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SUBMANIFOLD GEOMETRY IN
SYMMETRIC SPACES

C.-L. TERNG & G. THORBERGSSON

1. Introduction

The classical local invariants of a submanifold in a space form are
the first fundamental form, the shape operators and the induced nor-
mal connection, and they determine the submanifold up to ambient
isometry. One of the main topics in differential geometry is to study
the relation between the local invariants and the global geometry and
topology of submanifolds. Many remarkable results have been devel-
oped for submanifolds in space forms whose local invariants satisfy
certain natural conditions. The study of focal points of a submanifold
in an arbitrary Riemannian manifold arises from the Morse theory of
the energy functional on the space of paths in the Riemannian manifold
joining a fixed point to the submanifold. The Morse index theorem re-
lates the geometry of a submanifold to the topology of this path space.
The focal structure is intimately related to the local invariants of the
submanifold. In the case of space forms one can go backwards and
reconstruct the local invariants from the focal structure, so it is not
too surprising that most of the structure theory of submanifolds can
be reformulated in terms of their focal structure. What is perhaps sur-
prising is a fact that became increasingly evident to the authors from
their individual and joint research over the past decade: while extend-
ing the theory of submanifolds to ambient spaces more general than
space-forms proves quite difficult if one tries to use the same approach
as for the space forms, at least for symmetric spaces it has proved pos-
sible to develop an elegant theory based on focal structure that reduces
to the classical theory in the case of space forms. This paper is an ex-
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tended report on this theory, and the authors believe that the methods
developed herein provide important tools for a continuing study of the
submanifold geometry in symmetric spaces.

First we set up some notation. Let (iV, g) be a Riemannian manifold,
M an immersed submanifold of TV, and u(M) the normal bundle of
M. The end point map η : v(M) -» N of M is the restriction of the
exponential map exp to v(M). If v G u(M)x is a singular point of η and
the dimension of the kernel of dηv is ra, then v is called a multiplicity m
focal normal and exp(ΐ ) is called a multiplicity m focal point of M with
respect to M in N. The /oca/ c/a£a, Γ(M), is defined to be the set of
all pairs (i>, ra) such that ?; is a multiplicity ra focal normal of M. The
/oca/ variety V(M) is the set of all pairs (η(v),m) with (v,m) G Γ(M).
The main purpose of our paper is to study the global geometry and
topology of submanifolds in symmetric spaces whose focal data satisfy
certain natural conditions.

In order to explain our results, we review some of the basic relations
between focal points, Jacobi fields and Morse theory. For a fixed p G iV,
let P(N, M xp) denote the space of iί^paths 7 : [0,1] -» N such that
(7(0), 7(1)) G M x {p} (a path is H1 if it is absolutely continuous and
the norm of its derivative is square integrable). Let

E : P(N, Mxp)^R, E{Ί) = f || 7'(ί) || 2dt
Jo

be the energy functional. Then 7 is a critical point of E if and only if
7 is a geodesic normal to M at 7(0) parameterized proportional to arc
length. A vector field J along the geodesic 7 is in the null space of the
Hessian of E if and only if J satisfies the Jacobi equation

V y V y J - Λ ( 7

/

> J ) ( 7 / ) = 0

with boundary conditions J(0) G ΓM7(0), A7/(0) J(0) +J'(0) G ^(M)7(0)
and J(l) = 0, where Aυ is the shape operator of M with respect to
the normal vector v. The Morse index theorem states that if p is not a
focal point of M then E is a non-degenerate Morse function, and that
the index of E at a critical point 7 is the sum of the integers m such
that j(t) is a multiplicity m focal point of M with respect to 7(0) with
0 < t < 1.

The basic local invariants of a submanifold are closely related to the
structure of its focal variety. For given v G v(M)x, the tangent space
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T(v(M))v can be naturally identified with v{M)x 0 TMX. It is known
that if u G TMX then dηυ(u) = J(l), where J is the Jacobi field on
j(t) = exp(tv) with the initial conditions J(0) = u and J'(0) = —Ay(u).
Since the initial conditions of an ordinary differential equation deter-
mine the solution at time 1, the shape operators of M and the curvature
tensor of N determine the focal structure of M, and one expects a close
relation between the focal data, the local and global geometry, and the
topology of the submanifold. For a general Riemannian manifold N, it
is difficult to make this relation precise. But if N is a symmetric space,
then the curvature tensor of N is a covariant constant. Hence in the
coordinates obtained from a parallel normal frame along 7, the Jacobi
equation becomes

(*) J" + S(J) = 0,

where S is a constant, self-adjoint operator whose eigenvalues can be
expressed in terms of the roots of the symmetric space. This gives a
precise relation between shape operators and focal data for submani-
folds in symmetric spaces.

Recall that an r-flat in a rank k symmetric space N = G/K is an
r-dimensional, totally geodesic, flat submanifold. Let g = t + p be a
Cartan decomposition. Then every flat is contained in some A -flat, and
every A -flat is of the form π(ρexp(α)), where g G G and α is a maximal
abelian subalgebra in p. If N is a compact Lie group of rank A:, then
a A -flat in N is just a maximal torus. But an r-flat need not be closed
in general.

1.1. Definition. Let M be an immersed submanifold of a symmet-
ric space N. The normal bundle v(M) is called:

(i) abelian if exp(v(M)x) is contained in some flat of N for each

x G M, and

(ii) globally flat if the induced normal connection is flat and has trivial

holonomy.

Let v be a normal vector field on a submanifold M. The end point

map of v is the map ηυ : M -» N defined by x 1-* exp(i;(x)). If υ is

a parallel normal field v on M, then Mv = ηυ(M) is called the parallel

set defined by v.

1.2. Definition. A connected, compact, immersed submanifold M

in a symmetric space N is called equifocal if

(1) v{M) is globally flat and abelian, and
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(2) if v is a parallel normal field on M such that ηv(xo) is a mul-

tiplicity k focal point of M with respect to x0, then ηυ(x) is a

multiplicity k focal point of M with respect to x for all x E M

(or equivalently, the focal data Γ(M) is "invariant under normal

parallel translation").

To simplify the terminology we make the following definition:

1.3. Definition. Let M be a submanifold in iV, and v G v(M)x.

Then t0 is called a focal radius (^ is called a /oca/ curvature) of M with

multiplicity m along t; if expx(tov) is a multiplicity m focal point of M

with respect to υ.
Thus a submanifold M with globally flat abelian normal bundle of a

symmetric space N is equifocal if the focal curvatures of M along any
parallel normal field are constant.

A non-vanishing normal field υ on M is called a focal normal field if
υ/ || v || is parallel and there exists m such that v(x) is a multiplicity ra
focal normal of M for all x £ M. If υ is a focal normal field, then || v \\
is a smooth function on M, and the end point map ηv : M ^ N defined
by %(#) = exp(v(a:)) has constant rank. So the kernel of dηv defines
an integrable distribution Tv with η~ι(y) as leaves, and Mv = ηv(M)
is an immersed submanifold of N. We will call Tv, ^~1(y) and Mv

respectively the focal distribution, focal leaf and the focal submanifold
defined by the focal normal field v.

1.4. Definition. A connected, compact, immersed submanifold M
with a globally flat and abelian normal bundle in a symmetric space N
is called weakly equifocal if given a parallel normal field v on M

(1) the multiplicities of focal radii along v are constant, i.e., the focal

radius functions tj are smooth functions on M and are ordered

as follows:

• < ί_2(a;) < *-i(z) < 0 < tλ(x) < t2(x) <-"

and the multiplicities πij of the focal radii tj (x) are constant on

M,

(2) the focal radius tj is constant on each focal leaf defined by the
focal normal field tjV for all j , i.e., tj is the pullback of a smooth
function defined on the focal submanifold MtjV via ηtjV.

1.5. Remark. We will prove in section 5 that condition (2) on the
focal radii in the definition of weakly equifocal submanifolds is always
satisfied if the dimension of the focal distribution is at least two.
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It follows from the definitions that a (weakly) equifocal submanifold
in a rank-λ; symmetric space has codimension less than or equal to k,
and that equifocal implies weakly equifocal.

When the ambient space N is the space form £ n , Rn or Hn, equifo-
cal and weakly equifocal hypersurfaces have been extensively studied.
Note that in this case, the operator S in the Jacobi equation (*) is cl,
where c is the sectional curvature of the space form. It follows that t0

is a focal curvature of multiplicity m along v if and only if fc{to) is a
principal curvature along v of multiplicity ra, where fc(to) = ô? co^{f~)
or coth(^ ) if c — 0,1 or — 1 respectively. So condition (2) for equifocal
submanifolds and condition (1) for weakly equifocal submanifolds are
equivalent to the conditions that the principal curvatures along any
parallel normal field are constant and have constant multiplicities re-
spectively. In these space forms they are referred to as isoparametric
and proper Dupin hypersurfaces respectively. The study of isopara-
metric hypersurfaces in Sn has a long history, and these hypersurfaces
have many remarkable properties (cf. [4], [24]). For example, assume
that M is an isoparametric hypersurface of Sn with g distinct constant
principal curvatures λi > ... > λg along the unit normal field v with
multiplicities mi,. . . , mg. Let Ej denote the curvature distribution de-
fined by λj, i.e., Ej(x) is equal to the eigenspace of Av(x) with respect
to the eigenvalue λj(x). Then the focal distributions of M are the
curvature distributions Ej. It follows from the structure equations of
Sn that there exists 0 < θ < - such that the principal curvatures are
\j = cot(0 + (J'~1)7Γ) with j — 1,... , #, and the parallel set Mt = Mtv

for — - + θ < t < θ is again an isoparametric hypersurface. The focal
sets M + = Me and M~ = MQ-Z- are embedded submanifolds of Sn

with codimension πii + 1 and mg + 1 respectively, and the focal variety
of M in Sn is equal to

{(z, rriι)\xe M+} U {(x, mg) \ x € M"}.

Another consequence of the structure equations is that the leaves of
each Ej are standard spheres. Using topological methods, Mύnzner
proved the following:
(1) g has to be 1,2,3,4 or 6,

(2) πii = rrii if i is odd, and mi = m2 if i is even,

(3) Sn can be written as the union D1UD2, where Dλ is the normal
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disk bundle of M + , D2 is the normal disk bundle of M~ and
DιΐλD2 = M,

(4) the Z2-homology of M can be given explicitly in terms of g and
rai,m2; in particular, the sum of the Z2-Betti numbers of M is
2g.

Recall that a hypersurface M of Sn is called proper Dupin if the prin-
cipal curvatures have constant multiplicities and dλ(X) — 0 for X
in the eigenspace Ex corresponding to the principal curvature λ (cf.
[29]). Note that a hypersurface in Sn is proper Dupin if and only if it is
weakly equifocal. It is proved in [38] that proper Dupin hypersurfaces
have the above properties (l)-(4).

Recall also that a submanifold M in Rn is called isoparametric
([14], [5], [33]), if v(M) is flat and the principal curvatures along any
parallel normal field are constant. It is known that the normal bundle
of a compact isoparametric submanifold in Rn is globally flat. So it
follows that a compact submanifold in Rn is isoparametric if and only
if it is equifocal. A submanifold M in Rn is called weakly isoparametric
([34]) if u(M) is flat and the multiplicities of the principal curvatures λ
along a parallel normal field v are constant, and if dλ(X) = 0 for X in
the eigenspace Ex(v) corresponding to the principal curvature λ. It is
proved in the papers quoted above that these submanifolds have many
properties in common with isoparametric and proper Dupin hypersur-
faces in spheres. One of the main goals of our paper is to generalize
many of these results to equifocal and weakly equifocal submanifolds
in compact symmetric spaces.

Henceforth, we will assume that N = G/K is a compact, rank-A;
symmetric space of semi-simple type, g = t + p a Cart an decomposition,
and N is equipped with the G-invariant metric given by the restriction
of the negative of the Killing form of g to p.

We first state a theorem that generalizes results on isoparametric hy-
persurfaces in spheres to equifocal hypersurfaces in compact symmetric
spaces:

1.6. Theorem. Let M be an immersed, compact, equifocal hyper-
surface in the simply connected, compact symmetric space N, and υ a
unit normal field. Then the following hold:
(a) Normal geodesies are circles of constant length, which will be de-

noted by ί.
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(b) There exist integers m1,m2, an even number 2g and 0 < θ < j -
such that

(1) the focal points on the normal circle Tx = exp{y{M)x)

are

x{j)=

and their multiplicities are m1 if j is odd and m2 if j
is even,

(2) the group generated by reflections in the pairs of
focal points x(j),x(j + g) on the normal circle Tx is
ίsomorphic to the dihedral group W with 2g elements,
and hence W acts on Tx.

(c) M is embedded.

(d) MΠTx = W x.

(e) Let ηtv : M -> N denote the end point map defined by tv, and
Mt = ηtυ(M) = {exp(tv(x)) | x E M} denote the set parallel to M
at distance t. Then Mt is an equifocal hypersurface and ηtv maps
M diffeomorphically onto Mt if t £ (—j- + θ, θ).

(f) M+ = Mθ and M~ = M_j_+Θ are embedded submanifolds of

codimension mi + l,ra 2 + 1 in N, and the maps ηθv : M —> M +

and η(_j_+θ)υ : M -> M~ are Smi- and S™2- bundles respectively.

(g) The focal variety V(M) = (M + ,mi) U (M~,m2).

(h) {Mt\t e [— jjj +θ,θ]} gives a singular foliation of N, which is
analogous to the orbit foliation of a cohomogeneity one isometric
group action on N.

(i) N = DiU D2 and Dx Π D2 = M, where Dλ and D2 are diffeo-

morphic to the normal disk bundles of M + and M~ respectively.

(j) Let p G N, t G R, and let E denote the energy functional on the
path space P(N,p x Mt). Then the Z2-homology of P(N,p x Mt)
can be computed explicitly in terms ofrrii andm2 andt; moreover,

(1) if p is not a focal point of M then E is a perfect Morse
function,
(2) if p is a focal point of M then E is non-degenerate in
the sense of Bott and perfect.

