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1. Introduction

The purpose of this paper is to prove the following.
Main Theorem. Suppose R 2 —>• Wei9 —> Σ,g is the plane bundle

over a closed orientable surface of genus g so that the Euler number of
the fibration is e. If\e\ <g — l, then there exists a complete hyperbolic
metric on We,g. Furthermore, the conformal infinity of the hyperbolic
structure is a Mόbius structure on the associated circle bundle over
surface Σg.

In view of J. Milnor's theorem that there exists a flat SL(2,R) con-
nection on Wei9 if and only if |e| < g — 1, one would expect that the
result above is optimal. M. Kapovich [5] has made progress in this di-
rection recently and has shown that if \e\/(g — 1) is too large, then there
is no complete hyperbolic metric on We,g. The existence of such struc-
tures on Wei9 for e Φ 0 was first proved by Gromov-Lawson-Thurston
[3], Kapovich [4], and Kuiper [6]. The best result so far is obtained by
Kuiper who showed that if |e| < 2/3(5 — 1), then there exists a complete
hyperbolic metric on Wet9.

Our construction is based on a Fenchel-Nielsen type decomposition
of Wet9. The basic building block is W — R2 x P where P is a pair of
pants, and the main objects are complete hyperbolic structures with
totally geodesic boundary on W. Each boundary component of W
has the induced complete hyperbolic structure which is characterized
by the multiplier (a complex number of norm larger than 1) of the
generator of the monodromy group. We call it the multiplier of the
structure on the component of d W. Similar to Fenchel-Nielsen's work
on hyperbolic metrics on P, we have now the problem of constructing
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complete hyperbolic metrics on W with given three multipliers. We
are not able to solve the problem in this paper. However, we con-
structed a complete hyperbolic structure on W so that the multipliers
are three negative real numbers arbitrary near (—ctg2π/12, —ctg2π/12,
—ctg2π/6 ). Gluing these structures along the boundary implies the
main theorem above.

We will mainly work on the conformal infinity of the hyperbolic
space if4, namely the 3-dimensional Mόbius geometry (S'3, M o b ^ 3 ) ) .
The basic idea of the construction comes from Fenchel-Nielsen's lemma
which states that for any three positive numbers αi, α2, α3, there exists a
unique hyperbolic structure on P so that the lengths of three boundary
geodesies are the given numbers. Let us recall briefly the proof. Choose
two geodesies lλ and Z2 in the hyperbolic plane H2 of distance α3/2
apart. Let l[ and 1'2 be the curves of constant distances α2/2 and aλ/2 to
lι and l2 respectively in the common region bounded by lι and Z2. Since
l[ and 1'2 are circular arcs, there exists a geodesic Z3 tangent to both l[
and Z2 (there are exactly two such geodesies which are symmetric about
the common perpendicular to lχ and Z2). Then the three geodesies Zi,
Z2, and l3 bound a common region in H2 and their pairwise distances
are αi/2,α 2/2, and α3/2. For each geodesic I in if2, let Ht be the
hyperbolic reflection about I. Then the group < Hιλ o Hl2,Hl2 o Hίs >
is a Schottky group uniformizing the hyperbolic structure on P with
geodesic boundary of lengths αi, α2, and α3.

Our generalization to S3 is as follows. Given a circle C in 5 3 ,
let He be the sense preserving Mobius involution which leaves each
point in C fixed. We call Hc the half-turn about C. Given three cir-
cles Ci, C2, and C3 in S'3, we form the three-circle group HCl,c2,cz =
< HCl o HC2,Hc2 o HCz >. There is a very easy sufficient condition
on Ci, C2, and C3 (Schottky condition), which implies that ίfci,c2,c3

is discrete and free: namely that CΊ, C2, and C3 lie in three 2-spheres
which bound a common region in S3.

The complete hyperbolic structure on W is found among these three-
circle groups.

There are four types of different configurations of pairwise disjoint
three circles. See figure 1.1.

In this paper we will be interested in the first type where all pairs
of circles are unlinked. The linked case is much more difficult due to
the existence of elliptic elements in the three-circle group. We intend
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to study them in a subsequent paper. The most interesting problem
is to decide when a three-circle group based on three pairwise linked
circles is discrete. In this case, one obtains a discrete representation of
a triangular group into SO(4,1).

FIGURE 1.1

The organization of the paper is as follows. We recall some elemen-
tary properties of Mobius geometry in S3 in section 2. In particular,
it is shown that for any two circles in S3, there is a third circle in S3

orthogonal to each of them at two points. Given two unlinked circles
Ci and C2, we also define a complex number (the principal multiplier
of Hc1Hc2) associate to the pair which classifies the pair up to Mobius
transformation. It can be shown that the set of all three circles {Cχ,C2,
C3} modulo Mobius transformations so that their pairwise multipliers
are fixed numbers forms a compact set (generically a compact surface).
Section 3 is the main part of the paper. We study the configuration
space «M3 of three circles ( Ci, C2, C3) modulo Mobius transformations
so that each of these circles intersects a fourth circle C at two points,
and CΊ (Ί C, C2 Π C, and C3 Π C bound three disjoint intervals in C.
A parametrization of M$ is introduced, and the pairwise multipliers of
(Ci, Cj) are expressed in term of the parametrization. We prove a local
deformation result which is crucial to our construction. Call a triple of
circles (Ci, C2, C3) totally degenerate if they are tangent to a fourth
circle at three different points. We show that if (Ci, C2, C3) is totally
degenerate and satisfies a mild condition, then there is a local defor-
mation of it so that the resulting triple is in ΛΊ3 and the deformation
preserves the pairwise multipliers. The structure on W is found by a
local deformation argument. In section 4, we discuss the gluing prob-
lem. Euler numbers of Mobius structures on Σ x S1 (Σ is an orient able
compact surface) with trivial monodromy in S1 fibers are defined. We
show the additivity of the Euler number under gluing. This together
with the special structure that we constructed on W implies the main
theorem.
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2. Elementary properties of Mδbius geometry in
dimension three

Recall that the base space of Mδbius geometry is the unit 3-sphere S3

in R4 or the 3-dimensional Euclidean space adding infinity R3. Mόbius
transformations are compositions of inversions about 2-spheres. They
form the group Mob(S'3) (SO+(4,1)). These transformations preserve
the set of circles and lines and the set of 2-spheres and planes. For
simplicity, we will call lines (or planes) in R 3 circles (2-spheres respec-
tively). Given any circle C in R3, the half-turn about C, denoted by
Hc, is the orientation preserving Mδbius involution leaving each point
of C fixed. Hc may also be defined as the composition of two inversions
about two 2-spheres intersecting orthogonally at C.

The goal of the section is to study the geometry of two circles Cx

and C2 and its relation to the multiplers of the Mόbius transformation
HCl o Hc2

We will use the following terminologies. Two circles CΊ and C2 are
call orthogonal if they intersect at two points orthogonally; they are
unlinked if they are disjoint and have zero linking number, and are
linked if they are disjoint and have linking number one. For a set X
C S3 consisting of more than one point, sp(X) denotes the sphere of
minimal dimension containing X. For instance, two circles CΊ and C2

are cosphere if and only if sp{CΊ, C2} is a 2-sphere. A pair of circles is
called standard if it is Mόbius equivalent to the pair (z-axis, unit circle
in the xy-plan). Fix(h) denotes the fixed point set of h.

2.1. Let Mob+(53) be the group of sense preserving Mόbius trans-
formations, h G Mob+(S3) is called hyperbolic if \Fix(h)\ = 2, parabolic
if \Fix(h)\ = 1, and elliptic if \Fix(h)\ is 0 or infinite. If h is hyper-
bolic, h is conjugate (in Mob+(S3)) to the transformation x H> rRθx,
where x G R3, r φ 1 is a positive real number, and Re is the Euclidean
degree θ rotation (counterclockwise in the xy-plane) about the z-axis.
If h is parabolic, h is conjugate toxi-^ RQX + (1,0,0) in R3. If h is
elliptic, h is conjugate to an element in SO(4) C SO(4,1) of the form

( Mθl 0 \ / cosθ sinθ\ . Λyr.., .

