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EMBEDDED SURFACES AND THE STRUCTURE
OF DONALDSON'S POLYNOMIAL INVARIANTS

P. B. KRONHEIMER & T. S. MROWKA

1. Introduction

Over the past decade, beginning with the fundamental work of Don-
aldson, it has become ever more clear that many aspects of the differ-
ential topology of smooth 4-manifolds can be seen as developing from
a rich analogy with the complex geometry of algebraic surfaces. The
canonical class, the first Chern class of the complex cotangent bundle,
plays a fundamental role in the study of complex surfaces because it is
the simplest invariant that one can obtain from the complex structure.
The canonical class determines the genus of all smooth complex curves
C in a complex surface X in terms of their homology classes, through
the adjunction formula:

(1.1) 2genus (C) - 2 = C C + Kx - C.

In this paper, we strengthen the analogy between the smooth and com-
plex geometries by showing that for a large class of 4-manifolds (the
manifolds of simple type as defined below), the smooth structure alone
determines a collection of two-dimensional cohomology classes. These
'basic classes' of the 4-manifold constrain the genus of smoothly embed-
ded 2-manifolds by an inequality analogous to the adjunction formula.
If the 4-manifold is also an algebraic surface, the canonical class is often
one of the basic classes, and in many cases the inequality for the genus
of embedded 2-manifolds establishes, for example, that a smooth alge-
braic curve achieves the smallest possible genus amongst all embedded
2-manifolds in its homology class.
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At the centre of Donaldson's programme are the polynomial invari-
ants, which are invariants of smooth 4-manifolds constructed from the
moduli spaces of anti-self-dual connections. Since their introduction,
they have remained in many respects mysterious, despite their con-
siderable success in settling some of the fundamental problems in 4-
dimensional topology. For each 4-manifold, there is an infinite family
of invariants that one might try to compute, and it has not been clear
to what extent they are independent or what aspects of the geometry
or topology of the 4-manifold they reflect. Our main result reveals that,
taken together, the polynomial invariants reveal a surprising amount
of regularity. The total content of the invariants is encapsulated in
a finite set of cohomology classes (the basic classes mentioned above)
and a corresponding set of rational coefficients. Once this structure is
understood, the adjunction inequality can be interpreted as constrain-
ing the basic classes, and hence the polynomial invariants, in terms the
genus of all the embedded 2-manifolds in the 4-manifold.

In the remaining parts of this introduction, we give a precise state-
ment of the main theorems, illustrate these with some examples, and
give an outline of the paper. Most of the results presented here were
first announced in [28].

(i) Statement of results. Throughout this paper, X will denote
a smooth, closed oriented 4-manifold, Q (or Qx) will denote the in-
tersection form, regarded as a quadratic form on the second homology,
bi(X) will denote ith Betti number and b+(X) the dimension of a max-
imal positive subspace for Q. As usual, following [10], we define a
homology-orientation of X to be an orientation of i ϊ + Θ iί1(X;IR),
where i ί + is any such maximal positive subspace. A 4-manifold X
equipped with a homology-orientation will be called an admissible 4-
manifold if 6+(X) > 1 and b+(X) - bλ{X) is odd.

Recall that given an admissible 4-manifold X and a line-bundle w
on X Donaldson constructs the polynomial invariant qk,w from the
moduli space of anti-self-connections based on a rank-2 bundle E with
det(E) = w and c2(E) - \cλ{E)2 = k. As originally defined [10], it is
a symmetric multilinear function on the second homology H2(X), of
degree
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In this paper, we find it convenient to index the invariants by the
dimension of the moduli space, which is an integer 5, subject to the
constraint

(1.2) δ ΞΞ -2w2 - 3(6+ - 6i + 1) (mod 8).

(Of course, the Donaldson invariants depend only on the isomorphism
class of w, which is determined by its first Chern class. Accordingly,
we will often use notation which confuses w with cλ (w), for example by
writing w2 for Cχ(w)2, as above, and writing the tensor product addi-
tively.) Although our main concern is the behaviour of the polynomial
invariants on the two-dimensional homology, it is important to have
at our disposal the natural extension of these invariants to all the ho-
mology of X, where they are multilinear functions, symmetric in the
even dimensional homology and antisymmetric in the odd dimensional
homology. We introduce the notation A(X) for the algebra

MX) = Sym(Heven(X;R))®A(Hodd(X;R)),

where Sym denotes the symmetric tensor algebra and Λ the exterior
algebra. This is the quotient of the tensor algebra of H*(X\ K) by the
ideal generated by the graded anti-commutators. We will usually write
x to denote the positive integral generator of HQ(X). We make A(X)
a graded algebra, graded by Z, with

(1.3) Hi(X) C A4.i(X).

Thus the element x, for example, has degree 4. The polynomial invari-
ant which is usually thought of as a polynomial of degree δ/2 on H2(X)
is extended to define a linear function on As(X). Because the second
homology is not our only concern, we break with traditional usage and
refer to this as the polynomial invariant of degree δ.

We combine the invariants of all degrees into one linear function,
simply by summing over δ. For us, therefore, the Donaldson invariant
is a linear function on A(X), which we denote by

Όw

x :A{X) -+R.
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By definition, D% is zero on elements of A(X) of degree δ unless δ
satisfies (1.2). The definition of D% is given in more detail in section 2.

Definition 1.4. An admissible 4-manifold X has simple type if for
all line-bundles w and all z G A(X) we have

D%(x2z)=4D%(z).

The manifolds of simple type include algebraic complete intersections in
QP^, many branched coverings of algebraic surfaces, and any complex
surface defined over R whose real locus has an orientable component of
genus 2 or more. Some criteria for simple type are given in section 8.
At the time of writing, there are no examples of admissible 4-manifolds
which have been shown not to have simple type.

For a manifold X of simple type and h £ H2{X) we make the defi-
nition

(1.5)

We make no assertion yet as to whether these series converge: we can
regard them as formal functions on H2(X',R), i.e. as elements of the
ring of formal power series M[[i72p0*]]. Because D% is non-zero on
elements of degree δ only when δ satisfies (1.2), the non-zero terms
in the two series on the right-hand side involve different values of d:
so, from the Taylor series of Qw, one can extract both Dχ(hd) and
Dχ(xhd), for all h and d. Prom the relation in Definition 1.4, one can
then obtain Dχ(xrhd) for all r. Thus if X has &i = 0 as well as having
simple type, no information is lost in passing from D% to &w. Note
that @w is an even or odd formal power series according to the parity
of

(1.6) -w2 - | (6 + - 6i + 1) (mod 2).

Part of the content of the main theorem of this paper is that @w is
actually an analytic function on H2(X\ K) when bλ — 0:
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Theorem 1.7. Let X be an admissible A-manifold of simple type
with &i = 0. Suppose that some Donaldson invariant of X is non-zero.
Then:
(a) There exist finitely many cohomology classes

Ku...,KseH2(X;Z)

and non-zero rational numbers βι, ... , βs such that

r=l

as analytic functions on H2(X'1^)^ Here Q is the intersection
form, regarded as a quadratic function. Each of the classes Kr is
an integral lift of w2(X).

(b) If Σs is a smoothly embedded, oriented surface in X representing
a non-trivial homology class S with Q(S) > 0, then the genus of
Σs satisfies the lower bound

2genus(Σs)-2 > Q(S) + Kr{S)

for all r.
We call the classes Kr the basic classes of X.

We make some remarks to clarify a few points. Since the function
@w(h) is always either an even or an odd function of /ι, the linear
combination of exponentials in Theorem 1.7 is a linear combination
of either hyperbolic cosines or hyperbolic sines respectively. It follows
that — Kr is a basic class whenever Kr is, so the term Kr(S) in the
inequality of part (b) could be replaced by its absolute value. In this
sense then, the lower bound for genus (Σs) given here is in general
stronger than [26]. Also notice that the theorem implies that knowledge
of @w for any one w determines @w for all w' on X.

(ii) Examples.
Example 1. Let X be a K3 surface, for example a smooth quartic

surface in QP3. The invariants of this 4-manifold, which have degree
4 mod 8, are well known: see [37] for example. In terms of the series
^™, we can express the result as

g* = (-1Γ2/* exp (%
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We will give a complete derivation of this formula in section 7, using the
techniques of this paper. In this example there is just one basic class,
K = 0, which is also the canonical class of X. Part (6) of Theorem 1.7
then says that

2genus(Σ 5 )-2>Q(S r )

whenever Q(S) > 0 and 5 ^ 0 , which reproduces the earlier result of
[26].

Example 2. Let X be a smooth quintic surface in QP3 and let w
be 0 (the trivial line bundle). This X is a smooth, simply-connected
4-manifold with Euler number 55 and signature 35; its polynomial in-
variants are odd functions on H2(X) when w = 0. As a complex surface,
it has general type, and its canonical class Kx is the Poincare dual of
the hyperplane section. This class has square 5, from which one sees
that it is primitive (that is, it is not an integer multiple of a smaller
class). According to a general result of Friedman and Morgan [17], the
polynomial invariants of X are polynomials in Q and Kx only, from
which it follows that all basic classes are (integer) multiples of Kx and
that

(a finite sum). A further restriction on the basic classes comes from
Theorem 1.7(6). In X we can find smooth complex curves C with
KX(C) positive (such as a hyperplane section), and the genus of these
is given by the adjunction formula (1.1). If nKx were a basic class for
any n > 1 then the genus of C would not satisfy the lower bound of
part (6). It follows that ±KX are the only basic classes and that βι is
the only non-zero coefficient in the above sum. Using recent results of
Fintushel and Stern [14], it is possible to calculate βχ\ we have

— j smh(Kx).