Equifocal submanifolds, hyperpolar actions and infinite dimensional
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isoparametric submanifolds in Hubert spaces are closely related as we
will now explain. Recall that an isometric iϊ-action on N is called
hyperpolar if there exists a compact flat T in ΛΓ, which meets every
iϊ-orbit and meets orthogonally at every point of intersection with an
ίf-orbit (see [9], [27] and [17]). Such a T is called a flat section of the
action. A typical example is the action of K on the compact rank-A;
symmetric space N = G/K with A -flats in N as flat sections. It is
proved by Bott and Samelson in [2] that this action is variationally
complete, and that if M is an orbit in N, then E : P(N,p x M) -» R
is a perfect Morse function and the Z2-homology of P(N,p x M) can
be computed explicitly in terms of the marked aίflne Dynkin diagram
associated to the symmetric space N. We will prove in section 2 that
principal orbits of a hyperpolar action are equifocal. Another main
goals of our paper is to show that, although equifocal submanifolds in
N need not be homogeneous, they share the same geometric and topo-
logical properties as principal orbits of hyperpolar actions. In particu-
lar, we will show that the Z2-homology of P(N,px M) can be similarly
calculated if M is equifocal or more generally weakly equifocal.

Let H°([0, l],g) denote the Hubert space of L2-integrable paths u :
[0,1] -* fl, and let φ : ff°([O, l],fl) -> G be the parallel transport
map, i.e., φ(u) = E(u)(l), where E(u) satisfies the differential equation
E~ιE' = u with E(0) = e. We will see in section 4 that φ is a Rieman-
nian submersion. It is proved in [37] that if M is a principal orbit of a
hyperpolar action on G, then φ~x(M) is isoparametric in iϊ°([0, l],fl)
We will show in section 5 that this statement is still true when M is
equifocal, i.e., not assuming M is homogeneous.

Recall that a submanifold in Rn is called taut if all non-degenerate
squared distance functions are perfect.

To summarize, we state some of our main results more precisely
below.

1.7. Theorem. // M is an immersed, weakly equifocal compact
submanifold of a semi-simple, compact symmetric space N, then the
following hold:
(a) For a focal normal field υ, the leaf of the focal distribution Tv

through x G M is diffeomorphic to a taut submanifold of a finite
dimensional Euclidean space.

(b) IfpeN is not a focal point of M then E : P(N,p x M) -> R
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is a perfect Morse function, otherwise E is non-degenerate in the
sense of Bott and perfect.

(c) M is embedded in N.

Recall that a submanifold M in N is called totally focal if η"1(V(M))
= Γ(M) (cf. [6]). The next theorem is an analogue of Theorem 1.6 in
higher codimension:

1.8. Theorem. Suppose M is a codimension r equifocal subman-
ifold of a simply connected, compact symmetric space N.Then th fol-
lowing hold:

(a) For a focal normal field v, the leaf of the focal distribution Tv

through x G M is diffeomorphic to an isoparametric submanifold
inu{Mυ)ηv{x).

(b) exp(v(M)x) = Tx is an r-dimensional flat torus in N for all

x G M.

(c) There exists an affine Weyl group W with r + 1 nodes in its affine
Dynkin diagram such that for x G M,

(1) W acts isometrically on v(M)x, and the set of sin-

gular points of the W -action on u(M)x is the set of all

υ G v{M)x such that exp(v) is a focal point of M with

respect to x,

(2) MΠTX= expx(WΌ).

(d) Let Dx denote the Weyl chamber of the W-action on v(M)x con-

taining 0, and Ax = exp(Dx). Then:

(1) expx maps the closure Dx isometrically onto the
closure Ax,
(2) there is a labelling of the open faces of Ax by σ\{x)y... ,
σ r +i(x) and integers m i , . . . ,m Γ + i independent of x
such that if y G dAx, then y is a focal point with re-
spect to x of multiplicity my, where my is the sum of
rrii such that y G σι{x).

(e) M is totally focal in N.

(f) Let v be a parallel normal field on M. Then Mv is an embedded

submanifold, and moreover:

(1) if exp(v(x)) is not a focal point, then Mυ is again
equifocal and the end point map ηυ : M —> Mv is a
diffeomorphism,
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(2) if exp(v(x)) is a focal point then ηv : M —> Mυ

is a fibration and the fiber η~ι(y) is diffeomorphic to

a finite-dimensional isoparametric submanifold in the

Euclidean space v(Mυ)y,

(3) MυΠTx= exp(W υ(x)).

(g) Let xo be a fixed point in M, and A = AXo. Then the following

hold:

(1) The parallel foliation {Mυ | exp(tυ(xo)) G Δ for all
0 < t < 1 and υ is a parallel normal field} is a singular
foliation on N, which is analogous to the orbit foliation
of a compact group action on N.

(2) Let y G Δ and My the parallel submanifold of M
through y. Then the focal variety V(M) = \j{(My,my) \ =

y e dA}.

(h) Let p e N, v a parallel normal field on M, and E the energy
functional on the path space P(M,pxMυ). Then the Z2-homology
of P(M,p x Mv) can be computed explicitly in terms of W and
ral5... , mr+ι; moreover,

(1) if p is not a focal point of M then E is a perfect

Morse function,

(2) if p is a focal point of M then E is non-degenerate

in the sense of Bott and perfect.

(i) N = U{Δ^\x EM}, and

(1) ifxφy then Ax Π Ay = 0,
(2) if Ax Π Ay φ 0 then it is a closed subsimplex of both Ax

and Ay,
(3) given x G M, {Ay \y G M Γ)TX} is a triangulation of
T
±X'

Note that Theorem 1.8 (i) implies that we can associate to each

equifocal submanifold of a simply connected, compact symmetric space

N a "toric building structure on iV". This is analogous to a spherical

building except that the corresponding "apartments" cover tori instead

of spheres.

Theorems 1.6 and 1.8 are not valid if N is not simply conneced. To

see this, let N be the real projective space RPn and M a distance sphere

in N centered at x0. Then M is certainly equifocal. Let υ be a unit
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normal field on M. Then there exists t0 E R such that exp(tov(x)) = x0

for all x e M. Let Tx be the normal circle at a point x in M. Then Dx is
an interval, and Ax =TX\{x0}. Moreover, there exists tλ such that the
parallel set Mtl is the cut locus of the center α;0, which is a Z2-quotient
of M, i.e., a projective hyperplane. Notice that the focal variety of
M consists of only one point (xOin — 1), and Mtl is not diffeomorphic
to M. In fact Mtl has the same dimension as M and satisfies all the
conditions in the definition of an equifocal submanifold except that the
normal bundle does not have trivial holonomy. Although a parallel
manifold Mv of M in a simply connected symmetric space N is either
equifocal or a focal submanifold, this need not be the case if N is not
simply connected. In fact, in this case the parallel set of an equifocal
submanifold in N is still an embedded submanifold, but there are three
types of parallel submanifols. The third type is, as in the example just
given, a parallel submanifold which satisfies all the conditions in the
definition of an equifocal submanifold except that the normal bundle
does not have trivial holonomy. This is analogous to the three types of
orbits an action of a compact Lie group can have: principal, singular
and exceptional orbits.

A submanifold M in N is called curvature adapted if for any v G
v{M)x the operator Bυ(u) = R(v,u)(υ) leaves TMX invariant, and Bυ

commutes with the shape operator Aυ (cf. [3]). Wu in [41] defined
a submanifold M in N to be hyper-isoparametric if it has globally
flat abelian normal bundle, and is curvature adapted, and the princi-
pal curvatures along any parallel normal field are constant. Note that
M is hyper-isoparametric if and only if M is curvature adapted and
equifocal. Wu independently obtained some of our results by using
the method of moving frames. But an equifocal submanifold in gen-
eral is neither curvature adapted nor has constant principal curvatures.
For example there are many such equifocal hypersurfaces in CPn (cf.
[40]).

We would like to make some comments on the methods we use to
prove many of our geometric results on equifocal submanifolds. Since
a symmetric space that is not a real space form has more than one
root space, the operator S in the Jacobi equation (*) has more than
one eigenvalue, and the shape operators and S need not commute in
general. Thus there is no simple formula relating the focal points to the
principal curvatures. This makes manipulation of the structure equa-
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tions (the main technique in studying the geometry of submanifolds in
space forms) much more complicated. So in this paper, we abandon
many of the standard tools used in the study of submanifold geometry
in space forms, and instead we study directly the relation between fo-
cal points of a submanifold and lifts of the submanifold under certain
Riemannian submersions. In fact, the following two theorems are key
steps in proving the results stated above:

1.9. Theorem. Let π : G —> G/K be the natural Riemannian
fibration of the symmetric space G/K, M a submanifold of G/K with
globally flat abelian normal bundle, and M* a connected component of
π~ 1 (M). Let v G v(M)x, x* G M* π(x*) = x, and υ* be the horizontal
lift ofv atx*. Then:

(1) exp(v) is a multiplicity m focal point of M in G/K with respect
to x if and only if exp(v*) is a multiplicity m focal point of M*
with respect to x* in G,

(2) u(M*) is globally flat and abelian,

(3) M is equifocal (weakly equifocal resp.) in G/K if and only if M*
is equifocal (weakly equifocal resp.) in G.

1.10. T h e o r e m . Let φ : fl"°([0,l],fl) -* G denote the parallel
transport map, M* a compact submanifold in G with globally flat and
abelian normal bundle, and M a connected component ofφ~1(M*). Let
v* G v(M*)x*, x G M φ(x) = x*, and v be the horizontal lift of v* at
x. Then:

(1) exp(v*) is a multiplicity m focal point of M* in G with respect to
x* if and only if exp(v) is a multiplicity m focal point of M with
respect to x in H°([0, l],fl),

(2) v{M) is globally flat,

(3) M* is equifocal (weakly equifocal resp.) in G if and only if M is
isoparametric (weakly isoparametric resp.) in H°([0,1], g).

So Theorems 1.9 and 1.10 allow us to study the geometry of an
equifocal submanifold M in G/K by studying the geometry of the
isoparametric submanifold M = φ~1(π~1(M)) in the Hubert space V =
H°([0, l],fl). Although M is infinite dimensional, the ambient space
is a flat space form and most of the techniques and results in finite
dimensional space forms are still valid (cf. [35], [28]).

This paper is organized as follows: We give examples of equifocal
submanifolds in symmetric spaces in section 2, derive an explicit re-
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lation between focal points and shape operators of submanifolds in
compact Lie groups in section 3, prove that the parallel transport map
φ is a Riemannian submersion, and study the geometry of φ in section
4. We prove: Theorem 1.10 in section 5, Theorems 1.6, 1.7 and 1.8
and 1.9 in section 6, and the existence of inhomogeneous equifocal hy-
persurfaces in compact Lie groups and inhomogeneous isoparametri c
hypersurfaces in Hubert spaces in section 7. State some open problems
are given in section 8.

The authors would like to thank the Max Planck Institute in Bonn.
This research started during the authors' visit there in the fall of 1991 in
an effort to find inhomogeneous isoparametric hypersurfaces in Hubert
spaces. It took us awhile to see how this simple problem actually ties
together many interesting subjects in submanifold geometry.

2. Examples of equifocal submanifolds

The main result of this section is the following theorem.
2.1. Theorem. Let H be a closed subgroup of G x G that acts on

G isometrically by

{hι,h2) g = high^1.

If the action of H on G is hyperpolar, then the principal H-orbits are
equifocal submanifolds of G. More generally, if G/K is a compact
symmetric space and H is a closed subgroup of G that acts hyperpolarly
on G/K, then the principal H-orbits are equifocal.

Proof. First notice that if G/K is a compact symmetric space and H
a closed subgroup of G which is hyperpolar on G/K, then the subgroup
H x K of G x G is hyperpolar on G; see [17]. If π : G -+ G/K is the
natural fibration, then the ίf-orbits in G/K lift to H x ϋf-orbits in G.
We will show in section 6, that a submanifold of G/K is equifocal if
and only if its lift to G is equifocal. It is therefore enough to prove the
theorem for hyperpolar actions on a Lie group G.

Let M be a principal orbit in G. Then the induced action on the
normal bundle of M is trivial, and every normal vector extends to
an equivariant normal vector field. Prom the definition of hyperpolar
actions it is clear that the normal bundle of M is abelian. It is proved
in [27] that every equivariant normal field of M is parallel. Hence the
normal bundle of M is globally flat.
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It is therefore left to prove that if υ is an equivariant normal field of
M such that ηv(xo) is a multiplicity-A; focal point of M with respect to
x0, then ηυ(x) is a multiplicity-A; focal point of M with respect to x for
all x G M. This follows immediately from the following observations.
First note that hyperpolar actions are variationally complete; see [9].
It is proved in [2]( see also Proposition 2.7 in [36]) that variational
completeness implies the following:

(i) The set of focal points of M in G is exactly the set of singular
points with respect to the ίf-action.

(ii) If y is a multiplicity k focal point of M with respect to x, then
k is equal to the difference of the dimensions of the isotropy sub-
groups, i.e., k = dim(Hy) — dim(Hx).

2.2. Remark. Let M be a principal orbit of an isometric iί-action
on G. It is proved in [17] that if exp(u(M)x) is contained in some flat,
then the iί-action is hyperpolar. In particular, this implies that if the
normal bundle of M is abelian then M is equifocal.

2.3. Examples. The following are examples of hyperpolar actions
on a Lie group G or a symmetric space G/K (cf. [17]):
(a) H = G(σ) = {(#, σ(g)) \ g E G}, where σ : G -ϊ G is an automor-

phism, is hyperpolar on G.

(b) H — Kλ x K2 is hyperpolar on G, where K{ is the fixed point
set of some involution σ< of G. Consequently Kλ is hyperpolar on
the symmetric space G/K2.

