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A CONSTRUCTION OF SINGULAR SOLUTIONS
FOR A SEMILINEAR ELLIPTIC EQUATION

USING ASYMPTOTIC ANALYSIS

RAFE MAZZEO & FRANK PACARD

Abstract

The aim of this paper is to prove the existence of weak solutions to the
equation Au + up = 0 which are positive in a domain Ω C RN, vanish at
the boundary, and have prescribed isolated singularities. The exponent p
is required to lie in the interval (N/(N - 2),(JV + 2)/(N - 2)). We also
prove the existence of solutions to the equation Δu + up = 0 which are
positive in a domain Ω c K n and which are singular along arbitrary smooth
Λ -dimensional submanifolds in the interior of these domains provided p lies
in the interval ((n-k)/(n-k-2), (n-k + 2)/(n-k-2)). A particular case
is when p = (n + 2)/(n — 2), in which case solutions correspond to solutions
of the singular Yamabe problem. The method used here is a mixture of
different ingredients used by both authors in their separate constructions of
solutions to the singular Yamabe problem, along with a new set of scaling
techniques.

1. Introduction and statements of main results

In this paper we construct solutions with prescribed singularities for
the semilinear elliptic equation Au + up = 0 and other closely related
equations, for a certain range of values of the exponent p, in a variety
of situations. The solutions will have singularities prescribed along a
disjoint union of submanifolds of varying dimension. We now describe
our results, starting with the simplest case when the prescribed singular
set is discrete.

Suppose Ω is any bounded open set in E N , with smooth boundary.
Consider the equation

m ί - Δ u = up in Ω
W \ u = 0 on dΩ,
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A weak solution of (1) is a function u which solves this equation on all
of Ω in the sense of distributions. In particular, any such solution must
belong to LP(Ω). The singular set of a weak solution u, sing(ϊi), is the
complement in Ω of the set of points where u is continuous, and hence
smooth.

Our first result concerns the case when the singular set is finite. We
single it out since its proof is slightly simpler than the more general
case.

Theorem 1. Let Ω be as above, and suppose that Σ = {#i, . . . ,£*} C
Ω is any finite set of points. Suppose also that the exponent p lies in the
range

Then there is a K parameter family of positive weak solutions u of (1)
with sing(u) = Σ. In fact, the solution space of this equation is locally
a K dimensional real analytic variety.

It is known that if the exponent p is less than N/(N — 2), then any
weak solution of (2) must be smooth on all of Ω. The existence of
solutions of this equation with prescribed isolated singularities when
p lies in the interval N/(N — 2) < p < po> where pΌ is some value
close to N/(N - 2) (and in particular, less than (N + 2)/{N - 2)), has
already been solved by the second author in [10] and in [11]. When
p = (N + 2)/(N — 2), which is the so-called critical exponent, the prob-
lem becomes conformally invariant. There is then a loss of compactness
and the problem consequently becomes much more difficult. Solutions
now correspond to metrics of constant nonnegative scalar curvature
which are complete in a neighbourhood of the singular points. It is
geometrically more natural in this case to replace the domain by SN (or
in fact, any other compact manifold of nonnegative scalar curvature);
the operator Δ then needs to be replaced by the conformal Laplacian
Δ — 4(

i^~2

1)i?0, where RQ is the scalar curvature of the background man-
ifold. An additional source of difficulties in this case is that the position
of the singularities is no longer necessarily arbitrary. The general exis-
tence result for this geometric problem (when the background manifold
is the sphere) was obtained by R. Schoen [14]. The recent work of the
first author, along with D. Pollack and K. Uhlenbeck [7] examines the
moduli space of solutions for this problem.

In any event, Theorem 1 extends the result of [10] and [11] to the full
range of subcritical exponents.

It is also possible to prove existence of solutions of (1) which are sin-
gular along submanifolds of higher dimension. Now let Σ = U ^ Σ i ,



A CONSTRUCTION OF SOLUTION FOR ELLIPTIC EQUATION 333

where each Σ^ C Ω is a smooth submanifold without boundary of di-
mension ki > 0. We shall suppose that Ω C E n , since we reserve the
symbol N (or more properly N{ = n - ki) for the dimension of the
normal space to each Σi.

Theorem 2. Suppose that the exponent p satisfies

U. n 1c. 4- 9

or in other words

2p + 2 . ^ 2p
n p-\ p-\

for i = 1,... ,K. Then there is a positive weak solution u of (1) with
sing(u) = Σ. Provided at least one of the ki > 0, there is an infinite
dimensional space of solutions for this problem.

Again, the existence of solutions for this equation with higher dimen-
sional singular sets of dimension k has been solved by Y. Rebaϊ [13]
when the exponent p lies in the interval (n — k)/(n — k — 2) < p < pfc,
where pk is close to the lower endpoint of this interval, and in particu-
lar, less than (n — k + 2)/(n — k — 2). We shall only prove this result
when p > (n — ki)/(n — ki — 2) since it would complicate the notation to
cover the borderline case where p attains the lower limit of this interval
of values. However, the arguments below could be extended without
undue difficulty to cover this value as well.

A special case of Theorem 2 is the singular Yamabe problem. This
occurs when the exponent p attains the critical value (n + 2)/(n — 2).
In this case, the dimensions of the Σ^ are allowed to lie in the range
0 < ki < (n — 2)/2. As discussed above, it is more natural now to replace
Ω by the round sphere (Srn,3o)5 or indeed by any compact manifold
(M, g0) with (constant) nonnegative scalar curvature, and to replace
the Laplacian by the conformal Laplacian Lo = Δ — AΓ~^ι\R(9o)- The
relevant equation now is

(3) -LΌu = u^

on M. At least when the background manifold is the sphere, it follows
from work of R. Schoen and S. T. Yau [15] that solutions to this singu-
lar Yamabe problem (for which the corresponding conformally related
metrics g = u4^n~2^g0 are complete and have bounded Ricci curvature)
exist only if the dimension of the singular set is less than or equal to
(n - 2)/2. Thus, Theorem 2 implies

Theorem 3. Let (M,g0) be any compact manifold with constant
nonnegative scalar curvature. Let Σ C M be any finite disjoint union
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of smooth submanifolds Σ* of dimensions ki with 0 < ki < n^. Then
there is an infinite dimensional family of complete metrics on M \ Σ
with constant positive scalar curvature.

Together with the result of [12], which treats the case k{ = n^ when
n is even, this theorem settles the question of existence of solutions
to the singular Yamabe problem (with constant positive scalar curva-
ture) whenever Σ is a finite disjoint union of smooth submanifolds with
dimensions greater than zero, but less than or equal to (n — 2)/2.

Finally, we may apply the arguments of [8] to slightly refine Theo-
rem 2 :

Theorem 4. Let Σ be any finite disjoint union of C3'α submanifolds
in Ω of dimensions ki satisfying the restrictions above. Then (1) has an
infinite dimensional family of solutions.

The basic idea of Theorems 2 and 3 is that solutions of (1) with
positive dimensional singular sets may be obtained as perturbations of
solutions to the problem on the fibres of the normal bundle of Σ. The
exponent ^ ± | i s subcritical for the induced problem on these fibres,
which are of lower dimension than the ambient space. In particular, the
problem with critical exponent may be reduced to a subcritical one.

The paper is organized as follows. First we analyze the asymptotics
of rotationally invariant solutions of the problem on RN \ {0}. These
are then used to construct approximate solutions for each of the prob-
lems. At this point we then give a more detailed outline of the strategy
of the proof. The main task is to analyze the linearization of the non-
linear operator around these approximate solutions, and to prove that
these linearizations are surjective on appropriate function spaces. This
occupies the bulk of the paper. After this is accomplished, the exact
solutions are obtained by a fixed point argument. The deformation
spaces for the solutions of these operators, and the arguments necessary
to replace Ω by a manifold M are discussed in the last section.

The authors are grateful to Dan Pollack for having carefully read
the manuscript and making a number of suggestions to improve the
exposition.

This work was initiated while the second author was visiting the
Mathematics Department at Stanford University. F. Pacard would like
to take this opportunity to thank the Stanford Department for its hos-
pitality.

2. Singular radial solutions on RN \ {0}

In this section, we recall some well known facts which appear for
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example in [2].

Proposition 1. For any exponent p G (J?ZΪ,J!^), there exists a
one parameter family of weak solutions uc, e > 0, for the equation

(4) -Au = up in RN,

such that the u€ are radial, singular only at the origin, and satisfy the
following properties :

• ue(r) > 0 for 0 < r < oo.

• ue can be written as

u€(x) = |x|-^τV l(-log(|a;|/€))5

where the function vλ is bounded independently of e.

• lim^+oo vι(t) =υoo> 0, where

and in particular, is independent of e.

. o o e " ^ " ^ ) ^ ^ ) < +oo; in particular, for \x\ large

where the constant c is independent of e.
. Finally, IΠI*"1 < ψυζ K

Proof First define a new independent variable t = — log |:r| and set

(6) u{x) = \x\-^v{- log(|z|)).

Then the new function v(t) satisfies

(7) d>tV - (N - 2 ^ ) dtv - -?- (N - - \ ) v + v* = 0.

Now look at the phase-plane portrait for this equation in the (v,vt)
plane. The two equilibrium points are (0,0) and (t;oo>0), where v^ is
defined in (5); the first of these is a saddle point and the second a stable
equilibrium. There is a single orbit issuing from (0,0) and tending to
(Ϊ OCO) as t —> oo. Let Vι(t) be one of the functions corresponding to
this orbit; it is determined only up to the choice of its initial Cauchy
data (^i(O), ̂ i(O)). Now let υ€(t) = ^ ( t + loge). As e varies over (0,oo)
we obtain all solutions of (7) which converge to 0 as t -» — oo and to Voo
as t —> oo.
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We now obtain an upper bound on the function Vι(t). It is easy to
see that the trajectory (υι(t),v[(t)) is contained within the homoclinic
orbit of the Hamiltonian system

(8) d\w - -2— (N - ^

which tends to (0,0) as t tends both to +oo and —oo. Let (ttfi(t),
parametrize this orbit. Then we conclude that

sup Vι < sup wι.