Λ , , where Ma = . Λ Λ . To characterize these Mobius
0 Mθ2J y-sinθ cosθj

transformations up to conjugacy, we introduce the multipliers m(h) of
h. For hyperbolic h, m(h) = {A,A-1, λ, λ"1} where λ = reiθ. Each
element in m(h) called a multiplier of the Mόbius transformation h.
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We call the element in m(h) with norm > 1 and argument in [0, π] the
principal multiplier of h. For parabolic h, m(h) = {e±iθ}\ and for ellip-
tic h, m(h) - {(eW l,e i β a),(e i β a,e< f l l)?(e" ί f l l,e- i β a),(e- i f l a,e-< f l l)} N o t e

that m(h) = m(/ι~1). Also a half-turn is the same as m(h) = {(1,-1),
(-1, 1)}. Two elements hλ and h2 in Mob+(S3) are conjugate if and
only if m(hι) = m(h2). If S is an oriented 2-sphere invariant under a
hyperbolic element h and h\s G Mob+(S), then one may specify two
multipliers of m(h) of the form {α, α"1} so that they are the multipliers
of the two-dimensional Mόbius transformation h\s with respect to the
oriented 2-sphere. If furthermore a fixed point of h in S is specified,
then we obtain exactly one multiplier which is the derivative of h at
the fixed point.

Prom the classification, we deduce the following. If a hyperbolic
element h has non-real multipliers, then h has a unique invariant circle
(the z-axis) and a unique invariant 2-sphere (the xy-plan). Both of them
contain Fix(h) and the restriction of h to each of them is orientation
preserving. If h has negative real multipliers, then h has a unique
invariant circle C so that h\c is sense preserving and a unique 2-sphere
S so that Λ|s is sense preserving. For a parabolic element h with non-
real multipliers, h has a unique invariant circle (the z-axis) containing
Fix(h). For elliptic element h with non-real multipliers, h leaves a
standard pair of circles invariant. Furthermore, the pair is unique if h
has four distinct multipliers.

2.2. We prove in this section that for any two circles in S3, there is
a third circle which is orthogonal to both of them. We will also explain
the geometric meaning of τa{Hc1 ° Hc2)>

2.3. Lemma. Given two circles CΊ and C2 in S3, there is a third
circle C orthogonal to each Ci at two points, for i = 1,2.

We call C a common perpendicular of CΊ and C2.
Proof. If Ci Π C2 φ φ, take a point of intersection to be the infinity

for a Euclidean model of S3. Then d and C2 are two lines in R3.
Therefore, there is a line C in R3 orthogonal to both CΊ and C2. If CΊ
ΠC2 = φ, consider S3 as the boundary of the unit 4-ball J34 in R4, and
let Di be the 2-sphere in R4 intersecting S3 orthogonally at Ci. Clearly
(CΊ, C2) is linked if and only if Dx Π D2 φ φ. If Dλ Π D2 φ φ, then
Dι Π D2 Π int(B4) φ φ. After a Mόbius transformation of R4 leaving
S3 invariant, we may assume that D1ΠD2 = {0, oo}. Then CΊ and C2

are great circles in S3 with respect to the standard metric. Let C be a
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great circle which realizes the minimal spherical distance between CΊ
and C2. Then C is orthogonal to C{ at two points. Suppose finally that
DιΠD2 = φ. We consider int(£?4) as the hyperbolic 4-space. There is
a hyperbolic geodesic I orthogonal to the two totally geodesic surfaces
DiΓlint(B4) and D2Πint(B4). Let the ends of/ in dJ34 be {x, y}. Take
a Euclidean model of S3 so that x and y are the origin and the infinity
respectively. Then CΊ and C2 are two circles in R3, whose Euclidean
centers are the origin. There is a straight line C passing through the
origin intersecting both CΊ and C2. Thus, C is orthogonal to each of
Ci at two points. D

There are five different configurations of pair of circles in 5'3 accord-
ing to their relative positions. See Figure 2.1.

O

FIGURE 2.1

Below, we will discuss these five cases in detail. For simplicity, we
also call m(HClHC2) the multipliers of the pair of circles (CΊ , C2) and
denote it by m(CΊ,C2). It follows from the definition that m(CΊ,C2)
= m(C2,d) - migidUfa)) for 9 G Mob(S3).

Case 1. (CΊ, C2) is a unlinked, not cosphere pair. By Lemma 2.3,
after a Mόbius transformation, we may assume that the common per-
pendicular C is the z-axis, and CΊ and C2 are two circles centered at the
origin and orthogonal to the z-axis. Then clearly, Hc1Hc2 is a hyper-
bolic transformation with fixed points 0, oo and leaves both C and the
xy-plane invariant. To figure out m(HClHc2), let θ be the dihedral an-
gle between sp(Cχ, C) and sp(C2, C), and let r be the ratio of the radii
of CΊ and C2. Then a multiplier of HClHC2 is r2e2iθ. Thus m(HClHC2)
= { r±2e±2iθ}. Since CΊ and C2 are not cosphere, θ G (0,π/2]. Hence,
the multipliers of HClHC2 are not positive real. Furthermore, C and
the xy-plane are the unique invariant circle and 2-sphere orthogonal to
Ci and C2 respectively.

This also suggests the construction of CΊ and C2 with given mul-
tipliers r±2e±2ιθ. Thus, each hyperbolic element of non-positive real
multipliers of Mob+(S3) is of the form HClHC2 for some pair of un-
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linked, non-cosphere circles.
Case 2. (CΊ, C2) is a linked pair. By Lemma 2.3 we may assume

that C is the z-axis, and CΊ and C2 are two circles in R3 centered
at the z-axis. Let Si be the 2-sphere obtained by rotating Ci about
the z-axis. Then C = Sλ Π S2 is another circle orthogonal to both
CΊ and C2. Furthermore, (C, C) is a standard pair. By the proof
of Lemma 2.3, we may assume that CΊ, C2, C and C are all great
circles in S3. Thus, HClHC2 G SO(4) leaves both C and C" invari-
ant. To find the geometric meaning of m(CΊ,Cf

2) = m(HClHC2), we
should be a little careful about the orientations. Suppose S3 is ori-
ented, CΊ, C2 are so oriented that their linking number is 1, and C,
C are also oriented like so. Let θ\ be the dihedral angle between
sp(CΊ, C") and sp(C2, C") counted in the direction of C" from sp(CΊ,
C), and θ2 be the dihedral angle between sp(Ci, C) and sp(C2, C)
counted in the direction of C from sp(Ci, C). Then m(HClHC2) =
{{e2iθ\ e2iθ*), (e2iθ*,e2iθi), (e~2iθ\ e~2iθ*), (e~2iθ\ e~2i^)}. Given θu θ2

e [0,π], we may construct a linked pair (CΊ, C2) with multipliers

{(e 2 ^,e 2 ^),(e^,e^),(e- 2 ^,e- 2 ^ 2 ) ,(e- 2 ^ 2 ,e- 2 ^)} as follows. Let
C[ and C2 be two geodesic in H2 intersecting at an angle θι where H2

is represenated as the half plane { (x,0,z) \x > 0}. Take CΊ to be sp(C{)
and C2 to be s p ^ ) rotated about the z-axis at an angle θ2. Then
the multipliers of this pair are {(e2^1, e2ίθ*), (e2iθ*, e2iθί), (e~2iθί, e~2iθ*),

(e- 2 ^,e" 2 ^)}
Case 3. (CΊ, C2) is a disjoint, cosphere pair. Then we may assume

that Ci and C2 are two concentric circles in the xy-plane centered at
the origin. Hc1Hc2 is a hyperbolic transformation with positive real
multipliers r±2 where r is the ratio of the radii of C\ and C2.

Case 4. (Ci, C2) is a pair of circles intersecting at two points. We
may assume after a Mobius transformation conjugation that CΊ and C2

are two lines in the xy-plane intersecting at the origin. Then HClHc2

is a rotation about the z-axis at an angle 2Θ where θ is the intersecting
angle of C\ and C2. Thus Hc1Hc2 is an elliptic element with two
multipliers.

Case 5. (Ci, C2) consists of two circles intersecting at only one point.
We may assume after a Mobius transformation that C\ and C2 are two
lines in R3 intersecting the z-axis orthogonally. Then HcλHc2 is the
skew motion x H> R2QX + (2α, 0,0) where θ is the intersection angle of
Ci and C2 at the infinity, and a is the distance between the intersection
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points of CΊ and C2 with the z-axis.
Prom the above analysis, we have shown that each element h in

Mob+(S3) is a product of two half-turns, and the multipliers of h can
be interpreted geometrically in terms of the relative position of the two
circles. Furthermore, for two pairs of circles (CΊ, C2) and (J3l5 D2),
there is a Mόbus transformation taking (CΊ, C2) to (i? l5 D2) if and
only if they have the same multipliers.

