian metric d. Then (σ, d) has an
expanding sphere

Proof. Let Q denote the unit cube in JR3. Let Σ n C Sol be the
boundary of the "box":

: \t\ < n,\x\ < exp(exp(n)), |y| < exp(exp(n))}.

(The nesting of exponential functions is deliberate.) Let hn : Έn —> Q
be the obvious piecewise affine map from Σ n to Q.

Given any point p — (xo,yo?^o) £ Σ n , and a point {x^y^t) G Tr(p),
we have the following:

1. I a; — xo\ < rexp(n).

2. |y-yo | <rexp(n).

3. I* — *0| <
r

From these equations, it is easy to verify that (for fixed r), hn(Tr Π Σn)
has diameter tending to zero as n —> oo. If we compose hn with any
piecewise smooth map from Q to the unit sphere, we see that Σ n is r
unpinched for sufficiently large n. q.e.d.

5.2. Uniform contractibility
Following Gromov [1], we say that (M, d) is uniformly contractible

if there is a function a : R+ -> R+ having the following property: If a
continuous map of a finite simplicial complex Δ —> M is contained in
an r-ball, then it is contractible in an α(r)-ball. The function a is not
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supposed to depend on the dimension of Δ. Since Sol is diffeomorphic
to i£3, and has a transitive group of isometries, it is clearly uniformly
contractible.

5.3. Coarse separation theorem
For the notion of strong separation, see Section 4. The following

theorem is a large-scale version of the Jordan Separation Theorem.

Theorem 5.2 (Coarse Separation Theorem). Suppose that J
and Y are Riemannίan manifolds, diffeomorphic to Euclidean spaces,
with dim(J) = dim(Y) — 1. Suppose that q : J -> Y is a K-quasi-
isometric embedding. Then q has the strong separation property provided
that

1. J has an expanding sphere, and is uniformly contractible.

2. Y is uniformly contractible.

The separation constant r of q(J) only depends on the triple (K,J,Y).

We remark that the strong separation property is a bit strange, in
that it does not rule out the possibility that the complement
Y — Tr(J) consists of infinitely many connected components, some hav-
ing arbitrarily large inner diameter. A more precise statement, that
Y — Tr(J) consists of two infinite inner diameter connected components,
is in fact true. However, the proof of this crisper statement would be
too long of a digression. For details, see [5].

Taking the special case Y = J x Λ, we immediately have the follow-
ing:

Corollary 5.3 (Packing Theorem). Suppose that J is diffeomor-
phic to Euclidean space, is uniformly contractible, and has an expanding
sphere. Suppose that q : J ->> J is a K-quasi-isometric embedding. Then
q is a K1-quasi-isometry, and K1 only depends on the pair (K, J).

The Packing Theorem has a bit of history. It was proven for the Eu-
clidean plane by Furstenberg, and general Euclidean space and other
symmetric spaces by Block-Weinberger. Our theorem proves much
more. For example, it works for solvable groups homeomorphic to Rn.
Details of this will appear in [5].

As another corollary of the Coarse Separation Theorem, we derive
the following:

Theorem 5.4 (Coarse Separation Theorem, Special Case).
Let Ω C X be α neutered space, let σ be a horosphere of X, and let
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q : σ —> Ω be a K-quasi-isometric embedding. Then q(σ) has the strong
separation property in X.

Proof. Since the metric on Ω is uniformly lipschitz equivalent to the
restriction of the ambient metric on X, the inclusion i : Ω -¥ X is a
quasi-isometric embedding. Hence the composition q = io q : σ -^ X is
a quasi-isometric embedding. Now apply the Coarse Separation Theo-
rem, q.e.d.

The special case of the Packing Theorem used in Chapter 4 follows
immediately from the three preceding results.

The remainder of this chapter is devoted to proving the Coarse Sep-
aration Theorem.

5.4. Continuous extension
Let T be a locally finite simplicial triangulation of J. Subdividing if

necessary, we can guarantee that there is a uniform bound to the size of
simplices of T. Let T ^ be the A -skeleton of T. By altering q trivially, we
can assume that q = go is defined on the zero skeleton T^. Inductively,
we extend qk from T ^ to T^k+1\ The fact that the simplices of T
have uniformly bounded diameter, and that Y is uniformly contractible,
implies that the extension qk+ι is still a quasi-isometry. By induction,
then, the final map qn is continuous and defined on all of J, and is still
a quasi-isometry. Furthermore, the quasi-isometry constant of qn only
depends on T, Y, and the quasi-isometry constant of q.

If r is sufficiently large, then the r-tubular neighborhood of q( J)
will contain qn{J) Hence, it is sufficient to reformulate the Coarse
Separation Theorem as follows:

Reformulation of Coarse Separation Theorem. Provided
that the quasi-isometry q is continuous and defined on all of J, the
complement Y — q(J) contains at least two distinct connected compo-
nents of arbitrarily large inner radius.

5.5. Images of Unpinched Spheres
Let Σ be an unpinched sphere. By choosing a triangulation of Σ,

we consider q(Σ) as a singular homology class in Hn(T), where T CY
is any subset containing q{Σ).

Lemma 5.5 (Homology Lemma). Let Σ be an unpinched sphere,
let k be a fixed constant, and let T D #(Σ) be any compact subset of the
k-tubular neighborhood of q(Έ). Then there is a second constant r such
that q(Σ) is an infinite element of Hn(T) provided that Σ is r-unpinched.
The constant r only depends on the quasi-isometry constant of q.
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The point of using the subset Γ instead of the A -tubular neighbor-
hood of q(Σ) is that we will need deal with topologically taut sets below
(to apply Alexander Duality).

Proof. If q(Σ) is a torsion element of Hn(T), then there is some
(n + l)-chain /?, with underlying simplicial complex b = |/3|, having the
folllowing properties:

1. β(b) C T.

2. db consists of d > 0 copies of Σ. Call these copies ci,..., Q.

3. β\Cj=qk

Below, we will construct a continuous map η : b -> Σ such that 77^
has positive degree. This is a contradiction; it states that Σ is a torsion
element in Hn(J—x), where x is any point contained in the ball bounded
byΣ.

Recall that there is a homeomorphism h : Σ -> 5 n , which takes
J-metric r-balls into sets having δo = π/100 Euclidean diameter. We
will actually construct a map η : b —> Sn, then pull this map back to Σ,
via the map h.

If necessary, choose a simplicial subdivision b1 of b with the follow-
ing property: If two vertices v\,V2 belong to the same simplex, then
the points β(v\) and βfa) are at most one unit apart in Y. We first
construct the map η from the vertices of b' into Sn. Here is the formula:

1. Choose a vertex v G bf.

2. Let pυ E q(Σ) be a point which minimizes the distance from β(v)
to #(Σ). (If this point is not unique, choose randomly amongst
the candidates.)

3. Let v1 be an inverse image, under g, of pv. (If this point is not

unique, then choose randomly amongst the candidates.)