The conservation of Hamiltonian energy for (8) now shows that

ιui attains its supremum when w[ = 0, so we obtain the upper bound

wΓH*) < ̂ r ^ " 1 f o r a11 t e M

z
This ends the proof of the Proposition.

Remark 1. For any e > 0, whenever u(x) is a solution of (4),
e~F=T|x(e"1 x) is another ' of this same equation. This dilation invariance
corresponds exactly to the translation invariance of the equationl (7)
for v. We let Uχ(x) be the solution corresponding to vx and

u€(x) = e~^TUi(e~1 x)

Later we will also need the following :
Remark 2. By this rescaling we can always assume that, for any

given constant a > 0, vλ may be chosen so that

(10) supt i(t) < α .

The final remark relates the construction of approximate solutions
here to those used in [8]:

Remark 3. The stable point (i>oo,0) corresponds to the singular
solution

uo{x) = ^ o o k Γ ^

This solution is invariant by the scaling described above. The fact that
uι is not dilation invariant is crucial in the construction of approxi-
mate solutions in this paper. The approximate solutions in [8] were
constructed using u0, but because of its dilation invariance, only local
solutions near the singular set could be proved to exist there.
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3. Function spaces

In this section we define the weighted Holder spaces C*>α(Ω \ Σ) ap-
propriate for this problem. Roughly speaking, the functions in these
spaces are products of powers of the distance to Σ with functions whose
Holder norms are invariant with respect to scaling by dilations from any
point on Σ.

We shall use local Fermi coordinates around each component of Σ to
define these spaces. When Σ* is a point, these are simply (geodesic) po-
lar coordinates (r, θ) around that point. When Σ^ is higher dimensional,
let T^ be the tubular neighbourhood of radius σ around Σi. It is well
known that T^ is a disk bundle over Σ*, and is diffeomorphic to the
disk bundle of radius σ in the normal bundle NΣit Using the metric,
this diffeomorphism is canonical. The Fermi coordinates in this tubular
neighbourhood will be constructed sis coordinates in the normal bundle,
transferred to T^ via this fixed diffeomorphism. Here r is the distance
to Σi, which is well defined in T}^ and smooth away from Σ; provided
σ is small enough, y is a local coordinate system on Σ*, and θ is the
angular variable on the sphere in each normal space NyΣi. Let i?Λr,σ de-
note the ball of radius σ in NyΣi. We shall let x denote the rectangular
coordinate in these normal spaces, so that r = \x\ and θ = x/\x\.

Let us also fix a function p > 0 in C°°(Ω\Σ) with p equal to the polar
distance r in each T}^. Let w be a function in this tubular neighbour-
hood, and define

,, ,,τ(<) , , {r + f)a\w(z) - w{z)\

M H + S UP

Here z, z are any two points in T}^ and (r, y, 0), (f, y, £) are their Fermi
coordinates.

Definition 1. The space Co'α(Ω \ Σ) is defined to be the set of all
w e C*'α(Ω \ Σ) for which the norm

IMkα,o = IHkα,Ω./a + Σ Σ H v i H β }

i=l j=0

is finite. Here Ωσ / 2 = Ω \ U ^ T ^ . Then, for any 7 <Ξ R,

C '̂α(Ω \ Σ) = {w = pΊw : w E Co

fc'α(Ω \ Σ)}.

Thus functions in C*'α(Ω \ Σ) are allowed to blow up like ρΊ near
the Σ{. This space is endowed with the natural norm |Mkα, 7 =
||p~~7Hkα,o N o t e t^at when Σ< is positive dimensional, functions in
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Ck>a may be differentiated in the 'tangential' direction only at the ex-
pense of giving up a power of p. Equivalently, their derivatives with
respect to up to A -fold products of the vector fields rdri rdy, dβ blow up
no faster than pΊ.

We collect a few essentially trivial remarks about these spaces :
Lemma 1.

1. J/ 7G(-iV,0) then C*'α(Ω\Σ) C £P(Ω) for p G (1,-Nf-γ).

2. For w G C^a and v G C*;a, then wv G C*f7, and also

| | H k 7 ' 4IHk<vylMk«v

3. Given w G C^a with w>0 and ifp>k + 1, then wp G Ckf and

for some constant cp > 0 only depending on p.

4. Ifw G £^+1'° and \Vw\ G C*'°u then for any a G (0,1), w G C*'α.

We shall also need a slightly better estimate for the norm of wp.
Lemma 2. For any η > 0, 7 > — 7-rfw there exists some θ > 0,

depending only on 7 and η, such that if ||w||o,α,7 < 0 then

Proof. The proof relies on the simple fact that

Since 7 > — ~τγ, we see that pη > 7 — 2, and the result follows immedi-
ately.

Definition 2.

) = {w G C*'α(Ω \ Σ) : ti; = 0 on

Finally, we shall also need to use Holder spaces on ΈίN \ {0}, re-
spectively Rn \ Rk, which have different decay properties at the origin,
respectively at Mfc, than at 00. Now we simply use the global polar
coordinates (r, θ) in M.N \ {0}, and cylindrical coordinates (r, 0, y) in

k ^ *
Definition 3. For any 7,7' G R, the space C^f(RN \ {0}) consists

of all functions w for which the norm

I M k α l 7 f 7 ' = S U P IMkα/Y + S U P lhlU
B2(0) \̂(

is finite. The definition of C*|y (Rn \Rk) is similar; we need only replace
Bj(0) by the tube of radius j around Rk, j = 1,2.
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Although these Holder spaces are our primary tools, we shall also
need to refer on occasion to a family of weighted L2 spaces and their
associated Sobolev spaces. These will be needed only for nonisolated
singularities, so we restrict ourselves to that case.

Definition 4. The weighted space rδL2 on Rn \ Rk is defined by

rδL2(Rn \ E ^ r ^ " 1 drdθdy) ={w G ifoc(Kn \ R*) :

\wfrN-i-2δdrdθdy<(χ)y

The space p(5L2(Ω\Σ) (relative to standard Euclidean volume measure)
is defined similarly, using the function p above.

There are associated weighted Sobolev spaces rδH*(Rn \ Rk) when
5 is a positive integer, where the subscript e signifies that these spaces
are defined with respect to differentiations by the vector fields rd r, rdy

and dβ (When s is an arbitrary real number, they may be defined by
duality and interpolation.) Note that

Cί ° (Rn \Rk)CrδL2 {Rn \ Rk) provided

σ + (N- 2)/2 < δ < 7 + (N - 2)/2

(11)
C^a(Ω\Σ)CpδL2(Ω\Σ) p r o v i d e d δ<j + {N-2)/2.

4. Construction of approximate solutions

Now that the family of radial solutions u€(x) to (4) on RN \ {0} has
been introduced, we can construct the approximate solutions for these
problems. We also derive estimates of how far these solutions differ
from exact solutions in terms of the weighted Holder norms of the last
section.

4.1. Approximate solutions with isolated singularities
Approximate solutions for (1) which are singular precisely at the

points of Σ = {xij...<tXκ} a r e constructed by superimposing appro-
priately translated and dilated copies of the singular radial solutions.
The K free parameters in the exact solution correspond to the K differ-
ent dilation parameters we can prescribe independently at each of the
singular points. First, choose χ(x) G C™(RN) with χ = 1 when \x\ < 1
and x = 0 when |x| > 2, set XR(X) = χ(x/R). Also choose R > 0 with
R < RQ = infi^(dist(xi,rrJ))/2). Let e = (eu ,eκ} be a If-tuple of
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dilation parameters. Now define

K

(12)

Set j τ = Aϋξ + ϋξ. After some computation, we get

K

fe = Σ u^ (x ~ χi

Lemma 3. For any 7 G R, Λ̂ere exi5ί5 α constant c, depending on
R and 7, such that

||Λ||o,α,7-2 < C€o
 p"1, provided each e{ < e0 < 1.

Proof. For \x - x{\ G (Λ, 2R), we get

and

for some constant c > 0 depending on N and R. The result follows at
once.

4.2. Approximate solutions in the general case
Now suppose Σ = U ^ Σ ; where each Σ; is a smooth submanifold in

Ω of dimension fcj. To simplify the notation here, we assume that all
ki>0.

In terms of the Fermi coordinates introduced in §3, the Euclidean
Laplacian on T^ can be written locally in terms of the Laplacians for
Σi and NyΣi\

(13) Δ = AN + ΔΣ< + β l V2 + e2 V,

where ex and e2 satisfy

for some constant c > 0 which does not depend on α, nor on x,y. This
is discussed in [8] and [3].
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Now choose a smooth cut-off function χ on RN as before, which only
depends on |z|, and such that χ(x) = 0 for \x\ > 2 and χ(x) = 1 for
\x\ < 1. Also, set χR(x) = χ(x/R). If 0 < e{ < 1 and R < σ/2, then
define, in some neighborhood of y0 G Σ i ? the function

ΰ€i(x,y) = €i"
F"1tii(a?/ci)Xii(a:) = u€i(x)χR(x).

Since this function only depends on the variable in the normal space,
and is independent of the angular variable 0, it is clear that it may be
defined globally on all of Tσ

{i). Now let ΰz = Σ?=i ύu.
As before, let

Using (13), we compute that

Λ = ex (z, y) - V2ΰ£- + e2(x, y) -

L e m m a 4. TΛere erci5ί5 5ome c > 0 depending on 7 £m£ independent
of e0 < 1 swcΛ £Λα£ i/ eαcΛ ê  < e0, ίΛen

IIΛIkα.7-2 < ^ 0 5

q = £5γ — 7.
Proof. The estimate follows at once from similar estimates already

used in Lemma 3 and also from the estimates given in (13).
This exponent q is strictly positive by our assumptions on p, provided

Ί> —1 * p-l

5. Outline of the proof

In both the cases of solutions with isolated or more general singular-
ities, we wish to solve the equation (1) by perturbing the approximate
solutions ΰz to this problem we obtained in the preceding section. That
is, we wish to represent the exact solution u as a sum u = ΰΈ + v, where
υ is small compared to ΰΈ. Thus we wish to solve

Δ(ϋ ? + v) + (ΰΈ + υ)p = 0,

or, what is the same thing,

(14) L?v + f? + Q(v) = 0.