(c) The action of H = p{K) x SO(n - 1) on SO{n), where p : K ->
SO(n) is the isotropy representation of a rank-two symmetric
space.

(d) any cohomogeneity one action on G/K.
2.4. Remark. It is true in real space forms that a hypersurface

is equifocal if and only if it has constant principal curvatures. This is
not true in more general ambient spaces as an example of Wang [40]
shows. In his example Wang starts with an inhomogeneous isoparamet-
ric hypersurface in an odd dimensional sphere which he shows to be the
lift under the Hopf map of a hypersurface M in a complex projective
space. This hypersurface M is equifocal in our terminology. He then
shows that the principal curvatures of M cannot be constant. Since a
curvature adapted, equifocal hypersurface must have constant principal
curvatures, these hypersurfaces are not curvature adapted. They are
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not homogeneous either because their lifts are not homogeneous. We
will discuss related examples of inhomogeneous equifocal hypersurfaces
in the last section of this paper.

3. Relation between focal points and shape operators

Let G be a compact, semi-simple Lie group, g its Lie algebra, (, ) an
Ad-invariant inner product on g, and ds2 the bi-invariant metric on G
defined by (, ). The main result of this section is to give a necessary and
sufficient condition for a point in G to be a focal point of a submanifold
with abelian and globally flat normal bundle in G.

It is known that the Levi-Civita connection for ds2 is given by

if X, Y are left invariant vector fields, and

VxY = -l-[X,Y]

if X, Y are right invariant vector fields. The curvature tensor is

where X, Y, and Z are left invariant vector fields.
To simplify the notation, we will use the convention that for g E G

and y e β, gy = (Lg)*(y) and yg = (Rg)*(y), where Lg and Rg are left
and right translations by g respectively.

3.1. Proposition. If M is a submanifold in G with abelian normal
bundle, then

[x~1iy(M)x,g]Cχ-1TMx.

In particular, R(ξ,TGx)ξ C TMβfor ξ e v(M)x.
Proof. Set 21 = x~xv(M)x. Since the inner product on g is Ad-

invariant and 21 is abelian, we have

i.e., [fl,2l] C x~xTMx. The second part of the proposition follows since
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The following is an elementary fact concerning focal points and Jacobi
fields.

3.2. Proposition. Let M be a submanifold of N, x(t) a smooth
curve in M, v(t) a normal field of M along x{t), and η : v(M) —> N
the end point map. Then

dηυio)(v'(0)) = J(l),

where J is the Jacobi field along x(t) satisfying the initial condition
J(0) = χ'(0) and J'(0) = -AυW(x'(0)) + V£(o)v, where V"1 is the
normal connection of the submanifold M.

Let a G β, j(t) = xeat be a geodesic in G, and J(t) be a Jacobi field
along 7. Denote the parallel transport map along 7 from 7(^1) to 7(^2)
by PΊ{tut2). Set Y(t) = j(0)~ιPΊ{t,0)J(t). Then the Jacobi equation
for J gives rise to the following equation for Y (cf. [23]):

γ» - I ad(α)2F = 0.

Let t be a maximal abelian subalgebra of g that contains α, and

the root space decomposition with respect to t, where ad(α)2(zα) =
—a(a)2za for za G ga. Let Dι(a) and D2{a) be the operators defined
as follows: for z = p0 + Σa pa with p0 G ί,pa G flα,

where λ"1 sin(λ) is defined to be 1 if λ = 0. Notice that D1(a) and
D2(a) depend only on α, but not on the choice of the maximal abelian
subalgebra ί containing a. One can also describe Dx and D2 in terms of
the curvature tensor of G. For this we note that the operator, Ra(z) =
R(a,z)a = — \ ad(α)2(z), is a nonnegative symmetric operator, and

D2(a)(z) =
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3.3. Theorem. Suppose M is a submanifold in G with abelian
normal bundle and a £ x~1v(M)x. Then

(1) the operator (Dι(a) — D2(a)x~1Axax) maps x~ιTMx to itself,
where Axa is the shape operator of M at x along xa,

(2) xea is a focal point of M of multiplicity m with respect to x if
and only if the operator (Dι(a) — D2(a)x~1Axax) on x~1TMx is
singular with nullity m.

Part (1) of this theorem is obvious, but to prove part (2) we need
the following Lemma.

3.4. Lemma. Let x(t) be a curve in M, and v(t) = x(t)a(t) a
parallel normal field along x(t). Then

x^P7o(l,0)d^XOiVo)(vf

o) = {A(α) - D2(a)χ-1AV0x0}(χ-1x/

0),

where 0 as an index refers to t = 0 and P 7 o (l ,0) denotes the parallel

transport map along the geodesic Ύo(s) = xQesao from 7o(l) to 7o(0).

Proof Let 7(5, t) = x(t)esa^ be a variation of normal geodesies of

Λf, and
dj #7

b~ ds' dt'

Then 5(0,ί) = x{t)a(t), and J(s) = Γ(s,0) is a Jacobi field along the

geodesic 70(s) = x(0)esa{0) with J(0) = x'(0). By Proposition 3.2, we

have

^ ( 0 ) ^ ( 0 ) ) = J(l),

and J'(0) = — Aυ(o)(x'(0)) since υ(t) is parallel. As above set

Then Y satisfies the differential equation

Y" - \ ad(α)2y = 0.
4

Since the operator ad(α)2 is in the diagonal form with respect to the

root space decompositon, this differential equation can be solved explic-

itly. In fact, the solution for the initial value problem Y(0) = P o + Σ α V<χ

Y(t) =po + tq0 + Σp« COS {-γ-η + qa-jΎ sin (
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Clearly

r(o) = ̂ (o)-1 j'(o) = -xioy^wix'
But y(0) = x(0)-V(0), so we have

cos

where 0 as an index on z, a;' υ and v' refers to t = 0.

3.5. Proof of Theorem 3.3. It is obvious that we can choose a
basis for Γ(z/(M))(Xfa.α), which consists of vectors of the form v'(0) as
in Lemma 3.4 and σ'(0) with σ(t) = x(α + ί&), 6 G a;'"1i/(M)a.. Since
ι/(M) is abelian, we have d expxa(xb) = xeab φ 0. The theorem now
follows from Lemma 3.4.

For a G v(M)x, u(M)x Θ TMX can be naturally identified with
T(u(M))a via the map

where v^ is defined by Vb(s) = a+sb and vu(s) is the parallel normal field
along the geodesic 7(5) = expM(su) with υu(0) = a (here exp M denotes
the exponential map of M). It follows from the proof of Theorem 3.3
that the differential dη : T(z/(M))α -> TGη(a) is of the form

under the identifications

T{v{M))a~v{M)x®TMx,

TGη{a) ~v{

where in the second line (6,ιx) G ^ ( M ) x 0 TMX is identified with

P7o(0,1)(6 + u) and 70 is defined by 70(5) = exp(sα). In particu-

lar, this implies that the kernel of dηa is a subset of TMX under the the

above identifications (notice that we have very strongly used that the

normal bundle u(M) is abelian). So we have:

3.6. Proposition. Let M be a submanifold of G with abelian and

globally flat normal bundle, and v a parallel normal vector field. Then
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2/o = expυ(x0) is a focal point of M with respect to x0 if and only if
the differential of the end point map of v, ηv : M -» G,x —• exp v(x),
is not injective at x0. Moreover, the multiplicity of y0 as a focal point
is equal to the dimension of the kernel ofd(ηυ)XQ.

Theorem 3.3 is valid for any symmetric space. In fact, let N be
a symmetric space, G = Iso(iV), and M a submanifold of N with
abelian normal bundle. Let xQ E M, K = GXo, g = I + p the Cartan
decomposition, and a G p normal to M at x0. Let 21 be a maximal
abelian subalgebra in p containing α, and

α € Δ

its root space decomposition. Define Di(a) : p —> p by Di(a)(b) = b for
b G 21, and

Oί(a)

for xa G pα. Then the same proof as for Theorem 3.3 implies that
exp(α) is a multiplicity m focal point of M with respect to x0 if and
only if the kernel of the operator Dι(a) — D2(a)Aa is of dimension m.
So we have the same result as in Proposition 3.6 for symmetric spaces:

3.7. Proposition. Let M be a submanifold of a symmetric space
N with abelian and globally flat normal bundle, and v a parallel normal
vector field on M. Then y0 = exp v(x0) is a focal point of M with
respect to XQ if and only if the differential of the end point map of v,
ηυ : M —> A/", x —ϊ exp v(x), is not injective at x0. Moreover, the
multiplicity of y0 as a focal point is equal to the dimension of the kernel
ofd(ηv)Xo.

The following Proposition will be useful later.
3.8. Proposition. Let M be a submanifold in G with globally

flat and abelian normal bundle, x{t) G M, and a(t) G 0 such that
υ(t) = x{t)a(t) is a normal vector field of M along the curve x(t).
Then
(1) x{Q)-ιVx,wv = α'(0) + l/2[z(0)-V(0),α(0)];

(2) υ(t) is parallel if and only i/α'(0) G a?(0)"1TMiB(o). Furthermore,
if v(t) is parallel, then

— n'ift] A irίO^rΊO)
Δ
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Proof. Let j/ i , . . . , yn be a basis for g, and Yi(g) = gyi the left
invariant vector field defined by ?/;. Write a(t) = £» — fi(t)Vi- Then

) Since the metric on £? is bi-invariant, we have

This proves (1), and (2) follows easily from (1).

4. The geometry of the parallel transport map

Let iϊ°([0, l];g) denote the Hubert space of L2-integrable paths u :

[0,1] —> g, where the L2-inner product is defined by

(u,υ)0= ί (u{t),v(t))dt.
Jo

Let i/1([0,1];G) denote the group of absolutely continuous paths g :

[0,1] -> G such that g1 is square integrable, i.e., (g'g~1,gfg~1)o is finite.

Given a subset H of G x G, we let P(G, i ϊ ) denote the subset of all

5 G H1^ 1],G) such that (^(0)^(1)) G JET. If JET is a subgroup, then

P{G,H) is a subgroup of ^([0,1],<7). Note that P(G,e x G) is a

Hubert manifold, and

T(P(G,e x G)) 9 = {«</1« 6 ^ ( [ 0 , l];fl), «(0) = 0}.

Let P(G, e x G) be equipped with the right-invariant metric defined

by
(v1g,v2g) = {v[,υ'2)o.

Let E : H°([0, l];g) -^ ^ ( ^ , 6 x G) be the parallel translation in the
trivial principal bundle I x G over / = [0,1] defined by the connection
u(t)dt, i.e., E = JS(τx) for u G ίίo([0, l];β) is the unique solution of

= β .

Let (̂  : H°([0,1]; g) ->• G be the parallel transport from 0 ίo 1, i.e.,
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The following result is known (cf. [35], [37]):

4.1. Theorem. Let H1 ([0,1], G) act on V = JΓ°([O, l];fl) by gauge
transformationsj i.e.,

g*u = gug~1 -g'g~\

and let φ : i/0([0, l],β) -> G be the parallel transport map from 0 to 1.
Then the foloowing hold:

(1) The action of ^ ( [0,1] ,G) on ίf°([0, l];g) is proper, Fredholm
and isometric.

(2) φ(g * u) = gWΦMg-Hl) for 9 e ffWl.G) and

^ If φ{u) = xoφ[υ)xΐι then there exists g G ̂ ( [ 0 , 1 ] , G) such that
g(0) = xo,g(l) = xι and u = g*υ.

4.2. Corollary. The action ofP(G, exG) on H°([0,1]; g) by gauge
transformations is transitive and free.

Proof. Let y denote the constant path with constant value y. We
first prove that the action is transitive. Let u G J9r0([0,1]; β). Since
G is connected and compact, there exists y G fl such that φ(u) = ey.
It is obvious that φ(0)ey = </>(u). So by Theorem 4.1, there exists
g G JP(G, e x G ) with ρ(0) = e and #(1) = e~y such that u = g * 0. To
prove the action is free, let g G P{G, e x G) be such that 5 * 0 = 0.
Then #~ V = 0. So # is constant. Since g(0) = e, g(t) = e for all t.

4.3. Corollary. The parallel translation E : H°([0,1], g) -> P(G, ex
G) is an isometry.

Proof. Since the inverse of E is the map F : P(G, e x G) ->
if°([0,1],0) defined by F(<?) = g-ιg' = ff"1 * 0 and d i ^ f f ) = ff-^'ff,
our claim follows.

Let G be a compact Lie group acting on a smooth manifold M, and
let π : M —>• M/G denote the orbit space map. It is known that if the
action of G has only one orbit type, then the orbit space M/G has a
unique differentiate structure such that π is a fibration. If moreover,
M is Riemannian and the G-action is isometric, then there exists a
unique metric on M/G such that π is a Riemannian submersion. In
fact, we have T(M/G)^x) = dπx(TMx) and (dπa,(ni),dπx(ϊi2))7Γ(x) =
{^i>^2)z for ι*i, w2 G (kerdπa.)-1 and x e M. In the following we will
give an infinite dimensional analogue of this fact for the free isometric
action of Ωe(G) = P(G, e x e) on i/°([0, lj fl). First, as a consequence
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of Theorem 4.1 and Corollary 4.2 we have

4.4. Corollary. Let Ωe(G) denote the subgroup P{G,e x e) of
P(G,e x G), and φ:V = H°([0, l];g) -> G *Λe pαraZ/e/ transport map
from 0 to 1. Tften:

fί^ £Λe (/αitpe action of Ωe(G) on V is free,

(2) the fibers of φ are exactly the orbits ofΩe(G),

(3) φ is a principal Ωe(G)-bundle,

(4) G is the orbit space V/Ωe(G), and φ is the orbit space map,

(5) for g G P(G, e x G) the map τg(u) = g * u maps fibers of φ to

fibers of φ,

(6) the differential of the map rg in (5) is d(τg)u{v) — gvg~ι.
4.5. Theorem. Let H be the horizontal distribution for the fibration

φ, i.e., Ή(u) be the normal space of the fiber φ~1(φ(u)) at u, and let y
denote the constant path in g with constant value y. Then the following:

(1) Ήφ) = {y\ye0},

(2) ifu = g* 6, then H{g * 0) - gnφ)g~1 = {gyg~λ \ y G g},

(3) ifu = g*0 with g(0) = e, then dφuigyg'1) = yφ(u) = yg{l)~ι,

(4) φ is a Riemannian submersion,

(5) φ is the natural Riemannian submersion associated to the free

isometric action of Ωe(G) on H°([0, l],fl).
Proof Since F = Ωe{G) * 0 = {-g'g~ι \ g G Ωe(G)}, we have

=0}

So (1) is an immediate consequence. Statement (2) follows from the
facts that the map τg(υ) = g*υ is an isometry on iϊ°([0,1]; fl), d(τg)Q(v)
= gvg~λ, and τg maps fibers of φ at 0 to fibers of φ at g * 0. Note that
if g(0) = e and u = g * 0 then

φ(g * 0 + sgyg~ι) = φ(g * sy), by Theorem 4.1
- φ{sy)g(l)-1 = e ^ ( l ) - 1 = esyφ{u).