Knowing βu we can also write down the invariants for non-trivial w:
when w = Kx, for example, we have

9" = -8exp(|) cosh(Kx).

In this example, the content of Theorem 1.7(6) is that

2genus (Σ5) - 2 > Q{S) + \KX{S)\
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whenever Q(S) > 0 and [S] φ 0. In particular, a smooth complex curve
in X with non-negative self-intersection number realises the smallest
possible genus in its homology class.

Example 3. In section 7, we shall calculate the invariants for the
connected sum X = X#QP when X is a K3 surface. For any w which
is trivial on QP , we have

(1.8) &° = (-l)- 2

where E is the generator of iϊ2(QP Z). We can write

xi Â K) ^ ϋ (A K) φ κ [iί/J,

and in these terms we have

So the formula (1.8) can be rewritten as

^ | = ®l exp(-£;2/2)

In fact this result is not special to K3: we shall prove the following
result in section 9, which also treats the case of a line bundle w = w + E
which is non-zero on QP . (Here we regard E as a cohomology class
also, via Poincare duality.) Of course, the second case can be deduced
from the first on the basis of Theorem 1.7.

Proposition 1.9. Let X be a 4-manifold of simple type with
6i = 0, and let w -^ X be a line bundle. Let X = X#(ΠP2, and let E
be a generator of if2(GP Z). Then X has simple type, and

9% = Q% exp(-E2/2)

In particular, if the basic classes of X are Kr, then the basic classes of
X are Kr ± E.

This result provides examples of complex surfaces where the basic
classes are not just multiples of the canonical class. If X is complex
then so is X, and its canonical class is Kx + E (when E is oriented so
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that it is the Poincare dual of the exceptional curve with its complex
orientation). The basic classes, on the other hand, also include Kχ—E.

In the definition of &w in (1.5), the way in which the point-class x
has been introduced deserves comment. If X has simple type, we can
define

so that

Dw =

These two constituents of D"χ will then satisfy

+Dw{xz)= 2+Dw{z)

Because D% is non-zero only in degrees δ satisfying (1.2), we can recover
~DW (and hence D%) from +DW alone: we have

where δ0 is the right-hand side of (1.2) and e is the automorphism of
A(X) given by multiplication by e2πiδ/8 on As(X). The definition of
@w can be written in terms of +DW as

9w{h) =+Dw(eh).

There is an alternative way to build in the point class x. In the case
that &! = 0, we can exponentiate a general element of HQ(X) ΘH2{X),
and consider

for λ € R (or a formal parameter). In the simple type case, we have

2Dx(eh+λx) = e2X+Dw(eh) + e-2X~D(eh),
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so Theorem 1.7 tells us that

(1.10)

r = l

2

r=l

(iii) Outline. Section 2 of this paper gathers together some of the
established techniques and results from gauge theory which are involved
in the proof of the theorem. Our main tools are first, the moduli spaces
of anti-self-dual connections with singularities in codimension-two, and
second, the moduli spaces of finite-action anti-self-dual connections on
manifolds with cylindrical ends, in the case that the cross-section of
the cylindrical end is a circle-bundle over a Riemann surface. The
necessary technical results concerning singular connections are taken
from [26] and [27]. We recall in section 2(v) how such connections can
be used to define invariants of a pair (X, Σ), consisting of a suitable
4-manifold and an embedded 2-dimensional surface.

The proof of Theorem 1.7 is contained in sections 3 through 7. The
focus of our attention in sections 3, 4 and 5 are the cylindrical end
moduli spaces. Our aim here is to develop a limited theory of relative
invariants which allows the calculation of the invariants D\ by pairing
invariants associated to the two pieces when X is cut along a circle
bundle. In a suitable regime, we shall show that the relative invariants
have a naive form in the case that the degree of the circle bundle and
the genus of the Riemann surface are both large - large, that is, in
comparison with the dimensions of the moduli spaces involved. These
naive relative invariants take values in the ordinary homology or coho-
mology of the space of irreducible flat connections on the circle bundle.
We shall define the invariants without making abstract perturbations
of the anti-self-duality equations, and this necessitates having a good
understanding of some transversality issues for moduli spaces on cylin-
ders. To this end, we undertake a detailed study of some aspects of
these moduli spaces in section 3, building on recent results of Guo [20].
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The relative invariants and pairing properties are then developed in
section 4.

In section 5 we apply the relative invariants to establish the central
technical result of this paper. We show that the invariants of a pair
(X, Σ), defined using the moduli spaces of singular anti-self-dual con-
nections, can, in a certain range, be expressed by universal formulae in
terms of the ordinary invariants D\. The universal formulae involve
only the invariants Ό\, the genus and self-intersection number of Σ,
and the map on homology, i* : iϊ*(Σ) —> H*(X), induced by the inclu-
sion. The simplest of these universal formulae goes back to [27] (essen-
tially Theorem 5.10 of that paper). We cannot calculate these formulae
in full, but we can calculate a leading term. In some low-dimensional
cases, the leading term gives the whole formula. These calculations are
carried out in section 6, after reducing them to a problem involving
holomorphic bundles on a ruled surface, rather as in [27].

The moduli space of singular anti-self-dual connections on (X, Σ)
involve a choice of a real parameter a G (0, | ) , which specifies the
conjugacy class of the limiting holonomy on the small circles linking
the surface. Our convention is that the holonomy on the associated
SO(3) bundle is a rotation p(a) G SO(3) through angle 4πα. The
invariants of the pair are independent of α, and this gives rise to a
symmetry, or relation, among these invariants, tied to the fact that the
rotations p(a) and p{\ — a) are conjugate. This 'flip' symmetry was
the main mechanism in [27], and was discussed again in [25].

The universal formulae of section 5 do not respect the flip symmetry:
they are proved by considering a limiting situation when a is close to
zero. So when these formulae are used to express the invariants of
(X, Σ) in terms of the ordinary invariants, the flip gives rise to non-
trivial universal relations among values of D"χ. These relations depend
on the genus of Σ and the homology class of the embedding, but are
otherwise independent of X.

The universal relations are described in general terms at the begin-
ning of section 7. At this point, because we do not know the relations
in full (we only know of their existence, on account of the material
in section 5), it might look as if they would be of little use to us. It
turns out, however, that the limited information garnered in section 6
is sufficient to get us started. Knowing only of the existence of such
relations, we are then able to calculate the entire invariant of a K3
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surface, and of a multiple blow-up of K3.
In the case of a manifold X of simple type with £>χ = 0, the general

shape of the universal relations becomes much simpler, and they have
the following consequence (see Corollary 7.22 for a precise statement).
Let S be an integral homology class in X represented by a surface Σ5,
and consider the power-series in t given by

f(t) = @w(tS).

Under some mild constraints on S and Σ^ (in particular, Q(S) needs
to be large, for example), the universal relations imply that there are
linear relations on the Taylor coefficients of /(£), which determine f(t)
completely in terms of its Taylor coefficients of orders up to and in-
cluding ία, where

(1.11) a = a{Σs) = 2genus (Σ5) - 2 - Q(S).

These linear relations depend only on genus (Σs) and Q{S). Although
we do not know what these linear relations are at the outset, we have in
K3#A;(QP ) a rich supply of embedded surfaces of any required genus
and self-intersection number, and for each of these we know the power
series /(£). On this basis, we are able to deduce what the consequences
of the linear relations must be, and Theorem 1.7 then follows without
much difficulty.

The reader who wishes to understand the proof of the main theorem
without going into the more technical aspects of the gauge theory can
get by with reading section 2 (excluding the material on cylindrical-
end moduli spaces), the statement of Theorem 5.10, which describes
the nature of the universal formulae for the invariants of a pair, and
section 7, occasionally referring back to results of particular calculations
in section 6.

The last sections of this paper are not concerned with the proof of
Theorem 1.7, but discuss various related issues which emerge. In sec-
tion 8 we discuss the simple type property, and establish some sufficient
conditions. Section 9 collects various odds and ends, beginning with
a proof of the blow-up formulae for manifolds of simple type (Propo-
sition 1.9 above). We also investigate in section 9 the relationship
between Theorem 1.7 and the earlier results of [25]: both yield an
obstruction to embedding surfaces of a given genus, and we consider
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conditions under which the two obstructions are the same. We finally
return to algebraic surfaces, to discuss when it can be shown that the
canonical class is among the basic classes, and we mention some open
questions. There is an appendix on orientations of moduli spaces.

The proof of Theorem 1.7 has changed slightly since the authors
published an announcement and a sketch of the proof in [28]. In par-
ticular, in the present proof, we have no need to appeal to existing
calculations of invariants of elliptic surfaces. (The new trick is con-
tained in Lemma 7.29, which is the essential device in determining the
blow-up formulae.) A slight variation of the original ideas has also al-
lowed us to derive the relation between D% for different values of w (as
expressed by the main theorem); this part of the theorem is new.

Since the publication of [28], an alternative derivation of part (a)
of Theorem 1.7 (for simply-connected 4-manifolds) has been given by
Fintushel and Stern [14]. The overall scheme of proof is similar, but
the universal relations are derived using embedded spheres rather than
embedded surfaces of large genus. The technical results of section 3,
which here require the genus to be large, are replaced by results con-
cerning instantons on cylinders based on circle bundles over spheres,
which are derived from the ADHM description of instantons on R4 and
its cyclic quotients. The blow-up formula (1.9) has also been derived
by Lisca [31], for manifolds containing nuclei.