Here

(15) Q{υ) = (δ* + v)p - δ? - pΰ\~ιv
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is the remainder term, which is quadratically small if υ is smaller than
ΰi in an appropriate Holder norm, and

(16) LΈ = A+pΰp,~1

is the linearization about this approximate solution.
We shall show that there is some e0 > 0 and some constant 0 < c < 1

such that for any e < e0, if ce < e* < e for all i, there is an exact solution
of (1) which is a small perturbation of ΰΈ. Writing u = uτ + w as before,
where w G C^α(Ω \ Σ), we can ensure that u is singular at Σ provided
v > —2/(p — 1). In addition, we shall be able to prove that the solution
space is a ΛΓ-dimensional manifold.

When any of the kι > 0, then we shall show later that the solution
space is infinite dimensional.

The analysis of this linearization is the fundamental issue of this
paper. It is easy to see that

(17) L c - : C ^ ( Ω \ Σ ) ^ C ° L α

2 ( Ω \ Σ )

is bounded for any i/GR and e. We must show that (17) is surjective
for some v > — 2/(p — 1), provided that each e{ is sufficiently small.
Once this is shown, then it follows that Lτ has a bounded right inverse

(18) G-t : C?L"2(Ω \ Σ) —> # « ( Ω \ Σ).

We must also show that the norm of this map is bounded independently
of the βi for e{ < e0. However, for the range of values of v for which (17)
is surjective, the operator Lτ is not injective on C^'α(Ω \ Σ), so that Gτ

is not uniquely defined. As usual, a good choice for a right inverse is
the one which maps into a fixed complement of the nullspace of LΈ, for
example, the orthogonal complement with respect to some weighted L2

structure.

To prove surjectivity of (17) we prove both that its range is closed and
that the cokernel is trivial. When Σ is a discrete set, the closedness of the
range is rather elementary, but when some component of Σ has positive
dimension this fact is somewhat deeper. Fortunately, the construction
of pseudodiίferential right parametrices for the general class of elliptic
'edge operators,' of which Lz is a particular example, falls within the
scope of the theory developed by the first author in [6]. Existence of such
a right parametrix with compact remainder implies that the range of Lτ

is closed in all cases, and that its cokernel is at most finite dimensional
for a certain range of values of v. To show that this cokernel is trivial,
and that the norm of Gτ is uniformly bounded for sufficiently small ê , we
employ scaling arguments. These arguments proceed by contradiction,
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showing that if first surjectivity, and secondly uniform surjectivity were
to fail, then counterexamples for increasingly small βi could be rescaled
to obtain some element of the nullspace of the global operator Iq on
^N \ {°}> O Γ Li on Kn \ Rk which we show cannot exist. Once these
results are established, the rest of the proof of the existence of solutions
follows from a standard fixed point argument.

We remark here that we have proved these results concerning the
uniform surjectivity of Lτ in slightly greater generality than is used
in the nonlinear analysis. In particular, we are able to show that LE

is uniformly surjective provided all ê  < e0 for e0 sufficiently small.
However, we are only able to prove the fixed point theorem if ae < e* < e
for some e < e0, and for some a G (0,1), i.e., when all the e* are mutually
relatively bounded.

6. The globalized linearization

In this section we analyze the behaviour of the operator

L1=A+pup

ι~
1

on RN \ {0}, and later the corresponding induced operator on Rn \
In polar coordinates, L\ takes the form

(19)

where Vp(r) = r2 -puι(r)p~ι. Prom Proposition 1 above we have

(20) limr^o Vp(r) = pv^

(21) Vp{r) - cr(2-^)(p-υ+2 as r -> oo.

Notice that the exponent (2 - N) (p - 1) + 2 is negative precisely when
p>N/(N-2).

6.1. Indicial roots
Li has a regular singularity at r = 0 and, because Vp(r) tends to 0

as r tends to infinity, it also has one at r = oo. Hence the asymptotic
behaviour of solutions to L\W — 0 are determined by the indicial roots
of this operator at these points. At r = 0, the indicial roots for Lλ are

(22,
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Here the λ̂  are the eigenvalues of the Laplacian on 57V~1, counted with
their multiplicity. More precisely

λo = 0, λ, = J V - 1, j = 1,...ΛΓ, etc.

The indicial roots for Lλ at r = oo are the same as for the Laplacian
itself, since V tends to 0 at oo; these values are

(23) ^ = ^ ± \ / ( ^

Notice that these numbers are integral and assume all integer values
except —1, —2,..., 3 — N.

Because Lλ has a regular singularity at 0 and oo, its mapping prop-
erties are well-known, cf. [1], [6].

Proposition 2. The bounded linear map

U : C?£(R* \ {0}) —> C°1\V_2(R" \ {0})

is Fredholm provided 7 0 {7^} and 7' # {7^ }•
We will let 7' = - 1 or 0 since we are only interested in solutions

which decay at 00, or at least are bounded. We could replace this —1
by any value of 7' in (2 — iV,0). However, when N = 3, we need to
choose 7' G (—1,0). We shall not comment on this further, and persist
in letting 7' = — 1, with this understanding.

6.2. Numerology
We record some facts about these indicial roots and some of the other

constants that arise frequently for later reference.
Lemma 5. Let p be any number in the range N/(N — 2) < p <

1. The functions —2/(p — 1) and Ap are monotone in p and

Λ A r -2 2-iV J2- N > > — - — and

N2 - 4
0 < A, =

2. There is a number p* in (jfzζ, ^ΐf) such that for
N/(N — 2) < p < p*, the indicial roots 7^ are real, with

while ifp* < p < (N + 2)/(N -2), then 7^ are both complex
with real part (2 - N)/2.
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3. 7f < — £ Z Ϊ , in fact 7f = — ̂ 17 — 1. Hence in particular, 7* are
always real.

6.3. Injectivity of Lλ on <*;?(»" \ {0})
Fix two weights v and μ with

(24) ^ ϊ < v < ^ ^ - 2~Γ' -
and μ + u = 2 — N. These weights are 'dual' in a sense to be explained
later. The interval in which μ lies is chosen to guarantee injectivity of
Li on C^o5 v is determined by this duality, but also chosen not to be
too negative in accordance with the nonlinear problem.

Proposition 3. The only solution w G C2

μ\%(RN \ {0}) of the
equation L\W — 0 is the trivial solution w = 0.

Proof. Let {φj{θ),\j} be the eigenfunctions and eigenvalues for
Δ0, the Laplacian on S^" 1 . Then if w is any solution of Liw = 0, it
decomposes into the infinite sum

where the Wj solve

d2 N - 1 d 1 / τ , , v , x

The value j = 0 is omitted in the sum above since every solution of
^1,0^0 — 0 blows up faster than rμ near r = 0.

Now, by the growth restrictions on w near 0 and infinity, each Wj

must be bounded by Cjr1* as r -» 0, and must decay like r2~N~j as

r -> 00. We shall show that this forces Wj to vanish.
First of all, notice that if Xj > supV^, then solutions of LijWj = 0

satisfy the maximum principle. For these values of j it is also true that
7^ > 0, and so Wj tends to 0 both at 0 and infinity, hence must vanish
identically. Thus there are only finitely many values of j for which Wj
may possibly not vanish. To deal with most of these, we use an integral
estimate which will show that Wj = 0 ΐoτ \j > N — 1. Multiply the
equation LιyjWj = 0 by rN~ιw and integrate from K to R. Integrate by
parts and use that μ > (2 — N)/2 and that Wj decays at least as fast
as rx~N as r —> 00 to see that the boundary terms converge to zero as
K —> 0 and R -> 00, and that the integral converges. The result is that

Γ -{driver*-1 + (Vp(r) -
^0

dr = 0.
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Now rearrange terms and estimate V by its supremum:

= Γ{Vp{r)-\)rN-*\Wj\
2dr

Jo

< (supFp -λj)ΓrN-ΆwUr.
Jo

To proceed further, we note that there is a general inequality for any
function which decays like rμ at 0 and like rx~N at infinity:

To prove this, observe that

Γ rN~3w2 dr = —±— Γ w2drr
N~2 dr

Jo N-2Jo

where again the boundary terms vanish in the integration by parts be-
cause of the assumed rates of decay. Now use the Cauchy Schwarz
inequality to prove the claim.

Use this inequality in the estimate for Wj above to get

( J V ~ 2 ) 2 Γ rN-*w) dr < (sup Vp - λ, ) Γ rN-zw) dr.
4 Jo Jo

If sup Vp — λj < (N — 2)2/4, then this inequality shows that Wj must
vanish identically. By Proposition 1) and Lemma 5

The function of p on the right is dominated by its value at p =
(N + 2)/(JV - 2), so that

N N2-4

But now

N(N + 2) (N-2)*
λ <4 λ3 < 4

and this occurs for all j except j = 0,1,... , N.
Thus we have shown that Wj = 0 for j > iV, and because of the

restrictions on the growth at r = 0, we also know that w0 = 0. It
remains to show that Wj; = 0, j = 1,... N. It turns out that we can
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write down an explicit solution of Lijtυ = 0 for this range of j . In fact,
differentiate the equation Auλ + u\ = 0 with respect to d/dxj to get

L dUι - 0
σxj

Since uλ depends only on r, dui/dxj = (duι/dr)θj, where θj = Xj/\x\.
Since —Δθθj = Xjθj, j = 1,...JV, u[(r) solves Lijw = 0. But u[(r)
decays like rλ~N as r -> oo and blows up like r-

2/(p-i)-i as r -» 0. If w.,-
solves LxjWj = 0 and decays like rx~N at infinity and like r7> at 0, then
some nontrivial linear combination of u[ and Wj must decay faster than
rx~N at infinity; since the singularities of these functions at 0 cannot
cancel, this linear combination is nonvanishing. This is a contradiction,
since no solution of £χ j can decay faster than rx~N at infinity. Hence
Wj = 0, and the proof is complete.

6.4. Injectivity of U on C^(R n \Rk)
The argument that the induced operator Li = Lx + Ay on Rn \ Rk

is injective on functions which blow up no faster than rμ and decay like
r" 1 as r —> oo is somewhat more complicated, but rests on the results
of the last section.

Proposition 4. The only solution w G C^o(Rn \^k) which satisfies
hiw = 0 is w = 0.