So dφu(gyg~λ) = yφ(u), which proves (3). Then (4) and (5) follows.

4.6. Corollary. Let v G TGX, u G φ~ι(x), and v be the horizontal

lift of υ at u with respect to φ. Choose g G P(G, e x G) such that

u = g * 0. Then

v(u) =gvx~lg~l.
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Let M be a submanifold in G. Using the isometry E from if°([0,1], g)

to P(G,e x G), we see that φ~1(M) is isometric to the submanifold

P(G, exM) = {ge P{G, exG)\ g(0) = e, g(l) G M }

of P(G,e x G). Note that P(G,e x M) is like a cylinder set for the
Wiener measure on the set of continuous paths g in G. Motivated by
the definiton of a general cylinder set, we consider below the parallel
transport from a to b for any 0 < a < b < 1. Let ίf°([α, &],g) denote
the space of ZΛpaths in g with the inner product defined by

, 6

(u,v)= / (u(t),v(t))dt.

Let

denote the parallel transport map from a to b for the connections u(t)dt
over [α, 6], i.e., ^ is defined by φb

a(u) = ρ(6), where g : [α, 6] —> G is the
solution of the initial value problem:

g~λg' = i4, g(α) = e.

The proof of the following facts is the same as for φ\ = φ.

4.7. Theorem. Let ds2 be a fixed bi-inυariant metric on G, and let
G[a,b] denote the Lie group G with the bi-invariant metric -^ds2, and
φb

a : iίo([α,ί)],£j) —> G[α>&] the parallel transport map from a to b. Then
the following hold:

(1) φb

a(9*u)=g(a)φb

a(u)g(b)-\

(2) ifφb

a{v) = xιφb

a(u)x2λ then there exists g G Hλ([a, 6], G) such that

g(a) = Xi, g(b) = x2 and v = g *u,

(3) the horizontal space of φb

a at g * 0 is {gyg~x \ y G fl};

(4) tfu = g* 0, then d{φb

a)u(gyg-1) = (5 - a)yφb

a{u),

(5) φb

a is a Riemannian submersion, and it is the natural Riemannian

submersion associated to the free, isometric action of

Ωe([α,6],G) = {gE H1([a,b],G)\g(a) = g(b) = e}

onH°([a,b},Q).
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4.8. Corollary. Let s : 0 = s0 < Si < sn = 1 be a partition of
[0,1], and

Φ£ : i7°([0, l];g) —)- Πi^Γ G[Si_1)S.j, defined by

ΦL(ύ) = ( ^ M β s i ] ) , . . . ^ ^ ( w l ^ n - i j l ] ) ) ,

and identify ίf°([0, l],g) lί zϊΛ Λ̂e direct sum Θ^=1jH'0([si_i,si],g) ma
ίΛe linear isometry

n

f : iϊ°([0, l],fl) —>• φ J3*°([si-i,Si],fl) defined by
i-l

Γ/ien the following hold:
(1) Φ£ is the natural Riemannian submersion associated to the free

product action o/ΠΓ=i Ωe([«i-i,«i],G) on

(3) if M is a submanifold 0/ΠiG>i-i,«i] *^e n ^ Γ 1 ^ ) *s isometric
to the following submanifold of P{G,e x G):

{g e P(G, e x G) I (<?(*i), ̂ i ) " 1 ^ ) , - - - ̂ (^- i ) " 1 ^!) ) 6 M}.

Proof Let [α, 6] C [0,1]. By the uniqueness of solution of ordinary
differential equations we have φb

a(u \ [α, 6]) = E(u)(a)~1E(u)(b). So the
Corollary follows.

5. The geometry of lifts of submanifolds of G to ff°([O, l];fl)

Let M be a submanifold of a Hubert space V, and 77 : ι/(M) -> V the
end point map (i.e., η(υ) = X + Ϊ; if υ G i/(M)a.). Recall that M is called
proper Fredholm if the restriction of the end point map to any normal
disk bundle vr(M) of finite radius r is a proper, Fredholm map. If M is
proper Fredholm in V then I—Aυ is Fredholm for all υ G ̂ (M), and the
restriction of any squared distance function to M satisfies condition C
of Palais and Smale. A proper Fredholm submanifold M of V is called
isoparametric if u(M) is globally flat and for any parallel normal field v
on M the shape operators Av(x) and Aυ(y) are conjugate for allx,y £ M.
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We refer to [35] and [28] for more detailed geometric and topological
properties of these submanifolds.

A proper Predholm submanifold M of V is called weakly isopara-
metric if v(M) is globally flat, the multiplicities of the principal cur-
vatures along a parallel normal field v are constant, and dλ(X) = 0
for X G Eλ(v) — {X\AVX — XX} where λ is a principal curvature
function λ along a parallel normal field v.

Let G be a compact, connected, semi-simple Lie group equipped
with a bi-invariant metric, and H a closed subgroup of G x G acting
on G by (huh2) x = hλχ]ι^. Let P(G,H) act on ff°([0,l];fl) by
gauge transformations. It is proved in [37] that if the action of H on G
is hyperpolar, then the action of P(G,H) on iϊ°([0, l];g) is polar and
the principal P(G, i/)-orbits are isoparametric. Furthermore, using the
formula φ(g * u) — g(0)φ(u)g(l)~ι and the fact that the fibers of φ are
orbits of Ωe(G), we obtain φ~x{H ea) = P(G,H) * ά. To summarize,
we have

5.1. Theorem ([37]). If M is a principal orbit of a hyper-
polar action on G, then φ~ι(M) is an isoparametric submanifold in
H°([0,l],g).

By Theorem 2.1, a principal orbit of a hyperpolar action is equifo-
cal. So Theorem 1.10 (3) in the introduction generalizes Theorem 5.1
to equifocal submanifolds M in Lie groups which are not necessarily
homogeneous.

Before starting with the proof of Theorem 1.10 we give a few sim-
ple applications. Recall that a proper Predholm submanifold M of a
Hubert space V is taut (cf. [35]) if for every non-focal point a EV the
distance squared function fa:M->R defined by /α(x) = || x — a || 2 is
a perfect Morse function.

5.2. Proposition. Let M be a weakly equifocal immersion of a
compact manifold into a compact Lie group G. Then the lift M of M
to V is taut.

Proof. By Theorem 1.10, M is weakly isoparametric. One can prove
exacly as in the finite dimensional case( see [34], [35] and [38]) that an
infinite dimensional weakly isoparametric submanifold is taut.

5.3. Proposition. A weakly equifocal immersion of a compact
manifold M into a Lie group G is an embedding.

Proof. We know from Proposition 5.2 that M is taut. It is standard
that taut submanifolds are embedded (cf. [35]). Hence M is embedded
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and then it is clear that M is embedded as well.
5.4. Proposition. Let M be a weakly equifocal compact submani-

fold in G. Ifp G G is not a focal point of M, then the energy functional
E : P{G,p x M) -> R is a perfect Morse function.

Proof. Set p = ea for a G g. Consider the diffeomorphism
p : P{G,p x M) -> P{G,ex M) defined by p(g)(t) = g(t)e^-^a. The
path space P{G,p x M) can be naturally embedded into H°([0, l],g)
as the submanifold M = φ~ι(M) via the map g v-± F(p(g)) where
F : P(G, e x G ) 4 H°([0,1], g) is the isometry defined by F(g) = g~ιgf

as in the proof of Corollary 4.3. Using this embedding, the functional
E on P(G,p x M) corresponds to the restriction of the Hubert dis-
tance squared function fa(u) = \\u — a\\l to M. Since M is taut
(Proposition 5.2), fa is a perfect Morse function.

We will now prove several lemmas needed for the proof of Theo-
rem 1.10. The notation will be the same as in Theorem 1.10 except
that we do not assume that M has a globally flat normal bundle when
not explicitly stated. First as a consequence of Corollary 4.6, we have

5.5. Lemma. Suppose h G P(G,e x G), u = h * 0 G M and
x = φ(u). Then

u{M)u = {hbχ-ιh~ι I b G v(M)x}.

5.6. Lemma. Let v be a normal vector field on M, and v the
horizontal lift of v to M. Then v is a parallel normal field on M if and
only if v is parallel on M.

Proof. We need to show that dvu{TMu) is contained in TMU if
and only if dυx(TMx) C TMX. Now let h G P(G, e x G) be such that
u = h * 0, and gs a smooth curve in P(G, ex G) such that go(t) = e for
all t and gs *u G M. Then x(s) = φ(gs *u) G M. Let

L
~ds

9
d

us-) sv"v — Ί

s=o as
s=0

(gs *?/), a(x) = x 1υ(x).

A direct computation gives

y8rιx{ϋ)u\x\{>))x
s=0

h[x'(0)xQλ, xoa(xo)xQ1]h~1

ds _ gshx(s)a(x(s))x(s) λh ιgs

ι

s—ϋ
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where x0 = x(0). By Lemma 5.5, v{M)u = {hx^bx^h \ xob E u(M)Xo}.

Given b E XQ1V(M)XQ, because XQ1U(M)XO is abelian and (,) is ad-

invariant, we have

([£, hxoa(xo)xΰ1h~1] + h[xl(0)xQ1,xoa(xo)xo1]h~1,hxobxQ1h"'1)o = 0.

By Proposition 3.8 (2), υ is parallel if and only if α'(0) E XQXTMXO.

Hence v is parallel if and only if

(hxoa'(O)rE^1 h~ι, hxobxQl h~~1)0 = 0,

which holds if and only if ϋ is parallel. This completes the proof of the
lemma.

As a consequence of Proposition 3.8 and the proof of Lemma 5.6 we
have:

5.7. Lemma. The shape operators Aυ and Ay are related as follows:

5.8. Lemma. Let M be a compact submanifold of G. Then
M = φ-χ(M) is a proper Fredholm submanifold of V = iϊo([O, l];fl).
Furthermore, the shape operators of M are compact.

Proof . We prove properness first. Suppose ξk G v(M)Uk, \\ξk \\ <
r, and uk + ξk -» w. We want to prove that ξk has a convergent
subsequence. To prove this, we choose gk E P(G, e x G) such that
gk * 0 = uk. Let xk = φ{uk), and α^ E x^"1z/(M)a.fc be such that ξk is
the horizontal lift of xkak, i.e.,

Compactness of M implies that there exist a subsequence of xk (still

denoted by xk) and x0 E M such that xk -> xo Since the disk of radius

r in 0 is compact, by passing to a subsequence we may assume that
χkakχ

k

λ -^ b £ U(M)XOXQ1. But

= 9* *

and xkakxk

x -> 6. Since the action of P(G,e x G) on fl"°([0, l];g) is
proper (cf. [35]), gk has a subsequence in ^( [0 ,1] ;G) converging to
<7o This implies that uk -> ϊi0 = ̂ 0 * 0 E M. Hence ξfc converges.
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To prove M is Fredholm, we will show that its shape operators are

compact. Using right translation if necessary, we may assume that

e G M. Let a G v(M)e be a non-zero normal vector. It suffices to

prove that the shape operator Aά at 0 G M is a compact operator.

Since £(0) = — £', using Lemma 5.7 we get

Aά(ξ') = [ξ,a] + ±[x'(0),a}- Aa(x'(0)).

We can thus write
A

where

= [ξ,a] and B(ξ') = \[x'(0),a] - Aa(x'(0)).

It is clear that B is of finite rank. So it suffices to prove that D is

compact. To see this, we let t be a maximal abelian subalgebra of

0 containing ^(M) e , g = t + Σ α € Δ + 0α the corresponding root space

decomposition, and {tu... ,tk} U {xa,ya\oι G Δ+} an orthonormal

basis of 0 such that £fc_p+i,... , tk G ̂ (M) e , tj G t, xα, yα G 0α and

[α, xα] = a(a)ya, [α, yα] = -a(a)xa.

Let ^α — ^α + z2/θ! Then

,n = Re(zae
2πint), /α, n - /m(zαe2 π n ί), α 6 Δ + , n

5j,n — tj c o s 2πn^, ij j f l = tj sin2πn£, n > 1,

form an orthonormal basis for TM5. Direct computation shows that D

satisfies
D{sjtΛ) - D{tjtn) = D(U) = 0,

2πn 2πn

^D(^α) = -a{a)tya, D(ya) = a(a)txa.

It is now clear that D is a compact operator.

The following lemma is well-known:

5.9. L e m m a ([35]). Let M be a proper Fredholm submanifold in

the Hubert space V, and ϋ G v(M)u. Then u + v is a multiplicity m

focal point of M with respect to u if and only if 1 is a multiplicity-m

eigenvalue of the shape operator Aϋ.