2.4. Pairs of spheres and circles and focal points.
Given two 2-spheres SΊ and S2, the composition h of the inversions

about these spheres is an element in Mob+(S3). It is either a hyperbolic
element with positive real multipliers, or a rotation about a circle, or a
parabolic element with real multipliers. The first case corresponds to
\Sι Π S2\ = 0, the second case to that |Si (Ί S2 | is infinite so that h is
a rotation about the circle SΊ Π S2, and the last case to \Sχ Π S2 | = l
If SΊ Π £2 = Φ , we call Fix(h) the focal points of the pair (SΊ, S2). It
is characterized by the following property. A circle C is orthogonal to
both S\ and S2 if and only if C contains the focal points. In particular,
the focal points of two disjoint spheres S\ and S2 are given by CΊ Π C2

where CΊ and C2 are two distinct circles orthogonal to both SΊ and S2.
We can also define the focal points of a pair (C, S) where C is a

circle and S is 2-sphere disjoint from C. It is the pair of points {x,y} so
that a circle C is orthogonal to both C and S if and only if C" contains
both x and y. One way to see the existence of focal points is to find a
sphere A containing C and orthogonal to S. Then let S" be the 2-sphere
orthogonal to A at C. One shows easily that S' Π S = φ. The focal
points of (S, S') is then the focal points of (C,S). The other way is to
define the focal points to be Fix(Hc° Invs) where Invs is the inversion
about S.

2.5. In this section we will derive a useful formula for calculating
the multipliers of two unlinked circles in R3.

We will identify the complex plan C with the xy-plane in R3. For
two distinct points α, b in C U{oo}, we use [α, b] to denote the unique
circle in R 3 intersecting CU{oo} orthogonally at a and &.

2.6. Lemma, (a). The restriction of the half-turn H[a b] to C is

given by z H> ί g ^ .

(b). The multipliers of i?[α,&] ° #[c,d] restricted to C (with the nat-

ural orientation) are given by (^y ΐ ) 2 where μ is the cross product
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f § f §
The proof is a direct computation.

2.7. We finish this section by listing two more properties of pairs of

circles. The proofs are all simple.

(a). Given any pair of circles (Ci,C2), there is a third circle C so

that the half-turn about C interchanges CΊ and C2.

(b). Given any pair of unlinked circles, there is a third circle tangent

to both of them. Furthermore, if these two circles are not cosphere,

then there exist exactly four distinct circles tangent to both of them.

3. Configuration space of three circles

3.1. In this section we will study the configuration space of triples
of circles (of a specific type) in S3 modulo Mόbius transformations. We
will introduce a coordinate for the configuration space and use these
coordinates to calculate the multipliers of the pairs of circles in the
triple.

We will be interested in the following type of configuration of three
circles CΊ, C2, and C3 in R3.

3.2. Definition. A type I configuration of three circles is a
collection of three circles C\ C2 and C3 satisfying:

(1) there exists a circle C intersecting each Ci at two points;
(2) the three pairs of points CΊ Π C, C2 Π C, and C3 Π C bound

three disjoint intervals in C.

We call C an axis of (CΊ, C2, C3).
Note that (2) implies that C*, Cj are unlinked. Furthermore, C^

Cj are cosphere if and only if C*, Cj and C are cosphere. The second
condition (2) can be generalized to higher dimension. A collection of k
codimension-1 -spheres SΊ,...,Sfc i n Sn is said to be in Schottky position
(weak Schottky respectively) if they bound k disjoint balls (k balls with
disjoint interiors respectively) in Sn; a collection of k (n-2)-spheres CΊ,
..., Ck in Sn is said to be in Schottky position (or weak Schottky) if they
lie in k codimension-1 spheres which are in Schottky position (or weak
Schottky respectively).

Given a finite collection of codimension-1-spheres {SΊ,..., Sk} in weak
Schottky position, the natural orientation on S{ is the induced orien-
tation from the common region bounded by SΊ,..., S*.
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3.3. Schottky Lemma, (a) If Cl9...,Ck are k codimension-2-
spheres in Sn in Schottky position, and HCi is the half-turn about
Cij then the group Γ generated by the compositions of even number of
Hcu 'j Hcn is a Schottky group. In particular, it is free and discrete.
More generally, if there exists (k — 1) codimension-1-spheres S2,...,Sfc
so that S2,...,Sfc, Hc1(S2)τ'">Hc1(Sk) are in Schottky position, then
the group Γ is Schottky.

(b) IfCι,...,Ck are k codimension-2-spheres in Sn in weak Schottky
position, and Hc{ is the half-turn about Ci, then the group Γ generated
by the compositions of even number of HCl,. , Hcn is discrete and
free.

The proof is as follows (known to many mathematicians, see for
instance [1]). Γ is generated by HClHCi for i=2,..., k by definition.
Since the collection {S2, ••• S&, i?Ci(S2) » •••? ^Ci(Sfc)} 1S i n Schottky
position, the generator HcλHci sends the exterior of the ball bounded
by Si to the ball bounded by HCl(Si). Thus the result follows from the
Klein-Maskit combination theorem.

If we replace the Schottky position by weak Schottky position in the
lemma, then the group Γ is still discrete and free by the same argument.

3.4. Lemma. Suppose (d7 C2, C3) is a type I configuration of
three circles with an axis C. Then there exist unique three 2-spheres
Si, S2 and S3 in Schottky position so that Si is orthogonal to C for
all i, and Si is orthogonal to Cj for i φ j . Conversely, suppose three
2-spheres Si, S2 and S3 are in Schottky position and three circles Cι,
C2 and C3 satisfy that d is orthogonal to Sj for iφ j . Then (d> C2,
C3) is of type I.

We call SΊ, S2 and £3 the dual spheres of the triple (CΊ, C2, C3).

Proof. By condition (2) in Definition 3.1, Ci Π C does not separate

Cj Π C in C. Thus there exists a unique 2-sphere Sk (k φ i,j) orthog-

onal to C so that inversion about Sk leaves both Ci Π C and Cj Π C

invariant. Hence Sk is orthogonal to Ci and Cj. Furthermore, (SΊ, S2,

S3) is in Schottky position because (CΊ Π C, C2 Π C, C3 Π C) is also so.

Suppose conversely that SΊ, S2 and S 3 are in Schottky position. Then

there exists uniquely a circle C orthogonal to Si for i= 1,2,3. Since Cj

_L Si for i φ j , C Π Ci consists of two points which are the focal points

of Sj and Sk. Furthermore, (CΊ Π C, C2 Π C, C3 Π C ) is in Schottky

position in C since (SΊ, S2, S3) is also so. Thus, (CΊ, C2, C3) is of

type I. D
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The following lemma shows the uniqueness of the axes.
3.5. Lemma. Suppose that CΊ, C2 and C3 form a type I config-

uration and that no pair (Ci, Cj ) (i Φ j) is cosphere. Then the axis
of Ci, C2, C3 is unique. Conversely, if one pair (Ci, Cj ) (i Φ j) is
cosphere, then the axis of (C\, C2, C3 ) is not unique.

Proof. Since (C<, Cj) is not cosphere for each i φ j , there exists
a unique 2-sphere Sk so that Sk JL Ci and Sk -L Cj (k φ i,j). Now,
by the proof of the previous lemma, these Sk's can also be constructed
using an axis C so that Sk -L C. Thus, C contains the six focal points of
the pairs (S^ Sj) (i φ j). This shows C is unique. Conversely, if (CΊ,
C2) is cosphere, then C C sp(CΊ, C2), and C3 intersects sp(Cχ, C2) at
two points. We can easily pick infinitely many C C sp(CΊ, C2) passing
through C3 Π sp(Ci C3) and intersecting both d and C2 transversely.

3.6. We now introduce a parametrization of the space of all type I
configurations modulo Mobius transformations. We fix an axis C and
an orientation on C so that Ci Π C, C2 Π C and C3 Π C are in the
order of the orientation. R 3 is oriented by the right-hand rule. The
normal bundle of C has the induced orientation from R 3 and C. For
simplicity, we assume that C is the positively oriented z-axis, and the
normal bundle has the same orientation as the natural orientation on
the xy-plane.