2. Preliminaries

(i) Spaces of connections. We begin with a review of the defini-
tion of Donaldson's polynomial invariants. It is important for our work
to have at our disposal the case that X is non-simply connected. Most
of the required material is scattered in the literature so we gather the
relevant points together here.

If λ is a real line bundle then λ defines a system of local coefficients on
X and we let fP(X λ) denote the corresponding cohomology groups.
The product λ ® λ has a canonical orientation so, as X is oriented,
there is a pairing H2(X- λ)®H2(X; λ) -+ iϊ 4(X; E) = R We let 6+(λ)
and 6~(λ) denote the dimensions of maximal positive and negative
subspaces for this quadratic form, reserving the notation 6+ or b+(X)
for the case λ = R
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Recall that a homology orientation, o, is an orientation of H+{X) Θ

Definition 2.1. A 4-manifold X, equipped with an orientation and
a homology-orientation, is called admissible if it has b+(X) — b1(X) odd
and b+{X) > 1.

The setting that we use for gauge theory on an admissible 4-manifold
is the following. Fix a C°° line bundle w and a unitary 2-plane bundle
E —> X with an isomorphism

φ : det(£?) -* w.

We use c to denote the combination of Chern numbers

(2.2) c(E) = (c2(E)-\cl(E),[X})

and write

Let fl# denote the bundle of traceless skew-Hermitian endomorphisms

of E. The gauge group έf = ̂ E of determinant one unitary automor-

phisms of E (i.e. those that respect φ) acts in a natural way on QE-

Let si = S&E denote the space of connections in gE Then *& acts on #/

and the quotient is denoted by 3d = Sβ% = SB^[X). For a connection

A in gjs, we write c(A) for the Chern-Weil integral

(2-3)

even when the base manifold is non-compact, so that on the closed
manifold X we have c(A) = c(E). (The trace in this formula is the
trace on 3-by-3 matrices.)

We can also think of &™ (X) as a space of connections in E all induc-
ing the same connection in det(E). When working with holomorphic
bundles, we will often pass back and forth between these points of view.
We will not be explicit about which topology we use on the spaces of
connections and gauge groups. For most of this section we could take
#/ to be the space of L\ connections for some p, k with 1 < p < oo
and p(k + 1) > 4, and έf to be the space of L^+1 gauge transforma-
tions. When constructing geometric representatives for the /i-map we
will need the spaces to be modelled on Banach spaces which admit
partitions of unity. We will then require that p is an even integer.
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With this choice of gauge group, possible stabilizers of connections
are as follows. The typical connection has stabilizer ±1 C Z(SXJ(2)) C
£f, in which case we call the connection irreducible. If the connection is
non-trivial but preserves a splitting QE = R © Z,, where L is a complex
line bundle, then the stabilizer of the connection is a circle subgroup
S1 C <£. These connections are called reducible. A trivial connection
has SU(2) as its stabilizer. If H1(X;Z2) φ 0 then there is another
type of connection with special holonomy group that we need to keep
in mind, those which preserve a splitting gE = X ® L where now λ
is a non-orientable real line bundle and L is a non-orientable real two
plane bundle with orientation bundle isomorphic to λ. These special
(irreducible) connections are called twisted reducible connections.

We let srf* C si denote the space of irreducible connections. The
quotient srf* j<S is denoted by ^ * = &%>* = 90%>*(X). This quotient
space is a Banach manifold. If we fix a conformal structure on X
specified by a choice of smooth metric g then we have the moduli space
of g-ASΌ connections

If we fix a base point x E X then we can form the space of gauge
equivalence classes of framed connections 96° = 96°^ = @°'w(X,x).
Let FE -> X denote the orthogonal frame bundle of QE. Then 9S° is
the quotient of s# x (FE)X by Sf. It is easy to show that 38° is a smooth
Banach manifold (for example using the proof of the slice theorem in
[29]). The group SU(2) acts on ^° by change of frame with quotient
96. Finally let ^°'* denote the quotient (<*/* x FE\x)/y.

The generic metrics theorem of [16], as usually formulated in [16] and
[11], requires the 4-manifold X to be simply connected. An examination
of the argument, however, shows that this hypothesis is needed only to
remove problems which might occur with twisted reducibles. Twisted
reducible connections have ±1 as their stabilizer with our choice of
gauge group, but since they become reducible when restricted to balls
in X they require special care. Note that if λ is a non-trivial real line
bundle with 6+(λ) = 0, and if gE admits a reduction λ φ L , then the
moduli space M will contain a family of twisted reducible connections
parametrized by a torus of dimension &X(A). If the formal dimension of
M is less than 61(λ), then the moduli space must be irregular, and this
holds regardless of the choice of metric. When the formal dimension is
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61(λ) or larger, however, the moduli space will be regular for generic
metrics. The proof of the statements in the lemma below are only slight
modifications of the arguments usually applied to reducible connections
[16], [8].

L e m m a 2.4. Let X be a A-manifold, λ a non-trivial line bundle, E
a 2-plane bundle for which QE admits a reduction as XφL, and M™(X)g

the moduli space corresponding to a choice of metric g. Suppose c{E)
is non-zero.

(a) // 6+(λ) = 0, then M™(X)g contains twisted reducibles corre-
sponding to λ for all g. If the formal dimension of M™(X)g is
at least ^(λ), then the twisted reducibles are smooth points of
M™(X)g for generic choice of g.

(b) Suppose 6+(λ) = I, and let gt be a 1-parameter family of metrics
giving a parametrized moduli space λd™. If the formal dimension
of M™(X)g is at least &*(A) — 1, then for a generic perturbation
of the path gt, the parametrized moduli space Λ4™ will be smooth
at the twisted reducibles.

(c) Ifb+(X) > I, then there will be no twisted reducibles corresponding

to λ in a generic path of metrics.

Corollary 2.5. For a generic metric on X, the moduli spaces M™

are smooth manifolds, except at flat or reducible connections. For a

generic path of connections, the same is true of the parametrized moduli

space.

Proof. We have only to look at non-flat, twisted reducible connec-

tions. Suppose λ is a non-trivial real line bundle with 6+(λ) = 0, and

that QE has a decomposition as λ Θ L. Because 6+(λ) — 61(λ) + 6°(λ)

is independent of λ, we have

b+(λ)-b1(λ) = 6+-61 + l,

and since 6+(λ) = 0, we conclude that 6+ — b1 + 1 < 0. We therefore
obtain

61(λ) = - ( 6 + - 6 1 + l)
< -3(6+ - b1 + 1)
< 8/^-3(6+ - 6 1 + 1).

So the previous lemma applies. When we look at a generic path of
metrics, we must look also at real line bundles with 6+(λ) = 1. Here
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we similarly find 6+ - b1 + 1 < 1. If 6+ - b1 + 1 < 0, then we have

< -3(6+ - b1 + 1) + 1
< 8κ - 3(6+ - b1 + 1) + 1,

and the previous lemma applies again, because the right-hand side
is the formal dimension of the parametrized moduli space. The only
remaining case is b+ — b1 + 1 = 1, in which case &*(A) = 0, and the
formal dimension of the parametrized moduli space is 8κ — 2, which is
non-negative because n must be at least | . So again, the lemma gives
smoothness. q.e.d.

Remark. Note that this argument makes rather special use of
the formula for the formal dimension. Unlike Lemma 2.4, which ap-
plies equally well to situations such as manifolds with cylindrical ends,
the Corollary is special to closed manifolds. When we consider invari-
ants defined using singular anti-self-dual connections, or moduli spaces
associated to cylindrical-end manifolds, we will need to treat twisted
reducibles differently.

(ii) Geometric representatives for the μ-map. If N is a smooth
manifold (not necessarily compact) and μ is a rational cohomology class
of degree δ on iV, then by a geometric representative of μ we shall mean,
in this section, the following data: (i) a closed, smoothly stratified sub-
set V C N with a normally oriented top stratum of codimension δ
and all other strata of codimension δ + 2 or more; and (ii) a ratio-
nal coefficient c. These should be such that the pairing of δ with a
homology-class K is given by picking a smooth singular cycle repre-
senting /ί, in general position with respect to all strata of F, and then
taking c times the count (with signs) of the intersection points between
the cycle and the top stratum of V.

Recall that there is a universal SO(3)-bundle

defined as the quotient (^* xFE)/&, and there is a map μ: Hi(X; R) ->
!!*-*{&* R) given by the slant product μ{a) = - |p i (U)/α. For
a G H2(X] Z), Donaldson shows in [8] how to construct geometric rep-
resentatives for μ(a) which have good properties with respect to the
Uhlenbeck compactification of M™(X). We will now explain how to do
the same for a E H0(X), Hλ(X) or H3(X).
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Lemma 2.6. Let V C X be a closed submanifold (possibly with
boundary). Let 3§*'*(X) C 38*(X) denote those gauge equivalence
classes whose restriction to V is irreducible, so there is a restriction
map r: &*>* (X) -> 38*(V). Then the pull-back r*(&°>*{V)) is isomor-
phic as an S0(3) bundle to &°>*>*(X).

Proof. This follows from the existence of a smooth bundle map
&°**>*(X) ->• r*(38°'*(V)) covering the identity. q.e.d.

We will start by constructing representatives for μ(x) where x is a
point of X representing the generator of H0(X). Call a subset U C X
suitable if:
(i) the map Hι(U\Z2) ->• Hχ(X]Z2) is surjective;

(ii) U is a smooth submanifold with boundary and U Φ X.
The construction begins by choosing a suitable closed neighborhood U
of x. For example, we could take U to be a regular neighborhood of a
collection of loops based at x and generating H1(X;Z2).

