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THE LENGTH OF A CUT LOCUS ON A SURFACE
AND AMBROSE'S PROBLEM

JIN-ICHI ITOH

1. Introduction

There are many results about the cut locus C(p) of a point p on a
surface (M,g) going back to H.Poincare's old paper [8]. S.Myers proved
that if M is a real analytic sphere, C(p) is a finite tree each of whose
edges is an analytic curve with finite length [9]. It follows that the
total length (1-dimensional Hausdorίf measure) of C(p) is finite. In the
case of a C°° surface, C(p) is somewhat complicated. In [3] H.Gluck
and D.Singer constructed a C°° metric on S'2 so that there is a point p
whose cut locus has infinitely many edges sharing a common end point
and thus is not triangulable. Even in this case the total length of C(p)
is finite. Recently K.Shiohama and M.Tanaka showed that even on an
Alexsandrov surface the cut locus of a point carries the structure of a
local tree [10]. It is easy to construct an Alexandrov sphere so that the
total length of a cut locus is infinite.

The purpose of this article is to study the relation between the length
of a cut locus of a surface and the regularity of its metric. In the
following, we will answer the question "When does C(p) have infinite
total length (1-dimensional Hausdorff measure) ?".

Theorem A. Suppose (M,g) is a complete surface with a Rieman-
nian metric of class C2. Then any compact subset of the cut locus of
p £ M has finite 1-dimensional Hausdorff measure.

Theorem B. There is a C1 '1 metric on S2 so that there is a point
p £ S2 whose cut locus C(p) has infinite total length (i-dimensional
Haudorff measure).

In particular in the case of a compact surface, if the metric has C2

regularity, the total lengths of the cut loci are all finite. If the metric
loses C2 regularity, then the cut loci may have infinite total length, and
can further become what we know as a fractal set [7]. In the proof of
Theorem A, we will show that the function, which assigns to each initial
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direction the distance to its cut point, is of bounded variation due to the
fact that the function does not increase rapidly near its local minimum.
In the proof of Theorem B, we will construct a sphere consisting of
count ably many flat triangles and constantly curved bi-angles.

W. Ambrose showed that the behavior of the curvature under paral-
lel translation along the broken geodesies emanating from a point in a
complete simply connected Riemannian manifold characterizes the man-
ifold up to isometry, and posed the problem as to whether or not the
behavior of the curvature along the unbroken geodesies emanating from
a point was sufficient to so characterize the manifolds [1]. In the case
of surfaces, we may formulate the problem as follows;

Ambrose's problem for surfaces. Let M, M be complete Rieman-
nian surfaces. Suppose that there are points p £ M and p G M, and
a linear isometry I : TpM -> TPM such that G(η{ΐ)) = G{j{l))_for
any geodesic 7 : [0,1] —> M emanating from p, where 7 : [0,1] —> M is
the geodesic emanating from p with 7'(0) = 7(7'(0)) and G,G denote
the Gaussian curvature of M,M. If M is simply connected, is there an
isometric immersion f : M -> M with f(p) = p and dfp = I ?

In [5] J.Hebda answered the problem positively under the additional
assumption that every compact subset of the cut locus of p G M has
finite 1-dimensional Hausdorff measure. Thus Ambrose's problem for
surfaces with C2 metric is solved completely by Theorem A and Hebda's
result.

Recently J.Hebda himself has proved Theorem A independently in
[6]. But our method of proof is in essence different from his.

The author would like to express his thanks to M.Tanaka for his
valuable comments.

2. Proof of Theorem A

Fix a point p and take a geodesic polar coordinate (r, θ) around p so
that the Riemannian metric becomes

ds2 = dr2 + (f{r,θ))2dθ2.