Proof. As in the previous subsection, we analyze this equation by
reducing it to a family of ODE's and studying these separately. This is
done by first taking the eigenfunction decomposition in 0, as before, but
then also taking the Fourier transform in y. Letting η be the variable
dual to y in the Fourier transform, we obtain the family of operators

d2 N - 1 d VJr) - λj . l2

If IU w = 0 and w € C^'g, then

r,θ,v)=Σ fei' ηwj{rtη)dy,
-•_n J

where hjt\η\2Wj = 0 and Wj G C2

μ^(E+) and depends distributionally on
η. Clearly, if L^ptfy = 0 with Wj G Cl\%(R+) implies Wj = 0 for every
j , then hiW = 0 with w G C2

μ$(Rn \ Rk) implies w = 0 as well.
First observe that the integration by parts argument of the last sub-

section may be repeated essentially verbatim to show that all solutions
of this equation are trivial unless j = 0,1,. . . , N. Furthermore, since
μ > R(7o:), there are no solutions in C^o(R+) for j = 0, either. Thus
we are left to consider only the case j = 1,... JV, where λ3f = N — 1.
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For simplicity, in this argument, let us drop the index j in our notation
and replace \η\2 by a parameter E. Then L ^ a becomes L#, and so
forth. Now let us recall that any solution of ΊLβW = 0 has a Probenius
series expansion (convergent in some interval, since Vp is real analytic)
of the form

(25) w ~
j=o j=o

There are additional terms, with logarithmic factors, in the second series
in the case when the two indicial roots differ by an integer. Since the
argument is quite analogous in that case, we only consider the case when
these extra terms do not appear. The two leading coefficients, α0 and
&o are free, and may be specified arbitrarily; all the a,j for j > 0 are
determined in terms of CLQ by a recursion formula, and similarly for the
bj. In particular, if a0 = 0, then all α̂  = 0. Hence, since μ > 7~, we
have that w E C^a near r = 0 if and only if α0 = 0.

We shall show by a sort of continuity argument, treating both p and
E as parameters, that if w is a nontrivial solution on K+ growing at
most polynomially as r —> oo then α0 never vanishes.

For any two numbers 0 < r0 < rλ < oo there is a map C r o > r i which
sends the Cauchy data (w(ro),w'(ro)) of a solution w at r0 to its Cauchy
data (w(ri), w'(rι)) at rλ. When r0 = 0, this Cauchy data is replaced by
the pair of leading coefficients (αo,&o) *n (23) If 0 < r0 then it is well-
known that C r o, r i is invertible and depends smoothly on the parameters
(p, E). It is also true that if rx is in the interval of convergence of the
series (23) then Co,n is invertible and still depends smoothly on {p,E).

Amongst the two dimensional family of solutions of hEw = 0, there
is one solution, unique up to multiplication, which decays at infinity.
Actually, if hEw — 0 and if w is of polynomial growth as r -> oo, then
w decays like r

qe~ry^ for q determined by the coefficients of L#. We
fix the solution uniquely by requiring that w(l) = 1. This makes sense
because, by the normalization in §2, the function Vp(r) is less than some
fixed constant, in particular less than N — 1, for r > 1. Thus solutions of
hEw = 0 satisfy the maximum principle on [l,oo). Hence any solution
which vanishes at r = 1 cannot decay as r —> oo.

For this decaying solution w look at the leading asymptotic coeffi-
cient α0 = Q,Q(P,E) in its series expansion at r — 0. We write out this
dependence on the two parameters p and E explicitly since we need to
show that ao(p,E) φ 0 for (p,E) in the strip

(N/(N - 2), (N + 2)/(N - 2)) x [0, oo).
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For if this holds, then w £ C2£ (R+) and our result will follow.
We first show that α0 is smooth in (p,E). We do this by using the

maps CΓ0)Γl discussed above. First consider the Cauchy data (l,κ/(l))
of the decaying solution w. Since the coefficient of order zero of hE

is negative on [l,oo), w may be constructed by the 'shooting method'
there, i.e., by solving the boundary problem hβWR = 0 on [1,Λ], with
wR(l) = 1 and WR(R) = 0, and letting R —» oo. By the maximum
principle, the limit must exist, and since it is bounded it agrees with
w. Since the Cauchy data (l,w#(l)) depends smoothly on (p,E) for
each β, it is not difficult to see that the limiting values (l,tι/(l)) do as
well. Now use the composition of the (invertible) maps C0,r0 for r0 very
small, and Cro>i to conclude that (αo,6o) depends smoothly on (p, E).

Now we proceed with the rest of the argument. First observe that
αo(p>0) Φ 0 for any p by the result of the previous subsection. In
fact, writing out the explicit solution dui/dr more explicitly, we can
check that αo(p, 0) > 0. Next, note that for p sufficiently close to its
lower limit N/(N — 2), the function V stays uniformly small, and in
particular less than N — 1 for all r. Hence we can again apply the
integration by parts argument of the previous subsection, but now using
that sup(V ,̂ — N + 1) < 0, which immediately shows that α0 Φ 0 for all
p < N/(N — 2) + K for every E and for some K > 0. By continuity from
E = 0, α0 > 0 for (p, E) in this smaller strip. Finally, we can apply a
similar argument when E is sufficiently large, regardless of the value of
p. In fact, all we need is that the supremum of Vp(r) — N + 1 — r2E
is less than (N — 2)2/4, and this is clearly true for any p, for E large
enough. Thus, α0 > 0 also for (p, E) in this range of values.

Finally, suppose that there is some value of (p, E), with
p e (N/{N - 2),(JV + 2)/{N - 2)), for which α0 = 0. Using the
regularity of α0 in these parameters, there is some (po,Eo) for which
αo(po?#o) = 0 a n d {Q>O)E(POIEO) = 0 (i.e., both α0 and its derivative
with respect to E vanish there). Differentiate the equation hEw — 0
and set (p, E) = (p0, Eo). If w = dw/dE then

= 2w.

Since α0 = 0, the right side of this equation blows up only like r 7 as
r —> 0. Thus w is the sum of two terms; the first blows up no faster
than r 7 + + 2 , while the second is a solution of the homogeneous equation
and might blow up like r 7 ". However, since the leading coefficient of w
is the derivative of the leading coefficient of w, i.e., it is (αo)#, which
vanishes, we see that this solution of the homogeneous equation is absent
and w blows up no faster than r 7 + + 2 . Now multiply the equation by
w rN~ι and integrate from 0 to infinity. Using the exponential decay



350 RAFE MAZZEO & FRANK PACARD

as r tends to infinity, and that w ~ r 7 + , w ~ r 7 + + 2 as r tends to 0, we
see that this integral is well-defined, since 2j+ > 2 — N. Furthermore,
it is permissible to integrate by parts to get

0= Γ(LEw)wrN-1dr= Γ w(l.Ew)rN-1 dr = 2 Γ \w\2rN~ι dr.
Jo Jo Jo

Hence w = 0 for this value of (p, £7), which is a contradiction.
6.5. Surjectivity of Lx and Li on Cl^i
Prom the results of the last subsection we may deduce the following:
Proposition 5. Let — ^ < v = 2 — TV — μ < ^(jo) a s before.

Then the maps

and

JLi : C^.X^JHL \ K ) — > C I / _ 2 ) _ 3 (M \ K )

are surjectiυe. Furthermore, the first map is Fredholm and its nullspace
is one dimensional, while the second map has an infinite dimensional
nullspace.

Proof. We shall only sketch the proof of this result and provide
references to papers where analogous facts are proved thoroughly. As
discussed already in §5, the proof of this result is much simpler for
the former of the two maps. In fact it is not difficult to write down a
right inverse for Lλ directly in terms of solutions of the homogeneous
problem Liw = 0. In order to do this, it is crucial to use the fact that
any solution which is bounded by a multiple of rμ near r = 0 does not
decay as r tends to infinity, and any solution which decays at infinity
must decay at least as fast as r2~N. Note that this is equivalent to
the injectivity of Lλ on Cμ'̂ i The right inverse for L\ may be written
as a sum of the right inverses for Lij on each eigencomponent; each
of these right inverses may be constructed explicitly from the solution
which blows up like Γ7J as r —> 0 which is unbounded as r —> oo and
the solution blowing up like r 7 ' as r -> 0 and decaying as r —> oo.
It is then not difficult to show that this sum of right inverses for each
eigencomponent is bounded on the weighted Holder spaces, cf. [1] for
this procedure for a closely related operator. This proves that Lλ on
CΊ^Ί is not only Fredholm but surjective.

Any solution of Liw = 0 in Cl]Zι must be radial, by considering its
growth as r -> 0. There is a two dimensional space of solutions of
£i,oWo = 0. By considering a suitable nontrivial linear combination of
any two basis elements of this space we obtain a solution which decays
like r2~N as r —>• oo; there cannot be two independent solutions with
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this decay rate for the same reasons as in the previous subsection. This
solution grows like some combination of r7° as r -> 0, but in either case
is in Cl^λ. Hence the nullspace is one dimensional.

To establish the corresponding facts for 1^ we use Hubert space tech-
niques and the construction of a pseudodifferential right parametrix for
Li from [6]. Li is surjective on C '̂"χ provided its range is both closed
and dense. The existence and boundedness of this right parametrix
gives the closedness of the range. Then duality, coupled with Proposi-
tion 4, yields that the cokernel of this map is trivial, so that the right
parametrix may be replaced by a right inverse.

It is most natural to construct the pseudodifferential right parametrix
for Li relative to the spaces τδL2 because of the central role of the
Fourier transform in this construction. Once the parametrix is obtained,
it is then necessary to show its boundedness on the weighted Holder
spaces. These steps are carried out in detail in [6], to which we refer the
reader, cf. also [8]. Here we simply show that Li satisfies the hypotheses
necessary for that machinery to apply.