We digress to explain how to represent the dual cycle to the first
Pontryagin class of a 3-plane bundle. Let M be a finite dimensional
manifold, not necessarily compact, let Ξ -> M be a smooth 3-plane
bundle and let Ξc be its complexification. By definition,

Pi(Ξ) = -c 2(Ξ c).

The second Chern class of a complex 3-plane bundle is the obstruction
to extending a pair of linearly independent sections from the three-
skeleton of X to the four-skeleton. The dual class to the second Chern
class can be constructed as follows. A pair of sections defines a section
of the bundle Homc(C2,Ξc). Let S C Homc(C2,Ξc) be the locus
in the total space of this bundle where the map is not of maximal
rank. The set S is easily seen to be a real codimension-four stratified
subset whose normal bundle at a rank one map Γ 6 Homc(C2, (Ξc)x)
is naturally identified with Nτ = Homc(C2/ker(T),ΞCa!/Im(T)). The
only other stratum in S consist of the rank zero maps and has real
codimension twelve. This space is a complex vector space and hence
carries a preferred orientation. Call a pair of sections Si and s2 of Ξc
generic if the section 5 = (si,s2) of Homc(C2,Ξc) is transverse to S.
Then we set V = ^(5 l 552) to be the locus where Si and s2 are not
linearly independent. This is a codimension-four stratified subset of M
with normal bundle along the top stratum identified with the normal
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bundle of S at a rank one map. Giving the normal bundle the opposite
orientation, one obtains the desired geometric representative.

Now consider the base-point fibration 3β°*w(U) -> &*>W(U) for U.
Let Ξ -> &*'W(U) denote the associated real three plane bundle. Since
U is suitable, twisted reducible connections remain irreducible when
restricted to U. It then follows from the unique continuation theorem
(see [11], section 4.3.4) that all irreducible, non-flat ASD connections
have irreducible restriction to {/, so there is a well defined restriction
map rUίK: M™(X) -» &*>W(U) for any n > 0. Following the argument
of Donaldson in [8] or [11], we can then find a pair of generic sections
of Ξ, say S\ and s2, so that for all /s, the pair r^κ(si), rjyΛ(s2) is
a generic pair of sections of the pull-back bundle. Then we define
V(x) = V(x,U,s1,s2) to be the locus in M™(X) where r*(si) andr*(s2)
are not linearly independent. Our geometric representative for the dual
class to μ(x) is then given by taking | the intersection number with 4-
cycles transverse to V(x). Notice that the construction of V(x, f7, s1? s2)
is compatible with Uhlenbeck limits where there is no bubbling in U.

Next we construct representatives for μ{^) where 7 is a loop in
X. Fix an oriented embedded loop 7 and a base point x on 7. If
/ : K -> &™>*(X) is a three-dimensional oriented simplicial complex
representing an element of iJ3(#™'*(X); Z), we can evaluate (μ(7), [K])
as follows. The map / induces a universal bundle U —> K x 7. Let
U be the restriction of U to K x {x}. Then the holonomy around
(fc,7) as k varies through K defines a bundle map h: U -> U, which
we view as a section of h of Ad U = U XAd SO(3). A generic bundle
map is transverse to the identity section and hence is the identity above
finitely many points in K each of which is in the interior of a three cell
of K. At each such point /J, the differential of h identifies the tangent
space of K with the vertical tangent space to Ad U at k. Since both
of these are oriented three-dimensional vector spaces we can attach a
sign e(k) to each point A;. It is straightforward to verify that

{*|A(*)=1}

Now let U be a suitable closed neighborhood of 7. Consider the
following bundle associated to the base-point fibration over U based at
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x by the adjoint action of SO(3) acting on itself:

Ad a°*w(u) = mo^wφ) χ A d so(3) -> &*>w(u).

This bundle has a trivial section, the identity section

sQ([A]) = {A,l],

and the tangent space to the fibers along s0 is naturally an oriented
K3-bundle, in fact the adjoint bundle Ad 3S°>W(U) of the base point
fibration. The holonomy around the loop 7 defines another section s
of Ad O°>W(U)

As above, the suitability of U implies that there is a well-defined
restriction map rUiK: M™(X) -> @*'W(U) for any K. We then find a
section 5' homotopic to s so that for all ft, the pull-back r^ (s1) is
transverse to rjyjlc(s0)- Then we define V(η) = V(7, [/, 5') to be the set
of connections where the values of s0 and sf coincide. Thus V(7, E/, s')
is a smooth codimension-three submanifold with normal bundle at [A]
identified with the fiber of ad &°>W(U) at [A], In particular, the normal
bundle is oriented. Our geometric representative for the dual class to
μ(η) is given by taking — | the oriented intersection number of a 3-
cycle with V(j). Again, the definition of V is compatible with taking
Uhlenbeck limits where there is no bubbling in U.

For classes in iJ3(X), the construction of a codimension-one repre-
sentative in the moduli spaces is somewhat simpler than in the other
cases, because irreducibility is not an issue which causes concern. An
integral 3-dimensional class in X can be represented by an oriented, 3-
dimensional submanifold (not necessarily connected), Y C X. Define
a map 5: M™ —> IR/|Z, for all n simultaneously, by setting

(Here we have normalized the Chern-Simons functional on SO(3) con-
nections by the convention that ensures that the standard SU(2) func-
tional is a lift to R/Z of the Chern-Simons functional of the associated
SO(3) connection.) Let s' be a section which is homotopic to 5 and has
transverse zero set on each M™. For example, we can take s' = s — 0,
where θ is any regular value. Let V(Y) = V(Y, s') be the zero-set of
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s', oriented by the standard orientation of R For our geometric repre-
sentative of the μ class, we take \ the oriented intersection number of
V(Y) with 1-dimensional cycles.

The construction of codimension-two representatives for the /i-map
on two-dimensional homology classes follows just as in Donaldson [10],
with the proviso that a 'suitable' neighborhood of Σ is used in the
construction and that the mod 2 reduction of Cι(w) vanishes under
restriction to U . Thus associated to any smoothly embedded oriented
two-manifold Σ, a suitable closed neighborhood, 17, of Σ and a choice
of generic section s of a complex line bundle over &*'W(U), we get a
codimension-two submanifold V(Σ) = V(Σ, J7,5) of M™(X) compatible
with taking Uhlenbeck limits where there is no bubbling on U.

With all this in place we can now give the definition of the Donald-
son invariants. As we indicated in the introduction, we will view the
Donaldson invariants as a linear function on the algebra

A(X) = Sym(ifeven(X;M)) ®A(Hodά(X;]

where deg(α) = 4 — i if a E Hi(X). Fix a typical monomial generating
A(X), say

z = β1β2 ~βr

where βp G Hip(X', Z), so that z is of total degree

We stipulate that βp should be divisible by 2 in case the dimension ip

is 2. For the moment, we do not allow any βp to be 4-dimensional.
Choose smoothly embedded, mutually transverse submanifolds Yp

representing these classes. Transversality means that at each point x0

in X, the sum of the codimensions of the submanifolds which pass
through xo is at most 4. So the zero-dimensional classes are repre-
sented by distinct points, disjoint from the other submanifolds, each
1-dimensional class is represented by a loop, disjoint from all subman-
ifolds except at most one 3-dimensional manifold, and so on. Now
choose suitable neighbourhoods Up (in the above sense), for each sub-
manifold Yp. We can arrange that the intersection pattern of the Up

is the same as that of the Yp, with one exception: because the suit-
able neighbourhoods may need to include regular neighbourhoods of
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loops, the neighbourhood of a zero-dimensional class may intersect the

neighbourhood of a 3-dimensional class. We will still have

(2.7) Σ ( 4 " * P ) < 5 >
χoeup

for all a;o in I . We can further arrange that the set of points x0

at which equality occurs is a union of disjoint balls. A collection of

neighborhoods as above is called a good collection of neighborhoods.

As in [34], we will avoid difficulties which arise from trivial and flat

connections by making use of the blow-up, X = X#QP . Let e be a

smoothly embedded surface representing the class of the exceptional

curve. Take e to be disjoint from any of the previous submanifolds

and find a suitable closed neighborhood U{e) so as to extend the good

collection. Put β0 = [e] and Uo = ί7(e), and write

which is a class of degree δ = δ + 2.

Now we fix a line-bundle w and define Dχ(z). If

δ ψ -2w2 - 3(6+ - 61 + 1) (mod 8),

then Dw(z) = 0. Otherwise find k e \Z so that δ = 8k - 3(6+ - 61 +1)

and a rank-2 Hermitian bundle E -> X with

det{E) = w = w + P.Ό.{[e\)

and c(E) = k = k + \.

Consider a generic metric on X so that all the moduli spaces M$(X)

with k' < k are smooth manifolds of the expected dimension. Note

that by construction there are no flat connections amongst these mod-

uli spaces, so they are all smooth manifolds and regular solutions of the

equations for generic metrics. Find geometric representatives V(βp)

in Mf, using the chosen neighbourhoods Up and the constructions de-

scribed above. Choose these representatives so that they are transverse

in all Mjj?,. Consider the intersection

v(z) = v(βo)n-- nv(βr).
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A straightforward dimension counting argument shows that V(z) Π

Mξ,(X) is empty only if k' < k, and that the intersection

(2.8) V{z)ΠMj?{X)

is a zero-dimensional submanifold of Mj?(X) with a normal orientation.

Following Donaldson [9], we can use w and a homology orientation of

X to orient Mf(X). We can then attach a sign e(v) to each υ in

the above intersection by comparing the normal orientation to z with

the orientation of Mf(X). Finally, the intersection (2.8) is compact.