SUBMANIFOLD GEOMETRY IN SYMMETRIC SPACES 693

5.10. Lemma. Let π : E -ϊ B be a Riemannian submersion,

υ0 G TBP, q = expp(v0), and v be the normal field on π - 1 ( p ) defined

by v(x) being the horizontal lift of VQ at x. Let f : π - 1 ( p ) —> π~x(q) be

the map defined by f(x) = expE(v(x)). Then f is a diffeomorphism.
Proof. The lemma follows from the fact that for the Riemannian

submersion π, the horizontal lift η(t) of a geodesic η(t) in B is a geodesic
in E. q.e.d.

We will use the end point maps of parallel normal vector fields v
of M and v of M in the next lemmas. Recall that these are defined
to be ηυ : M ->> G,p -» exp (v(p)), and ηϋ : M —> V,u -> u + v(u),
respectively.

5.11. Corollary. Let M be a weakly equifocal submanifold of G, v
a normal field on M, and ϋ the horizontal lift of υ on M — φ~1(M).
Then the following hold:
(1) φoηϋ =ηυoφ.

(2) φ-1(Mv) = Mϋ.

(3) Let y G My and y = φ(y) Then φ maps ^ ^ ( y ) diffeomorphically

toη~ι{y)

(4) If d{ηϋ)(u) = 0 and u φ 0 then dφ(u) φ 0.

Proof. By Theorem 4.5 (4), φ is a Riemannian submersion, (1)

follows from Lemma 5.10. (2) is a consequence of (1). Let φ(x) = x,

x + ϋ(x) — y. Then

φ(x + ϋ(x)) = φ{ηϋ(x)) = ηυ{Φ{x)) = ηυ{x) = Φ(y) = V,

which implies that φ maps η^ι{y) to η~1(y). Now if ί l 5 5 2 £ V^iv) a n ( i
φ(ίι) — φ{%2) — x G η~x(y), then we have xx = ί 2 since by Lemma 5.10
ηυ maps 0 - 1 (x) diflfeomorphically to φ~ι(y). This argument also proves
that φ maps η^x{y) onto η~ι(y). So we have proved (3).

To see (4), suppose d(ηϋ)(u) = 0 and dφ(u) = 0 for some u G TMX.
Then ΐx G T((/)"1(x))a,. But 7^ is diffeomorphic on φ~ι{x). So tx = 0.

5.12. Lemma. Zeί M be a submanifold in G with globally flat and
abelian normal bundle, x G M, x G φ~λ(x), and v be the horizontal lift
of v by φ. Then v is a multiplicity-m focal normal of M with respect
to x if and only if ϋ is a multiplicity-m focal normal of M with respect
to x. Moreover, dφz maps the kernel of dηϋ bijectiυely onto the kernel
ofdηv.

Notice that in general the eigenspace Ex(u,ϋ) = kerdηϋ is not hori-
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zontal although dφ is injective on it; see section 7 for examples.
Proof. We know from Proposition 3.7 that q0 = exp {v(p0)) is a

focal point of M with respect to p0 if the differential of ηv : M —> G
is not injective. The multiplicity of the focal point is equal to the
dimension of keτdηv at p0. By Lemma 5.9, u0 + v(u0) is a focal point
of M with respect to u0 if and only if the differential of the map ηv :
M -> V is not injective and its multiplicity is equal to the dimension
of keτdηv at u0.

We therefore need to prove that the dimension of ker dηv is equal to
the dimensionoikeτdηv. But by Corollary 5.11, we have ηvoφ = φoηv.
Hence we have the following commutative diagram:

= V

TMP0 ^ TGqo

If X E keτdηϋ is nonzero, then by Corollary 5.11 (4) we have X 0
keτdφ. Hence X = dφ(X) Φ 0 and dηv(X) = 0. It follows that the
dimension of ker dηϋ is less than or equal to the dimension of keτdηυ.

Now let X G keτdηv be a nonzero element and let X be the hori-
zontal lift. Then from the commutative diagram above it follows that
dηυ(X) E ker dφu+y(u). By Lemma 5.10, there is an element Y G ker dφu

such that dηϋ{Ϋ) = dηϋ(X). Hence dηϋ(X - Ϋ) = 0. We have thus
proved that the dimension of ker dηϋ is greater or equal to the dimension
of ker dηv. This finishes the proof.

5.13. Proof of Theorem 1.10. Lemma 5.12 proves (1), and
Lemma 5.6 proves (2). It remains to prove (3). Let us first assume that
M* is weakly equifocal. Then we know from Lemma 5.8 that M is a
proper Predholm submanifold of V. By Lemma 5.6, v(M) is globally
flat. So to prove that M is weakly isoparametric, it is therefore left to
show that the multiplicities of the eigenvalues of Ay^ are constant and
that dλ(X) = 0 for X e Ex{v) - {X \ AVX = XX}. Furthermore, if
M* is equifocal, we will show that λ is constant, thereby proving that
M is isoparametric.

It follows from Lemma 5.12 that the multiplicities are constant. Let
λ(u) be a principal curvature function of Aϋ(uy Then there is a focal
point of M in direction υ(u) at distance λ(ϊz)"1. Hence by Lemma 5.12,
M has a focal point in the direction υ with respect to φ(u) = p, at dis-
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tance f(p) = λ(^)- 1. Notice that dφ(Eχ(v)) are the fibers of the focal
distribution Tjv where Ex(v) is the eigenspace of A^u) corresponding
to the eigenvalue \{u). Hence df(dφX) = 0 for X G Ex(v) implies
dλ(X) = 0. Thus M is weakly isoparametric. If M* is equifocal, then
/ is constant. Hence λ is constant and M therefore isoparametric.

Notice that the above arguments can also be used to prove the other
direction. We therefore have that M (weakly) isoparametric implies
M* (weakly) equifocal. This finishes the proof of the theorem.

The following theorem is proved exactly as Theorem 1.10.

5.14. Theorem. Let Φ£ be as in Corollary 4-8, and M a closed
submanifold with globally flat and abelian normal bundle o/Πi G[8i_li8i].
Then Φj1(M) is a (weakly) isoparametric submanifold of H°([0, lj fl)
if and only if M is a (weakly) equifocal submanifold o/Πi G[8._lt8.].

5.15. Remark. As in the finite dimensional case, one can show
that if the dimension of Eχ(v) is locally constant and at least two, then
dλ(u) = 0 for u G Eχ(v), where λ is a principal curvature function in the
direction of the parallel normal vector v of a proper Predholm subman-
ifold with flat normal bundle in a Hubert space. As a consequence, it is
only necessary in the definition of weakly equifocal submanifolds to as-
sume that df(u) = 0 for u in the kernel of dηfv if / is a multiplicity-one
focal curvature of M along a parallel normal field υ. A similar remark
can of course also be made on the definition of weakly isoparametric
submanifolds in Hubert spaces.

5.16. Theorem. Let M be a weakly isoparametric submanifold
in a Hilbert space V, ϋ a focal normal field, and S a leaf of the focal
distribution Ty on M. Then S is a compact Z2-taut submanifold that
is contained in a finite dimensional affine subspace ofV.

Proof. Being weakly isoparametric, M itself is taut with respect to

Z2. It is even true that every squared distance function on M is perfect

in the sense of Bott. Set a = ηy(S). Then S is a critical manifold of the

squared distance function fa centered at a. Since fa satisfies condition

C ([35]), S is compact.

To prove that S is taut we use the following fact proved by Ozawa

in [25]: Suppose / is a perfect Morse function on M in the sense of

Bott, and S is a critical submanifold of /. If g is function on M that

restricts to a Morse function on S and has the property that / + δg

is a perfect Morse function on M in the sense of Bott for all 5, then

g I S is a perfect Morse function on S. (Ozawa proves this in the finite
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dimensional case using the Morse lemma. Since the Morse Lemma is
true for functions satisfying condition (C) (cf. [26]), Ozawa's result is
true in infinite dimension.) Now let fb be a squared distance function
on M that is a Morse function on S. An easy calculation shows that

where z = (a + δb)/(l + J), and c(δ) is a constant that depends only on
δ. Since weakly isoparametric submanifold is taut, fa + δfb is a perfect,
and non-degenerate in the sense of Bott for all δ. Ozawa's result now
implies that /& is a perfect Morse function on S. This proves that S is
taut.

Now exactly as when the ambient space is finite dimensional, we
can show that S spans a subspace of dimension less than or equal to
n(n+3)/2, where n is the dimension of S. To be more precise, let Op be
the osculating space of S at p, i.e., the aίfine space through p spanned
by the first and second partial derivatives of S at p, or equivalently
the aίfine space spanned by the the tangent space at p and the vectors
a(X, Y) for X, Y G TSP where a is the second fundamental form of
S. It is clear that the dimension of Op is at most n(n + 3)/2. Now let
p be the nondegenerate maximum of some squared distance function.
Then the tautness of S (or even the much weaker two-piece property)
implies that S is contained in Op, cf. [8]. In particular we have proved
that S spans a finite dimensional affine subspace.

5.17. Proposition. Let M be a weakly equifocal submanifold in G,
v a focal normal field, and Tv the focal distribution defined by υ. Then
the following hold:
(1) Tv is integrable and its leaves are diffeomorphic to a compact,

taut submanifold in a finite dimensional Euclidean space.

(2) If M is equifocal, then the leaves of Tv are diffeomorphic to an
isoparametric submanifold in v(Mv)ηv(x).

Proof. The focal distribution Tv is integrable since it is the dis-
tribution defined as the kernel of the differential of the map ηυ with
constant rank. Thus the leaves of Tv are exactly the fiber of ηυ. Let M
be the lift of M to V. Then M is taut by Proposition 5.2. Let ϋ be the
horizontal lift of v to a normal vector field of M. From Lemma 5.12
it follows that ϋ is a focal normal field since υ is so. Let x0 G M, and
a = xQ + V(XQ). Then we obtain Theorem 5.16 and Corollary 5.11 using
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(1). If M is equifbcal, then by Theorem 1.10 (3) M is isoparametric
in V = H°([0, l],g). From the slice theorem for infinite dimensional
isoparametric submanifolds it follows that %λ(a) is an isoparametric
submanifold of the finite dimensional aίfine subspace x0 + v(Mϋ)a (cf.
[35]). Thus Corollary 5.11 (3) yields (2).

6. Geometry of weakly equifocal submanifolds

In this section, we will give proofs for Theorem 1.6, 1.7, 1.8 and 1.9.
In the following, we let (G, K) be a compact symmetric pair, N = G/K
the corresponding symmetric space, and π : G —» N the Riemannian
submersion associated to the right action of K on G, M a submanifold
ofiV, a n d M * - π " 1 ( M ) .

We will need several lemmas for the proof of Theorem 1.9. We use
the same notation as in Theorem 1.9 except that we do not assume
that the normal bundle is globally flat when not explicitly stated. The
first lemma is a simple consequence of the following facts:

(i) the vertical distribution V of π is V(g) = #6, where I is the Lie
algebra of K,

(ii) ττ(gh) = π(ghk) for k E K, in particular, we have dπg(gu) =
dπgk(guk).

6.1. Lemma. Let Ή. denote the horizontal distribution of the Rie-
mannian submersion π : G -> N, and g = t + p the Cartan decomposi-
tion. Then
(1) H(g)=gp,

(2) for u G p and k £ K, the horizontal lift of dπg(gu) at gk is guk.
Since π is a Riemannian submersion, by using Lemma 5.10 the fol-

lowing lemma can be proved in exactly the same way as Corollary 5.11.
6.2. Lemma. Let v be a normal vector field on M, and v* the

horizontal lift of v to M*. Then the following hold:
(1) ηυ o π = π o ηυ..

(2) π - 1 ( M v ) = M ; .

(3) π maps ηϋ^(y*) diffeomorphically onto η~λ(y) for any y* G M**.

(4) If d(ηυ.)(u) = 0 and u φ 0, then dπ(u) φ 0.
6.3. Lemma.

(1) v(M*) is abelian if and only if u(M) is abelian.
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(2) Suppose that v is a normal vector field on M, and u(M) is abelian.
Then the horizontal lift v* of v to M* is a parallel normal vector
field on M* if and only if v is parallel.

(3) v(M*) is globally flat and abelian if and only if u(M) is globally

flat and abelian.

Proof (1) Let α = g~1v{M)gK. Then expu(M)gκ = π(g exp(α)) is
contained in a flat of N if and only if α is abelian. On the other hand,
v(M*)g = ga and hence expιs(M*)g = g exp(α) is contained in a flat of
G if and only if α is abelian.

(2) Let X be a vertical tangent vector. Since the covariant derivative
V*xv* only depends on υ* along a vertical curve with tangent vector
X, we may assume that both υ* and X are right invariant. So

Now it follows from Proposition 3.1 that Vxv* is a tangent vector of

M* since the normal bundle is abelian by (1). We have therefore shown

that Vγ-υ* = 0 for every vertical tangent vector X.

It is only left to show that \7*j^v* = 0 for every horizontal tangent

vector X if and only if V^xv = 0.

Let X be a horizontal tangent vector of M*. We decompose V*xv*

into horizontal and vertical components:

Since (VχV*)h is the horizontal lift of Vdπxv, (V*xv*)h lies in the tan-

gent space of M* if and only if VdπXv lies in the tangent space of M.

But vertical vectors are tangent to M*. This implies that Vχ~υ* = 0

if and only if Vj[πXv = 0

(3) This is now an immediate consequence of (1) and (2).

Now the proof of Lemma 5.12 carries over to our present sitution, so

we have the following lemma.

6.4. Lemma. Let M in N be a submanifold with globally flat and

abelian normal bundle, v £ v(M)x, x* 6 π " 1 ^ ) , v* be the horizontal

lift of v at x*, and M* = π~ι(M). Then υ is a multiplicity-m focal

normal of M with respect to x if and only ifυ* is a multiplicity-m focal

normal of M* with resptect to x*. Morover, dπx* maps the kernel of

dηυ* bijectively onto the kernel of dηυ.
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Notice again that the kernel of dηv* is in general not horizontal. In
the next section we will discuss examples that demonstrate this.