4. Let η(υ) = h(υ').

For two vertices v\ and v<ι belonging to the same simplex, the points
β(vj) are at most 1 apart. Hence, the points q{vfj) are at most 2k + 1
apart, since β C Γ. Since q is a If-quasi-isometry, the two points
v[ and v'2 belong to the same K(2k + 1) metric ball in J. Choosing
r > K(2k + 1), we have that 77(̂ 1) and 77(̂ 2) have distance at most
0̂ — τr/100 on the unit sphere Sn. This property allows one to extend
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77, skeleta by skeleta, using spherical totally geodesic interpolations. The
resulting map is defined and continuous on all of b.

Let Cj be a boundary component of 6. Recall that Cj is actually a
copy of Σ. We will show that the map η\Cj has degree one. This implies
that h~ι o η also has degree one. This in turn implies that 77̂ 6 has
positive degree, which is a contradiction.

Let x C Cj = Σ, be a vertex of b'. By construction, η(x) = h(x'),
where x' C Σ is some point of Σ which is mapped, via g, closest metri-
cally to q(x). Since x C Σ, we have that q(x) = q(xf). Since q is a K
quasi-isometry, we know that x and x1 are at most K units away in J.
Since Σ is certainly UT-unpinched, we have that η(x) lies at most π/100
from h(x). Therefore, for general y G Cj, the points η(y) and h(y) lie
at most π/50 from each other. This easily implies that η\Cj has degree
one. q.e.d.

5.6. Alexander duality
Let Zq(M) denote singular ^-cycles of M. Let Hq(M) be the singular

homology classes of M. (The homology coefficients are in Z, as usual.)
Suppose that p + q = n — 1. Given two cycles zp G Zp(Rn) and zq G
Zq(Rn), they have an algebraic linking number, called link(zp,zq). This
is defined in the usual way: Pick a generic coboundary 6p+i such that
dbp+ι — zp, and count the algebraic intersection number 6p+i Π zq.

Suppose that A C Rn is a compact subset. A is said to be taut if
there is a sequence of open subsets Uj D A such that Uj D ί/j+i, and
Uj deformation retracts to A, and ΠUj = A.

Lemma 5.6 (Alexander Duality). Suppose that p + q = n — 1,
that A C Rn is compact and taut, and that ξ G HP(A) is not a torsion
element. Then there is some ξq G Hq(Rn—A) such that link(ξp,ξq) φ 0.

Proof. Here is a sketch. For more details, see any book on algebraic
topology. The standard Alexander Duality theorem gives an isomor-
phism / : Hq(Rn - A) -> Hp(A]Z). Furthermore, the Universal Co-
efficient Theorem yields a surjection φ : HP(A; Z) -+ Hom(Hp(A), Z).
The composition φ o / is exactly the map a —> link(a, *). If ξp is not
torsion in Hp(A), then there is some element ξ* G Hom(Hp(A), Z) such
that f*(ξp) φ 0. Finally, there is some ξq G Hq such thsΛφof(ξq) = ξ*.

q.e.d.

Lemma 5.7 (Linking Lemma). For any constant k the following
is true: There is a closed curve 7 C Y, and smoothely embedded sphere
Σ C J such that:
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1. Every point of 7 remains at least k from

2.

Proof. Let Ts be the s tubular neighborhood of <?(Σ). In the Haus-
dorff topology, Tk+ι can be arbitrarily closely approximated by a smooth
manifold with boundary. Let A be such an approximation, such that
Tk C A C ϊfc+2 A is clearly taut and compact. It follows from
Lemma 5.5 that q(Σ) is not torsion in Hn{A). Thus by Lemma 5.6,
there is some element of H\(Y — A) which links q(Σ) algebraically, but
avoids A. This element is represented by a cycle consisting of finitely
many closed curves. Oneof these curves must also link g(Σ). Perturbing
Σ slightly, we can assume that it is smoothely embedded, q.e.d.

5.7. Traversing arcs
Let 7 and Σ be as in the conclusion of the Linking Lemma. We

define IΊ C J to be the set of points x G J such that q(x) G 7. In other
words IΊ is the inverse image of the intersection 7 Π q( J).

Let B be the ball bounding Σ. By construction of 7, IΊ does not
intersect Σ. Say that a point of IΊ is interior if it belongs to B, and
exterior otherwise. Say that the interval ab C 7 is traversing if:

2. q~1(a) consists entirely of exterior (interior) points,

3. q~ι(b) consists entirely of interior (exterior) points.

Lemma 5.8. Let K be the quasi-isometry constant of q. For any
constant r, there is a constant r1 having the following property: Suppose
7 avoids q(Σ,) by at least r'. Given a traversing arc ab C 7, there is a
point x £ ab which remains at least r from q(J), and the constant r'
only depends on the quadruple (r,K,J,Y).

Proof. The constants ri,Γ2,... have the desired dependence of con-
stants. Choose a sequence of points a = xo, xi,... , xn = b such that the
distance in Y from X{ to Xi+ι is between 1/2 and 1. Define φ(xj) C J
to be any point of J whose image under q is as close as possible to
Xi. Assuming that ab remains within r from q(J), the distance be-
tween q(φ(xj)) and Xj is at most r. Hence, the distance from φ(xj) and
φ(xj+ι) is at most r\. Since J is uniformly contractible, we have that,
for some j , φ(xj) is within Γ2 of Σ. But then q(φ(xj)) is within r$ of
q(Σ). This implies that Xj is within r± of <?(Σ). Taking r' = r± gives the
result, q.e.d.
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5.8. The expanding sphere
We will now prove that Y — q( J) has the desired separation prop-

erties. If this is false, then there is a constant m having the following
property: If x,y G Y are at least m away from g(J), then there is a
path a(x, y) C Y — q(J) joining x to y.

Prom the previous section, we have, for any value of k, a piecewise
smoothly embedded sphere Σ C J, and a curve 7 C X, such that:

1. l ink( g (Σ), 7 )/0,

2. 7 avoids q(Σ) by at least k.

Let K be the quasi-isometry constant of q. Choose k so large that,
according to Lemma 5.8, there is a point x on any traversing arc of 7
which avoids q( J) by at least m.

Lemma 5.9 (Curve Modification). We can find a curve δ having
the following virtues:

1. link(q{Σ),δ) φθ.

2. Is has only either interior points, or exterior points.

Proof. Choose a maximal sequence of traversing arcs 71,... ,7 n . Let
Xj C η/j be a point guaranteed by Lemma 5.8. So, Xj avoids q( J) by at
least m. Hence there are paths otj = a(xj,Xj+\) CY — q(J) connecting
Xj to ajj+i, where indices are taken mod n. Also, let βj denote the
subarc of 7 connecting Xj to Xj+ι

The closed loops δj = aj U —βj are 1-cycles. We assert that some δj
links q(Σ) algebraically. If not, then the cycle a\ U ... U an would link
q(Σ) but would not intersect q(J). So, some δk links q(Σ) nontrivially.
By the maximality assumption on the original arcs, the arc δ = δk has
the desired intersection properties, q.e.d.