For if [An] is a sequence of connections in (2.8) having [A] as a weak

Uhlenbeck limit, and if the points of concentration of curvature are xu

. . . , Xj, then [A] lies in an intersection of the form

V(Z')ΠM$(X),

where k' <k — j and degz' > δ — bj by (2.7). The formal dimension of

this intersection is at most —3j, so j must be zero, which shows that

the sequence [An] was strongly convergent. So we are able to define

where the sum is taken over the points of (2.8) and the factor at the

front is the product of the formal factors involved in the geometric

representatives of the μ classes (so c(βp) = j if the dimension is 3 and

so on). Note that we omit from our notation the dependence of D%

on a homology orientation. Call any V(z) (or V(z)) arising as above a

good representative for z.

To see that the definition of the invariant is independent of the choice

of good representative of the homology classes, and to see also that it

is linear, consider writing the last class in the product, /?r, as a sum

fi+β'J. Put
^0 = βoβl βr-1

The case that the dimension ir is 0 does not present an issue, so we

take it that ir is 1, 2 or 3. The dimension of the intersection

(2.9) Vo
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is (4 — i r), and the same dimension counting as before shows that it is
compact if ir = 2 or 3. In these cases, after weighting by the factors
c(/?p), the intersection (2.9) represents a closed cycle in 3&™{X), and
the invariants Dw(z), Dw(z') and Dw(z") are the values of the pairings
between this cycle and the classes μ(βr) etc., so the required linearity

Dw(z) =Dw(z') + Dw(z")

is a simple consequence of the linearity of μ. In the case that ir = 1, the
intersection Vo is 3-dimensional, and may be non-compact. The only
non-compactness which the dimension-count allows is that a sequence
of connections [An] in Vo may converge weakly to a limit [A] of charge
k — 1, with curvature concentrating at a point x0 where (2.7) is an
equality. If we let Z be the complement of the union of balls at which
equality is achieved in (2.7), and let Vo be the closure of Vo in the
Uhlenbeck compactification, then this means that Vo parametrizes a
smooth family of connections on Z, and so defines a closed 3-cycle in
&™(Z). Furthermore, the cycles /3r, β'r and β" have representatives in
Z which still satisfy the same linear relation, because Hλ{Z) = H1(X).
So again, the value of the three invariants is given by pairing the classes
μ(βr) etc. with a 3-cycle in 38™(Z) and the linearity of Dw follows from
the linearity of the μ map.

The fact that D"χ is independent of the choice of Riemannian metric
is an entirely standard argument, which follows [10].

Remarks. If there are no 3-dimensional classes among the βp, then
the right-hand side of the inequality in (2.7) can be improved to 4. In
this case, in the argument of the last paragraph, Vo is compact even
when ir = 1 and the argument is therefore a little simpler.

In the discussion above, we paid no attention to the 4-dimensional
class [X] e H4(X). Since μ([X]) = n G H°(M"), we can incorporate
this class by declaring that

Dw([X]z) =nDw{z)

for z E Aδ(X), where ί = 8« - 3(&+ - b1 + 1).
Finally, note that the condition that 6+ — b1 is odd is not needed in

the definitions we have made: the invariants are potentially non-trivial
when 6+ — 61 is even, as long as b1 is non-zero. We make this restriction
because our attention is soon to be focused on the case bx(X) = 0.
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(iii) Flat connections on non-trivial circle bundles over a
Riemann surface. Let Y = Y(n, g) denote an oriented three-manifold
which is the total space of a non-trivial principal S1 -bundle

p:Y ->Σ

of degree n over a Riemann surface of genus g. We orient Y with
the opposite orientation to that which it obtains as the boundary of
the oriented disk bundle in which the zero-section has self-intersection
number n. (Thus, if Y arises as the boundary of the complement X\N
of the neighbourhood N of a surface Σ of self-intersection n, then Y is
oriented as the boundary of X \ N.) Although it is not essential, we
assume the genus g is at least 2.

Let η denote an 51-invariant one-form dual to the generator of the
circle action. If we have a metric ft on Σ, we will choose η so that
dη = — 2nτφ*(*l)/F, where V is the volume of Σ. On Y we take the
metric

(2.10) hγ = η2+p*h.

Let «3?_|_(Σ) and «^_(Σ) denote the spaces of flat connections modulo
gauge equivalence in βF, where F is a Hermitian 2-plane bundle with
even (respectively odd) first Chern class. These are often called the
SU(2) and the SO(3) representation varieties. In both cases, the gauge
group is the determinant one gauge group. Let c be the generator of
the center of τri(Y), so that fc η = 2π.

Let w -> Σ be a line bundle, and use the same letter to denote its
pull-back to Y. Let F be a Hermitian rank-2 bundle on Σ, with an
isomorphism det F -> w. Let E be the pull-back of E to Y, equipped
with the same isomorphism det E —>• w. Write ί = w [Σ]. The space of
flat connections in gE modulo determinant one gauge transformations
on Y is denoted &W(Y). Since w is pulled back from Σ, the restriction
of gE to the S1 fibres has a preferred lift to SU(2), so the holonomy of
a connection along c has a well-defined interpretation as an element of
the special unitary group of the fibre at the base-point.

The space &W(Y) is a union of connected components

U (J ^
τneZ+l/2
0<τn<n/2
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These components are distinguished the conjugacy class of the image
of c under the holonomy representation. In «^^, c is sent to I. In
^ ^ j , c is sent to — I. In 08% all the representations are reducible and
F = Lmi ®Lm2 where ί = m1+m2 and m = \{rriι — ra2). With respect
to this splitting, c is sent to

(exp —2πim/n 0 \

0 exp2πim/nl '
The component 8%™v is identified with <^+(Σ) if ί is even and with

^ _ ( Σ ) if ί is odd. Each connection in ffi™v is gauge equivalent to
one pulled back from Σ, by a gauge transformation which respects the
determinant. The component &™ά is identified with the moduli space
of projectively flat connections on Σ with diagonal curvature

in a bundle F1 with Ci(F') = n + L On the level of connections, the
identification is given as follows. First note that p*(F) = p*(F'), and if
Γ' is a connection on F1 —> Σ with the given curvature, the connection

is the desired flat connection on p*(F') —> Y. If n + ί is even, &™ά is
identified with <^+(Σ) while if n+ί is odd &%ά is identified with ^ _ ( Σ ) .
The representation space ^ + ( Σ ) is a singular algebraic variety. Thus
3%™v and 0$™ά may also be singular. If so, we denote the set of smooth
points of these spaces ^Joά and the set of singular points ffi^foά T h e

latter coincides with the locus of reducible connections within these
components.

The components ^ ^ are all diffeomorphic to the Jacobian torus of
Σ. On the level of connections the identification is given as follows.
Write F = Lmi © Lm2 as above, and fix a connection Γo in Lmi (g>
Lm2 = det(F). Consider all connections Γ l 5 Γ2 in Lmi and Lm2 so that
FΓ. = -2πimi * Σ 1 and I\ ® Γ2 = Γo. Then
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is the desired projectively flat connection on E —> Y.
The Chern-Simons invariants for the components of &W(Y) are as

follows. In accordance with our convention on the orientation of Y, the
Chern-Simons invariant is defined by the condition

C.S.([A]) = -c(A) (modi)

whenever A is a connection in gE —> Y, and A is an extension of A to
a connection in g#, where E is a 2-plane bundle over the disk bundle
of degree n with determinant equal to the pull-back of w —> Σ. Here
c(A) is the Chern-Weil integral (2.3). Note that the characterization of
E depends on the fact that detE is given as pulled back from Σ, and
our choice of gauge group ensures that C. S. is well-defined modulo 1.

Proposition 2.11. Let [p] e &W(Y) be a flat connection. Then the
Chern-Simons invariant of [p] is

(a) 0 (mod 1) if [p] e &%,

(b) - n / 4 (mod 1) if [p] e S%ά,

(c) m2/n (modi) if [p] e £%.

(iv) The moduli space on cylindrical end manifolds. In this
section we review the results from [36], [41], [40] on the moduli space for
cylindrical end manifolds. Recall that a manifold with cylindrical end
modeled on Y is a smooth manifold together with the following data:
(i) a compact submanifold, K = K(Z) C Z\

(ii) a diffeomorphism Z\'mt(K) —^ R+ x Y. If Z is oriented we require

this diffeomorphism to be orientation preserving.
A cylindrical end bundle E -> Z over a cylindrical end manifold is
a smooth bundle together with a bundle isomorphism E\z\ιnt(κ) —>
M+ x Eγ for some bundle Eγ -> Y. We will suppress the urge to give
these identifications explicitly. Always in this paper, Y will be a circle
bundle over a Riemann surface Σ, equipped with a Riemannian metric
hγ as in equation (2.10).

Let Z denote an oriented Riemannian 4-manifold with cylindrical
end modeled on Y. Fix a cylindrical-end Hermitian 2-plane bundle E
over Z and an isomorphism φ : det E -> w, where w is a cylindrical-end
line bundle and δ is constant on the end of Z. The moduli space of
finite energy ASD projective connections of charge K, denoted M^(Z),
is the space of smooth connections A on gE satisfying the conditions

FA = - * FA
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C(A) = K

modulo the group of smooth, determinant-one gauge transformations
of E. The moduli space M™(Z) is given the quotient topology when
both the space of projective connections and gauge group are given the
topology of C°°-uniform convergence on compact sets of Z.

According to [36] and [41], there is a continuous map r : M™(Z) -+
&W(Y) given as follows. For each gauge equivalence class of ASD con-
nections, [A], the limit

= lim[A\{t}xY]
t—>oo

exists and is a gauge equivalence class of flat connections on Y. Fur-
thermore, for all [A] E Mk(Z) we have the equality

κ = C.S.(r([A])) (modi).