The main result of [6] implies that Li has closed range on τδL2

provided δ £ {δf}, where δf = jf + (N — 2)/2. Choose a number
—δv just slightly smaller than v + (N — 2)/2, in particular so that
-2/(p - 1) + (N - 2)/2 <-δv<v + (N- 2)/2 < 0. Then -δu £ {δf}
and C^a(Ω\Σ) C p~δ" L2 (Ω\Σ). It is also proved in [6] that IU is essen-
tially surjective on r~δvL2, i.e., it has closed range and at most a finite
dimensional cokernel, and that it is essentially injective, i.e., has closed
range and at most a finite dimensional kernel, on r+δuL2. These two
facts are consequences of one another by duality since rδL2 is the dual
space of r~δL2 and Lj. is self-adjoint on r°L2. The crucial hypothesis
that must be satisfied in order for these last two conclusions to be true
involves the 'model Bessel operator' Lλ for 1U. This operator is obtained
by freezing coefficients of Li at r = 0 in an appropriate sense, taking
the Fourier transform in y, and finally rescaling by setting 5 = r\η\. The
operator obtained in this way is

This crucial hypothesis is that Lλ is injective as a map on
sδuL2(R+ x S1*"1'^1*'1 dsdθ), or equivalently, surjective as a map on

5-**L2(R+ x S^is^dadθ).
Z/x may be analyzed directly to show that this hypothesis is satisfied.

In fact, introducing the eigenfunction expansion with respect to Δ^, as
usual, we obtain a family of ordinary differential operators, the solutions
of which may be determined explicitly in terms of Bessel functions.
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Analogously to the situation for Lx we find that any solution which
blows up no faster than τv as r —> 0 grows exponentially as r —> oo.
Using these solutions we can construct a right inverse for Lλ explicitly.

Since Lλ satisfies the hypothesis, we conclude that Li itself has closed
range, with at most a finite dimensional cokernel, as a map on C ^ i
The cokernel of this map may be identified with the kernel of Lα as a
map on rδuL2 or C2^_x. But from the previous subsection, we know that
this cokernel is trivial; hence Li is surjective, as desired.

Finally, we may explicitly exhibit an infinite dimensional nullspace of
Li in C ^ i For, if \^w = 0 and w is bounded by τv as r —> 0, then
only the eigencomponent w0 may be nonvanishing, just as for Lx. Now,
taking the Fourier transform in y, we see that Lo^pώo = 0. Hence
wo(r,η) = A(η)Wo(r,η), where Wo is the unique solution of this equa-
tion which decays (exponentially if η φ 0) as r —» 0, normalized so that
W0(l,η) = 1. The coefficient A(η) is allowed to be arbitrary, so long
as the corresponding w0 is bounded uniformly, for each r, as \y\ —> oo.
Clearly there is an infinite dimensional freedom in choosing such coef-
ficients; for example, we could let A(η) be an arbitrary element of the
Schwartz space. This completes the proof.

7. Injectivity of Lτ on C*;£(Ω \ Σ)

We are now able to turn to the first of our main tasks, to show that
Lτ is surjective on Ĉ  χ>(Ω \ Σ) when all the e{ are sufficiently small. By
an argument identical to the one indicated in the proof of Proposition 5,
this surjectivity is equivalent to the injectivity of this operator acting
on functions growing like rμ at the singular points, where

(o _ ΛΠ /9 <? n — 9 — N — ΊJ <r Ύ + <r Ω

as in the previous section. This injectivity is what we shall prove.
7.1. Preparatory lemmas
There are three lemmas which are used in the rescaling proofs, both

in the case when the singular set is discrete and when it is positive
dimensional. We shall adopt the notation

Here, using slightly different notation than in previous sections, Bei(Σi)
is the tubular neighbourhood around Σ^ of radius ê , and, in case Σ is
discrete, Σ^ simply equals the point Xi.

The first Lemma states that Lz satisfies the maximum principle on
Ω€-.
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Lemma 6. There exists some e0 > 0 such that if all €» < e0, then
after a normalization of the initial radial solution U\, the operator Lτ

satisfies the maximum principle on Ω .̂ That is, if w < 0 on dίlτ and
LΈw > 0, then w < 0 on Ωr.

Proof. We give the proof of this result in the case where Σ is
discrete. The general case, where Σ has positive dimension can be
treated similarly. Set w+ = max{tu,0} on ΩΈ and w+ = 0 on each
B€i{Σi), so that w+ G fl^(Ω). Multiply the inequality Lzw > 0 by w+
and integrate by parts to get

ί |Vw+|2 < / μ+iVΓ1 ^pα""1 /(Σl^-^Γ 2 ) !^! 2 -
^Ω JΩ JΩ i = 1

Here a is the supremum of vx = r^Uχ for r > 1, which by Remark 2
can be taken as small as desired. Now, using the identity

x x

and integrating by parts, we obtain the inequality

If a is taken sufficiently small so that the inequality 4pαp"1ϋΓ < (N — 2)2

holds, we see that w+ = 0, and hence w < 0, as desired.
The second Lemma uses this maximum principle to deduce estimates

in the weighted Holder spaces for solutions of Lτwz = fΈ in terms of
their boundary values on dίl^.

Lemma 7. There exists e0 > 0 such that, if all e« < e0 then the
following estimate holds. Let fz G C^"2(Ωe), where 7 G (2 — iV,0) is
fixed, and suppose that wz is any solution to Lτwτ = fι with wτ = 0
on the 'outer boundary' of Ωτ, i.e., on dQE Π 9Ω. Then there exists a
constant c > 0 independent of e such that

where the first two norms are taken over Ω f.
Proof. Define φ G C°°(Ω \ Σ) to be a positive smooth function

for which, in some fixed neighbourhood Bσ(Σ,i) for each i, φ(x) =
dist(x,Σj)7; here σ should also be chosen so that the approximate so-
lution ΰτ is supported in UBσ(Σ i). For example, we can take φ = p 7 ,
where p was the function introduced in §3. If some Σ{ is a point, Σ* = xu
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then φ = \x — Xi\Ί in Bσ(xi). Then a simple computation shows that in
Bσ(xi) \ B€i(xi) we have

L€i\x - xtf = {Ί(N - 2 + Ί)\x - a?i|7"2 + p u f 1 k " χi\Ί)

< —c\x — Xi|7~2,

where the constant c > 0 can be chosen independent of e, since 2 — N<
7 < 0 implies that 7(iV — 2 + 7) < 0 and since pap~x can be chosen as
small as desired. If Σj is positive dimensional, then a similar estimate
holds. For this we simply need to use the expression (13) and the
estimates for e\ and e2 there.

Let A > 0 denote the supremum of wz on Uζ=1dBσ(xi). Hence </>,
multiplied by a suitable constant times

is a supersolution for the problem in Bσ(xi) \ B€.(xi). Likewise, —φ
multiplied by a similar constant is a subsolution.

We claim that, if e0 > 0 is small enough, then A is bounded by a
constant times

ί I |Λ| lθ.α.7-2 + Σ e*'71 W kθ,0Bβ. (Σ0 j •

In order to prove this claim we will argue by contradiction and assume
that we have a sequence of counterexamples to this assertion. Thus
suppose that there is some sequence of UT-tuples e^) = (e[ ,... ,tκ)
such that for some subset of the indices 1, . . . , ϋ", the corresponding ex-
tend to zero. For convenience, we take this subset to be {1, . . . , J } , so
that ef -> 0 for j < J and ef > c > 0 for j > J . In addition, up
to a subsequence we may assume that e^p converges to some βj > c
for all j > J. Suppose also that for each such e(^ there is a function
wΈ(D E C^α(Ωf(/)) with LzwΈ(t) = }τ(t) and such that W&D = 0 on the
'outer boundary' of Ω f and /f<o G C®'*2(^e) bounded independently of
ί. First multiply the w&t) by a suitable constant so that

(26) sup

Using the super-solution constructed above, it is easy to see that
converges to a solution w of Aw = 0 in Ω \ ϋf = 1 Σi U ^ J + 1 B€i(Σi). In
addition, w also vanishes on <9Ω U ^ J + 1 dB€i(Σi), and finally w E C^a.
Since 7 > 2 — N it is well known that the singularities of w at Uf=1Σi
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are removable. Therefore w solves Aw = 0 in Ω \ U^j + 1 β C i (Σ i ) with 0
boundary data, so w = 0 which contradicts (24). The claim follows.

We conclude that there is a constant δ > 0 independent of e such
that LΈ(wΈ + δφ) < fe-cδφ <0 and Lz{wz - δφ) > Λ + cδφ > 0. By
increasing δ to make wτ — δφ < 0 and wΈ + δφ > 0 on 5Ωf, we deduce
that |tϋf| < £</> in all of Ωf, i.e., we E C°'°(Ωe), with norm independent
of e. Standard arguments using rescaled elliptic estimates show that
wz E Cl'a(Ωξ) with norm independent of e.

The third Lemma shows that the weighted Holder norm with expo-
nent μ for a solution of the fixed homogeneous equation Lλw = 0 on a
fixed tubular neighbourhood Bσ(Σi) is controlled by the norm of w on
ΘBσ(Σi). This is quite obvious when Σ{ is a point, since the nullspace
of Li is finite dimensional then. When Σ* has positive dimension, this is
a more substantial result, and it follows directly from the results of [6].
Nonetheless, we give an elementary proof, which covers both cases. For
convenience here we drop the subscript i. As usual, (r, 0,y) are Fermi
coordinates on this tubular neighbourhood.

Lemma 8. Suppose wι is a sequence of solutions of Lλwι — 0 in
Bσ(Σ), with wέ G C2

μ>
a(Bσ(Σ)) and \w£\ < A on dBσ{Σ) uniformly in I.

Then ||it^||2,α,μ cannot diverge as I —> oo.

Proof. First of all, observe that by the rescaled Schauder estimates,
it suffices to show that the supremum of r ~ μ | ^ | over Bσ does not di-
verge. Suppose, to the contrary, that it does; furthermore, suppose
that this supremum takes the value Q, which tends to infinity, and
is attained at some point X£ E Bσ. Let (^,β/,j//) be the Fermi coor-
dinates of X£. Since wι can be bounded by some new constant A' on
Bσ(Σ) \ Bσ/2{Σ), the rt must converge to zero. For if they did not, then
consider the rescaled function wt = C~[xwι. This still solves Lχwt — 0.
Furthermore, the supremum of r~μW£ on Bσ(Σ) is equal to one, and is
attained in some fixed annulus jBσ(Σ) \ Bβ{Σ). Thus, the wt converge
to a nonzero limit WQO, which is a solution of LIWQQ = 0 in Bσ(Σ). How-
ever, the supremum of iϋt on Bσ \ Bσ/2 tends to zero, so that Woo = 0
on the annulus Bσ \ B/3/2, which is a contradiction.