Let B be the ball bounding Σ. If Is has no interior points, then
q(B) does not intersect δ. This contradicts the fact that δ and q(Σ) are
linked. Assume on the other hand that Is has no exterior points. Then
Σ is cobordant to an arbitratrily large sphere Σ ' D Σ . By assumption,
q(Σf) and δ are linked. However, this implies that q{Σr) must intersect
each spanning surface of δ. In particular, points of q{Σ') must remain
fairly close to J, no matter how large Σ' is. This is a contradiction.
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6. Peripheral quasi-isometries

6.1. Overview
Let Ωi and Ω2 be neutered spaces associated to two Hubert modular

groups, and let q : Ωi —>• Ω2 be an adapted quasi-isometry.
By Chapter 4, q induces a quasi-isometry from each horosphere σ of

Ωi to some horosphere σ' of Ω2. We call this induced quasi-isometry a
peripheral quasi-isometry. Each horosphere naturally carries the geom-
etry of the 3-dimensional Lie group Sol\ hence we think of the quasi-
isometry q as inducing a peripheral quasi-isometry φ : Sol —> Sol on the
horosphere σ C Ω i

In this Chapter, we will show that φ takes vertical lines in Sol into
uniformly thin tubular neighborhoods of vertical lines. This fact will
allow us to show that the map induced by φ on the space of vertical
lines in Sol is bi-lipschitz, from which all of our rigidity results will
follow.

We do not know if an arbitrary (i.e., not necessarily induced by a
quasi-isometry of a neutered space) quasi-isometry of Sol must take
vertical lines (nearly) to vertical lines. One major difficulty is that
there are quasi-geodesics which stray arbitrarily far from geodesies. It
is thus necessary to use the special nature of peripheral quasi-isometries
in order to show that vertical lines map to vertical lines. Here is an
overview of the argument:

Step 1. By considering the shadows on σ of other nearby horo-
spheres, we find a "lamination" of vertical lines on σ which are taken
(nearly) to vertical lines under φ. Call this lamination of vertical lines
C.

Step 2. Making a bounded modification of 0, we produce a quasi-
isometry ψ : Sol —> Sol equivalent to φ which takes vertical lines in C to
other vertical lines. Furthermore, we can assume that ψ is a uniformly
bilipschitz homeomorphism when restricted to lines of £.

Step 3. Let π : Sol —> R be vertical projection π(x,y,ί) = ί, and
let i : R —> I be inclusion of R into a line I G £, having the property that
π o i — Id. On each line I G £, the map fι = π o ψ o % can (a priori) be
either orientation reversing or orientation preserving. We prove that //
is orientation preserving for all / G C. This shows that there is an entire
network of lines which is mapped to vertical lines in the topologically
correct manner.

Step 4. Using Step 3, we show that, for an arbitrary vertical line
I C Sol, the map fι is coarsely increasing; that is, fι(y) > fι{x) + 1
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provided that y > x + K. The constant K is independent of the line I.
Step 5. By looking at projections of the image φ(l) of a vertical

line I onto hyperbolic planes in 5oZ, and using the fact that φ(l) must
keep travelling upward at a definite rate (i.e., // is coarsely increasing),
we show that φ(l) must stay close to 2 hyperbolic planes, hence close
to some vertical line.

Step 6. By Step 5, φ induces a map φ* on the space of vertical
lines in Sol, which we identify with the height-zero plane. Again by Step
5, φ preserves the 2 foliations by hyperbolic planes, so φ* is a product
φ^ — fx x f2. In this step we show that f\ and $2 are bilipshitz.

Step 7. We use elementary hyperbolic geometry to show that φ
acts a uniformly bounded amount away from the identity in the vertical
direction; that is, φ is equivalent to f\ x J2 x /d, where each fj is
bilipshitz.

6.2. The lamination of shadows
Let EQ be the height-zero plane in the horosphere σ considered as the

3-dimensional Lie group Sol. The intersection of the Hubert modular
group PSL,2(Od) with the stabilizer subgroup of the horosphere, which
itself contains Sol as a finite index subgroup, gives a cocompact lattice
in Sol; its intersection with EQ is a lattice in the plane, which we denote
by Ld. To describe L^ note that EQ is the product of horocircles - one
from each copy of H2. These horocircles are stabilized by the image
of the subgroup L < PSL2{Od) under the representation L •->• (ί/,I/),
where L is the subgroup of upper-triangular matrices with l's on the
diagonal and an arbitrary element of Od in the upper-right corner. Prom
this it is clear that the lattice Ld may be described as :

Ld = {(v,v):veOd}.

For each horosphere σ of Ωi, let τi, T2,... be the horospheres of Ωi
which are metrically closest to σ. By equivariance, such horospheres
form a countable set, indexed by (a quotient of) the cusp group associ-
ated to σ. We define C to be the set of shadows of TJ on σ. We call C
the lamination of shadows on σ.

Lemma 6.1 (Lamination lemma). Let φ \ σ —¥ σ1 be a pe-
ripheral quasi-isometry between horospheres induced by a quasi-isometry
q : Ωi -> Ω2 between two neutered spaces. Then there is a constant K,
independent of σ and σf, having the following property: Every line of C
in σ is taken to within K of a (unique) vertical line in σ'.
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Proof. The constants K\,K2,K$ below have the desired indepen-
dence of σ and σ1. Let I C £. Let d be the distance from each T{ to
σ. Then every point of I is exactly d away from Tj for some j . Set
r = Tj. Since g is a quasi-isometry, σ' = g(σ) and τ ; = q(r) are at
most K\ apart, and also disjoint. Furthermore, every point of q(l) is at
most K2 away from r'. Hence q(l) is contained in some uniform tubular
neighborhood Tκ3(lf), where V is the shadow of r' on σ'. q.e.d.

Remark. It is precisely the property that the lamination C is
quasi-preserved that makes use of the fact that the quasi-isometry φ :
Sol -> Sol is peripheral (i.e., induced by #), as opposed to an arbitrary
quasi-isometry of Sol.

The set of lines C is invariant under the subgroup of PSL,2{Od) sta-
bilizing σ. Often, we will identify C with its intersection with the height
zero Euclidean plane E$. This intersection is exactly the Euclidean lat-
tice Ld described in above.

For cosmetic purposes, we redefine φ slightly, in light of Lemma 6.1
(Lamination lemma). Let I C C be a line. Let I' be the line of Sol
whose tubular neighborhood contains φ(l). Finally, let N C σ be the
net relative to which φ is defined.

Since every point in Sol is uniformly close to some point on a line of
£, we may alter φ so that N is a subset of the union of lines in C. For
each point x G iV, let x' denote the point of V which is metrically closest
to φ(x). If the points of N are sufficiently sparse, the map x —> x1 will
be bi-lipschitz and order preserving. Extending the linear map x —> xf

in the obvious way, we obtain a bi-lipschitz map from / to /' which is
uniformly close to the original map φ\ι. Taking the union of these maps
over all lines I G £, we obtain a new quasi-isometry φ : Sol —> Sol
which is a bi-lipschitz homeomorphism when restricted to any line of C.
Furthermore, ψ is uniformly equivalent to φ. In what follows we will
work with φ rather than φ.