Let Di be the disc in sp(C, Ci) bounded by d so that Z?< Π Dj = φ
for all i φ j .

Ci

C2

FIGURE 3.1

Each disc Di is decomposed into two half discs Df and D^ by C
where Df is the half disc so that the inner angle θi at its vertices is
less than or equal to τr/2. If θi = τr/2, we choose Df to be any of the
two half discs.

We need the notion of hyperbolic distance for non-separating pairs
of points in a circle. Given four distinct points a, b, c and d in a
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circle so that (a, b) does not separate (c, d), the hyperbolic distance

between (a, b) and (c, d) is defined to be lg^^ where λ is the cross

ratio (a, b, c, d). Indeed, if lx and l2 are two geodesies in a hyperbolic

plane with infinity C so that dlx = (a, b) and dl2 = (c, d), then the

distance defined above is the hyperbolic distance between lλ and l2 in

the hyperbolic plane.

Now for any type I circles (CΊ, C2,C3) with axis C, its real coordinate

(#i, θ2, θ3, Φ12, Φ23, Φzu di2, d23, d31) is defined as follows.

(1) θi is the angle between Ci and C so that θ{ G (0, π/2] (i.e., θi is

the inner angle of Df);

(2) dij is the hyperbolic distance between d Π C, Cj, Π C in C;

(3) φij is the angle counted from Df to Dj~ in the normal direction

of C.
Thus, φ^ G [0,2τr), and Φι2+φ23+φ3i= 2π or 4π.
Note that (Cii Cj) is cosphere if and only if φ^ =0 or π. Also if θ{=

π/2, then φ^ is well defined up to the choice of Df.
3.7. Lemma. Given (θu θ2, θ3, φλ2, φ23, φ31, dλ2, d23, d3λ) satis-

fying φi2-hφ23-/-φ3ι= 2π or 4π, θ{ G (0, π/2], dij>0 for all i φ j , there
exists a configuration of three circles CΊ, C2 and C3 so that its real
coordinate is (θi, φ^, d^). Furthermore, if φij φ 0, π for all i,j, then
configuration is unique.

Proof. Fix any circle C as the axis. Given three positive numbers
d^, we construct three pairs of points (X i ? Y;) in Schottky position
in C so that d^ is the hyperbolic distance between (X f, Yj) and (Xj,
Yj) for i φ j by Fenchel-Nielsen lemma. Now we construct a disc D\
intersecting C at {Xi, Y{\ at an angle 0χ. Then each of the rest of the
discs Di is determined since Di intersects C at {Xi? YJ at an angle θi
and forms an dihedral angle φu with D\. By Lemma 3.5, C is unique
if no two Ci, Cj are cosphere which is the same as φ^ φ 0, π.

3.8. We now calculate the multipliers of C^ Cj using the real coor-
dinate. Recall that the multipliers of Ci and Cj are the same as the
multipliers of the Mόbius transformation HdHcά which consist of four
complex numbers. To specify two of them, let Sk be the dual spheres
constructed in Lemma 3.4. We will be interested in the the multipliers
of HciHcjlSk with respect to Sk in the natural orientation.

3.9. Proposition. Suppose (Cx, C2, C3) forms type I configuration
with real coordinate (θi, θ2, θ3, φ12, φ23i φ3χ,dX2, d23j d31), and Si, S2
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and S% are the dual 2-spheres equipped with the natural orientations.
Then for each (i, j) E {(1,3), (3,2), (2,1)}, the multipliers of d and

Cj with respect to the orientation of Sk are (— ^, >J ) ± 2 where λjj are

(e^-V=ΐΦng{θi/2).
2) - l)(e*i-V=Γ*i _ tg{θi/2)tg{θj/2))'

Proof. Let pk G Sk Π C be the point so that the inner norm of the
common region Ω bounded by S^s at pk is the same as the orientation
of C. Now conjugate C^ Cj, C and Sk by an h E Mob+(S'3) sending
SkΠ C to {0, 00}, and pk to 0 so that, the following hold:

(1) The oriented C is the positively oriented z-axis.
(2) Sk with the orientation is the xy-plane with the natural orienta-

tion (thus Ω is in { (x,y,z) \z > 0}).
(3) For (i, j) e {(1,2), (2,3), (3,1)}, C, Π C = {± (0, 0, 1)}, d Π C

= {±(0,0,edi')} Dΐ l i e s i n t h e half-space { (x,0,z)|a; < 0}, and Df in
{ ( , y l ) | ( 1 y ) , }

Recall the notation introduced in section 2.6: [a,b] is the unique
circle in R 3 orthogonal to CU{oo} at a, b. We obtain

By Lemma 2.6, the result thus follows.
3.10. We will study the degeneration of type I circles in this section.

A triple of circles (CΊ, C2, C3) is said to be totally degenerate if CΊ,
C2, C3 are tangent to a fourth circle C at three different points. Let
D be a disc with boundary C so that its interior int(D) is considered
as a model for the 2-dimensional hyperbolic space H2. Take three
horocycles C{, C2, C3 in H2 based on three different points. Then
rotations of these Ct 's about C in S3 give a totally degenerate triple.
Conversely, all totally degenerate triples are obtained in this way. This
leads to the study of the configuration space of three horocycles based
on three different points in H2 modulo hyperbolic isometries. There is
a simple parametrization of the configuration space. Suppose hi and h2

are two horocycles in H2 based on distinct points. Then their weighted
distance is defined as follows. Let / be the geodesic determined by the
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base points of hi and h2, and let d be the hyperbolic distance between

/ Π hi and lΠh2. Then the weighted distance between hλ and h2 is d if

hi Π h2 = φ and is — d otherwise.

3.11. Lemma. Given any three real numbers ax^a2 and a3, there

exist three horocycles hi, h2 and h3 based on three different points in

H2 so that the weighted distance between h^h^ is ak, i φ j φ k φ i.

The triple of horocycles is unique up to isometry.

Indeed, there exist three pairwise tangent horocycles in H2. Thus,

the result follows by a simple calculation of weighted distances.

We now parametrize the space of totally degenerate triples as follows.

Suppose (Ci, C2, C3) is a totally degenerate triple of circles tangent

to C at three different points. We orient C so that CΊ Π C , C2 Π C,

and C3ΠC are in the natural order of C. Take a disc D with dD =

C and consider int(D) as a model for the hyperbolic space H2. Let

(C[, C2, C3) be the three horocycles in int(D) so that C; is obtained by

rotating CI positively at an angle φi about C. Then the Mδbius coor-

dinate of (CΊ, C2, C3) is given by (zu z2, z3) where zk = e

d ί ' + v / = ϊ ( 0 < - ^ ) .

Here rfi<7 is the weighted distance between Ci and C^ , and (i,j,k) is a

positive permutation of (1,2,3). By the definition, ZιZ2z3 is positive

real. Lemma 3.11 implies that for any three complex numbers zu z2

and z3 in C —{0} so that zλz2z3 is positive real, there exists a triple of

totally degenerate circles whose Mόbius coordinate is (zι,z2lz3).

The dual spheres of a totally degenerate triple of circles (CΊ, C2,C3)

are defined similarly. Namely, the 2-spheres Sι,S2,S3 satisfy that Si is

orthogonal to C^Ck and C for i φ j φ k φ i. The dual spheres can

be constructed as follows. Let {C[,C2,C3) be the triple of horocycles

constructed above. For each pair C t , Cj (i Φ j), let lk be the geodesic in

int(D) with end points the tangent points of Ci and Cj with C. Then

Sk is the unique 2-sphere orthogonal to sp(D) at sp(Zfc). Furthermore,

SΊ, S2 and S3 bound a common region Ω in S3.

3.12. Lemma. The multipliers of Ci and Cj with respect to the

naturally oriented Sk are {\*^L)±2 where Xk = zk/(zk — 1) for i φ j φ

k φ i. It is a negative real number if and only if Re(zk) — 1/2.

One can calculate the multipliers directly. We will however derive it

from Proposition 3.8 and the proposition below.