The function /(r, θ) of class C1 satisfies /(0, θ) = 0 and /r(0, θ) = 0. We
denote the geodesic from p with initial direction θ by Ίθ{r){= expp(r, θ)).
On a geodesic 70, the point of f{r,θ) = 0, r φ 0 becomes a conjugate
point of p. The function f(r,θ) satisfies the differential equation

where K(r, θ) is the Gaussian curvature at the point (r, θ). Furthermore
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/(r, 0) = 0 has local solutions q = q(θ) of class C1 by the implicit
function theorem. If for some θ, q = g(0) has several positive values,
let q = g(0) denote the least such value; otherwise, let q(θ) — oo.
For any positive number ϋ , put QR(Θ) := min{q(θ),R}. Note that
QR is a Lipschitz continuous function, and let C0(R) be the Lipschitz
constant of QR. We denote the length of the minimal geodesic from
p (to its cut point) along ηθ by p(θ). For any positive number i?, put
pΛ(0):=min{p(0),Λ}.

To prove the Theorem we will show that pR is a function of bounded
variation. Denote the total variation of p (resp. pR) by V(p) (resp.
V(pR)), and define subsets J50, Ex of UPM(= S1 = [0,2π]/0 - 2π) by

£?i := {θ e S1\ηfθ\ioi2p(θ)] is a geodesic loop at p}.

Since Eo, E1 are closed sets, S1 \ (Eo U J5i) is a countable union of open
intervals J; which are mutually disjoint, i.e.,

S1\(E0UE1) =

Lemma 1. The set of locally minimal points of p(θ) is included in
EQUE1

Proof of Lemma 1. Assume that p(θ) has a local minimum at #x

such that θι $ Eo U Ex. We denote a point JΘ1{P(ΘI)) by q. Then there
is another minimizing geodesic j θ 2 from p to q. We can take the unit
tangent vector υ at q which satisfies Z(v, — jo^q) = Z(-u, —7β2|g) < f by
the assumption. Let r be the geodesic from q with initial direction ?;.
Then the first variation formula yields a positive number δ such that
τ|(0, ί) is included in the metric ball whose center is p and radius is
equal to p{θ\). Thus, we can take a positive number e such that for any
θ β (01?0! + e) or (0! - e,0i) the following holds: (1) p(0) > p(0χ), (2)
o(0) < p(#i) where 70(α(0)) is the first point on which ηθ intersects with
τ|(0,ί), (3) d(ηθ{p(θ)),q) is less than the injectivity radius at q.

Let σ be the minimal geodesic from q to jθ(p(θ)). Then Δ{—^θ2\q^ σ\q)
< Z(—jθ2\q')υ) < f Suppose that the metric ball whose center is p and
radius is equal to 2p(θι) has Gauss curvature bounded below by Ko.
Compare the hinge (/yθ2,σ,/.(—'jθ2\g,σ\q)) with the corresponding one
on the constantly curved surface with Gauss curvature Ko. From the
Toponogov's comparison theorem [2], it follows that d(p,jβ(p(θ))) <
p{θχ) contradicting the assumption.
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R e m a r k . For any interval (θa,θb) C /;, take θc G [θa,θb] such that
p(θc) is a maximal value of p on [θa,θb]. Then, p is monotone nonde-
creasing on [0α>0c] and p is monotone nondecreasing on [θc,θb]. Hence

V(p\[θaiθb]) = 2p(θc)-p(θa)-p(θb).

Now we will examine the variation of pR near Eo and Eλ. From
PΛ(0) < QR(Θ) and the Lipschitz continuity of QR we obtain the follow-
ing Lemma 2 immediately.

L e m m a 2. For any i? > 0 £Λere is a positive constant C0(R) such
that for any θ0 G Eo with p(θ0) < R and for any θ

PR(Θ) - PR(Θ0) < CO(R)\Θ - θo\.

Lemma 3. For any R > 0 there is a positive constant Cχ(R) such
that for any θ0 G ϋq with p(θ0) < R and for any θ

PR(Θ)-PR(Θ0)<C1(R)\Θ-Θ0\.

Sublemma. For any R > 0 there is a positive constant A(R) such

that for any θ0 G Ex with p{θ0) < R and for any θι with PR{ΘI) <

2pΛ(0o),
PR{ΘI) - pR{θ0) < AiR)^ - θo\.