6.3. Geometry of the lamination

In this section we describe some of the geometry of C As we men-
tioned above, each line of C intersects the height-0 plane EQ in Sol in
a single point. We will use this intersection point to label the line in
question: we write / = < x, y > if I Π EQ = (x, y, 0).

Given any two vertical lines I1J2 in Sol, let d(h,l2) be the metric
distance in Sol between these lines. There are two relevant formulas for
the metric distance between these lines, depending on how close they
are. Let < Xj^yj > be the coordinates of lj Π EQ. Then we have:
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Formula 1: If d(lul2) > 2 then d(lul2) ~ log(|^2 - α;i||y2 - ϊ/i|).

Formula 2: If d(lul2) < 2 then d(lul2) ~ yj\x2 - xi\\y2 - yi\.

Here ~ means within a uniform multiplicative factor.
Formula 2 follows from the fact that any Riemannian manifold is

infinitessimally Euclidean. Note that if lχ and l2 lie in a hyperbolic
plane (equivalently, if the points k Π Eo have a common coordinate),
then l\ and l2 are asymptotic to each other, so d(h,l2) = 0, agreeing
with Formula 2.

Note that Formula 1 is invariant under isometries of Sol. Applying
an isometry, we may assume that l\ =< 0,0 > and that l2 =< n,n >.
By symmetry, the points (0,0,0) and (n,n, 0) minimize the distance
between the two lines. It is standard that the distance between these
points is ~ 21og(n) for large n.

We say that a line l2 G C is adjacent to a line l\ G C if no other
line of C is closer to l\ than l2. By compactness and equivariance, the
minimum distance between two adjacent lines of C exists and is positive.
Indeed, the lines < 0,0 > and < 1,1 > are adjacent; their distance lies
somewhere between 1 and \/2.

Suppose δ = a + bVd is the fundamental solution to Pell's equation:
a2 — db2 = 1. Then for each integer n, the line through < δn,δ >
is adjacent to < 0,0 > as well. All such points lie along a hyperbola,
and there is a hyperbolic linear autormorphism of the lattice L</ which
permutes these points.

Definition (Pell square). A Pell square is a choice of 4 lines
of C which are cyclically adjacent. We also think of a Pell square as
four finite subsegments of these lines, together with the four paths of
minimal length between adjacent segments; that is, a labelled octagon
so that (see Figure 1):

1. Each even edge of the octagon is a finite subsegment of a line in
C.

2. Two successive even edges lie on adjacent lines.

3. The odd edges realize the minimum distance do between adjacent
lines.
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3

f V Λ
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FIGURE 1. A schematic representation of a Pell square.

The reason for the terminology "Pell square" is that one can find

such a square containing a given vertical segment by (essentially) solving

Pell's equation 4 times (see the proof of Lemma 6.2 below).

A Pell square involving the line I determines a unique subsegment

V Cl\ the endpoints of V are the points of intersection of / with the arcs

of minimal length connecting I to the adjacent lines of the Pell square.

Conversely, given an arbitrary subsegment /' C /, there exists (up to an

additive constant) a Pell square containing /':

L e m m a 6.2 (Pell l e m m a ) . Up to a uniformly small additive
constant, the following is true: Given two adjacent lines l\M £ C and
some large n > 0, there exists a Pell square involving subsegments of l\
and I2 having length at least n.

Proof. Applying an isometry, we can assume that l\ =< 0,0 >,
Z2 = < 1,1 >, and l\ has the origin as a lower endpoint. Let δ be the
fundamental solution to Pell's equation. Let Pn be the Pell square made
from the lines lines < 0,0 >, < 1,1 >, < δn,T >, < 1 + δn, 1 + T >.
The length of Edge 2 in Pn (in particular) is a linear function in n.
Indeed, all even edges have the same length, by symmetry, q.e.d.

It will also be useful to have the notion of a half-Pell square.

Definition (Half-Pell square).
as a Pell square except that:

A half-Pell square is the same

1. Edge 2 and Edge 4 do not have to belong to C. Edge 6 and Edge
8 do have to belong to C.
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2. Successive even edges lie on vertical lines which are between 1 and
2d apart in Sol. (Here d is the integer in L^)

3. Odd edges have length at most 2d.

Note that every Pell square is a half-Pell square.

Lemma 6.3 (Half-Pell lemma). Up to a small additive constant
the following is true: given a subsegment V of an arbitrary vertical line
1 C Sol, the segment V is part of a half-Pell square.

Proof. We normalize as in the proof of Lemma 6.2 (Pell lemma).
Choose any line < x,y > in C which has distance between 1 and 2d
from the origin. This is possible from the density of L^ and Formula
2 above. Note that we have translated C so that it's intersection with
£7o no longer corresponds to L&. Let Hn be the half-Pell square given
by < 0,0 >, < δn,ΊP >, < x,y >, < x + δn,y + 7P >. Once again, the
length of Edge 2 grows linearly in n, so there is a correct choice of n up
to an additive constant. Note that < 0,0 > is not necessarily in £, and
hence neither is < δn,ΊF >. q.e.d.

Recall that we are taking the metric on Sol to be dt2+etdx2+e~tdy2.
Let πxt and πyt denote the projections of Sol onto the rrί-plane and yt-
plane. Note that any plane parallel to the xt-plane in Sol has the
same intrinsic (hyperbolic) metric as the xί-plane; similarly for planes
parallel to the yί-plane. The following two facts will be extremely useful
throughout the rest of this chapter; their proofs are elementary.

The divergence principle. Let l\ =< 0,0 >,Z2 = < 1,1 >,
or more generally any 2 lines with the property that the rectangle de-
termined by their coordinates is approximately square. Suppose the
minimal length path from l\ to I2 intersects both lines close to the ver-
tical height h. Let U{,i — 1,2, be the point on l{ at height h + n (resp.
h — n). Then the points πxt{uι) and πxt{u2) are contained in a horocircle
in the rrt-plane, and the intrinsic horocircle distance between these two
points is ~ en (resp. ~ e~n); similarly, the horocircle distance between
πyt{u>ι) and ττyt(u2) in the yί-plane is ~ e~~n (resp. ~ en).

Given two vertical lines in SΌZ, the minimal length path between the
two lines intersects the lines at some height, which we call the moment
for the two lines. For example, if δ is the fundamental solution of Pell's
equation, then the lines < 0,0 > and < ίn, (f1 > have moment Kn for
some constant K independent of n.

Moments are preserved. There exists a constant D > 0, de-
pending only on the quasi-isometry φ : Sol —ϊ Sol, with the following
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property: If h^fa £ £, and the minimal length path from l\ to I2 goes
from u\ £ h to U2 £ I2, then the minimal length path from φ(l\) to
^ 2 ) intersects φ(li) within a distance D from φ(υ,i),i = 1,2.

6.4. Orientation is preserved
For each line / C £, consider the bi-lipschitz function // = τroψoi,

as defined in Step 3 of Section 6. This function is either increasing or
decreasing since bilipschitz functions on R are increasing or decreasing.
By applying an isometry of SΌZ, we can assume that // is increasing for
at least one line I C C. In this section, we will show that fm is increasing
for any other line m C C The proof makes use of Pell squares.