If S C &W(Y), we set M™(Z; S) = r'^S). If Z has more than one end
there is boundary map corresponding to each end. We will encounter
the two-ended manifold R x 7 and will write r + for the limit as t —ϊ +00
and r_ for the limit as t -ϊ — 00.

As discussed in [36] Chapter V, the map r has a locally defined re-
finement that will be important for us.We review a bit of material from
[36] for the reader's convenience and refer the reader there for more de-
tails. For a flat connection Γ on E —> Y, let SΓ denote a slice through
Γ for the action of the gauge group on connections on E. Then an
ASD connection onRx E with sufficiently small action is gauge equiv-
alent to a connection A = Γ + a(t) + a(t)dt for a path of one-forms
a(t) in Sr and a(t) a path of zero-forms orthogonal to Ker(ΔΓ). This
gauge transformation is unique up to the action of the stabilizer of Γ.
The path of one-forms α(ί) satisfies the gradient flow equation for the
Chern-Simons function on the slice. This gradient flow equation can be
shown to have a center manifold, i.e. a finite dimensional submanifold
tangent to the vector field and tangent at Γ to Hλ{Y\ adΓ). The main
result that we will need is the following.

Lemma 2.12. With A as above there is a unique decomposition

where jA(t) is a path of one-forms corresponding to a flow in a center
manifold and b(t) is an exponentially decaying path of one-forms.
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In order to state the results on the formal dimension of the moduli
spaces it is convenient to consider the compactification Z of Z which
adds a copy of Σ as the zero section of the punctured disk bundle
K+ x Y. To fix our orientations, let Z have a cylindrical end modelled
on Y(n,g). The self-intersection of the surface Σ in Z is then n. We
shall always suppose that Eγ and its determinant w are identified with
bundles pulled back from Σ; as in the previous subsection, this extra
data allows us unambiguously to label the components of &W(Y) as
&™y etc. (and at the same time it determines a distinguished extension
of E to Z). According to [36] and [41] there are deformation complexes
for the part of the moduli spaces which lies over the smooth points.
In the case where n > 0 there is also a deformation complex for the
part of the moduli space lying over the singular strata of «^^/od. The
indices of these complexes are given in the following theorem, as well
as the appropriate version of the generic metrics theorem.

Theorem 2.13. Ifn>0 then:
(α+) The formal dimension of M™(Z;3Z^s

/oά) is

and the formal dimension of M™{Z\ffi^sing) and M^(Z;
is

8κ - 3(6+(Z) - b\Z) + 1) - Ag + 5.

(6+) The formal dimension of M™(Z\@%) is

m2

8κ - 3(6+(Z) - b\Z) + 1) - 8 — + 4m - 2g + 3.

If n < 0, then:
(α_) The formal dimension of M™(Z;^joά) is

8/€-3(6+(Z)-61(Z) + l).

(&_) The formal dimension of M™(Z;&%) is

m2

8κ - 3(&+(Z) - b\Z) + 1) - 8 — + 4m - 2g + 2.

Furthermore if K > 0 then for a generic cylindrical end metric on Z
the moduli spaces M™(Z\@™;s

/oά) and M™{Z'\@Z) are smooth mani-
folds having the dimension given by the above formulae, except pos-
sibly at reducible or twisted reducible connections. The same applies
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to M™(Z\&!™y'*l29) in the case n > 0, except that this is a smoothly
stratified singular space, with top stratum of the given dimension. If
b+(Z) > 0 then there are no reducible connections in these moduli
spaces for generic metric. If b+(Z) > 1 then there are no reducible
connections for a generic one-parameter family of metrics.

Recall from [36] that on cylindrical end manifold, by b±(Z) we mean
the dimension of a positive (respectively negative) dimensional sub-
space for the quadratic form on

Im(H2

c(Z R) ->i72(Z;R)),

where H* denotes the cohomology with compact supports. We make a
similar definition if the coefficients of the cohomology groups are in a
non-trivial real line bundle λ.

Definition 2.14. A cylindrical-end 4-manifold Z is called admissible
if Z is admissible in the sense of definition 2.1 and for every non-
trivial real line bundle λ —> Z which is trivial on the end of Z we have
6+(λ) > 1.

With this definition twisted reducible connections do not present a
problem, as the following lemma shows.

Lemma 2.15. Let Z be an admissible cylindrical-end 4-manifold.
Then the conclusion of Theorem 2.13 holds without mention of twisted
reducible connections.

Proof. We must show that for a generic metric (and a generic path
of metrics) all twisted reducible connections are smooth points of their
moduli spaces. Prom the definition of admissible it is immediate that
for generic paths of metrics there are no twisted reducible connections
for which the corresponding real line bundle is trivial on the end of Z.
Now consider a twisted reducible ASD-connection A whose correspond-
ing line bundle is non-trivial on the end of Z. The boundary value of
A is necessarily in the smooth irreducible part of the representation
variety, ^yS/oά{X) For this part of the moduli space the dimension
formulae are exactly the same as for closed manifold Z and hence the
argument of Corollary 2.5 applies to complete the proof. q.e.d.

There are similar statements for the cases g = 0 and g — 1, the dif-
ference being that some parts of the representation varieties are absent
in these cases.

(v) Singular connections. We will draw on the results laid out in
[26] and [27], with some minor adaptations which are made necessary
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by our framework, which allows E to have non-trivial determinant. We
summarize some of the main points here. See also [25].

Let (X, Σ) be a pair consisting of an admissible 4-manifold and an
oriented, connected, smoothly-embedded 2-manifold. As before, let E
be a Hermitian 2-plane bundle on X with a fixed isomorphism φ :
det(E) —> w. Let N be a tubular neighbourhood of Σ, and on N let
there be given a reduction of E as an (ordered) sum of line bundles:
E\N = Zq 0 L2. The associated bundle gE then has a reduction to
SO(2), so QE = Rθif . We orient K by identifying it with the complex
line bundle Lx ® L2

l. Note that there is no determinant-one gauge
transformation which interchanges Lγ and L2, and therefore no gauge
transformation which changes the orientation of K. We record the
characteristic numbers

K = c(E) 6 \TL

We call these the instanton number and the monopole number respec-
tively. (The asymmetry between the roles the of Lλ and L2 is apparent
in the correspondence theorem (see section 6 and [27], [5]) which iden-
tifies the moduli spaces of singular connections with moduli spaces
of stable bundles with parabolic structure in the case that (X, Σ) is
complex; in this case, Lλ corresponds to a distinguished holomorphic
line-subbundle of the restriction of E to Σ.)

Fix a Riemannian metric on X. Then we have moduli spaces

of ASD connections in QE\X\Έ with prescribed holonomy at Σ. The
holonomy around a small, positively-oriented loop linking Σ is an anti-
clockwise rotation of the K plane through angle 4τrα. We take a in the
open interval (0, \). The gauge group again consists of determinant-one
gauge transformations. Other details of the definition and construction
of Ma can be found in [26]. We only recall the following facts.

Lemma 2.16. For A <Ξ M™f, the Chern-Weil integral c(A) is
given by
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L e m m a 2.17. The formal dimension of the moduli space M™\a is
given by

= 8κ + 4/ - 3(6+ - 61 + 1) - 2(0 - 1).

For a generic choice of Riemannian metric, M™\a is a smooth manifold
of dimension δ, except possibly at flat, reducible and twisted reducible
connections. There is also a space M™j* with a map to the interval
(0, | ) whose fibres are the moduli spaces M™ja. For generic metric,
M™j* is a smooth (δ + 1) -manifold, except possibly at flat, reducible and
twisted reducible connections.

As in [27] and [25], we shall not, in fact, use a smooth Riemannian
metric on X when exploiting these moduli spaces: we shall use a metric
which has a cone-like (orbifold) singularity in the normal directions
along Σ, with cone-angle 2π/ι/, where v is an integer chosen so that
2π/v is small compared to both a and | — a. The reason for this is that
it allows one to sharpen the weak compactness theorem for sequences
of connections in the moduli spaces: see section 8 of [26].

It is often convenient to introduce the integer

(2.18) p=(g-l)-2l

in place of the half-integer Z. We then label the moduli spaces with the
decoration p as a superscript, rather than the subscript Z, thus M™'p'α.
The dimension formula then reads

δ = 8k- 3(6+ - b1 + 1) - 2p

or

(2.19) d i m M ^ ' α = d imM^ - 2p.

Notice that p must satisfy the parity condition

(2.20) p=(g-l)-w>[Σ] (mod 2).

We now use these moduli spaces, as in [27] and [25] to define in-
variants of pairs (X, Σ). Although it is possible to construct these as
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linear functions on A(X) (see [25]), we content ourselves with defining
invariants which are linear functions

(2.21) D%% : A(X/Σ) -> R

Since X may not be simply connected, we need to deal first with po-
tential problems with twisted reducibles.

Observe that if there is a non-flat connection in the moduli space,
compatible with a reduction QE = λ φ L , then L must coincide with
±K in the neighbourhood N of Σ, and therefore λ must be trivial on
Σ. (So if iϊi(Σ; Z/2) maps onto Hλ(X; Z/2), then λ must be trivial on
all of X.) With this understood, we note (without further proof):

Lemma 2.22. The statement of Lemma 2.4 continues to hold with
M™'p'α in place of M™', with the proviso that only reductions λ φ L with
L|Σ = ±if are considered.