3.13. Given a type I triple (CΊ, C2, C3) with real coordinate (0;, ^ J 5

dfj), the Mδbius coordinate of it is defined to be (zι,z2,z3,a,ι,a2,a3)



648 FENG LUO

where zk = tgiθiffltgiθjffle**-^*" and ak = tg2(θk/2), i± jφ
k φ i. Thus Zχz2z3 is positive real and \zk\

2 > a^a^ where (i,j,k) is a
negative permutation of (1,2,3). The corresponding pairwise multipliers

are given by (\1,λ2,λ3) where λ, = ( ^ = ) ± 2 and /, =

by Proposition 3.9.
3.14. Proposition. The Mόbius coordinate (zι,z2iz3ia,ι,a2,a3)

converges to (wi, w2,w3,0,0,0) £ (C - {0})3x C3 if and only if the
type I triple (Ci,C2,C3) (modulo Mόbius transformations) converges
to a totally degenerate triple of circles having coordinate (wι,w2,w3).

Proof Let us first show the result for the special case where zliz2,
and z3 are positive real numbers. The general case follows from the
specific case. Thus, we are given a type I triple (Ci,C2,C3) so that
they all lie in a 2-sphere. First let us assume that the Mobius coor-
dinate converges, and show that the triple converges geometrically to
a totally degenerate one. Let D be the disc so that dD is the axis of
(CΊ5C25C3) and that D^s are in D. We consider int(D) as a model
for the hyperbolic space H2. Thus each Ci corresponds to a curve of
constant curvature in H2. Let lk be the geodesic in H2 orthogonal to
Ci Π H2 and Cj Π H2. The existence of lk follows from the assumption
that dΠC for i = 1,2,3 bound three disjoint intervals in dD. We define
the weighted distance between CiΠH2 and Cj ΠH2 as before, i.e., it is
the hyperbolic distance between CiΠlk and CjΠlk if CiΠCj = φ, and is
the negative of this hyperbolic distance otherwise. One calculates that
the exponential of the weighted distance between Ci Π H2 and Cj Π H2

is given by ^J^^lXii)- T h u s > i f (^1^2,^3,^^2,03) converges to

(wι, ΊU2, W3,0,0,0), then the exponential of the weighted distances con-
verge to Wi for i =1,2,3. Therefore, after a normalization, (CΊ Π if2,
C2Γ\H2, C3ΠH2) converges to three horocycles based on three different
points. The result follows. Now, if the triple converges, from the above
calculation of weighted distances, we conclude that their coordinates
converge as well.

The general case follows from the above special case since
(zi,z2,z3,αi,α2,α3) converges if and only if (\zι\, \z2\, |2?3|,αi,θ2,α3) con-
verges and (arg(z1),arg(z2),arg(z3)) converges (mod(Z)).

3.15. Remark. By a partially degenerate triple of circles

(Ci, C2, C3) we mean a degeneration of type I circles so that some Ci
becomes tangent to the axis C. The above proposition still holds for
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partially degenerate triples.
3.16. We summarize the result as follows. The space of all triples

of type I circles together with their degenerations is parametrized by
{{zuz2,z3,dι,d2,d3)\\zi\

2 > aόakli φ j φ k φ i, α* E [0,1], zλz2z3

is positive real} where the degeneration corresponds to aλa2a3 = 0.
The corresponding pairwise multipliers (with respect to the naturally
oriented dual spheres) of the triple with coordinate (zλ, z2, z3, dλ, α2, α3)

are given by (λlfλa,λ,) where λ, = ( ^ f )±2 and /« = fc^g
This leads us to the study of the function fi. The proof of the

following lemma is a simple calculation.
3.17. Lemma.

(1)
(z + a)(z + b) = (l+a)(l + b)(db-z2)

1 {z - l)(z - ab) {z - \y(z - ab)2 '

(2)

{z-l)(z-ab) {z-l)(z-ab)2'

Our basic observation is the following.
3.18. Proposition. Let Π be the map from

M = { { z ι , z 2 , z 3 , a ι , a 2 , a 3 ) \ z ι z 2 z 3 is positive real, z k φ l , z { φ a{a

z\ φ didj, Zi φ —dj for i φ j φ k φ i, and d{ £ ( — 1 , 1 ) }

to CP sending (zuz2,z3,aua2,a3) to (fuf2j3) where ft = ff-Γ/ci!-t^)
Then every point p = (pi,Pi,P3) £ C3 so that not all pi are real is a
regular value of Π.

Proof. Suppose Π(zi,z2,z3,dι,d2,d3) = p. The derivative of Π
is the Jacobian matrix below restricted to the tangent space of the
hypersurface zλz2z3 — positive real,

(dftidzι o o o df1/dd2df1/dd3\
J=\ o df2/dz2 0 df2/dd1 0 df2/dd3 .

\ 0 0 df3/dz3df3/daidf3/da2 0 J

Since not all p^s are real, we may assume that at least two of z^s
are not real, say, z2 and z3 are not real numbers. Since dfi/dzi φ 0
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for all i by Lemma 3.17, to show that the rank of DU is six, it suffices

, , ,, . ., , , τ Δ (Re(df3/da1) Re(df3/da2)\
to show that the real rank of Ά3 = \ τ , Q , \ Q \ τ , Q . / Q λ or

\Im(df3/daι) Im(df3/da2)l

_ (Re(df2/dai) Re(df2/da3)\
Λ2 " \Im{df2ldaλ) Im(df2/da3)J tW°"

Suppose that the rank of A3 is less than two. Then, by Lemma 3.17,

there exists a real number μ so that μ(a2 + z3) = αx + z3. Since z3 is

not real, μ = 1. Thus αi = α2. Applying the same argument to A2, we

see that the rank of DU is six unless aλ = a2 = α3.

To finish the proof, we will show that the rank of DU is still six

at the point with aλ = α2 = α3. To this end, we consider in the

equation ^i^2z3 = positive real that z l 5 z2 and \z3\ are free variables.

Thus z3 = re*^ where r is a free variable. One calculates that df3/dr

if we show that the real rank of the
{z3 l)(z3αiα2)

^ . _ (Re{df3/dr) Re(df3/da2)\ . ^ A, ^u u . „
tnx S = τ \ Λ /Q ( Γ / Q , /Q ( is two, then the result follows.

\Im(df3/dr) Im(df3/da2)J
Suppose otherwise, then there is a real number μ so that df3/dr =
μdf3/da,ι. By Lemma 3.17 and the formula above, we obtain that
z\ — a\ = X(z3 — l)(z3 + ax) for some real number λ. Thus z3 — aλ =
X(z3 — 1). Since z3 is not real, λ = 1. This implies that a,ι = a2 = a3 = 1
which is excluded in the definition of M.

The following is crucial to our construction.

3.19. Theorem. Suppose (CUC2,C3) is a triple of totally degener-
ate circles with coordinate [z\,z2,z3) so that no two of Zi/(zi — 1) 's are
real and zxz2z3 φ 0. If there exist three positive real numbers α i ,α 2 ,α 3

so that Σiφjφkφi{ai + aj)^f^ is real, then there exists a local deforma-
tion (CΊ(t),C2(ί),(73(ί)) ; te [0,1) of(CuC2,C3) so that,

(1) Ci(0) - d for i= 1,2,3;
(2) {d(t),C2(t),C3{t)) is a type I configuration ift> 0;
(3) the pairwise multipliers of Ci(t),Cj(t) are the same as the pair-

wise multiplers of C^ Cj for i φ j .
Proof. Consider the point p = (z1/(z1 — 1), z2j(z2 — 1), z3/(z3 — 1))

in C 3 . By the assumption, no two of the coordinates of p are real.
Thus p is a regular value of Π from λ ί to C 3 . Therefore Π " 1 ^ ) is a
2-dimensional submanifold of M containing q = (z1,z2,z3,0,0,0).

Hence the result follows if we show that the tangent space Tgl l" 1 ^)
contains a vector of the form (^i,^ 2 ,^ 3 ,αi,α 2 ,α 3 ) where α̂  > 0 for all
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i. Indeed such a tangent vector produces a path q(t) — (z1(t),z2(t),
z3(t), dι(t), α2(ί), Cί3(t)) so that all a^t) > 0. Thus, they are the Mobius
coordinates of some type I triple of circles for t small.

Suppose ( î,^25̂ 3,^15^25^3) £ TqM which is in T ^ Π " 1 ^ ) ) . Then
we have Yfi=ιVi/zi is real since (zι + tvι)(z2 + tv2)(z3 + tv3) is real
infinitesimally. Furthermore, using Lemma 3.17, we find that

(zi — I ) 2 Zi — 1

This implies that the only restriction on a{ is that

is real.