Lemma 6.4 (Orientation lemma). The functions fm are increas-
ing for all lines m C C.

Proof. Assume that fm is decreasing. By "continuity" we can as-
sume that I and m are adjacent lines.

Let φ : Sol —> Sol be a if-quasi-isometry, and choose n » K.
Let Pn be the Pell square, guaranteed by the Pell lemma (Lemma 6.2),
which uses subsegments a C / and b C m of length n as edges 2 and 4;
let c and d denote the vertical segments which are edges 6 and 8 of Pn.
Let CLi and af denote the initial and final points of the subsegment α;
similarly for 6, c, d.

Let P'n denote the image of Pn under φ\ similarly we denote the
image of a subsegment, say α, of Pn under φ by a1. Recall that φ maps
each segment of Pn to a subsegment of some line in C. Although P'n is
not necessarily a closed curve, it may be made so by adding 4 uniformly
short arcs.

By assumption the orientation of a is preserved, and the orientation
of b is reversed under φ. Figure 2 shows the 4 possibilities, depending
on whether or not the edges c and d get reversed.

CASE 1 (c+, d~) : In this case, all of the edges α;, ί/, c', d' travel ver-
tically upwards, so that d(a'i1 d'Λ > An/K. But d{a'il d'Λ < K d{aι, d/),
which is a (uniformly) small number. This gives a contradiction for n
large enough.

CASE 2 (c ĵd"1") : Since P'n is a closed curve, there must be some
point x of the segment d' which lies at the same vertical level as the point
a'* (see Figure 2). Now, since moments are preserved, the moment for
the lines containing a1 and d1 occurs near Λ and α̂ . Up to a small
additive constant, the points x and a!* on these lines lie an upward
vertical distance of at least n/K from d'j and α̂ , respectively. By the
divergence principle, πxt(x) and πxt(a!j) have horocircle distance ~ enlκ



THE LARGE-SCALE GEOMETRY OF HILBERT MODULAR GROUPS 463
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(c+,d ) (c+,d+) (c ,d ) (c ,d+)

FIGURE 2. This figure shows the four possibilities for the images

of the lines making up the Pell square Pn.

in the xt-plane, and πyt(z) and πyt(a'A have a horocircle distance of

~ e~nlκ in the yί-plane.

Now consider the path 7 from a!* through b'* and ending at x. By
adding a path of length e~nlκ to 7, we may assume that a!* and x
lie in some plane P which is parallel to the xt-plane. The path 7 is
a path of length at most 4Kn, beginning and ending in the plane P,
and 7 also stays above the plane t = h in Sol. Projecting 7 onto the
(upside-down hyperbolic) plane P is length decreasing; following this
by downward vertical projection onto the horocircle t = h in P is also
length decreasing. These projections give a path from a'* to x of length
at most AKn lying in this horocircle. But a'j and x lie a distance of at
least en/κ from each other as measured in the horocircle metric. This
gives a contradiction for large n; hence Case 2 cannot occur.

The cases (c~,d~) and (c~,d+) are similar to the previous case.
Since none of the four cases can occur, it follows that fm must be in-
creasing, q.e.d.

6.5. Parameter increase for vertical lines

Prom the previous sections we know that a peripheral quasi-isometry
Ψ : Sol -> Sol preserves the lamination £, and that in fact, after perhaps
composing with an isometry of SΌZ, the orientation of each line in C is
preserved. For arbitrary vertical lines, the situation is not so clear. Even
though the lines in C are taken to vertical lines, little a priori can be
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b1

ω

FIGURE 3. This figure illustrates the two possible cases in the proof

of Lemma 6.5 (Increasing parameter lemma) : when b'f does

and does not lie below a\.

said about arbitrary vertical lines. The difficulty is that an arbitrary
vertical line possibly comes close to infinitely many distinct lines of C.
In this section, as the first step to understanding the images of arbitrary
vertical lines, we prove:

Lemma 6.5 (Increasing parameter lemma). There is a cons-
tant K such that for any vertical line I, the following holds: fι(y) >
fl(x) + 1 provided that y > x + K.

Proof. Long quasigeodesics cannot stay in thin horizontal slabs.
Therefore, assuming the lemma false, there are for some very large value
of n, two points x, y such that y > x and fι(y) = fι(x) — n.

Searching over all triples (Z,x,y), we may assume that y — x is (up
to one unit from being) as small as possible. (Note that we must have
y — x > n/K, since ψ is a lf-quasi-isometry.)

Let λ C I be the segment connecting x to y. By Lemma 6.3 (Half-
Pell Lemma), there is a half-Pell square with edges λ,ω, α, b where both
a and b are contained in lines which belong to £. Note that the images
a' and b' of a and b under ψ lie on vertical lines. By adding 4 uniformly
short arcs to the image of this half-Pell square, we may assume that the
image is a closed curve.

Now the point b', has a either lower or heigher height than the point
a'i (see Figure 3).

First suppose that the point b1* sits at a lower vertical height than
α̂ . In this case, the path ω' attains a much higher vertical height than
the reverse of the path λ', even though these two paths start at the
same height (up to a small additive constant). Hence some subpath of



THE LARGE-SCALE GEOMETRY OF HILBERT MODULAR GROUPS 465

ω which is much shorter than λ has image whose vertical parameter is
reversed an amount of n. This contradicts the minimality of λ; so it
must be the case that b'j has a height at least as high as α .̂

Let x E a' be the point of a' which is at the same vertical height as
b'f. Let E be the horizontal plane containing x and b'f.

First note that neither ω' nor λ' ever rise above £7, for this would
contradict the minimality of λ. Hence the path 7 from x through o!i

through λff to b'f is a path of length at most 4ifn which stays below E.

The rest of the proof is exactly as in Case 2 of Lemma 6 q.e.d.

6.6. Images of vertical lines

In this section we show that the image under φ of a vertical line

stays (uniformly) close to a vertical line.

Every vertical line of Sol is contained in two totally geodesic hyper-

bolic planes. For example, the line < 0,0 > is contained in the xt-plane

and in the yt-plane. Furthermore, we have the following lemma whose

(obvious) proof we omit.

L e m m a 6.6. For any constant n there is a constant n' having the
following property: The n1 -tubular neighborhood about a vertical line
contains the intersection of the n-tubular neighborhoods of the two hy-
perbolic planes containing the line.

L e m m a 6.7. Let I be a vertical line of Sol, let p £ I be an arbitrary
point, and let H be a hyperbolic plane through φ{p). Then φ(l) lies
in the C-tubular neighborhood about H. Here C only depends on the
quasi-isometry constant of φ and on L^.

Proof. The constants AΊ, K<ι,... below have the desired dependence.

By redefining φ on ί, we may assume that φ(l) is a i^Ί-lipschitz curve.

For simplicity, we assume that H is parallel to the xt-plane. This means

that H is isometric to the upper half plane model of hyperbolic space,

by an isometry which reverses the direction of vertical lines. (In the

other case, the isometry would preserve vertical lines.)