6.5. Proof of Theorem 1.9. Lemma 6.3 proves statement (2),
Lemma 6.4 proves (1), and statement (3) can be proved in a similar
manner as the proof of Theorem 1.10 (3).

Applying Theorem 1.9 to the rank-one symmetric space Sn+1, we

get

6.6. Corollary. Let Mn be an isoparametric hypersurface of SnJtl.

Then

(1) M is equifocal in Sn+ι,

(2) M* = n~x(M) is an equifocal submanifold of SO(n + 2), where π
is the natural fibration from SO(n + 2) to Sn+1.

Similarly, if Mn is a proper Dupin hypersurface of S f n + 1, then the
lift M* of M to SO(n + 2) is a weakly equifocal submanifold. If M is
proper Dupin, but not isoparametric, then it follows immediately that
M* is an inhomogeneous weakly equifocal hypersurface of SO(n+2). It
is much more difficult to find inhomogeneous equifocal hypersurfaces in
SO(n+2). This will be done in the next section. Let M be an equifocal
submanifold in the symmetric space iV, and v a parallel normal field on
M. Then the parallel set Mυ = ηυ(M) is an immersed manifold since
the end point map ηv : M —» N has constant rank.

6.7. Proposition. Let M be a compact, equifocal submanifold in a
compact, symmetric space N, and υ a parallel normal field. If v is not
focal, then Mυ is equifocal if and only if ηv : M —ϊ Mv is one-to-one.
Moreover, if ηυ is not one-to-one then

(1) ηυ : M -> Mυ is a finite cover,

(2) the normal holonomy of Mv is nontrivial, but otherwise Mv satis-

fies all the conditions in the definition of an equifocal submanifold.

Proof. We first prove that expx(v(M)x) = expηv(x)(ιs(Mv)ηv(x)) if

ηυ(x) is not a focal point of M with respect to x. Theorems 1.10 and

1.9 imply that the connected components of M = π~1(φ~1(M)) are

isoparametric. Therefore the corresponding statement is true for M

and Mϋ] see [35]. The normal spaces of M and Mϋ are the horizontal

lifts of the normal spaces of M and Mv respectively which implies what

we wanted to prove. It also follows that the normal bundle of Mv is

abelian. By Lemma 6.3, v{Mv) is flat if v(Mv) is flat. We need to show

that the normal bundle of Mv has trivial holonomy if ηυ is one-to-one.
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Let w be a parallel normal vector field on M. Then dηv(w) will give rise
to a globally defined parallel normal field on Mυ since ηυ is one-to-one.
This shows that Mυ is equifocal if ηυ is one-to-one. If ηv is not one-to-
one, let p and q be two different points in M such that ηv(p) = VV(Q)-

Let a(t) be a curve connectingp and q. Then β(t) = ηυ(a(t)) is a closed
curve in M v , and dηυ(v) will yield a parallel normal field along β(t) that
does not close up in β(0) = β(l). This shows that the holonomy of the
normal bundle is nontrivial. It is obvious that the focal structure of
Mυ is parallel.

6.8. Corollary. Let M,N,υ and ηv be as in Proposition 6.7. Then
one of the following statements holds:
(1) ηυ : M -> Mυ is a diffeomorphism,

(2) ηv : M —> Mv is a finite cover,

(3) ηv : M —> Mυ is a fibration, and Mυ is a focal submanifold of M.
6.9. Remark. As mentioned in the introduction, if N is a real

projective space and M a distance sphere in JV, then M is equifocal.
Its parallel manifolds are spheres, a projective hyperplane and a point.
The projective hyperplane is not equifocal since it does not have trivial
normal holonomy. As a parallel submanifold M doubly covers the
projective hyperplane by the corresponding end point map ηυ. Note
that the lift of M to the Hubert space V has two connected components.

6.10. Proposition. Let M be an equifocal submanifold of N', and
v a parallel normal field on M. Then Mv is embedded. Moreover, if
Vι,υ2 are two parallel normal fields on M and MVl Π MV2 φ 0, then
Mυi =MV2.

Proof. A connected component of the lift Mϋ to V is either an
isoparametric submanifold or a focal submanifold of the isoparamet-
ric submanifold M and hence embedded. It follows that Mv must be
embedded. If two parallel manifolds of M meet without coinciding,
then the same thing is true for their lifts. But we know that paral-
lel manifolds of an isoparametric submanifolds cannot meet without
coinciding.

One consequence of Propositions 6.7 and 6.10 is that M and its
parallel submanifolds give rise to an Orbit like foliation' of M. There
are three types of leaves: 'principal' when Mυ is equifocal, 'exceptional'
when the dimension of Mυ is the same as that of M but the normal
holonomy is nontrivial, and 'singular' when Mv is a focal submanifold.
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We will see later that we can exclude 'exceptional' leaves when the
ambient space N is simply connected.

6.11. Proposition. If N is a simply connected, compact symmetric
space, and M is a connected submanifold of N, then the lift M* =
π~ι{M) is connected. If furthermore G is simply connected, then M =
φ~x(M*) is connected.

Proof. Since N = G/K is simply connected, K is connected.
So the exact sequence of homotopy of the fibration M* —> M with
fiber K implies that M* is connected. We now prove that the lift
M — φ~1(π~1(M)) of M to V is connected. We know from the proof
of Proposition 5.4 that M is diffeomorphic to the path space P(G,p* x
M*), where M* = π'^M) and p* is a lift of p. Notice that P(G,p* x
M*) fibers over M* with fiber ΩP (G). Hence

... -> π o(Ω p (G)) -> π o (P(G,p* x M*)) -> π o (M*).

Since G is simply connected we have that 7ΓO(ΩP*(G)) = ττi(G) = 0.
6.12. Corollary. Let N be a simply connected, compact symmetric

space, M a codίmension-r equifocal submanifold of N, and v a parallel
normal field. If v is not focal, then ηv : M —> Mv is a diffeomorphism,
and Mv is also equifocal.

Proof. By Proposition 6.7, it suffices to prove that ηv is one to one.
Suppose xux2 G M such that ηυ(xι) = ^(^2) = x- We can assume
that N = G/K, and G is simply connected. Let ϋ be the horizontal lift
of v to M via πoφ. By Lemmas 5.12 and 6.4, ϋ is a non-focal, parallel
normal field on M. Since M is connected by Proposition 6.11 and is
isoparametric in V, % : M -> Mΰ is a diίfeomorphism. But by Lem-
mas 5.12 and 6.2, ηϋ maps the fiber Y{ over Xi oΐπoφ diffeomorphically
onto the fibers over x for i — 1,2. Because ^ is a diffeomorphism,
Y\ — Y2. In particular, this proves that x1 = x2-

6.13. Theorem. Let M be an equifocal submanifold of the sym-
metric space N. Then M is totally focal in N.

Proof. Let c(t) be a geodesic that meets M orthogonally at t = 0
and satisfies c(l) G Mv for some focal normal field υ. We have to show
that c(l) is a focal point of M in the direction c'(0). Let c(t) be a lift to
V. Then c(0) lies in M = ^ ^ ( M ) ) and c(l) G M s . It follows from
Lemmas 5.12 and 6.4 that the components of Mυ are focal submanifolds
of M, and by [35], c(l) is a focal point of M in direction c'(0). Hence
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c(l) is a focal point of M in the direction c'(0) by Lemmas 5.12 and

6.4.

It is easy to see that a λ -flat in a compact, rank-fc symmetric space

N is a closed torus. But an r-flat with r < k in N need not be a closed

set. The following Theorem is proved in [17]:

6.14. Theorem. Let N be a connected, compact, symmetric space

of semi-simple type equipped with the bi-invariant metric induced from

the Killing form on Q. Suppose H acts on N isometrically, and x G N

is a regular point of the H-action such that exp(u(H x)x) is contained

in some flat. Then expx{y{H x)x) is closed in N.
This theorem implies that if M is a homogenous, equifocal submani-

fold of JV, then exp(z/(M)x) is closed. The following theorem generalizes
this fact to an arbitrary equifocal submanifold:

6.15. Theorem. Let N be as in Theorem 6.14, and M a closed
equifocal submanifold of N. Then expx{v(M)x) is a closed torus for all
x E M.

Proof It is evident that if we lift M to the Lie group G and prove
the theorem for M*, then it also follows for M in N. So we may assume
that N = G. It is proved in [17] that if t is the Lie algebra of a torus in
G, and α is a linear subspace of t, then exp(α) is a closed torus if and
only if exp(αJ-) is also so, where α x is the orthogonal complement of α
int.

The proof of this theorem is similar to that of Theorem 6.14 in
[17] with minor changes. We repeat it for sake of completeness. Set
α = v{M)x and A — exp^(a). Assume A is not closed, and set B = A.
Then B is a torus, and the Lie algebra b of B is abelian. Let cti denote
the orthogonal complement of α in b, and Ax = exp(αi). We first
prove that B is transversal to the orbit M. To see this, notice that A is
orthogonal to M whenever A meets M since the parallel manifolds of
M give rise to an orbit like foliation whose leaves are met orthogonally
by A. More precisely, let Ma denote the parallel submanifold of M
through a e A. Then αα _L T(Ma)a and Ma = M if a e AΠM. Since
B is the closure of A it follows that ba J_ TMb for every b e B Π M
which implies that B is transversal to M since TBb = 6b contains ba.
By transversality, BΓ\M is a, compact submanifold of G. Next we show
that B Π M = Ax. In fact, one sees easily that T(B Π M)h = bαλ for
every b G B ΠM. But Ax is the integral submanifold through e of the
distribution A(g) = gαλ defined on G. Hence B Π M = Aλ. Since B
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and Ax are tori, A is a torus.

6.16. Corollary. Let N be as in Theorem 6.14, an^ M a closed
equifocal hypersurface of N. Then every normal geodesic to M in N is
a circle.

6.17. Proof of Theorem 1.8. Let υ G v(M)x, x G φ'1 (π"1 (x)),
and v be the horizontal lift of υ by π o φ. Since π o φ is a Riemannian
submersion, expx(v) = π(φ(x + v)). We prove each item of the theorem
seperately below:

(a) By Corollary 5.11 (3) and Lemma 6.2 (3), π o φ maps the focal
leaf of Tv diίfeomorphically onto the focal leaf of Tv. Then (a) follows
from Proposition 5.17 (2).

Part (b) is proved in Theorem 6.15.
(c) The lift M — φ~1(π~1(M)) is an isoparametric submanifold and

has therefore an affine Coxeter group W acting on its affine normal
spaces; see [35]. Since d(π o φ) maps the affine normal spaces of M
isometrically onto the normal spaces of M, W acts on v(M)x for all
x G M. Then (c) (1) follows from the standard results of isoparametric
submanifolds in Hubert space. To prove (c) (2), we note that M Π
(x + v(M)χ) = exp^(W 0), where expv is the exponential map for
V. So exp(W 0 ) c M Π Γ r Conversely, if y G Tx Π M, then there
exists a parallel normal field υ on M such that y = exp(v(x)). But
y — π(φ(x + v(x)), where ϋ is the horizontal lift oίv. Then MϋΠM φ 0.
But M is connected and isoparametric. So M = Mυ. Hence v(x) G WO
and y G expv(W 0). This proves (c) (2).

(d) Using results for the isoparametric submanifold M in V, (2)
follows from (1). So we need .only prove (1). Since exp(v(M)x) is
contained in some flat, expx is a local isometry from v(M)x onto Tx.
Thus to prove (d) (1) it suffices to prove that expx is one to one on
Dx. Suppose not. Then there exist parallel normal fields ϋx and ϋ2

on M such that expv(tvx(x)), expv(tv2(x)) G ΊTX for all 0 < t < 1
and expa;(ι;i(a;)) = expx(v2(x)) = p, where x = π(φ(x)) and Vi =
d(πoφ)(ϋi). Note that p G MV1 Γ\MV2. By Proposition 6.10, MVl = MV2.
But Mϋ. = (π o φ)~1(MVi). Since M is connected and isoparametric,
ϋx —v2' Hence vx —v2, which proves (d) (1).

Part (e) is Theorem 6.13.
(f) Item (1) is proved in Corollary 6.12. It was proved in Corol-

lary 6.8 that if exp(v(a)) is a focal point, then ηυ is a fibration. By
Corollary 5.11 (3) and Lemma 6.2 (3), πoφ maps r/ "̂1(y) diffeomorphi-
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cally onto η~ι{y) for y G Mυ. But η^ι(y) is the slice of the isoparamet-
ric submanifold M in V. So η^λ{y) is an isoparametric submanifold of
y + v[My)y. This proves (2). Item (3) can be proved exactly in the
same way as (c)(2).

Part (g) follows from Proposition 6.10 and the standard results for

isoparametric submanifolds in V.

(h) Note that since M is isoparametric, the distance squared func-
tion fa on Mϋ is non-degenerate in the sense of Bott and is perfect if
a G (π o φ)~1(p) (cf. [35]). By the same argument as in the proof of
Proposition 5.4, Mυ is diίfeomorphic to P(G,p* x M*) and fa corre-
sponds to the energy functional E, where p* G π " 1 ^ ) . Next we prove
that P(N,p x Mυ) and P(G,p* x M*) are homotopy equivalent. For
this we can assume that p lies in M so that p* lies in M*. We have
a fibration π* : P(G,p* x M*) -> P{N,p x M) with fiber the space
of paths in the coset p*K starting in p*. Since the fiber is obviously
contractible, P(7V,p x M) and P(G,p* x M*) are homotopy equivalent.
Since E corresponds as in the proof of Proposition 5.4 to the distance
squared function of an isoparametric submanifold in V, the indices and
Morse linking cycles at critical points of E are given explicitly (cf.[35]),
and (1), (2) follow.