4. The Euler number of Mobius structures

4.1. A Seifert manifold is an oriented compact 3-manifold with an
51-action without a global fixed point. The S1 -fibers are oriented by
the orientation of S1. The quotient space of the Sι-action is an oriented
orbifold and the 3-manifold is a Seifert fibration over the orbifold. By
a horizontal curve in a Seifert manifold we mean a smooth curve in-
tersecting each S1- fiber transversely in at most one point. A marking
in a Seifert manifold M is a collection of finitely many simple closed
oriented horizontal curves one in each boundary component so that
the orientations of the S1 -fiber and the marking curve determine the
induced orientation on dM. We call a Seifert manifold together with a
marking a marked Seifert manifold. The goal in this section is to define
the Euler number (relative Euler number) of the fibration of marked
Seifert manifolds and to define the Euler number of a Mobius structure
with trivial monodromy in the 51-fiber on a Seifert manifold.

4.2. Suppose M is a non-closed marked Seifert manifold with a
marking consisting of curves CΊ,C2, ...,Cn. Then Σ"=1[Ci] = ef^1] in
Hχ(M)Q). We call e the Euler number of the fibration of the marked
Seifert manifold. If M is closed, the Euler number of fibration is defined
to be the usual one. We denote the Euler number by e(M). Note that
if M has no singular fibers, then e(M) is an integer.
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The gluing of two marked Seifert manifolds Mx and M2 along some
components of their boundaries is defined as follows. Take orientation
reversing diίfeomorphisms from the specified boundary components of
Mi to the specified boundary components of M2 so that S1 -fibers are
mapped orientation preservingly to S1 -fibers, and marked curves are
mapped orientation reversingly to the marked curves. The result of
gluing by the diίfeomorphisms is still a marked Seifert manifold denoted
by Mx#dM2. We call Mχ#dM2 a boundary connected sum of Mλ and
M2.

4.3. Lemma. e(Mx#dM2) = e{Mλ) + e(M2).
Indeed, if MI#QM2 has boundary components, then the formula is

a direct consequence of the definition. To show the lemma for closed
Mχ#dM2, it suffices to show that if marking curves CΊ,...,Cr in the
gluing tori dM\ Π ΘM2 are changed to a new system of horizontal simple
closed curves Z?i,...,Dr, one in each of these tori, the resulting Euler
number e(Mι#oM2) remains the same. To see this, let Cf and Df be
the copies of C{ and Dι with correct orientation in 9M l 5 and C~ and
D~ be the copies of Ci and D{ with the correct orientations in dM2.
Then if [Ct] = [Dt] + ki[Sλ] mHλ{dMuZ), we have -[CΓ] = ~[AΊ +
kilS1] in H1(dM2,Z) by applying the gluing map. Thus, [Cf] + [C~]

4.4. We will first recall Dehn surgery on 3-manifolds and then cal-
culate the Euler number of fibration resulting from Dehn surgery in
this section. Suppose C is a marking curve in a boundary component
S of a marked Seifert manifold M. Given two relative prime numbers
P?Q (q / 0), a p/q-Dehn surgery on M along S is the gluing of the
boundary of a solid torus D2 x S1 to S so that the meridian dD x {1}
is attached to a curve in S representing the homology class p[Sλ] + q[C]
in Hι(S, Z). It is well known that the result manifold is still a marked
Seifert 3-manifold with the induced marking and orientation from M.

We define the simple marked Seifert manifolds as follows and we will
call them simple manifold from now on for simplicity. Let P be an
oriented pair of pants. Then a simple marked Seifert manifold N of
type I is P x S1 with product orientation, product 51-fibration and
some marking curves {Ci,C2,C3}. If the Euler number of fibration
is an integer n, we denote the type I manifold by N(n). A Pι/qι-
Dehn surgery on a component of <9N(n) gives rise to a Seifert man-
ifold of type II, denoted by N(n; Pi/qi). A p2/q2-Όehn surgery on
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a component of <9N(n; pι/qι) is a type III simple manifold, denoted
by N(n; Pi/ίi^Afe)- Lastly, a type IV simple manifold is one ob-
tained by a j93/<73-Dehn surgery on a type III manifold, denoted by
N(n; ^1/^1,̂ 2/925^3/93)- By the definition of the Euler number of fi-
bration, we have e(N(n\p1/qι,...,pi/qi)) = n + p1/qϊ + ... +Pi/qi for i=
0,1,2,3. The orbit spaces of the simple manifolds are two-dimensional
pair of pants of types I,II,IΠ, IV listed below.

To construct all compact orientable hyperbolic 2-orbifolds by using
simpler orientable hyperbolic orbifolds, we need three more exceptional
simple orbifolds:

FIGURE 4.1

π/q

FIGURE 4.2

where the type V simple orbifold is a hyperbolic 2-orbifold on the closed
disc with three cone points of angles π; the type VI simple orbifold is
the one on the 2-sphere with five cone points of angles π; and the type
VII simple orbifold is the one on the 2-sphere with three cone points of
angle π and one cone point of angle 2π/q4 (q4 > 2). We define the corre-
sponding exceptional simple Seifert manifolds of types V, VI, VII simi-
larly. They are denoted by iV0(n;p1/2,p2/2,p3/2), ΛΓ0(n;pi/2, ...,p5/2),
and N0(n;p1/2,p2/2,p3/2,p4/q4). The Euler number of fibration is
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Each compact hyperbolic 2-orbifold is a boundary union of simple
hyperbolic 2-orbifolds. Thus, each marked Seifert manifold M over a
hyperbolic orbifold is the boundary connected sum of simple ones, i.e.,
M = MιφQ..φdMk where each M< is simple or exceptional simple. If M
is a marked Seifert manifold over a hyperbolic orbifold of genus greater
than zero, then M can be expressed as Mι#Q..φdMk where each M» is
simple of types I, II, or III. By Lemma 4.3, this decomposition gives rise
a way to calculate the Euler number of fibration of a Seifert manifold.

To finish the discussion of Euler number, we observe that the Euler
number classifies the type I simple manifolds up to isomorphism. Here
two marked Seifert manifolds M x and M2 are said to be isomorphic
if there is an orientation preserving diίfeomorphism between them so
that it preserves the oriented ^-fibers and the markings.

4.5. Lemma. Suppose Nλ and N2 are two simple type I Seifert
manifolds having the same Euler number of fibration. Then Nι is iso-
morphic to N2.

The proof follows by examining the group G of orientation preserving
diίfeomorphisms of P x S1 preserving the S^-fibers and their orienta-
tions. Let dP = {Ci, C2, C3} where each Ci has the induced orientation.
We also use d to denote the corresponding horizontal curve Ci x {x0}
in dP x S1. Given two integers p, q, let f: P -» S1 be a smooth map
representing the cohomology class p[Cλ]* + q[C2]* G H1 (P, Z)=[P, S1]
where [Ci]* is the dual class of [C,], i.e., [Ci]*([Cj]) = δij9 1 < ij < 2.
Then the diffeomorphism /(x,t) = (x,f(x)t) : P x S1 -> P x S1 is
in G and sends [d] to [d] + p[Sλl [C2] to [C2] + qlS1], and [C3] to
[C3] + (— p — q)^1]. This shows that G acts transitively on the space
of all markings {CΊ, C2, C3} having the same Euler number. Thus the
result follows.

4.6. Corollary. Suppose N(n; ^ , . . . , *j ) and N(m\ f̂ ,... , fj ) are
two simple Seifert manifolds of the same type and have the same Euler
number of fibration. Ifpj/qj — aj/bjmod(Z) for all j , then these two
marked Seifert manifolds are isomorphic.

Note that Pijqi — \pi/q%] is sometimes called the local Seifert invariant
of the singular fiber corresponding to the core curve of the pi/qi-Όehn
surgery.

4.7. We now define the Euler numbers of Mobius structures on
Seifert manifolds.
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A 3-manifold M is said to have a Mόbius structure if M can be
covered by open coordinate charts {Ua,Φa} so that Φa maps Ua to
an open set in a closed ball in 53, that the transition functions are
restrictions of Mόbius transformations, and that φa(dM Π Ua) is in
some 2-sphere. In particular, dM consists of 2-manifolds with the
induced 2-dimensional Mobius structures. The global version of Mόbius
structure on M consists of two objects : the developing map (a local
diίfeomorphism) dev: M -» S3 sending dM to spherical submanifolds
where M is the universal cover of M, and a monodromy homomorphism
p : τri(M) -» Mob(S3) so that dev(7m) = ^(7) dev(m) for all m G M
and 7 £ τri(M).