Let Tn denote the n tubular neighborhood about H. Assuming that

the lemma is false, we can find a subsegment λ C / having the following

properties:

1. λ has length m.

2. φ(X) lies completely outside Tn.

3. Let b be the lower boundary point of λ. Then φ(b) C &Tn.
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r

π(Tn)/

π(ψ(λ))

FIGURE 4. The curve π(φ(X)) stays outside an n-tubular

neighborhood of a geodesic in the hyperbolic plane.

Here the pair (ra, n) can be chosen arbitrarily. Let t be the top endpoint
of λ.

Let H' denote any geodesic hyperbolic plane perpendicular to H.
In other words, H' is parallel to the yί-plane. This is to say that H1

is isometric to the upper half plane model of H2 by an isometry which
preserves the orientation of vertical lines. We will make this identifica-
tion.

Let π denote projection from Sol onto H'. Again, we note that π is
distance non-increasing. We have the following information:

1. π(H) = H Π H' is a vertical line in H2.

2. π(Tn) = Tn Π H' is the n-tubular neighborhood about /' in if2.

3. The curve π(^(λ)) avoids π(Tn), and has its bottom endpoint on
the boundary of this tubular neighborhood.

All of this is shown in Figure 4.
Since ψ(λ) has length at most K\m, the projected curve π(ψ(λ))

has length at most Kim. Since this curve has its lower endpoint on
π(Tn), the vertical coordinate of π(ψ(t)) exceeds that of π(?/>(&)) by at
most iϊΊm/exp(n), from standard hyperbolic geometry.

Since π preserves vertical coordinates, we see that the vertical co-
ordinate of ψ(t) exceeds that of ψ(b) by at most K\mj exp(n). If both
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m and n are sufficently large, we get a contradiction to Lemma 6.5
(Increasing parameter lemma).

Consider now the entire parametrized curve I = π(φ(l)). This is
a curve in the hyperbolic plane. It has the following property. For
any p G 7, and any q > p, we have that Ί(q) lies in a thin tubular
neighborhood about the vertical line through Ί(p). This easily implies
that 7 lies in a tubular neighborhood about some vertical line, q.e.d.

Lemma 6.7 and Lemma 6.6 together imply that the quasi-isometry
φ takes vertical lines into uniformly thin tubular neighborhoods about
vertical lines.

6.7. The space of vertical lines
In the previous section, we saw that φ takes vertical lines to (tubular

neighborhoods about) vertical lines. Since no two vertical lines remain
close to each other for the entire length of the line, we see that this
vertical line is unique. We identify the space of vertical lines with EQ.
We will call the space of vertical lines the internal boundary EQ of Sol\ it
is this "boundary" that plays the same role as the boundary at infinity
in the proof of the rank-one case of Mostow Rigidity. In this section,
we study the induced map φ* : EQ —Ϊ EQ.

Let l\ and l2 be two vertical lines. Then l\ and l2 lie in a common
hyperbolic plane if and only if their tubular neighborhoods intersect in
a non-compact set. Also recall that φ is orientation preserving when
restricted to vertical lines. Combining these two observations, we have
that φ preserves the two hyperbolic plane foliations of 5ΌZ, and that

Φ* = h x h

for some functions fj\R-+ R. Our goal is to prove that each fj is
bilipshitz. Incidentally, it is also true that φ preserves the horizontal
plane foliation of SΌZ, though we will not make use of this fact, just yet.

Below, the constants K\, K2,... depend only on φ and L^.

Lemma 6.8. Suppose that \x — y\ > 1. Then

Proof. By symmetry, and using inverse maps, it is sufficent to show

that \f2{x + δ)- f2(x)\ < Kx provided that δ < 1. Let K2 = | / i ( l ) -

/ i (0) | . Consider the vertical lines lχ =< 0,x > and l2 = < l,x + δ >.

We have d(lul2) < 2, so that d(φ(h),φ(l2)) < K2. Thus
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Hence \fλ(x) - f2{x + δ)\ < K3/K2. q.e.d.

Lemma 6.9. fj is K^-bi-lipschitz

Proof. Given the previous lemma, and the existance of inverse maps,
it suffices to prove that \f2{x) — f2(x + e)\ < UΓ46, provided that e < 1.
Prom the previous lemma, we have

f1(0)-f1(\/e)>l/(Kιe).

Let l\ =< 0,a; > and h =< l/e,x + e >. Note that d{lι,h) < 2. Hence

The rest of this lemma is just like the previous one. q.e.d.
6.8. Characterization of peripheral quasi-isometries
Let φ : Sol -» Sol be a peripheral quasi-isometry. It follows from the

work in the previous sections that (after composing with an isometry
if necessary) φ is uniformly equivalent to a map φ' : Sol —> Sol having
the following property:

φ'(x,y,t) = (f1{x)J2(y),z(x,y,t)),

where the functions fj are uniformly bi-lipschitz.

Lemma 6.10. z(x,y,t) is uniformly equivalent to the identity map.

Proof. By composing with isometries, it is sufficient to prove that
z(x,0,ί) = t, under the hypothesis that /2(0) = 0. In other words, let
H be the hyperbolic xt plane. Then, we normalize to that φ(H) — iϊ,
and consider Z\H

Let ω = Φ\H- Since H is totally geodesic, ω is a (uniform) quasi-
isometry. We consider H as an isometric copy of the upper half plane.
The vertical lines in H correspond to the vertical lines in the upper half
plane model. Let S\ = dH = flUoo denote the circle at infinity, and let
dω denote the canonical extension of ω to Si. Since ω preserves vertical
lines, we know that dα (oo) = oo. Indeed,

dω\R = /i.

Hence dω is uniformly bi-lipschitz.
Consider the new map ω' = dω x Id. Since dω is bi-lipschitz, ω1

is a quasi-isometry. The two quasi-isometries ω and ω' have the same
boundary extension, and hence are equivalent. The uniformity of the
equivalence has the correct dependence of constants, q.e.d.
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7. Geometric limits

7.1. Some hyperspaces

Let X = H2 x H2. Let Bn denote the n-ball about any pre-chosen
point 0 G X. We topologize the closed subsets of X as follows: Say that
a sequence of closed subsets SΊ, 52,. . . converges to a limit 5 provided
that, for every pair (n,e), there is an integer N having the following
property: If m > iV, then the e-tubular neighborhood of Sm Π Bn con-
tains the e-tubular neighborhood of S Π Bn, and vice versa.

Given a sequence of spaces Yn, Y^ C X, and a sequence of K-quasi-
isometries qn : Yn —> Y ,̂ we say that the triple (gn, Yn, Y )̂ converges to
the triple (ς, Y, Y') provided the following:

1. Yn -> Y in the Hausdorff topology.

2. Y^ -» Y' in the Hausdorff topology.

3. There exists a constant K1 having the following property: For any

fixed n, there is a constant N such that m > N implies that qm

and q are K' equivalent when restricted to (Ym U Y) Π Bn.

We will call this topology the quasi-isometry topology.