Now, since we have established that rt -> 0, we may again rescale.
If Σ = Xι is a point (which is the origin in these coordinates), consider
the function Wι(r,θ) = C^r^w^r/ri^θ). If Σ is higher dimensional,
then some subsequence of the points yι converge to y^ G Σ (since Σ
is compact). Choose Fermi coordinates centred around this point, so
that j/oo = 0, and these coordinates are defined for \y\ < τ. In this case
let wι = C[ιr*j;wι{rlrι,θ,(y — y^/ri). In the former case, wι satisfies
L\/rιWι = 0 on Bσ/rt (0), and is bounded by rμ there. The same is true in
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the latter case, except that the operator Lχ/rt must be replaced by one
for which the error terms ex, e2 are replaced by very small translates, and
which are in any case still tending to zero when ί —> oo. This rescaling
has been chosen so that r~μ|ώ^| attains its supremum on dB1(Σ). As
before, pass to a limit, w^. By the previous remark, w^ φ 0.

When Σ = 0, then it is also true that w^ e C2

μ^(RN \ {0}), and is a
solution of

(Δ + 1 ^ ) ^ = 0
there. But the solutions of this equation are of the form

j=0

It is clear that no function of this form can be bounded by rμ both as
r -> 0 and r -» oo. Hence we arrive at a contradiction again, so the
assertion of the lemma must be true when Σ is a point.

In case dimΣ = k > 0, we may still take a limit, and get a function
ώoo which solves the same equation, but now on En \Rk. It also satisfies
the estimate supr~μ|ώoo| < oo. However, introducing a decomposition
into eigenfunctions for the spherical Laplacian Δ# yields the uncoupled
system of equations

where we have renamed the eigencomponents simply Wj. Each such
eigencomponent satisfies supr~μ|tUj | < oo uniformly as \y\ -> oo. Tak-
ing the Fourier transform of this equation in y reduces it to an equation
of Bessel type:

This equation may be solved explicitly, and as discussed earlier it is easy
to see that for η Φ 0 the only solution of this equation which grows no
faster than rμ as r —> 0 must increase exponentially as r —> oo. Thus
Wj (r, η) = 0 for η φ 0, and so it is polynomial, and hence constant in
y (since wό is bounded in y). Therefore, the previous argument applies
to show Wj = 0 for all j . Hence WQQ = 0, which is again a contradiction.
This proves the Lemma in all cases.

7.2. Injectivity
Theorem 5. If e0 is sufficiently small, and if each €» < e0, then
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is injective.
Proof. As in the previous lemma, the proof uses rescaling to argue

by contradiction. The idea is quite simple. If the result of this theorem
were false, there would exist a sequence of counterexamples, correspond-
ing to some sequence of the e^, with at least some subset of the eψ
decreasing to zero. By rescaling these functions and passing to a limit,
a counterexample to Propositions 3 and 4 would be obtained.

Thus suppose that there is some sequence of X-tuples e^ = (e[ι\ . . . ,
e^) such that (possibly passing to a subsequence) for some fixed subset
of the indices 1,..., if, the corresponding eψ tend to zero. For conve-
nience as before, we take this subset to be {1,..., J}, so that ep -> 0
for j < J and ey > c > 0 for j > J. Suppose also that for each such
e^ there is a function wt G Cμ',χ>(Ω \ Σ) with Lτ(t)Wt = 0. First multiply
the wt by a suitable constant so that

(27) sup p(x)-μ\we\ = 1.

From Lemma 7, we get that

sup p(x)~μ\w£\ < C sup ρ~μ\wt\ < C.
Ω U β B ( Σ 0

For some subsequence (which we assume is the full sequence), the supre-
mum of p(x)~μ\wi\ on \JdB€(t)(Σi) is attained on some fixed dB€(t)(Σj).

There are several possibilities, which we examine in turn. For sim-
plicity, we initially consider the case where Σ is discrete. First suppose
that for the sphere where supremum above is attained, the index j sat-
isfies j < J. Fix this index j , and for convenience, translate Ω so that
Xj = 0. Then ey -» 0. Now rescale, setting

This function is defined on Bσ^(t)(0) and solves (Δ + pH*'1)^ — 0
there. Here ΰι is the radial solution ux (r) multiplied by a cutoff function
χ(e^x/i?), which is equal to one on an increasingly large set as e^' tends
to zero. By construction, the supremum of r ~ μ | ^ | is bounded by C on
Bσ/φ{ϋ)\BM

We can apply Lemma 8 to conclude that the r ~ μ | ^ | are bounded
uniformly on i?i(0). Now let ί —> oo. Since their norms are bounded,
the wt tend to a limit w^ e C£'α(i?i(0)), which is defined with r"μ | ίDo o |
bounded on all of RN \ {0}. In addition, it is a solution of Liin^ = 0
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there. But w^ is not identically zero, since its supremum on dBλ (0) is
one. This contradicts Proposition 3.

This last argument still leads to a contradiction if it is only true
that for some j < J (and some subsequence of the ^), the supremum of
p~μ\w(\ on dBe(t) (XJ) is bounded below by some positive number C > 0,
independently of £.

Having excluded these cases, we can now assume that

sup p{x)-μ\w£\ —> 0

for every j < J.
The norms | |^ | | 2 , α , μ (over all of Ω) are bounded. This is clear in the

region Ω?(€> by (25), and by Lemma 8 it is also true for the balls with
index j > J. For the balls with index j < J, note that the rescaled
functions wt = (e^)~μwι(e^x + Xj) on Bλ(0) have the same weighted
norm there as the unrescaled functions do over B€(ί)(xj). Since the

supremum of wι over dBι(0) is bounded by (ê  )~μ, which tends to
zero as i —>- oo (and in particular, is bounded), we can apply Lemma 8
again to conclude boundedness of the weighted norms of wι in these
balls too.

Now (pass to an appropriate subsequence and) let ί tend to infinity.
The wι converge to a nonzero limit w^, since they have supremum equal
to one on dBe(i)(xj) for some j > J, i.e., on a sphere which has radius

bounded away from zero. This limit is an element of Cμ'p(Ω \ Σ), and
solves Lζ'Woo = 0, where e' has e'j = 0 for j < J. Hence the potential
pϋ^Γ1 in Lτ> is singular only at the points Xj for j > J. Since w^ G C2^a

locally near each Xj, and since μ > 2 — iV, it easy to check that w^ is
a weak solution of L?w = 0 in a full neighbourhood of the points Xj
with j < J. Since the operator is smooth at these points, a standard
removable singularities theorem shows that w^ is smooth except at the
Xj, j > J. This means that w^ is a solution of this operator with
singularities at some discrete set Σ' with strictly fewer elements than
Σ. Now we may proceed by induction, the case K = 1 already having
been treated by the proof above. This completes the proof when Σ is
discrete.

The modifications necessary to handle the general case are rather
minor. In fact, it is only necessary to modify the way in which the
rescaling is done and invoking Proposition 4 at the appropriate place.
Thus, starting the proof in the same way, if the functions r ~ μ | ^ | attain
their maximum at a point zt = (r^,^,y^) in Fermi coordinates around
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some Σ i 5 then we use the rescalings

Mr Ay) = {e?Ywt{r/ef,e, (y - yi)/e(f)).

The rest of the proof is analogous to the previous case.
Remark 4. It is actually possible to prove that in the case of non-

isolated singularities, the rescaled limiting function w^ is independent
of y. This may be done by using some regularity results from [6] to
show that the tangential oscillation of the initial sequence wι may be
bounded independently of e.

8. Uniform surjectivity of Lτ on C*£(Ω \ Σ)

The second main step in the linear analysis is to show that there is
some choice of right inverse Gτ of Lτ on C°!?2(Ω \ Σ) which has norm
bounded independently of e provided each βj < e0. As we have indicated
before, the subtlety here is that Gz is not unique, since Lτ is not injective
on Cj/ .

The usual choice for Gτ is as the right inverse whose range equals the
orthogonal complement of the nullspace of Lz. Of course, since we are
working in Holder spaces, this orthogonal complement is meaningless.
However, what amounts to the same thing is to require that the range
of Gz lies in the range of a fixed adjoint L\ of Lτ. Again, this adjoint
depends on some Hubert space structure, but once we have chosen an
appropriate one with respect to which the adjoint is taken, we can forget
about it and simply use this adjoint.

By (11) and using the notation of §6.5, CliOC is contained in
p~δuL2(pN~1drdθdy). In the following, the space L2 will always be
taken relative to the background Euclidean measure. We shall consider
the spaces pδL2 and p~δL2 to be dual with respect to the natural pairing

Relative to this pairing, the adjoint of Lτ : ρ~δvL2 -* ρ~κ~2L2 is just
Lz: pδu+2L2 -> pδuL2. We have proved that the former of these maps is
surjective and the latter one is injective. Using the fixed isomorphisms

P2S : p-δL> _ > pδL\

we may identify this adjoint, Lί, as

L* - p-24"Le-p2ί" : p-δ"+2L2 —»• p~s"L2.

It is not hard to see that Lemma 6 is valid for both Lz and L\.
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Now form the fourth order operator

Lτ = Lτ o L\ = Lτp-2δ»L-tp
2δ» : p-δ"+2L2 —* p-*"-2L2.

This map is an isomorphism. Hence there exists a bounded two-sided
inverse

Qτ: p-&»-2L2 —> p-δ»+2L2.

In particular, £ff/f = J, which means that G^ = L\Qτ is a right inverse
to Lτ which maps into the range of L\ as desired. Henceforth, Gτ will
always denote this particular right inverse.

The main goal of the work in [6] is to study inverses and generalized
inverses for degenerate 'edge operators,' of which Lτ and Cτ are partic-
ular examples. The methods are quite geometric, albeit microlocal in
origin. One of the main results implies that Gz and Qτ have Schwartz
kernels which are rather simple distributions on the space obtained by
blowing up the polar coordinate compactification of (Ω \ Σ) x (Ω \ Σ)
along a submanifold of the boundary. One advantage of having such a
concrete description of these operators is that various mapping prop-
erties can be read off quite easily. In particular, from [6] it follows
immediately that

and

are bounded. In the former of these the subscript V denotes a more
general set of elliptic boundary conditions for this fourth order operator,
i.e., the domain is restricted to functions u which vanish along with L\u
at dΩ.