(i) It is known that V = UJD^ | x G M} and it has properties anal-
ogous to (1), (2) and (3) (cf. [35]). So (i) follows from (d).

As a consequence of Theorem 1.8, we can describe the space of par-
allel submanifolds of an equifocal submanifold in the simply connected
case.

6.18. Corollary. Let M be an equifocal submanifold of a simply
connected semi-simple symmetric space N. Then the space of parallel
submanifolds of M with the quotient topology is a simplex where the
boundary points correspond to the focal manifolds.

Note that Theorem 1.6 is a special case of Theorem 1.8 when M is
an equifocal hypersurface. So the only theorem that remains to prove
is 1.7.

6.19. Proof of Theorem 1.7. By Theorems 1.9 (3) and 1.10, the
connected components of M* are weakly equifocal in G, and similarly
the connected components of M are weakly isoparametric in V. The
proof that an infinite dimensional isoparametric submanifold is taut
(cf. [35]) shows also that an infinite dimensional weakly isoparametric
submanifold in V is taut. So (b) and (c) follow, (a) follows from
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Proposition 5.17 (1) and Lemma 6.2 (3).

7. Inhomogeneous examples in Hubert spaces

The main purpose of this section is to show that there exist inho-
mogeneous equifocal hypersurfaces in SO(n) and iϊo([0, l],so(n)) for
certain numbers n. By an inhomogeneous submanifold we mean that
it is not an orbit of a subgroup of the isometry group of the ambient
space.

Let Sn = SO{n + l)/SΌ(n), π : SO{n + 1) -+ Sn be the natural
fibration, and φ : #°([0, l],so(n+l)) -> SO(n+l) be the parallel trans-
port map as before. Let M C Sn be a submanifold, M* = π~1(M),
and M = φ~λ{M*). First, we will derive explicit formulas relating the
shape operators of M, M* and M. In order to do this, we recall some
facts about Riemannian submersions. Let π : E —> B be a Riemannian
submersion, M a submanifold of 5, and M* = π~1(M). Let X and Y
be vector fields on E, and define

where the indices h and v refer to the horizontal and vertical compo-
nents respectively. Then N is tensorial in X and Y. In fact, N is one
of the O'Neill tensors for the Riemannian submersion π. If both X and
Y are horizontal, then

7.1. Proposition. Lei TΓ : E -^ B be a Riemannian submersion,
M a submanifold of B, υ G ̂ (M)^ and u G TM,. Lei M* = π - ^ M ) ,
and υ*,?x* be the horizontal lifts of υ^u at y G π~1(x) repectiυely. Then

A*υ*u* = (Avu)* + Nυ.u\

where A and A* are the shape operators of M and M* respectively, and
(Aυu)* is the horizontal lift of Aυu.

Proof. Since the horizontal component of V*u*v* coincides with the
horizontal lift of Vuυ, the horizontal component of A^u* is (Avu)*.
The vertical component of V*u*υ* is tangent to M* and hence is equal
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to the vertical component of — A*v*u*. Since both u* and υ* are hori-

zontal, the vertical component of V*u*v* is equal to Nu*υ* = —Nυ*u*.

This proves that the vertical part of A^u* is equal to Nv*u*.

7.2. Proposition. Let G/K be a symmetric space, and π : G —ϊ

G/K the corresponding Riemannian submersion. Ifv* and u* are hor-

izontal vectors in TeG, then

Nυ.u*=l-[υ\u*].

Proof. Since the left invariant vector fields defined by u* and υ* are
horizontal and Nv*u* is a tensor, we have

Nυ.u = (Vυ.u )υ = ±[υ;xf]Ώ.

But that G/K is a symmetric space implies that [υ*,ΐ/*] is vertical. So
we are done.

7.3. Proposition. Let G/K be a compact, symmetric space,
π : G —> G/K the natural fibration, M a submanifold of G/K, and
M*π~λ(M). Assume that p = π(e) G M. Let X G TMp,ξ G v(M)p,
X£ and ξ* be the horizontal lift of X and ξ at e respectively, and Xζ
be a vertical vector at e. Let Aξ and A^+ be the shape operators of M
and M* respectively. Then

(1) A\.X*h = {AtXY + \[ξ\Xt],

(2) A*ξm{X*) = - | [ ξ * , - ϊ ; ] , which is horizontal
Proof. (1) follows from Lemma 4.4 and Proposition 7.2. To prove

(2), we first notice that V^*£* depends only on ξ* along a vertical curve
with tangent vector X* at e. By Lemma 6.1 (2), the horizontal lift of ξ
along k e K is right invariant. So we may assume that both X* and ξ*
are right invariant vector fields. Hence V^-*ξ* = |[ξ*,X*]. Since the
fibers of π are totally geodesic, V^*£* is horizontal. Now let g = t + p
be the Cartan decomposition, and α = is(M*)e. Because α is abelian
and the metric on G is Ad-invariant, we have [α, 6] _L α. This implies
that [α,ϊ] C TM* and proves (2).

7.4. Theorem. Let π : SO(n + 1) -> Sn be the natural fibration
associated to Sn, φ : #°([0, l],so(n+l)) -» SO(n+l) the parallel trans-
port map, M a submanifold of Sn, M* = n~x(M), and M = φ~λ(M*).
Let x G M, x* = φ(x), and x = π(x*). Let ξ be a unit normal vec-
tor of M at x, and £*,£ the horizontal lift of ξ. Let Eχ(x,ξ) denote
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the eigenspace of Aξ for the eigenvalue λ ; and EZ(x*,ξ*),Ex(x,ξ) be
defined similarly. Then we have

(1) dπx* maps Eίcacθ+cotθy2(x*,ξ*) isomorphicαlly onto Ecotθ(x,ξ),
and the inverse is given byY*-ϊY*,

Y* = x*{X*h + (csc0 - cotθftx ^ξ Xβ) e Etcscθ+cot9)/2(x*,ξ*),

where Y G Ecotθ(x,ξ) and X^ G p such that x^X^ is the horizon-

tal lift of Y,

(2) dφrx maps Ei(x,ξ) isomorphically to E{cscθ+CQtθ)/2(x\ξ*), and it

is given explicitly as follows:

A Γ = x*(X* + (csc0 - cot θ)Xl) e E (xm,C),

where X* = [x*"^*,X^] and g e ^ ( [ 0 , 1 ] , G) satisfies the con-
dition that g(l) = e αnc? ̂  * x = 0.

Before proving this theorem, we need the following Lemma:
7.5. Lemma. With the same notation as in Theorem 7.4, if λ =

cot fl+csc Θ _ i CO£ i 2 s α n eigenvalue of A^* at x* E M* it rtΛ multiplicity
m, then exp(θξ*) is a focal point of M* with respect to x* of multiplicity
m.

Proof. We may assume that g — e. Let Y* E Eχ, y*(t) be a curve
in M* such that (y*)'(0) = Y*, and υ*(t) be the parallel normal field
along y*(t) with υ*(0) = θξ*. By Lemma 3.4, we have

where P^^^O) is the parallel translation from 1 to 0 along y*, and η
is the end point map. Using the definition of the operators Dι and the
fact that Sn has only one root, we get

D1(ΘC)(Yη = cos^Y\ D2{θξ*)(Y ) = ^s in-Y*.

This proves that dη*θξ*((υ*)'(0)) = 0.

7.6. Proof of Theorem 7.4. By left translation, it suffices to

prove (1) for x* = e. Suppose Aζ(X) = cot0Λ\ Set Xυ* = [ξ*,X£\.

Then by Proposition 7.3 we have

Ai. (x h) = cot θ xι + §[r, xi] = cot (9 x^ + | x ; ,
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where the last equality follows from the fact that ad(ξ*)2(X£) =

—X£. A direct computation shows that X£ + (csc# — cot0)X* is in

( + ) /
Conversely, suppose A*(Y*) = f(csc<9 + cot0)y*. Let Y* = Y

be the decomposition into horizontal and vertical components, and Y =

dπ(Y*). Then Yζ is the horizontal lift of Y at e. Using Proposition 7.3,

we get

Comparing the vertical components of both sides of the above equation
yields

Since G/K is of rank one,

[ξ*,Y;] = (escθ - cot θ)[ξ*, [ξ; Y*]] = -(escθ - cot θ)Yh*.

Comparing the horizontal component then gives (Aξ(Y))* = (cot ΘY)*.

This proves that dπ(Y*) = Y e Ecotθ.

To prove (2), we first assume that x = 0. Recall that the parallel

transport map φ maps focal points of M in H°([0, l],fl) to focal points

of M* in G, and maps normal geodesies of M to normal geodesies of

M*. Note also that given υ G v(M)u, u + \v is a multiplicity m focal

point of M with respect to u if and only if λ is a principal curvature

of M with multiplicity m. So as a consequence of Lemma 7.5, we have

dφ maps Eι isomorphically onto Ej cscθ+cotθy2. In fact, the inverse

of dφ : Ei =-> E*cscθ_hcotθy2 can be given explicitly as follows: By

Lemma 5.7, we have

(*) ic-(Z') = [Z,C] + ±[x«(0),C] -Aί,(x*'(0)),

where x*'(0) = -Z(l). Now suppose Z' G J l j . Then rr*'(O)
€ (̂*cscβ+cot9)/2 β y (1), there is X G £?cotf l such that a '(O) = X*h +
s(θ)X*, where s(θ) = csc^ = — cot#. So equation (*) becomes

\z' =\
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Using [C,X*] = X;, [ξ*,X*υ] = -XI and s"(0) 6 E*{c3Cθ+cotθ)/2, we
get

Z' [ξ Z X

Ϋ = Z + X*h-cotθXζ.
Set

Then
Ϋ

This initial value problem can be solved explicitly, and the solution is

Ϋ(t) = (cos(θt) -cot0sin(0ί))X£ - (sin(0ί) +cot0cos(0ί))X;,
= -^{sm((t - l)θ)X h + coβ((ί -

S° - - θ
- l))X h - sin(θ(t -

is in EL. To summarize, we have shown that if π(e) G M, x* = e, and

ί = 0,then

- % •—^ ^(*csc β+cot β)/2

are isomorphisms and are given explicitly as

- l))X*h - sm(θ(t -

A XI + (esc θ - cot Θ)X: ^ X = dπ(X*h).

Next we compute the formuals relating the curvature distributions
at an arbitrary point x £ M. Let x* G π " 1 ^ ) and x G φ"1(x*). Choose
g G #*([(), 1], G) such that g(l) = e and g * x = 6. Recall that

ί) = gMΦWgil)-1 = g(0) = x* = 0(0) = e.

So x* = ^(O)"1. Because Fp(y) = # * y is an isometry of H°([0, l],fl),
we can translate the computation at 0 for Fg(M) to x by F^ to obtain
the formula stated in (2).

In the remainder of this section, we will prove that there are in-
homogeneous isoparametric hypersurfaces in SO(n) and the Hubert
space -ff°([0, l];so(n)) for certain n. These examples are based on the
isoparametric hypersurfaces of Clifford type in spheres that were found
by Ferus, Karcher, and Mϋnzner [13].
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We first descibe the Clifford examples briefly following [30]. Let

C — {Eι,... ,i£m_i}

be a system of skew £ x ^-matrices satisfying

EiEj + EjEi = -2δijld.

We call C a Clifford system. Such Clifford systems are in one-to-one
correspondence with orthogonal representations of the Clifford algebra
Cm-ι of Rm~ι endowed with a negative definite metric.

We say that u,v G Rι are Clifford orthogonal if

(u, v) = (Eλu, υ) = '" = (Em-iw, υ) = 0.

The pairs (iz, υ) of Clifford orthogonal vectors satisfying

(u,u) = (υ,υ) = -

form a submanifold V2(C) in S21'1. We call V2(C) the Clifford-Stiefel
manifold of C-orthonormal 2-frames in Rι. The tubes around V2(C) in
S2l~λ turn out to be isoparametric hypersurfaces, which have four dis-
tinct principal curvatures λi > > λ4 with multiplicities m^m^mi,
ra2, where rrii = m and ra2 = ί — m — 1. Using the classification of ho-
mogeneous isoparametric hypersurfaces, one sees that these examples
are inhomogeneous if m φ 1, 2, or 4 and (m^ί) φ (9,16). (See [13] for
a detailed discussion of these examples.)

Using the same notation as in [13], we set M + = V (̂C), which is
one of the focal manifolds in the isoparametric family. It is proved in
section 5 in [13] that the set L of points x in the focal submanifold M +

such that there are pairwise orthogonal unit normal vectors £0> ?̂ 3
in v(M+)x such that

i = 0

is a non-empty proper subset of M + if the multiplicities satisfy 9 <
3rai < m2 + 9 and mi φ 4, or equivalently if 6 < 2m < ί + 8 and
m φ 4. This condition on m and / is always satisfied if m > 4 except by
finitely many low dimensional examples. It now follows that M + and its
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family of isoparametric hypersurfaces are inhomogeneous without using

the classification of the homogeneous ones. Applying Theorems 1.9

(3) and 1.10 (3) to these Clifford examples in S2*"1, we obtain many

isoparametric hypersurfaces in H°([0, l],so(2^)) and SO(2ί). In the

following, we prove that these examples are not homogenous. Because

classifications of equifocal homogeneous hypersurfaces in compact Lie

groups and Hubert spaces are not known, we will use the result of

Ferus-Karcher-Mϋnzner about the set L to prove the inhomogeneity.

We state this more precisely in the following theorem.

7.7. Theorem. Let M be an isoparametric hypersurface of Clifford

type in S2£~ι satisfying 6 < 2m < t + 8 and m φ 4. Then:

(i) M* — π~x(M) is an inhomogeneous equifocal hypersurface in

SO(2i), where π : SO(2t) -> S2ί~ι is the Riemannian submer-

sion obtained by the identification S2ί~ι = SO(2i)/SO(2t - 1),

(ii) M = φ~1(M*) is an inhomogeneous isoparametric hypersurface

in V, where V - iϊ°([0, l];so(2£)) and φ : V -* SO{2i) is the

parallel transport map.