In all that follows, we will use the product upper half-plane model
of X. In this model, X has coordinates (rri, 2/25̂ 2̂ 2/2) with j/j > 0; each
factor {xjiVj) is an upper half plane. Let σ be the horosphere in X given
by the equation 2/12/2 = 1. We will naturally identify σ with Sol. So, the
coordinates on σ will be (x, 2/, t), as previously. The identification is such
that (xi,2/1,2:2,2/2) G ^ n σ corresponds to (a:i,α:2,log(2/i) -log(2/2)) In
particular, (0,1,0,1) corresponds to (0,0,0).

We will say that a map φ : σ —> σ is factor preserving if it can be
written in the form

Given such a map, we define Xφ = /, and Yφ = g.

Once and for all, we fix a square-free integer d > 0, and let Ω = Ω^

denote the neutered space (canonical model) associated to the Hubert

modular group SL2{Od). We choose Ω so that σ is a peripheral horo-

sphere of Ω. Let C denote the set of neutered spaces which are isometric

to Ω, via an isometry which preserves σ.

Let S{K) denote the set of triples (α, A, A1) having the following

properties:
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1. A,A' EC.

2. a : A -» A! is a K-quasi-isometry.

3. a preserves, and factor preserves, σ.

4. α fixes the point (0,0,0) C σ.

Given (α, A, A1) G S(/C), let Pα denote the restriction of α to σ.
Prom our previous work, we know that

Pa = XaxYax Id,

where Xa and Ya are C-bi-lipshitz maps. The constant C depends only
on K. Our normalizations guarantee that Xa(0) = Ya(0) = 0.

Henceforth, we will drop the constants C and K. They are implicit
in all that is said. We omit the proof of the following lemma, which is
completely straightforward, but quite tedious.

Lemma 7.1. The following hold:

1. C is compact in the Hausdorff topology.

2. S is compact in the quasi-isometry topology.

3. Suppose that (αn, An, A'n) -> (b,B,Bf) G S. Then Xan ->• Xb and
Yan —> Yb uniformly on compacta in R.

7.2. Outline
Say that an affine map f(x) = mx + b is defined over Q(yd) if both

m and b belong to this field. Also, define the conjugate map f by the
equation f(x) = mx + b. Here m is the Galois conjugate of m, etc.

The statement of the Main Theorem is that every quasi-isometry of
Ω is a commensurator. This will follow almost immediately from

Lemma 7.2 (Rigidity Lemma). Suppose a : Ω —» Ω is a quasi-
isometry which preserves, and factor preserves, σ. Then:

1. Xa and Ya are affine maps defined over Q(Vd).

2. Xa and Ya are conjugate maps.

The rest of this chapter is devoted to proving the Rigidity Lemma.
Here is an outline of the proof:
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Step 1. Since Xa is bi-lipshitz, it is a.e. differentiable. Let
x\,X2 be two distinct points of differentiability of Xa. Throughout, we
denote the derivative of Xa by Xa1. By taking a geometric limit, we
will produce two elements (ci, CΊ, C{), (02, C2, C2) eS such that:

1. Xc\ = Xa'{x\)\ that is, Xc\ is the linear map "multiply by

2.

3. Fci = Yc

Step 2. By taking a second geometric limit, we will produce
elements (ei, Eχ,E[), {ei>>E2,E2) € <S such that:

1.

2.

3. Yei = Ye2,

4. Yei and Yβ2 are linear.

Step 3. We will isometrically conjugate the triple (βj^Ej^E1-) to
a map fj : Ω —>> Ω such that:

1. X/j is an afδne map whose linear part equals

2. Yfj is an affine map whose linear part equaly Yβj.

We will then use the geometry of Ω to show that Xfj and Yfj are
conjugate affine maps, defined over Q{Vd). Since Ye\ — Ye2, the linear
parts of Xfi and X/2 agree. This is to say that Xe\ and Xe2 agree.
Hence, Xa'{x{) = Xa'{x2).

Step 4. Since x\ and x2 were arbitrary points of differentiability,
Xa'(*) is a.e. constant. Since Xa is bi-lipshitz, this means that Xa is
affine. The same argument, with X and Y interchanged, says that Ya
is affine. A repeat of Step 3 now says that these maps are defined over
Q(\/d), and are conjugate to each other.

7.3. The zooming principle
Let mn denote the linear map of the line which is the multiplication

by <5n, for some real number δ > 1. Suppose that / : R -> R has the
following properties:

1. /(o) = 0.
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2. /'(0) exists.

3. / is bi-lipshitz.

Consider the sequence of maps fn = mn o / o m" 1 . By the definition of
/'(()), the sequence of maps /i, /2, converges, uniformly on compacta,
to a linear map /oo Furthermore, the expansion constant of /QQ is
exactly /'(()). In fact, we may write, for shorthand, /oo = /'(0). We
will call this the zooming principle, and will rely heavily upon it in what
follows.

7.4. First limit
Let δ > 1 be a unit in Od> Let

δn

Let Zn = Tn x Tn. Then Zn is an isometry of X which preserves
σ. Furthermore, PZn = mn x m_n x rn, where the map mn is the
multiplication by δ2n and the map τn is the translation by n log(δ).

Let x\,X2 be two (generic) points of differentiability of Xa. For
j = 1,2, let Ij denote the isometry of X such that

PIj{x,y,t) = (x-Xj,y,t).

Let Jj denote the isometry of X such that

Define

2. B^Jj

3. fy = Jj

Note that

1. (b^Bjt

2. A'6j(0)

3. y&i = Yb2
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For each integer n > 0, consider the triple

For some subsequence ξ, this collection converges to a triple (ci, Ci, C{).
By the zooming principle, Xc\ is linear, and Xci = Xb[(0).

On some subsequence of £, the triples

converge to some (C21C21C2). Note that Yc<ι — Yc\ automatically. By
the zooming principle again, Xc2 is linear and Xc2 = Xb'2(0).

To summarize, we have elements (ci,Ci,C{) and (c2,C21C2) such
that

1. XCJ is linear,

2. Xc, = Xa'(xj),

3. yci

7.5. Second limit
Let (cj,Cj,Cj) C S be as above. Let 5 be some point of differen-

tiability for the (common) function YCJ. (This function is bi-lipshitz.)
Let / be the isometry of X which preserves σ and has

PI{x

Let J be the isometry of X

Define

1. Dj =

2. D' =

3. ^ - ,

Note that

ΠCj),

JOCJO

PJ(x,y,

,y,t) = (x,y - s,t).

which preserves σ and has

«) = (*;,y-Ycj(s),t).

2. Xcίj = Xa'(xj), and Xdj is linear,
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3. Ydi = Yd2,

4. yrfJ (O) exists.

For each integer n > 0, consider the triple

(Note here that the inverse of Zn appears on the other side of the com-
position. This is deliberate.) For some subsequence ξ of integers, this
collection converges to a triple (eι,Eι,E[). Note that Xe\ = Xd\,
since linear maps commute with the dilations ran, and note also that
Ye\ = yd^O), by the zooming principle.

On some subsequence of ξ, the pairs

(Z-1od2oZn,Z-\D2),Z-1(D'2))

converge to some (e2,E2,Eι

2). By the zooming principle, Yβ2 = Yd^O)
= YdΊ(0) = yei, and also Xβ2 = Xcfo. (Once again, this is because
linear maps commute with mn.)