We can now turn to the proof that the norm of Gτ does not blow
up as the components of e tend to zero. This uniform surjectivity is an
immediate consequence of the following two results.

Proposition 6. Let e be some K-tuple with all βj < e0. Then
provided e0 is sufficiently small, there is no solution of the system of
equations Lτu = 0,u = L\v with u e Cl$(Ω \ Σ) and υ G C^2 } P(Ω \ Σ).

Proof. This is really just a corollary of Theorem 5. In fact, suppose
that u and v satisfy this system. Then LzL\v = 0. Recalling that L\
is identified with p~2δuLτp

2δv here, multiply this equation by p2δvv = w
and integrate with respect to standard Euclidean measure. Then the
integrations by parts in

(wLτp-2δ"Lzw = ί \L,w\2p'2δu = 0
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are valid because dJ

rw e C*+3

2£u+2_j for j < 4, and also because w
satisfies Dirichlet conditions on dΩ. (Here r is the Fermi polar distance
coordinate near each Σ*. Also note that we can choose p to be constant
near dΩ so that p2δvv and L\(p2δvv) still vanish at the boundary.) Hence
Lτw = 0. But since w e C2

μ)
a for some μ' > 5ϊ(7^), we may conclude

from Theorem 5 that w = 0 provided e0 is small enough.
Theorem 6. Let e^ be any sequence of K-tuples, with each e\^ < e0.

Let ft(i) be any sequence of functions in C°!?2(Ω\Σ) with norm uniformly
bounded as ί tends to infinity. Let uZ(t) 6 Cl^(Ω \ Σ) be the unique
solution of Lzuτ(i) = f#t) which also satisfies u&t) € ran (L*(/)), i.e.,
UtfD = L*(ί)Ve(o for some v&t) G C*+2iv Then the norm of UZ(D in C*'α

is bounded uniformly as i —>> oo.
Proof. This argument is again by contradiction, and is very similar

to the ones in the last section. Clearly we only need to consider the case
where some subset of the eψ tend to zero. As before, we assume that

ef -> 0 for j = 1,..., J and ef > c> 0 for j = J + 1,..., K. To start,
by hypothesis

sup p-+2\fM<C,

for all i. Applying Lemma 7, we get

sup ρ~v\uZ{t)\ <C + C sup ρ~v\uτ(t)\.

Now define
Aτ = sup ρ~u\uE(t)\.

We resize the functions uΈ(o, V&D , fΈa) by setting

Uz(t) = /A /A f

so that LΈa)ύΈ(t) = fat) and L^t)ϋ#t) = u^t). If Aτ stays bounded as ί
tends to infinity, then we are finished. If not, as we now assume, then
||Λ(o||o,α,ι/-2 tends to zero.

We wish to take a limit of the equations Lf(oώ?(o = Λ<o and
L*Έ{ί)vτ(t) = uΈ(i). The main point is to show that ύτu) and vEw tend to
limits. For each ,̂ choose a point zt where p~uύΈ(t) attains its maximum.
By passing to a subsequence, we can assume that zι stays in some fixed
Be f)(Σi).

The simpler case is when i > J, so that e{ does not tend to zero.
Since by the above and Lemma 8 the supremum of p"v\ύ^t) \ in B.(t) (Σ^)
cannot diverge and stays bounded away from zero. Then we can directly
pass to a limit as ί tends to infinity and obtain a function u G C££(Ω\)
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which is nonvanishing and satisfies LRu = 0. Here R is the (if — J)-tuple
comprised of the limiting values of the eψ for j > J. Since u blows up
no faster than pv at the Σj with j < J, and since the limiting term of
order zero in the operator is smooth at these submanifolds, the same
removable singularities theorem as we used before shows that u must
be smooth at those points. Next, since the norm of ϋ#i) is uniformly
bounded, we can also pass to a (weak) limit and obtain some function
v £ Cl+2,v(Ω \ Σ) with L*Rv = u. Since u is nonvanishing, υ must also
be. In addition, by elliptic regularity, υ is smooth at the Σj, j < J.
However, this is a contradiction to Proposition 6. Thus we may assume
that for the index i for which the maximum of p~v\uZ(t)\ is attained in
JB_(O(ΣJ), the radius e\ tends to zero.

Let us first treat the case where Σ; is a point. Translate the whole
problem so that Σ* = {0}. Next, rescale the two equations by the factor
e\ in particular, u&t) is replaced by

and similarly for ϋ&i) and /?(o. For convenience, replace e\ ' by e. Then
in the ball Bσ/€(0) we have /f(o tending to zero in C^2?

 a n d ΰΈ(t) having
norm in Cl'Q bounded uniformly by one. Replace the rescaling of the
function p now by the polar variable r in this expanding sequence of
balls. In the new rescaled coordinates, let the supremum of r~u\u^t)\ be
attained at some point, which we still call X£. Then \xt\ is bounded. By
the argument used in the previous section, we see that \xt\ must also
stay bounded away from zero, otherwise we could rescale by the factor
lα^l"1 and arrive at a contradiction, as in that section. Thus, there is
some uniform lower bound 0 < C < |x/| < 1, and hence we can pass to
a limit of the fi^o in C^'α. Let us call the limiting function ΰ. Then

= 0 in

We wish to show that ϋ#t) also tends to a limit. To see this, first
note, that by the maximum principle again,

sup r~v\vτ(t)\<C + C sup
Bσ/β(0)\Bi(0)

Define
A'e = sup r~u\vEd)\.

Bi(0)

If A[ stays bounded as e -> 0, we can take a limit of the ϋE(o to get a
function υ G Ct%°2(RN \ {0}) such that L\v = u there.

So, suppose not, i.e., suppose A'e tends to infinity. We resize all
the functions once again, by letting u'-{t) = uZ(t)/A't, and so on. Then
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Lιu'Έ(£) = f^{ί) and L\v'z{ί) = u'-{i). By construction, the norm of f'τ{t)

tends to zero in C^2

 a n d the norm of u'-{ι) tends to zero in C^'α, but
the norm of vf

i(t) in C*+2 stays bounded. If the supremum of r~v~2\v'-{t) \
occurs at some point x^ then exactly the same arguments as above show
that \xf>\ stays bounded away from 0 and oo. Hence once again we could
pass to a limit to get a solution V e Ct+2(^N \ {0}) such that L\V = 0.
But we know that L\ has no elements in its nullspace which decay at
infinity, which implies that V = 0, a contradiction.

Finally, then, we have arrived at the situation above, that there exist
u e Cl>a{RN \ {0}) and v G Cί&flft" \ {0}) such that Lλu = 0, L*v = u.
Combining these two equations, we get LiL^v = 0. But since υ decays at
infinity, we can multiply this equation by v and integrate. Integration
by parts now shows that L\v = 0, which we have already observed
implies that υ = 0, hence u = 0 as well. This is the final contradiction.
The only alternative is that the C^α norm of u&i) can not blow up.

The case when some Σ^ are of positive dimension is treated very
similarly. In fact, only the rescaling needs to be done slightly differently,
but in the same manner as at the end of the proof of Theorem 5.

9. The fixed point argument

We are now in a position to complete most of the proofs of Theorem 1
and Theorem 2; what will remain after this section is the assertions
about the moduli of solutions. We need to find a solution w 6 C^£(Ω\Σ)
to the equation

(28) Lτv + Q(v) + Λ = 0

where fz is the error term introduced in §4, either for the case when Σ is
discrete, or in the more general case, and Q is the quadratic remainder
(15). We do this by the standard contraction mapping argument. We
will define a continuous operator K from the space C^'£(Ω\Σ) into itself
and then prove that this map is a contraction on some small ball in this
space.

If v is a solution of (26), then uz + v is a weak solution of

f - Δ ( δ ? + v) = |δ ? + v\p in Ω
\ ui + v = 0 on 0Ω.

Assuming a solution exists, let us show that uz + v is positive in Ω \ Σ.
On the one hand, for x near Σ<, there exists some R > 0 such that if
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p(x) < Rβi then

(30) dp(x)-& < ΰ-e{x) < c2p{x)~^

On the other hand, since v G C^'α(Ω \ Σ), we have v(x) < cp(x)u. But
since v > —2/(p — 1), it follows that ΰΈ + v > 0 near each Σ*; by the
maximum principle we see that ΰτ + v > 0 in all of Ω \ Σ, and hence
ΰξ + w is a positive solution of (1) which is singular at all points of Σ.

It remains to prove the existence of a solution to (26). We shall
first treat the case where Σ is finite. First observe that ||Λ||o,α,ι/-2 <

Ce0

 p~1 by Lemma 3. Let A denote a common upper bound for the
norm of Gτ for e0 sufficiently small. Then

(31) \\G,M\2^<ACe^.

In view of this estimate, we shall work in the ball

B(eo,β) = {ve Cl'a(ίl \ Σ) : |M|2fβ,,, < βζ~^}.

We have already shown that GΈ(fΈ) 6 B(eo^β), for β large enough. At
this point we shall fix β large enough so that Gτfτ G /?(eo,/3/2). We
shall now make a further restriction on the ei? namely that, for some
fixed constant a G (0,1), we have

(32) αe0 < e< < e0

for i = 1,..., K. This new restriction appears to be needed in the proof
of the following Lemma.

Lemma 9. There exists some constant c > 0 independent ofe0<^l
such that

\\Q(V2) - QK)||0,α,,-2 < ̂  IN " Ullkα,,,

for all Vi,v2 G B(eOiβ). In particular, taking v2 = 0 we see that
GΈQ(v) G B(eo,β/2) and hence that the operator K defined by K{v) =
—Gz(Q(v) + fi) maps #(e0,/?) to itself, and is a contraction on this ball
for e0 sufficiently small.

Proof. We first establish that there exists some r > 0, independent
of e0 <^ 1, such that for any v G £?(eo,/3) we have

x G uK=1B{xuτ) ==> \v(x)\ < -ΰ-€{x).

Indeed, by Lemma 1, we know that there exist constants
Ci, c2 > 0 and a radius R > 0 such that

Ci l^ l "^ < u€i(x) < c2 |α;|~^ τ if \x\ < Rti,
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Cle?~^\x\2-N < u€i(x) < c2e?~^\x\2~N if β € i < \x\ < r.