Note that Corollary 2.5 does not extend to the moduli spaces of
singular connections; the problem comes when p is large, so that the
dimension formula is substantially different. We therefore make the
following definition:

Definition 2.23. The pair (X, Σ) is admissible if X is admissible
in the sense of Definition 2.1 and b+(λ) > 1 for all real line bundles λ
whose restriction to Σ is trivial.
If X is admissible, then a sufficient condition for (X, Σ) to be admissible
is that b+(X) -bι(X) > 1, for then 6+(λ) > 2 for all non-trivial λ.
Another sufficient condition, as noted above, is that H1(Σ;Z/2) maps
onto JΓipT Z ^ ) .

With this in place, we can define D*χ^ provided the pair is admissible
and p satisfies the parity condition (2.20). Just as we defined D*χ. We

_ o

form the connected sum X = X#QP at a point well away from Σ.
Let

Z = β1β2" βr

be a monomial in A(X/Σ) of degree δ. If

δ φ -2w2 - 3(6+ - 61 + 1) - 2p (mod 8)

then Dw'p(z) = 0. Otherwise, let M™<p'a(X,Σ) be the moduli space
whose formal dimension is δ. Put β0 = e G H2(CF ) and represent the
classes β0, ... βr by submanifolds of X \ S. Take a good collection of
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neighbourhoods, and then a good representative

V(z) = v(βo)n -nv(βr),

so that the intersection

is a compact zero-manifold. Here R = K + | and w = w + e as before.
Using the standard orientation of the moduli space (depending on a
homology-orientation of X), one orients the points of the zero-manifold
and defines DWtP(z) as before. See [25] for more details. The value of
Dw>p(z) is independent of α (on account of b+(X) being bigger than 1).

Finally, we will also have use for moduli spaces in the mixed case
where we have Z with a cylindrical end and Σ' C Z a compact, ori-
ented, embedded Riemann surface. We wish to study finite energy ASD
connections on Z singular along Σ ; with holonomy parameter α. Our
data then includes the topological class, /, of the reduction along Σ',
as above. We denote the corresponding moduli space

where now K is defined by the following equation:

c(A) =κ + 2αl-α2Q(Σ').

With this convention we still have

K = C.S.(r([A])) (modi).

There are similar dimension formulae and generic metrics results in this
case.

3. Tunneling between flat connections on circle bundles

(i) Statement of results. Let Y be a circle bundle of degree n
over a Riemann surface Σ of genus g. We assume that n is positive and
that g is at least 2. We equip Y with a standard Riemannian metric
as in (2.10), and we orient it as Y(n,g). Let w be a line bundle on Y
pulled back from Σ, and recall the corresponding representation variety
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We usually use p and σ to denote typical flat connections on
Y. Define a relation on <%W(Y) as follows:

Definition 3.1. The flat connection p is /^-related to σ, written
p —κ σ, if there is an anti-self-dual connection A on Rx Y whose Chern-
Weil integral c(A) is not more than K, with end-limits p — r^(A) and

In this definition, the maps r+ and r_ are the end-limit maps for con-
nections on the cylinder, as discussed section 2(iv). Our aim here is
to address some issues of dimension and transversality which are con-
cerned not with the moduli spaces M™(R x Y) themselves, but with
the relations ^k which result. For any subset K in &W(Y), we define

Tκ (K) = {p I 3x G K with x-κ p}

Tκ (K) = { p I 3x G K with p ^κ x }.

Let us say that a subset K of a manifold Z is contained in dimension
δ if it is contained in the image of a finite collection of smooth maps
from manifolds of dimension at most δ.

Theorem 3.2. For each integer k with 0 < k < n, there is a
smooth manifold Uk of dimension 6g — 6 + 6k and a map

with the property that if p, σ are elements of &™y

)S and either p ^k σ or
σ —k p, then (p,σ) G t(Uk) Furthermore, t2 is a submersion. There is
a similar statement for ^^s.

Corollary 3.3. If K C £%™^s is contained in dimension δ and

k < n, then Tk (K) Π 2f^s and Tk (K) Π ̂ s are both contained
in dimension δ 4- 6k. The same statement is true with ^^s replacing

The above Corollary is the prototype for the results of this section.
Although it deals with the case that will eventually be most impor-
tant, we will have need also of information about the relation — κ in
connection with other pairs of components of &W(Y). First we deal
with trajectories between !%™ά and <%™v.

Proposition 3.4. // p G &™y and σ G @!™άJ then we cannot have
p — κ σ or σ —κ p for any K < n/4.
Next, we consider the singular strata in ^^*od^ These are the sets of
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reducible connections, which may be empty:

i ^ w \ άτ>w,s
~ ^'ev/od \ ^ev/od*

Proposition 3.5. Let K C ̂ s i n g be contained in dimension δ.
If 1 < k < n, then Tk {K)Γ)&™V>

S is contained in dimension δ-2 + 6k.
The same holds with od replacing ev.
Last in this sequence is a proposition which deals similarly with the
components ^™ C S!W{Y) consisting entirely of reducible connections.

Proposition 3.6. Let K C Sϋ^ (0 < m < n/2) be contained in
dimension δ.
(a) If K < n(l — m/n)2, then Tκ {K)Γ\^t^js is contained in dimension

δ + 2g - 4 + 4m + 6(« - m2/ή),

and is empty if K < m2/n.

(b) If K < (n — m'/n)2, then Tκ (ϋΓ)Π^Qβ is contained in dimension

δ + 2g - 4 + 4m' + 6(/c - (m')2/n)

where mf — (n/2) — m, and is empty if K < (m')2/n.
The formulae in Corollary 3.3 and the last two Propositions can

be best understood by considering the dimensions of the corresponding
anti-self-dual moduli spaces on the cylinder. To illustrate this, consider
first the moduli space M = M™(RxY ^^ ) S , K) for some 5-dimensional
submanifold K C ffi™^s. We use the notation

M-(R x Y SUS2) = ( r . r W Π (r+)-1(52)

for subsets SΊ, S2 in ^ ( F ) . The formal dimension of M is 5 + 8fc.
Because of the action of translations on Ex Y, one expects r_(M) CTk
(K)Γ)&™V'

S to have dimension at most δ+8k—l. In fact, because Y has a
circle action, and because the induced circle action on &W(Y) is trivial,
one expects a further collapsing, so that r_ (M) should have dimension
at most δ + 8k — 2. Corollary 3.3 confirms this naive dimension count in
the case k = 1. For larger &, it gives a stronger result, though δ + 8k — 2
would have sufficed instead of δ + 6k for our later application.

The other two propositions have a similar interpretation: in each

case, the dimension of the relevant part of Tκ (K) has dimension at
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least two less than the formal dimension of a corresponding moduli
space on the cylinder.

There are other cases to consider for tunneling between the various
components of &W(Y). The statements above are all that are needed
for our present purposes, but we record one other which we can prove
with the same techniques. This is the case of tunneling between two of
the components <̂ ™. The proof of this one will be omitted.

Proposition 3.7. Let ra+ and πi- be integers in the range 0 <
m < n/2 and let K C &%+ be contained in dimension δ. Suppose

n < n + (ra+ — m2_)/n. Then Tκ (K) Π&%1_ is contained in dimension

δ + 4(m+ - ra_) + 6(κ - (ml - m2_)/n) - 2

ifrri- < ra_|_ + ft — (ra+ — m2_)/n; it is contained in dimension

δ + 4(ra+ - ra_) + 6(κ - (m\ - m2_)/n)

ifrri- = rn^ + ft — (rn2

ir — rn2_)lnJ and is empty ifrri- > m+ + ft— (ra+ —

m2_)/n.

There is a category of cases not covered by these propositions, namely
the sets of the form T (K) Π S^ for K C ^ / o d

 A statement closely
analogous to those above would not be true in these remaining cases,
and it seems likely that obtaining the best possible result here would
require more delicate arguments, involving the stratification of &™v/oά

which appears in section 6.

(ii) A result of Guo. Let us equip the line bundle w -> Σ with
a holomorphic structure and denote the holomorphic line bundle by ω.
We can then regard the elements of Sίw{Y) as connections in E such
that the induced connection in det E is the pull-back of the unique U(l)
connection in w compatible with the holomorphic structure. Associated
with any p and σ are stable or semi-stable holomorphic bundles βp and
$σ with determinant ω. Our immediate aim is a result which gives
a necessary condition for p to be ^-related to σ in terms of complex
geometry. Let W be the ruled surface obtained by closing u p R x 7
by adding the surfaces Σ+ and Σ_, with the convention that Q(Σ+) =
n > 0. This W has a complex structure which is compatible, on the
complement of the two surfaces Σ±, with the Riemannian metric on
the cylinder. Note that the ruling provides a canonical identification
of both Σ+ and Σ_ with Σ. Let F be a fiber of the ruling, and let ω
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denote also the pull-back of the line bundle from Σ to W. Note that
ω2 is zero on W.

According to Guo [20], when the metric hγ on Y is of the form (2.10),
the product metric dt2 + hγ on K x Y is conformal to a Kahler metric
σ2(dt2 + hγ); the conformal factor is

σ2 = exp

For such metrics, Guo proves a correspondence theorem giving a set-
wise identification between, on the one hand, the subspace of the anti-
self-dual moduli space on the cylinder consisting of connections whose
end limits are smooth points of the representation variety, and on the
other hand a moduli space of holomorphic bundles on the ruled surface.
For our purposes we find it useful to extend Guo's result to cover the
singular part of the representation variety, in the direction of obtaining
holomorphic data on the ruled surface from an anti-self-dual connec-
tion on the cylinder. In this section we record the statements of this
extension of Guo's results, and then we reprove Guo's results, assuming
a technical result of his, from a somewhat different point of view which
allows us to take care of the singular part of the representation variety.
We begin with the simplest case to state, where the linking holonomy
is trivial.