To summarize, we have elements (ei,JE?I, JBJ) and (e2,E2,E'2) such
that:

1. Xβj is linear,

2. Xe; = l α ' ^

3. Yβj is linear,

4. yei = Ye2.

7.6. Modified commensurators
Recall that Ω is the standard neutered space associated to

Let r be a peripheral horosphere of Ω. Recall that the commensurator
Comm{S L2{Pd)) is isomorphic to the semi-direct product of
PGL,2(Q(Vd)) with a cyclic group of order two; the cyclic group switches
the two factors of X. Let φ be a commensurator of SL,2{Pd) Then φ
takes r to a horosphere of X which is parallel to some other horosphere
τ' C Ω. The distance between φ(τ) and r' is uniformly bounded; the
bound depends only on φ. Let π τ be the horospherical projection onto
r'. Then, composing φ\τ with π τ gives a new quasi-isometry which takes
r to T'. Doing this for every such r, we obtain a quasi-isometry φ of Ω
which is equivalent to φ. In other words, every commensurator can be
modified canonically so that it acts as a self map of Ω.
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Lemma 7.3. Suppose that f is an affine map over Q(\fd). Then
there is a modified commensurator of φ : Ω -> Ω such that

1. φ(σ) = σ,

2. Xφ = f,

3. Yφ = J.

Proof. Suppose f(x) = μx + β. Consider the diagonal matrix

M •[sfl
Then M x M is a commensurator, and has the desired effect on σ.
q.e.d.

7.7. Galois conjugation In this section, we will set (e,E,E') =
(eι,Eι,E[). The other case, that of j = 2, is treated similarly. Let
/ : Ω -> E and Γ : Ω —> E' be isometries which preserve σ. Consider
the quasi-isometry / : Ω —> Ω defined by the equation

/ = ( J / Γ 1 o e o / .

Then /(σ) = σ, and both Xf and y/ are affine maps of R. (It is not
necessarily true that Pf (0,0,0) = (0,0,0).)

Lemma 7.4. Xf and Yf are affine maps defined over Q(Vd).

Proof. Let L = Ld be the lattice Od x C?d The shadows on σ, of the
horospheres of Ω which are closest to σ, are vertical lines which intersect
R2 x {0} exactly in L.

Since / is a quasi-isometry which preserves peripheral horospheres
of Ω, we know that / takes these "closest horospheres" to other horo-
spheres of Ω, none of which are very far from σ. The shadows of such
horospheres are vertical lines on σ which intersect R2 x {0} in a subset
contained in some lattice αL, for some a G Q(vd).

This states that Xe x Ye takes L into (but not necessarily onto) the
lattice aL. This clearly implies the lemma, q.e.d.

Prom Lemma 7.3 and Lemma 7.4, we can find a modified commen-
surator φ : Ω —> Ω such that

1. φ(σ) = σ,

2. Yφ = Yf,
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3. Xφ = Yf.

Consider the quasi-isometry g = φ o f~ι. Then g : Ω —> Ω is a
quasi-isometry which preserves σ, and has the following properties:

1. Xg = YφoXf-1 =Yφo(Xf)-1.

2. Yg is the identity.

Suppose that ί C σ i s any shadow. Then Pg(l) is also a shadow. How-
ever, I and Pg(l) lie in the same leaf of one of the hyperbolic plane
foliations of σ. This is only possible if I and Pg(l) coincide. This means
that the x coordinate of I is a fixed point of Xg. However, choosing
a different shadow produces a second fixed point of Xg. Since Xg is
affine, the two distinct fixed points imply that it is the identity. This is
to say that Yφ — Xf. Therefore Xf and Yf are conjugate maps.

Hence, Xe\ and Ye\ are conjugate (linear) maps. By switching
indices, Xβ2 and Yβ2 are conjugate (linear) maps. Since Ye\ = Ye2,
we have Xe\ = Xe<ι. Thus, Xa'{x\) = Xa'fa), as desired.

This result, together with the outline given above, completes the
proof of the Rigidity Lemma.

8. Main Theorem and corollaries

In this chapter, we will prove the Main Theorem and Corollary 1.
The other corollaries follow rather easily from these.

8.1. Proof of the Main Theorem
Let Ω be a canonical model for a Hubert modular group. Let q :

Ω -> Ω be a Jf-quasi-isometry. Let σ be a horosphere of Ω. Since the
modified commensurators of Ω act transitively on cusps, we can find
compose q by a modified commensurator so that q(σ) = σ.

The isometry Δ : X -> X defined by

has the effect of switching the two factors of X. Δ belongs to the
commensurator of SL2{Od)-) and preserves σ. Composing with Δ if
necessary, we can assume that q is factor preserving on σ.

Prom the Rigidity Lemma, we see that Xq and Yq are conjugate
affine maps defined over Q(Vd). Prom Lemma 7.3, we can compose by
a modified commensurator so that Xq and Yq are the identity maps.
In other words, Pq is the identity. This implies, in particular, that q
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preserves (one by one) all horospheres of Ω. This easily implies that q
is equivalent to the identity quasi-isometry of Ω (after composing with
a commensurator). Furthermore, the equivalence is uniform, and only
depends on the quasi-isometry constant of q.

8.2. Proof of Corollary 1
Let / : Γ -> Ω be a if-quasi-isometry of a finitely generated group Γ

with a neutered space Ω associated to an irreducible, nonuniform lattice
Λ in G = PSL2{R) x PSL2(R). By the Main Theorem, in order to
show that Γ is (a finite extension of a lattice) commensurable with Λ,
it suffices to find a representation p : Γ —> G with finite kernel and p(Γ)
a (nonuniform) lattice in G.

The group Γ acts on itself on the left by isometries (in the word
metric). We may conjugate this action via / to obtain a uniform family
of quasi-isometries of Ω (N.B.: the action is NOT conjugated to an
action, but to a "quasi-action", i.e., a (uniformly) bounded distance
from an action). By the Main Theorem, each of these quasi-isometries
is a uniformly bounded distance from an isometry. Call the composition
of the conjugation and the bounded alteration

p : Γ -> Isom{X).

Since any isometry of X which is a bounded distance from the iden-
tity isometry is itself the identity, it follows that p is in fact a homo-
morphism. We need only show that p(Γ) is a lattice and has finite
kernel.

Firstly, p(Γ) acts cocompactly on Ω since /(Γ) is a net in Ω. Thus
p(Γ) acts on X — H2 x H2 with cofinite volume.

Pick a basepoint x G Ω. Then, since p(g) was defined via the conju-
gated action of Γ, and / is a quasi-isometry, and by the uniformity of ev-
erything involved, there is a constant C > 0 so that dχ(x, p(g)-x) < C
for only finitely many g G Γ; in particular this distance is 0 for only
finitely many g G Γ. But if dχ(x,ρ(g) x) > 0, then the isometry ρ(g)
is not the identity isometry.

Prom this it follows that p has finite kernel and p(Γ) is discrete.
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