Mόbius structures on Seifert manifolds so that the monodromy is
non-trivial in the Sfl-fiber are all known. In particular, the Euler num-
ber of fibration of a closed Seifert manifold M supporting such a struc-
ture is zero. All Mόbius structures that we are going to discuss below
have trivial monodromy in S^-fibers.

Suppose a Seifert manifold M has a Mόbius structure with trivial
monodromy in S1 -fibers. Then the induced Mόbius structure on each
boundary component of dM is Mόbius isomorphic to the Mόbius tours
T\ = C-{0}/(z ~ Xz) where λ is a non-zero complex number of norm
larger than one. We call λ the principal multiplier of Tλ.

We now produce a marking curve on each component of dM as fol-
low. Choose a sense preserving Mόbius isomorphism between a compo-
nent S of dM and Tλ so that the oriented S1 -fibers correspond to the
quotient of circles \z\ = consts with the positive orientation (counter-
clockwise in C). The marking in S is the inverse image of the quotient
of the oriented horizontal curve { λ*|£ G [0,1]} in Tλ.

Given a Mόbius structure with trivial monodromy in «Sfl-fiber on a
Seifert manifold M so that the principal multipliers of dM are λi,..., λm

and the induced marking curves are CΊ,..., Cm, the Euler number of the
Mobius structure, denoted by βs(M), is defined to be e(M; CΊ,..., Cm) —
ΣiLιΛrg(λi)/2π. If M has no boundary component, then es(M) is
defined to be e(M).

Prom the definition, one sees easily that if M has an H2 x R1 geo-
metric structure, then the Euler number of structure is always zero.

The basic property of es is the additivity under Mόbius gluing. Sup-
pose N and M are two compact Seifert 3-manifolds having Mόbius struc-
tures with trivial monodromy in S^-fibers. Let h : d0N —>• d0M be an
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orientation reversing local Mόbius transformation from a collection of
boundary components d0N of N to a collection of boundary compo-
nents d0M of M so that h takes S1 -fiber to S1 -fiber and preserves the
orientations in the fiber. Then N#hM has a Mόbius structure with
trivial monodromy in 51-fiber so that the restriction of the structure
to N and M gives back to the original Mobius structures. Recall that
a Mobius structure on M is uniformizable if there is an open domain
D in S3 and a 2-manifold S in dD which is contained in a unions of
spheres and a discrete group Γ of Mόbius automorphsims of D U S so
that (D U S)/Γ is conformally equivalent to the Mόbius structure on
M. Now if both Seifert manifolds N and M have uniformizable Mόbius
structures with trivial monodromy groups, then the Mόbius structure
on NφhM is also uniformizable whose monodromy group is the Maskit
combination of the monodromy groups of N and M. Our major obser-
vation is the following.

4.8. Proposition. Under the above assumption, βs{NφhM) —
es(N) + es(M).

Proof. We need
4.9. Lemma. Suppose a diffeomorphism φ : Tλ —> Tμ is an

orientation reversing local Mόbius transformation preserving the fam-
ily of circles Sx= {z\\z\ = const.} up to orientation. Then X = μ.
Furthermore, if C\ and Cμ are the marking curves in the tori, then

Φ*([C\]) — [S1] ~~ [C/i] z n the firsi homology group.
Proof. Consider the lifting φ : C -{0} —> C-{0} of the gluing map.

By the assumption, φ (z) = a/z for some a G C-{0}. Thus λ = μ. The
second statement follows from the definition.

We now use the lemma to show the proposition. To this end, we ob-
serve that if M,N are two marked Seifert manifolds, and h :d0N —> d0M
is an orientation reversing diffeomorphism preserving Sι -fibers up to
orientation, then h takes the marking curves Ci in 3QN to a curve ho-
mologous to S1 — Cj where Cj is the marking curve in <9M by the above
lemma. Thus, e(M#hN) = e(M) + e(N) — k where k is the number
of components in d0N. To finish the proof, let λi,..., λk, λ^+i,..., λn be
the principal multipliers of diV, and λx,.., \k,μk+i, ...,μm be the prin-
cipal multipliers of dM where the first k numbers are the multipliers of
the k components of d0N and d0M respectively. Now, by the definition
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and the formula 1 = Arg(X)/2π + Arg(λ)/2π, we have

- ±
i=k+ι

i=k+i Zπ

 i=k+i

=es(N)+es(M).

4.10. Lemma. Suppose M is a Seifert manifold with a Mδbius
structure having trivial monodromy in S1-fibers, and —M is the same
manifold with reversed orientation but the same orientation on S1-fiber.
Thenes{-M) = -es(M).

Indeed, the principal multipiers of the Mόbius structure on the bound-
ary components of — M are the complex conjugates of the principal
multipliers of c?M, and the homology classes of the marking curves of
—M are equal to the homology class of [S1] subtracting the homology
classes of the marking curves of M.

5. Proof of the Main theorem

We begin this section by proving that there exists a uniformizable
Mδbius structure on N = P x S1 with trivial monodromy in S1 -fibers so
that the three principal multipliers of the boundary Mδbius tori are neg-
ative real numbers arbitrary near (—ctg2π/12,—ctg2π/12,—ctg2π/6).
Then by gluing several copies of N with the Mόbius structure, we prove
the main theorem.

5.1. Suppose a totally degenerate triple (CΊ, C2iC3) has coordinate
(zι,z2,z3). Since the pairwise multipliers of Ci, Cj are given by (^τ^=|)2

where c* = Zk/(zk — 1), the multipliers are negative real if and only if
Re(zA) = 1/2.

We now focus on a very special totally degenerate triple (CΊ, C2, C3)
with coordinate (l/>/3eπi/6, l/v^e7^6, e"™/3). Their pairwise prin-
cipal multipliers are —ctg2π/12, —ctg2π/12, and —ctg2π/6. Suppose
{C[, Cj, C3) is a triple of horocycles in H2 corresponding to (Cι,C2, C3),
i.e., their pairwise weighted distances are 0, — Igy/ϊϊ, and — lgy/3. We
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take H2 to be the half-space {(#,0,z)\x > 0} C R3 and represent
<7ί, C2, and C3 in i ϊ 2 as follows:7ί, C2,2 3

{ is the Euclidean circle of radius Λ/3/2 centered at (Λ/3/2, 0, Λ/3/2);

C2 is the Euclidean circle of radius Λ/3/2 centered at
(Λ/3/2, 0,-Λ/3/2);

C3 is the line {(a;,0,z)| a; = 1} U {00}.

/f

cί

FIGURE 5.1

The z-axis is considered to be the axis C of C[,C2 and C3. Take
C3 to be C3, C\ to be C[ rotated positively about the z-axis at an
angle π/6, and C2 to be C'2 rotated negatively about the z-axis at an
angle π/6. The dual spheres Sι,S2,S3 (so that SiA.Cj and SiA-Ck) are
given by: Sλ = {(x,y,z)\z = -Λ/3/2}, S2 = {(z,y,z)\z = ^3/2}, S3 =
{(x,y,z)\\Jx2 + y2 + z2 — Λ/3/2}. These dual spheres bound three
balls A = {(x,y,z)\z < ~Λ/3/2}, D2 = {{x,y,z)\z > ^3/2}, D3 =
{(x,y,z)\y/x2 + y2 + z'2 < Λ/3/2} in S'3 where dD{ = $ . Furthermore,
these four balls Dλ, D2, D3 and HCz{D3) have disjoint interiors. We
also have Si Π C* = φ for i = 1,2,3.

5.2. Lemma. TΛe three-circle group Hc1,c2,c3 *5 fl Schottky group.
Proof. The generator HC3HCl (HC3HC2 respectively) leaves S2 (SΊ

respectively) invariant. CΊ is the circle passing through (0, 0, Λ/3/2)

and (3/2, Λ/3/2, Λ/3/2) and orthogonal to Ŝ  Similarly, C2 is the circle
passing through (0,0, -Λ/3/2) and (3/2,->/3/2,-Λ/3/2) and orthogo-
nal to Si.