Proof of the Sublemma. When PR{ΘI) < PR(Θ0), the Sublemma is
trivial. Thus we can assume that PR(Θ0) < PR{ΘI). Define a smooth
curve σ from ^ΘO{PR{ΘI)) to ΊΘAPR(ΘI)) by σ(θ) :=
Then by the definition of distance,

- θo\,< I Γ \σ'(θ)\dθ\ < I Γ \f(p(θ1),θ)\dθ\ <
Jθo Jθo

where A(R) := max{|/(r,(9)| | 0 < r < ϋ , 0 <θ < 2π}. Hence from the
triangle inequality it follows that

On the other hand, we have

θl(PR(θi))) = PR(ΘI),

θ0(pR(θι))) < PR(ΘO)

Therefore
θ,) < pR(θ0) + AiR^Θ, - θo\,
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which completes the proof of the Sublemma.
Proof of Lemma 3. If PR(Θ) < 2pR(θ0) , Lemma 3 follows from the

Sublemma. If pR(θ) > 2pR(θ0), we can take θa such that p(θa) — 2p(θ0)
and \θa — θo\ < \θ — θo\ We denote the injectivity radius at p by ι.
Suppose that \θa — θo\ < L/A(R). Then from the Sublemma we get

pR(θa) < PR(Θ0) + A(R)\θa - θo\ < PR(Θ0) + i < 2pR(θo),

which is a contradiction. Thus we can assume that \θa — θo\ > L/A(R),

so that

PR(Θ) - pR(θ0) <R-L<(R- \a o |
L

<(--l)A(R)\θ-θo\.

Now we put C{R) ~ max{A{R),(R/i - l)A(R)}. Then Lemma 3
follows.

Combining the Remark, Lemma 2 and Lemma 3 yields the following
Lemma 4 immediately.

Lemma 4. For any intervals Ii7 V(pR\Ii) < C(R)m(Ii) where
C(R) := max{C0(i2),Ci(i2)}; andm(I) is the length of interval I. Fur-
thermore

Σ,V(pR\Ii)<2πC(R).
i=0

Proposition. For any R > 0; pR is a function of bounded variation.
Proof. For any partition Δ : 0 = θ0 < < θn = 2π of [0,2π], we

will show that

θi-i) ~ PR(θi)\ < 4πC(Λ).

We define the subsets Γ, Λ of {1,..., n} by

τ = {i\(θi_uθi)n(EouE1) = <D},

A = {i\(θi-Uθi)n(E0UE1)ϊ<b}.

Of course the disjoint union of Γ and Λ coincides with {1,..., n}. Then

By Lemma 4 we get

Σ\pR(θi-1)-pR(θi)\<2irC(R).
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For each i e Λ, we take θ' e [0i_i,0i] with θ1 G (EQUE^. From Lemma
2 and Lemma 3, it follows that

\pR{θi-ι) ~ pR(θi)\ < Ipnifli-i) - PR(Θ')\ + \pR(θ') - pR{βi)\

so that
Σt\pR(θi-1)-pR(θi)\<2πC{R),
ieλ

which completes the proof of the Proposition.
In [4], P.Hartman proved that if pR is of bounded variation for any

R > 0, then p is absolutely continuous where p is finite valued. Hence
the following Corollary 1.

Corollary 1. p is absolutely continuous where p is finite valued.
If M is compact, the following Corollary 2 is obvious.
Corollary 2. Suppose (M, g) is a compact surface with a Rieman-

nian metric of class C2. Then p is a function of bounded variation and
an absolutely continuous function. Furthermore the total length of the
cut locus of p G M is finite.

3. Proof of Theorem B

To begin with, on i?2, we will draw an infinite tree IT which will
be preassigned as the cut locus. We take points q(Cu--,Ck) (ci = 0,1)
inductively as follows (see Figure 1):

(1) qw = (0,0), q{0) = (0,1), q{ι) = (0,-1),
(2) g(Clf...>Cfc|Ch+1) is the point such that d{q{cu...,Ck),q{cu.^Ck,Ck+l)) =

( |) f c , and the angle from the line through ^(Cl, ,Cfc_i) &nd
<7(Cl, ,cfc-i,cfc)

 t o t h e l i n e through g(cit... |Cfc) and g(Cll...|Cfc|Cfc+1) is
equal to - ( | ) * f if ck+1 = 0, and ( |) f cf if ck+1 = 1.