The claim follows at once from these estimates and the fact that υ E
,/3), so that

\v(x)\ <

by (30). We also note that

uτ{x) < cp^x)"^

for all x £ Ω.
Since \v/ύe\ < 1/4 in each B{xi,τ), we may use a Taylor expansion

to obtain

\Q(υ2) - Q(t>i)|(s) < c\U,r2(x)(\Vl\(x) + \v2\(x))\v2 - Vl\(x).

So for x E B(xi, τ) we have

The coefficient here may be taken as small as desired by choosing e0

sufficiently small. Outside the union of these balls we use the estimates

jy 2p jy 2p

ΰτ{x) < ce0

 p~1 and also \v(x)\ < ce0

 p " 1 ,

where the constant c > 0 depends on r but not on υ. For p(x) > τ we
can neglect all factors involving p(#), hence for all x G Ωr we have

P(a02-"|Q(W2) - QMKx) < CiuΓ1 + lυΓ 1 ) !^ " «i|

for any constant B > 0, provided e0 is chosen small enough.
We also need to estimate the Holder norm of Q(vι) — Q(υ2) By the

fourth part of Lemma 1, it suffices to estimate ρ3~u\V(Q(vι) — Q(^2))|
We shall only sketch this briefly. First, in each B(xuτ) we compute
that
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VQ(«) = p ((ΰ£- + Vγ~l - ΰf"1 - (p -

For x G Ωτ there is a similar expression, except that we must be more
careful about the absolute value signs. However, in Ωr we estimate each
term individually and conclude that

P*-"\VQM - VQ(v2)\ < CeiN-2)p-N-ι\\v2 - V l | | w

there. As before, this provides the proper estimate in this set. In
B(xi, τ) we use a Taylor expansion in the expression above to conclude
the proper estimate. This completes the proof of the Lemma when Σ is
discrete.

To carry out the proof in the more general case, only fairly minor
changes need to be made in the argument above. The most important
one, already observed in §4, is that the weight parameter v must now
be constrained to lie in the smaller interval

(33) - = L < „ < m i n { ^ - + 1 = ^,*(K)}

Furthermore, the estimate in Lemma 4 is slightly weaker than that in
Lemma 3, hence we must replace the exponent N — ^ in the above
argument by

p-3

Thus we show that K is a contraction of the balls

B(eo,β) = {v£ Cl%(Q. \ Σ) : | M | W < βe%}.

The details of the argument need very little change since the nonlinear
term Q(υ) is the same as before. This completes the proof in all cases.

Using this Lemma and the remarks preceding it, we may apply the
standard fixed point argument for contraction mappings to see that
there exists a unique solution v of the equation

v = -Gτ {{\v + ΰΈ\p -ΰp

Έ- pΰΓ'w) + Λ)

in i?(e0, β) for every e0 small enough, and for every Jί-tuple e satisfying
(30). Fixing some e0 which is small enough for this argument to work,
and replacing e0 by e < e0 in this whole argument shows that we can
find a solution which is a small perturbation of ΰτ for every e and ΰτ for
which ae < βi < e < e0.
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10. The proofs completed

We have now completed the proof of the existence of solutions for
Theorems 1 and 2. In this section we indicate the arguments leading
to the determination of the deformation space of solutions for either
problem. We also indicate the small changes needed to complete the
proof of Theorem 3.

10.1. The deformation spaces
Included in the statements of Theorems 1 and 2 are the assertions

that the space of all solutions to the equation (1) on a domain Ω C
RN with isolated singularities at {x l5... ,xκ] C Ω is if dimensional,
and in general that if any component Σ* of the singular set is positive
dimensional, then there is an infinite dimensional family of solutions
with the same singular set. We recover both of these statements using
the implicit function theorem. The latter case is analogous to the one
studied in [8], and the former mirrors the situation in [7].

In both cases, the main point is that if u is the positive solution to
(1) constructed by the procedure of this paper, then the linearization
L = Δ + pup~ι to the equation at u is nondegenerate in the sense that
it is surjective as a map from C*$(Ω \ Σ) to C£'_?2(Ω \ Σ). This means,
using the implicit function theorem, that all solutions to the equation
which can be obtained as perturbations off of u by terms growing no
faster than pv are parametrized locally by elements of the nullspace of
this linearization in C2

V%- We shall prove this surjectivity in the next
proposition, or rather, we will prove the dual statement as in §6 that
the linearization is injective on C2^.

Proposition 7. Ifu = ΰz + v is a solution of (1), as constructed in
the last section, with all e* G (αe, e), and υ G C^£(Ω \ Σ) Π #(e,/3), then
if e is sufficiently small, the linearization Lu = ̂  + pup~ι is injective as
a map on C2

μ\^(ίϊ\Σ).
Proof. Suppose not, i.e., suppose there exists some sequence e^

with e\ E (ae^\e^) for some sequence e^ —>• 0, and a solution uμ) =
uτ(t) + v such that the corresponding linearization LU{e) is not injective.
Thus there exists some φW G C '̂p such that LU{i)φW — 0. We make
exactly the same rescalings as in the proof of Theorem 5, to arrive at
the same contradiction. (Note, however, that since the et must all
tend to zero simultaneously, the proof simplifies somewhat.) The only
point that needs checking is that the operator obtained in the limit of
these rescalings is just Lλ or Lα, according as whether Σ is discrete
or not. The rescaling sending u€(r) to Uχ(r) is Uι(r) = e2^p~1^ue(er).
Applying this same rescaling to v(r) (suitably translated so that the
origin corresponds to the appropriate point of Σ) yields the function
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ve(r) = e2^p~^v(er). Since \v(r)\ < βeqpu for some positive exponent g,
we see that |v€(r)| < βtq+v+^pv in some ball Bσ/e. Since u + ^ > 0
and q > 0, this term tends to zero with e. Hence the limiting operator is
just Δ+pΐii"1, as desired. As shown in §7.2, this leads to a contradiction,
so the proposition is proved.

The next step is to compute the size of the nullspace of Lu on
C '̂£(Ω \ Σ). We have already indicated that when some Σ; is posi-
tive dimensional this nullspace is infinite dimensional, and hence there
is an infinite dimensional space of solutions to the nonlinear problem.
But when Σ is a finite set, then L is Fredholm and the nullspace is fi-
nite dimensional. We may calculate its dimension using a relative index
theorem.

Proposition 8. If Σ is discrete, the nullspace of Lu is K dimen-
sional. If any Σ; has positive dimension, then the nullspace is infinite
dimensional.

Proof. The latter statement, that the nullspace is infinite dimen-
sional when some dimΣi > 0 follows from the theory of [6]. In fact,
this nullspace is parametrized by functions (of a certain negative distri-
butional order!) along each of positive dimensional components of Σ.
This infinite dimensionality can also be seen as a consequence of the fact
that the globalized linearization Li from §6.4 has infinite dimensional
nullspace, as was pointed out in Proposition 5.

That the nullspace of Lu on C^£ is K dimensional when Σ is discrete
is proved in exactly the same manner as the analogous fact in [7]. We
sketch this argument briefly here. Once again, L2 techniques are used.
Let ind (5) denote the index of Lu on pδL2. Prom the self-adjointness
of Lu on L2(Ω \ Σ) (with respect to Euclidean measure), we find that
ind (—δ) = —ind (£), for any δ £ {δf}. Although the index itself requires
global information to calculate, it is well known that the 'relative index,'
i.e., the difference ind(J') — ind (δ") depends only on asymptotic data
at the points of Σ. Using the relative index theorem proved by Melrose,
we see that the relative index ind (—δ) — ind (δ) equals 2K (the details
are written out carefully in [7]). Combining these two facts, we find
that ind(—δ) = K. However, since we have proved that Lu has no
cokernel as a map from C*£, we conclude that the nullspace of Lu is K
dimensional.

Using these facts, and a standard implicit function theorem argument
as in [7], we conclude the following result:

Theorem 7. When Σ is a discrete set, then the solution space to
the equation (1) is locally a K dimensional real analytic variety. The
solutions constructed in this paper lie in the smooth set of this variety.
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The fact that this solution space is a real analytic variety (possibly
with singularities) may be deduced using the Ljapunov-Schmidt reduc-
tion argument, as in [4]. But since we have produced smooth points
in this variety, having found solutions u for which the corresponding
linearization Lu is surjective, we conclude that the top stratum of this
variety is K dimensional, hence that almost every solution is nondegen-
erate in this sense.

Finally, we may sharpen the deformation result when Σ is not nec-
essarily discrete, applying the implicit function argument from [8] to
conclude

Theorem 8. Let Σ C Ω be any union of C3'a submanifolds Σ*
of dimensions ki satisfying the restrictions of Theorem 2. Then the
equation (1) has an infinite dimensional family of solutions.

10.2. The singular Yamabe problem on manifolds of positive
scalar curvature

The modifications in the arguments of this paper required to solve
the singular Yamabe problem on an arbitary compact manifold (M,ρo)5

where R(go) > 0, with singular set prescribed on an arbitrary finite
disjoint union of smooth submanifolds Σ^ of dimensions greater than
zero and less than (or equal to) (n — 2)/2 are very minor. The equation
that now must be solved is

n — 2 „ , x n — 2 n±2

υ > 0 on M \ Σ, sing (v) = Σ.

The operator in the first two terms here, i.e., the linear part, is called the
conformal Laplacian Lgo associated to the metric g0. The linearization
of this operator around the approximate solution ΰτ is

Now, the rescalings of this linearization may be effected in exactly the
same ways in local Fermi coordinate systems around the submanifolds
Σi. The extra term, of order zero, in this operator disappears in these
rescalings; the resulting model operator we need to study is exactly the
operator IU from §6. Thus we prove, as before, that this linearization
is uniformly surjective, provided all components of e are small enough.
The fixed point argument shows that (26) has a solution v. The only
point of the whole argument that needs special comment is to indicate
where we use the assumption that the conformal class of the metric g0

is positive. This is when we show that ΰτ + υ remains positive on all of
M \ Σ; at this step we use that Δ - 4(

y^2

1)iZ(g0) satisfies the maximum
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principle - and this is only true if R(g0) is nonnegative. This completes
the proof of Theorem 3.
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