Let Be (B'€ respectively) be the 3-ball centered at ((1 + e)/2,
(1 - e)Λ/3/2, Λ/3/2) (((1 + e)/2,-(l - 6)^3/2, -Λ/3/2) respectively)
of radius \/l — e + e2. One checks easily the following:

(1) d C as € , and C2 C dB[.
(2) 5 0 is tangent to HC3HCl(

Bo) and HC3HC2(B'O), and B£ is tan-
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gent to Hc3HCl(B0) and HC3Hc2(B'o), i.e., CUC2,C3 satisfy the weak
Schottky condition with respect to C3.

(3) For e positive and small, Be Π(B'e U HC3HC2(S3 - int(B'e))) = 0,
and Be intersects Hc3Hcλ{S3 — int(B€)) transversely near (1,0, \/3/2).
Similarly, B'e Π (Be U HC3HCl{S3 - int(B€))) = 0, and B'e intersects
Hc3Hc2(S

s -int{B'€)) transversely near (1,0, - \ / 3 / 2 ) .
Conditions (1) and (2) imply that the three-circle group i?Ci,c2,c3 is

discrete and free by Lemma 3.3.
To produce a Schottky condition for the three-circle group, we now

modify these four spheres constructed in (2) above.
Recall that a convex lens in S3 is a topological ball which is the

intersection of two 3-balls, and a concave lens in S3 is a topological
ball which is the union of two 3-balls (or the same, the complement of
the interior of a convex lens).

The goal now is to replace B€ and B[ by lenses Le and L'e so that
Le, L'€, Hc3HCl{L€) and HC3HC2(L'e) satisfy the Schottky condition for
the three-circle group.

Choose e positive and very small and let A (A' respectively) be the
ball centered at (1,0, \/3/2) (( 1, 0, - \ /3 /2 ) respectively) of radius 2e.
Then Be Γ\HC3HCl{S3 — int(Be)) is a convex lens inside A. Similarly,
B'e Γ\Hc3Hc2(S3 — int(B'e)) is a convex lens inside A'. Furthermore,
Hc3HCl{A) is a 3-ball of radius o(e) containing (2, —\/3, \/3/2). Both
A and HC3HCl(A) do not intersect Du D3 and HC3{D3). Similarly,
Hc3Hc2{Af) is a 3-ball of radius o(e) containing (2, Λ/3, - Λ / 3 / 2 ) . Both
A1 and Hc3HCl{A') do not intersect 2}2, D3, and HC3(D3).

We now consider four lenses L€ — B€ - int(A), L[ = B[ - int(^4'),
M€ = HC3HCl(S

3 - int(B€))UHC3HCl(A)i and M[ = HC3HC2(S
3 -

int(B'e))UHc3Hc2{A'). For small e these four lenses are disjoint, HC3HCl

sends L€ to the complement of Me, and Hc3HC2 sends L'e to the com-
plement of M[ as in Figure 5.3.

This verifies the Schottky condition for the three-circle group

Hcuc2,c3-
5.3. The condition in Theorem 3.19 that J^i^j^k^i{ai+aj)(zk — l)/zk

is real for the triple ( d , C2, C3) with coordinate (l/\/3e™/6, l/V^e™/6,

e-πι/3^ i s α 3 — o which does not have positive solution in a[s. However,
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a slight deformation of it, the triple with coordinate

(

e(*-*W«/(2cos(π -

where δ is a small positive number, satisfies the condition in Theorem
3.19. Since the Schottky condition is stable under perturbation, the
new three-circle group Hc1^c2,c3 is still Schottky with respect to four
lenses.

5.4. By the local deformation Theorem 3.19, we may deform the to-
tally degenerate triple in 5.3 to produce a type I configuration of circles
(CΊ5C25C3) so that their pairwise (principal) multipliers are negative
real numbers arbitrary near (—ctg2π/12, —ctg2π/12, —ctg2π/6).

We claim that if e is chosen sufficiently small, the new three-circle
group HCl,c2,c3 uniformizes a Mobius structure on N = P x S1 with a
Schottky monodromy group.

First, the group HCl,c2,c3 is a, Schottky group due to the stability of
Schottky condition.

To show that HCl,c2,c3 uniformizes a Mobius structure, we will con-
struct a fundamental region in R 3 so that i?Ci,c2,c3 identifies some
faces of the region with quotient space P x S2.

We begin by considering the undeformed group Hclfc2ic3 constructed
in Lemma 5.2. The four lenses Le, M e, L'e, and M[ interset the four
balls Du D2 D3 and HC3(D3) bounded by the dual spheres Su S2, S3

and Hc3(S3) in the following pattern:
(1) Le only intersets D3 and D2\
(2) Me only intersects D2 and HC3(D3);
(3) L'e only intersects D3 and IΛ;
(4) M[ only intersects Dλ and HC3(D3).
Furthermore, each of the intersection above is a topological 3-ball,

and the complement of the union of the interiors of these lenses L€, L'e,
Me, M[ and the four balls Du D2, D3 and Hc3{D4) is a topological
solid tours.

After the deformation, the above four properties still holds for the
type I configuration (Cχ,C2, C3) since all of these are open conditions.
Furthermore, the four balls Dλ, D2, D3 and HCs(D3) are disjoint since
the dual spheres for type I configuration satisfy the Schottky condition
by Lemma 3.4. Let S be the solid torus which is the complement of
the union of the interiors of these lenses Le, L'€, Mc, M[ and the four
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balls Du D2, D3 and HC3(D4).

The boundary of S is a union of eight topological annuli which are the
intersections of dS with the four lenses and the four balls 2?1? D2, D3,
Hc3(D3). These annuli have disjoint interiors. The generator HCsHCl

of HCl,c2,C3 identifies the annulus SΓ\ L€ with SΠ M e, and the other
generator Hc3Hc2 identifies SΓ) L'e with SΠ M[. The quotient space is
topologically homeomorphic to P x S1. Furthermore, by Poincare poly-
hedron theorem (see [10]), the quotient space has a Mόbius structure.
Each boundary component of P x S1 has the induced 2-dimensional
Mόbius structure corresponding to the quotient of Sk — Fix(HCiHCj)
by the hyperbolic element Hc{ Hcά

Thus we have proved
5.5. Theorem. There exists a uniformizable Mδbius structure

on P x S1 with trivial monodromy in S1-fibers and a discrete free
monodromy group so that the principal multipliers of the Mδbius tori
in the boundary are negative real numbers arbitrary near (—ctg2π/l2,
-ctg2π/12, -ctg2π/6).

5.6. Remark. The special totally degenerate triple used in Lem-
ma 5.2 is found as follows. Consider the set of all triples of totally de-
generate three circles with Mόbius coordinate (etθ / (2cosθ), e^/(2cos</>),

e-W+Φ)/(2cos(θ+φ))) where 0, φ G (0, π/2) and θ+φ < π/2. The triple
with coordinate (l/\/^e π i / 6 , l/\/3eπί/6, e~π i / 3) is the only one for which
there exist two 2-spheres SΊ and S2 containing CΊ and C2 respectively
so that 5Ί, #2, HCzSι, and HCzS2 bound four 3-balls with disjoint
interior (weak Schottky condition).

5.7. We now finish the proof of the main theorem.
Let N be P x S1 with the Mόbius structure constructed above, and

let Aι A2 and A3 be the Mόbius tori in dN. By the definition of
Euler number of structure, es(N) = 1/2 + n for some integer n. A
concrete calculation shows that \es{N)\ = 1/2. Thus, we may assume
(by choosing an orientation on N) that es(N) = 1/2.

Given any integer e satisfying |e| < g — 1, there are two positive
integers p and q so that p + q = 2g — 2 and p — q = 2e. Take p copies
of N and q copies of —N. We decompose Wei9 into a boundary union
of 2g-2 copies of the simple type I manifolds (p of them are TV's and q
of them are — JV's) so that when two such simple manifolds are glued
along two boundary components, these two components correspond to
the same Mόbius tori Aim See for instance the figure below.
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FIGURE 5.3

Now realize the gluing map between the boundary tori by an ori-
entation reversing Mόbius transformation (its existence is guaranteed
since the multipliers are real) which preserving the S1 -fibers and their
orientations. The result is then a Mobius structure on We,g by Propo-
sition 2.8. Furthermore, by Maskit combination theorem, the mon-
odromy group is discrete and is isomorphic to the surface group πx (Σ,g).

Added in proof. We are informed by P. Waterman that he and
Kuiper have found some (e.g.) with \e\ > g — 1 so that Wet9 supports
complete hyperbolic metrics.
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