Let IT be the union of all segments between q(Cu- ,Cfc) and g(Cl,.. ,Ck,ck+1)
Note that the length of IT is equal to

φ
Next, we will prepare the pieces and construct a sphere by attaching

the pieces to each other. Let N be a positive number, at least greater
than 2. We will determine the proper value of N at the end of this
article. Take two points P(0);o = (-^0) and P(0);i = (—JV, 0) on R2. For
each 9(ci, ,cfc)

 w e define a point P(Cu--,ck) inductively as follows:

(1) P(Clf...fCfc) is a point on the ray from ςf(ci,. ,cfc-i) t o ϊ(ci,-,cfc-i,cfc)>
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(2) d(q(cι), p(cι)) = d (q{0),

u-.cfc),P(C1>... ,β f c)) = <*(g(o, ,0)»P(0, • ,o>)> (^ > 2 )

Take the point p(C l ϊ... ,Cfc);Cfc+i as the reflection of p(C l j... )Cfc) with respect
to the line g(Cl,... |Cfc)9(cif...fCfcfCfc+1). Each edge g(Clf...,cfc)9(ci,-,cfcfCfc+i) o f / T
takes two triangles

i,. . ,c f c)9(ci,- ,c f c )9(ci,- ,cjb,cfc+1)

and

We denote the union of all these triangles C R2 by D (see Figure 1).
Note that on any quadrilateral

the cut locus of the two points {P(ci, ,cfc),P(ci, ,Cfc);cfc+1} coincides with

the segment g(Cll...fC|l)9(ci,...fcfc,cfc+1)
Take bi-angles B(Cu...yCk);j (j = 0,1) as follows.

(1) 2?(Clf... ,Cfc);j is the geodesic bi-angle on the constant curved sphere
whose diameter is equal to

(2) The vertices of B(Cli... iCkyj are the north pole and south pole of
the above constant curved sphere.

(3) Two angles of B(Clt...tCh);j are equal to

^(P(o);o,9(o)5P(0);o) on i22 as k = 1,

Z(p (0,.. ,O);o»9(O, ,0)'P(0, , 0 ) ; o ) ° n R 2 a s k>2-

Note that from the definition, the cut locus of one vertex of 5(C l ... jCkyj
coincides with the other vertex. At the point q^Cl) there are two hinges
(PW o^ίdhPίcO ci) and (p(0);i,g(Cl),P(ci);i-Ci) in dD. At each
9(Cll...,C|1) there are exactly two hinges (p(*),<7(Cl,-,cfc),P(*);*) and
(PW ϊ ί fci .-Al^W ) i n 5 J D Attach B(cu...tCh)]j (j = 0,1) to D, iden-
tifying the boundary of B(Cli...iCkyj with the above hinges. By this at-
tachment all p(*) and P(*yj become one point, and we will call this point
p. Now we get a piecewise constantly curved sphere S2 so that the cut
locus of p coincides with the closure of IT .

Finally we will check that S2 has a differential structure. From the
construction, any point G S2 except p has a tangent plane. On the other
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hand, the four angles ^(q(ci)P(^yjQ(Φ)) are the same. We denote this angle

by φ0. All the angles of the triangles Δp(Cl>...)Cfc)ςf(ci)...,Cfc)g(Cl,...)Cfc+1),
Δ P ( c i , ,cfc);i9(ci, ,cfc)9(ci,-,cfc+i) at the vertices P(Clf... fCfc) , P(Cl,-. ,Cfc);i are
the same. We denote this angle by φk (k > 1). It is trivial that

Φk = sin
- 1

— sin I - I —
, -,0).P(0, ,0)) V 2 ' 2

fc+1

Since

fc+1

we have

The angle of B^Cly...iCkyj at the vertex is equal to φk. Hence, we get the

following estimate of the total angle TAP around p G S2:

Therefore, we can take N so that the total angle around p coincides

with 2τr.
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