We will need the following simple Lemma.

7.8. L e m m a . Let Q — ϊ + p be a Cartan decomposition corresponding

to Sn-λ = SO{n)/SO{n-l). Suppose o G p such that ad{af \ pHcr 1 =

— id, andx,y,z £ p are orthogonal to a. Ifr — [α,x] = [y,z] then r = 0

and x = 0.

Proof. Let βc(λ) denote the eigenspace of ad(α) on gc — 9 ® C

corresponding to the eigenvalue λ. Then α^Πp C βc{i)+9c(—i) Prom

[flσ(λi),flσ(λ2)] Cf lc(λ i+λ 2 )

it follows that

[a,x] e gc(i) + ΰc(-i)

and
[y,z]eQc(2i)+gc(-2i)+βc(0).

Hence r = [α, x] — [y, z] = 0. Since ad(α)2 = — id on a1- Π p, x = 0.
7.9. Proof of Theorem 7.7. Let L denote the set of points x

in the focal submanifold M + such that there are orthonormal vectors

f!,..., ξ4 in v(M+)x satisfying

dim
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It is proved in [13] that L is a proper subset of M+. Let O denote the
set of points x in M + = (πo0)~1(M+) such that there are orthonormal
vectors ξu ..., ξ4 in z/(M+)5 such that

Let x* = φ{x), x = τr(x*), £* = dφ(ξi) and ^ = dπ(ξ*). Since both
π and φ are Riemannian submersion, {££,... ,£4} C v(M+*)x* and
{£i> ^4} C ^(M + ) x are orthonormal.

Choose # G ̂ ([0,1], G) such that g(l) = e and # * x = 0. We claim
that

= I sin(f )g~ιX*hg \ x*X£ is the horizontal lift of X G flί

In particular, this shows that O — 0~1(π~1(L)). By definition of O,
M + being homogeneous would imply O is either equal to M + or an
empty set. Since L is a proper non-empty subset of M + , O is a proper
subset of M + . Hence M + is inhomogeneous. To prove our claim, we
first note that by Theorem 7.4 any vector in £?^(ί,ξ) is of the form

for some X G E0(xiξ)J and any vector in E=2(x,ξ) is of the form

for some Y G E0(x,ξ). Therefore a typical element in

E_2_(χ,ξ) is of the form

)l + cos f[ξ\ (X - Y

Now supposed G n ( S j ( ί , £ ) + 2 L i (£,&)). Then there exist
G ̂ 0(^7ξi) for i = l,. . . ,4 such that

Z =
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where x*X(i)*h and x*Y(i)*h are the horizontal lifts of X(i) and Y(i)

at x* respectively. Since Z is continuous and x* = #(0), Z(0) =

^ b * " 1 ^ " 1 ) ^ * ) ^ * " 1 - τ h i s implies that

for any 1 < = i,j < 4. Next we claim that Z(0) = 0. To see this, we

may assume x* = e. ξ j , . . . ,£[ are perpendicular to J E ^ (£*,£*) since

they are in z^(M*)e . Now let a = ff, a: = Y(l)*h, y = ξ% and z = y(2)^

in Lemma 7.8. It then follows that r = Z(0) = [^,^(1)^] = 0 and

= 0. So

Z = 9(sin(f )X(i)J + cos(f )[α;*-1C,y(

Moreover,

Hence x*Z(l) = X^, the horizontal lift of some X G fit 2?0(£,£i), and

Z = B]n-gX*hg-1.

This proves our claim and completes the proof of (2).
Now suppose M + * = τr~1(M) is the orbit of some subgroup H of

GxG through x* = eα, where G = SO(2έ). It is proved in [37] that
M + is then the orbit of the isometric action of

P(G,H) = {ge ^ ( [0,1] ,G) | ( 5 (0), 5 ( l)) G

through the constant path α, a contradiction. This proves (1).

8. Open problems

1. Suppose M is an equifocal submanifold of a simply connected,

compact symmetric space N of codimension r > 2 such that the action

of the associated affine Weyl group on v(M)p is irreducible. Is M

homogeneous, i.e., is M an orbit of some hyperpolar action on JV?

This is true for irreducible equifocal (i.e., isoparametric) hypersurfaces

in Euclidean spaces if the codimension is at least three; see [39].
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2. By Theorem 1.6, the normal geodesic j x of an equifocal hyper-
surface in a compact, semi-simple symmetric space N is closed and
there are 2g focal points in j x . Is there a generalization of Mϋnzner's
theorem for isoparametric hypersurfaces in spheres saying that 5 = 1,
2,= 3, 4 or 6? Wu proved in [42] that if TV is a complex or quaternionic
projective space, then g = 1,2 or 3.

3. Can ϋ*(M, Z2) be computed explicitly in terms of the associated
affine Weyl group and multiplicities?

4. If M is an irreducible, codimension r > 2 isoparametric subman-
ifold of an infinite dimensional Hubert space, is M homogeneous?

5. Let Ay be defined as in Theoreml.8. Is there a finite group acting
on the normal torus Tx of an equifocal submanifold in a simply con-
nected symmetric space that is simply transitive on the set of chambers
{Ay\yeTxΠM}?

6. Is there a similar theory for equifocal submanifolds in simply
connected, non-compact, symmetric spaces?

7. Lie sphere geometry of Sn (see [29], [7]) can be naturally extended
to compact symmetric spaces. To be more precise, let TV be a simply
connected, compact symmetric space, and the unit tangent bundle TλN
be equipped with the natural contact structure. Given an immersed
Legendre submanifold / : X -> TλN and t G R, let ft : X -> TλN
denote the map ft(u) — d exptu(tu). We call λ a multiplicity-m fo-
cal radius of X along u0 if / λ is singular at u0 and the dimension of
the kernel of d(ft)Uo is m. A connected A -dimensional submanifold
S of X is called a focal leaf of X if there exists a smooth function
λ : S ->• R such that X(u) is a multiplicity k focal radius of X along
u and ker(c?(/λ(u))n) = TSU for all u G S. A Legendre submanifold X
of TXN is called Dupin if every focal leaf projects down to an intersec-
tion of geodesic spheres in N. A Dupin Legendre submanifold is called
proper if the focal radii have constant multiplicities. Note that if M is
an immersed submanifold of TV, then the unit normal bundle vι(M) is
an immersed Legendre submanifold oϊTιN. Moreover, a hypersurface
M is weakly equifocal if and only if u1 (M) is a proper, Dupin Leg-
endre submanifold of TιN. It follows from the results of this paper
that Dupin Legendre submanifolds of TιN share many of the same
properties as Dupin Legendre submanifolds (these are called Dupin Lie
geometric hypersurfaces in [29]) of TιSn. So the following questions
arise naturally:
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(a) What is the group of diffeomorphisms g : N -> N such that the
induced map dg \TλN -±TιN maps Dupin Legendre submanifolds to
Dupin Legendre submanifolds? When N = Sn, this group is the group
of conformal diffeomorphisms (Mόbius transforamtions).

(b) What is the group of contact transformations oίTxN that map
Dupin Legendre submanifolds to Dupin Legendre submanifolds? Or
equivalent ly, what is the group of contact transformations of TXN that
maps Legendre spheres to Legendre spheres? Here a Legendre sphere
in TλN is defined to be either the unit normal bundle of a geodesic
hypersphere or a fiber of the projection π : TXN —> N. When N = Sn,
this group is the group of Lie sphere transformations, which is isomor-
phic to O(n + 1,2)/Z2 and is generated by conformal transformations
and the parallel translations ft (cf. [7], [29]).

(c) A compact submanifold M in a compact symmetric space N is
called taut if for generic p G N the energy functional E : P(N,pxM) ->
R is a perfect Morse function. Is a taut submanifold Dupin? Is tautness
invariant under the transformations in questions (a) and (b)?

References

[1] A.V. Alekseevsky & D.V. Alekseevsky, Riemannian G-manifold
with one-dimensional orbit space, Preprint.

[2] R. Bott & H. Samelson, Applications of the theory of Morse to
symmetric spaces, Amer. J. Math. 80 (1958) 964-1029.

[3] J. Berndt & L. Vanhecke, Curvature adapted submanifolds, Nihon-
kai Math. J. 3 (1992) 177-185.

[4] E. Cartan, Families de surfaces isoparametriques dans les espaces
a courbure constante, Ann. Pura Mat. Appl. (4) 17 (1938) 177-
191.

[5] S. Carter & A. West, Isoparametric systems and transnormality,
Proc. London Math. Soc. 51 (1985) 520-542.

[6] , Isoparametric and totally focal submanifolds, Proc. Lon-
don Math. Soc. 60 (1990) 609-624.

[7] T.E. Cecil & S.S. Chern, Tautness and Lie sphere geoemtry, Math.
Ann. 278 (1987) 381-399.

[8] T.E. Cecil & P. J. Ryan, Tight and taut immersions of manifolds,



716 C.-L. TERNG & G. THORBERGSSON

Res. Notes Math. Vol. 107, Pitman, Boston 1985.

[9] L. Conlon, Variational Completeness and K-transversal Domains.

J. Differential Geometry 5 (1971) 135-147.

[10] , The topology of certain spaces of paths on a compact sym-

metric space, Trans. Amer. Math. Soc. 112 (1964) 228-248.

[11] , Remarks on commuting involutions. Bull. Amer. Math.
Soc. 22 (1969) 255-257.

[12] J. Dadok Polar coordinates induced by actions of compact Lie

groups, Trans. Amer. Math. Soc. 288 (1985) 125-137.

[13] D. Ferus, H. Karcher & H.-F.Munzner, Cliffordalgebren und neue
isoparametrische Hyperflάchen, Math. Z. 177 (1981) 479-502.

[14] E.C. Harle, Isoparametric families of submanifolds, Bol. Soc.

Brasil Mat. 13 (1982) 35-48.

[15] E. Heintze, C. Olmos, &; G. Thorbergsson, Submanifolds with con-
stant principal curvatures and normal holonomy groups, Internat.
J. Math. 2 (1991) 167-175.

[16] E. Heintze, R.S. Palais, C.L. Terng & G. Thorbergsson, Hyper-

polar Actions and k-flat Homogeneous Spaces, J.Reine Angew.

Math. 454 (1994) 163-179.

[17] , Hyperpolar Actions on Symmetric Spaces, Preprint.

[18] R. Hermann, Variational completeness for compact symmetric

spaces, Proc. Amer. Math. Soc. 11 (1960) 544-546.

[19] , Totally geodesic orbits of groups of isometries, Proc. Kon.
Nederl. Akad. Wetensch. 65 (1962) 291-298.

[20] , On the existence of a fundamental domain for Riemannian
transformation groups, Proc. Amer. Math. Soc. 13 (1962) 489-
494.

[21] V.G. Kac, Infinite dimensional Lie algebras, Third Ed., Cam-
bridge University Press, Cambridge, 1990.

[22] O. Loos, Symmetric Spaces, 1,11 Benjamin, New York, 1969.

[23] J.W. Milnor, Morse Theory, Annals of Math.Studies, Vol. 51,
Princeton University Press, Princeton, 1963.

[24] H.F. Munzner, Isoparametrische Hyperflάchen in Sphάren, I, II,

Math. Ann. 251 (1980) 57-71; 256 (1981), 215-232.



SUBMANIFOLD GEOMETRY IN SYMMETRIC SPACES 717

[25] T. Ozawa, On critical sets of distance functions to a taut sub-
manifold, Math. Ann. 276 (1986) 91-96.

[26] R.S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963)
299-340.

[27] R.S. Palais & C.L. Terng, A general theory of canonical forms,
Trans. Amer. Math. Soc. 300 (1987) 771-789.

[28] , Critical Point Theory and Submanifold, Geometry Lecture
Notes in Math., Vol. 1353, Springer, Berlin, 1988.

[29] U. Pinkall, Dupin hyper surf aces, Math.Ann. 270 (1985) 427-440.

[30] U. Pinkall & G. Thorbergsson, Deformations of Dupin hypersur-
faces, Proc.Amer.Math.Soc. 107 (1989) 1037-1043.

[31] A. Pressley & G. Segal, Loop Groups, Clarendon Press, Oxford,
1986.

[32] G. Segal, The representation ring of a compact Lie group, Inst.
Hauter Etuder Sci. Publ. Math. 34 (1968) 113-128.

[33] C.L. Terng, Isoparametric submanifolds and their Coxeter groups,
J. Differential Geometry 21 (1985) 79-107.

[34] , Submanifolds with flat normal bundle, Math. Ann. 277
(1987) 95-111.

[35] , Proper Fredholm submanifolds of Hilbert space, J. Differ-
ential Geometry 29 (1989) 9-47.

[36] , Variational completeness and infinite dimensional geome-
try, Geometry and Topology of Submanifolds, III, World Scien-
tific, Singapore, 1991, 279-293.

[37] , Polar Actions on Hilbert Space, to appear in J. Geom.
Anal.

[38] G. Thorbergsson, Dupin hypersurfaces, Bull. London Math. Soc.
15 (1983) 493-498.

[39] , Isoparametric submanifolds and their buildings, Ann. of
Math. 133 (1991) 429-446.

[40] Q.-m. Wang, Isoparametric hypersurfaces in complex protective
spaces, Proc. 1980 Beijing Sympos. Differential Geometry and
Differential Equations, Vol. 3, Science Press, Beijing, 1982, 1509-
1524.



718 C.-L. TERNG & G. THORBERGSSON

[41] B. Wu, Hyper-isoparametric submanifolds in Riemannian sym-
metric spaces, Preprint.

[42] , Equifocal focal hypersurfaces of rank one symmetric spaces,
Preprint.

NORTHEASTERN UNIVERSITY, BOSTON
UNIVERSITAT ZU KOLN, GERMANY