Proposition 3.8. To each [A] G Af™(R x Y; 4?£,4?™) we can
associate a rank-2 holomorphic bundle £*A = & —> W with determinant
ω and c2{&) = K, such that the restriction of SA to W \ {Σ+ U Σ_}
is equivalent to the holomorphic structure induced by the anti-self-dual
connection A. Furthermore the holomorphic bundle <?|Σ+ is isomorphic
to the poly-stable bundle induced by the flat connection r+{A), while the
holomorphic bundle <?|Σ_ is semi-stable and s-equiυalent to the poly-
stable bundle induced by r_ (A).

(A rank-2 bundle is poly-stable if it is either stable or a sum of two
line-bundles of the same degree. Every semi-stable bundle has a filtra-
tion for which the associated graded bundle is poly-stable. Following
[39], two semi-stable bundles are s-equiυalent if their associated graded
bundles are the same).

The case of central linking holonomy is similar. Recall that there is
a natural identification of &™ά with the moduli space of rank-2 holo-
morphic vector bundles β" with det(^) = ω + Λ, where Λ is any
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holomorphic line bundle with deg(Λ) = n mod 2. Thus a rank-2 holo-

morphic bundle £ -» W with det(<f ) | Σ + = ω[Σ+]| Σ + defines an element

of <^^(Σ + ) provided that <f | Σ + is semistable. A similar statement

holds for [Σ_]. We again use c(S>) to denote the characteristic number

Proposition 3.9. To each [A] G M™(R x F ; &Z,/od,&%,/od) we
can associate a rank-2 holomorphic bundle SA = $ —> W with c(<?) =
n such that the restriction of §A to V F \ { Σ + U Σ _ } is equivalent to
the holomorphic structure induced by the anti-self-dual connection A.
Ifr-{A) G &% and r+{A) G &%ά, then we can take det(<f) = ω + [Σ + ].
IfrS(A) G ̂ d and r+{A) G &£, then we can take det(V) = ω + [Σ_].
If r+(A) and r_(A) are both in &™ά, then we can take det(<^) = ω +
[ Σ _ + Σ + ] . In all three cases the holomorphic bundle <?|Σ+ is isomorphic
to the poly-stable bundle corresponding to the flat connection r+{A),
while the holomorphic bundle <?|Σ_ is semi-stable and s-equiυalent to
the poly-stable bundle corresponding to r_(Λ).

Next we consider the case where the linking holonomy at +oo is
non-central. For a line bundle Jέf -)• Σ, we introduce the normalized
degree

degωάf = deg Jf - |deg ω.

Recall that ^ ^ can be canonically identified with J m , the Jacobian
torus of line bundles with degω = — m.

Proposition 3.10. To each [A] G M^(R x Y] &!^/oά,&Z)> w e

can associate a pair (£A->-^A) — (&,&), where £ -> W is a rank-2
holomorphic bundle and «ί? —>• Σ + is a holomorphic line subbundle,
άf M* <?|Σ +. We have c(β) = K - m2/n, the restriction of SA to
W \ {Σ + U Σ_} is isomorphic to the holomorphic structure induced by
the anti-self-dual connection A, and degu;(Jέf) = —m. If r_(A) G $™w

we can take β to have determinant ω. If r_(A) G &™ά we can take £
with det(<^) = ω + [Σ_]. The holomorphic bundle <?|Σ_ is semi-stable
and s-equivalent to the bundle induced by the flat connection r_([Λ]).
The point in Jm determined by J£ corresponds to r+([A]).
There is a similar statement for M^(E x F ; ^ , ^ / o d ) where c(<?) =
K + 7π2/n, the degree of the line bundle «if is m and s-equivalence is
replaced by isomorphism. Finally, we have:

Proposition 3.11. To each [A] G M κ

ω (Kx Y',&%_,&%+), we can
associate a triple (£A,Jf_tA,jf+iA) = (<f, Jf_,^f+), where S -*W is a
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holomorphic line bundle with determinant ω and Jέf± —> Έ± are holo-

morphic line subbundles J£± -» £>\Σ±- We have

c{β) — K + (m2_ — rn^_)/n

and the restriction of$Ά to W \ {Σ+ U Σ_} is isomorphic to the holo-
morphic structure induced by the anti-self-dual connection A. We have
degα;(βέf+) = — m + ; and degu;(βέf_) = m_, and the points in Jm± deter-
mined by these line bundles correspond to r+(A) and r_(A).

The remainder of this subsection is devoted to the proof of these
results. Let N± denote complex tubular neighborhood of Έ± in the
ruled surface W. Let π : N± —> Έ± denote the bundle projection. Also
let JV± = N± \ Σ±. Let r denote the distance from Σ± in AΓ̂ , let η±
denote a connection one-form on iV±, and let v denote the dual vector
field to η which generates the circle action. Under the natural identifi-
cation of N+ with iV_ we have η+ — —η~. Let E —> N± be a unitary
2-plane bundle pulled back from EΈ —> Σ±. A choice of connection A
on E\No with i^j'2 = 0 determines a holomorphic structure £A on E\N^.
Guo's theorem gives conditions under which the holomorphic structure
extends over N± in terms of properties of the connection.

Theorem 3.12. Let A be a connection on E\No with F%2 = 0.
Suppose that there is a connection B on EΈ and constants J, M > 0 so

that
A = π*(B) + a

= τr*(β) + ardr + aηrη + b

where b is a one-form which annihilates the tangent spaces to the fibres
of the projection to Σ, and the forms ar, aη and b satisfy the pointwise
estimates

r~δ\b\ +ri-*(\ar\ + \aη\) < M,

r-*|V_a.&| + r ^ d V i ^ l + IV^&l) < M,
and r2-δ{\Vivar\ + \Viυa^\ + \V^_ar\ + \V^aη\) < M,

where V denotes the coυariant derivative ofπ*(B) and ̂  is any unit

tangent vector to N± in the horizontal space for η±. Then there is a

holomorphic structure Sχ on the bundle E —ϊ N±, induced by a con-

nection A, and a continuous complex gauge transformation h : E —)• E

so that {h\No)*(dA) = d^\No. Furthermore:

(i) // 6 and S' are two such holomorphic structures in E -» N,
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then there is a continuous gauge transformation h of E such that

B
(ii) The restriction of the holomorphic structure to Σ, £^|Σ> is equiv-

alent to that induced by B.

(iii) Finally, if we choose A (as we may) so that it agrees with A
outside a smaller neighbourhood of Σ, then JNo tτ(FA Λ FA) =
fNtτ(FΛΛFΛ).

The essence of Guo's proof is, following an argument due to Bando
[4], that these conditions imply that, after passing to a high order local
branched cover, the connection is in L\ for some p > 2. Then Guo
can use Buchdahl's holomorphic version of Uhlenbeck's basic gauge
fixing lemma [7] to define the holomorphic structure. If we identify the
cylinder l ± χ y with JV± by the map (ί,y) *-> (eτί,y), these condition
translate directly into the connection having C1 exponential decay to
π*(B).

In [36] it was shown that any finite energy ASD connection on [0, oo)
xY could be uniquely decomposed as an exponentially small pertur-
bation of a connection corresponding to a flow in the center manifold.
If A is a finite energy ASD connection on [0, oo) x (±Y) with non-
exponential decay, then its limit r([A]) is a reducible flat connection in
&W(Y). As in section 2(iii), we can choose a representative Γ for r([A])
which is S1 -invariant.

Lemma 3.13. For an S1-invariant metric on Y', there is a center
manifold through Γ consisting of S1 -invariant connections.

Proof For an S1 -invariant metric on Y, the Hodge representatives
for the cohomology groups for Γ are also S1 invariant. As observed
in [36], the center manifold can be chosen to be set-wise invariant un-
der any compact group action preserving the vector field. The center
manifold is then given as the graph of a smooth equivariant function
h : U C IΓ^Y adΓ) -> Ker(df). The result now follows from the
SMnvariance of Hodge representatives of the cohomology. q.e.d.

To make use of this result we study the ASD equation on Sfl-invariant
connections. An ^-invariant connection A on QE ~> Y is of the form
A = B + Φη + Φ dt where the zero-forms Φ and Φ and the connec-
tion B are pulled back from gEv. The ASD equation for 51-invariant
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connections on R x Y then becomes the pair of equations

(3.14) —- = -*ΣdBΦ + dBV
at

at - v =

where the volume of Σ is 2πV\
Lemma 3.15. Let A(t) = B(t) + Φ(t)η + ^(t)dt be a smooth,

S1-invariant ASD connection on (T0,Tι) x gE (the T{ maybe infinite).
Define a complex gauge transformation of (T0,Tλ) x QE ω the (smooth)
solution to the ODE

with the initial condition say g(ϋ) = /. Then

g A = B(0).

Proof. The action of Gc on the space of connections is given by the
formula

g A = A + g~λdAg - (g'^AgY-

First we check that this gauge transformation takes the path of connec-
tions B(t) to the constant connection B(0). Consider the time deriva-
tive

d — — —

-iΦ)g)g~1dBg + g~ι[dβ(^ + i$),g\

Prom this we calculate the time derivative of g • B:
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from (3.14). Hence g B = B(0). Next we determine the action of this
gauge transformation on the connection A = B + Φη + Φd£. We have

= ff^Π0'1 (dtg + (fBg + η[Φ,g] + dt[*,g])

= \ ((-Φ + iΦ)dt + (iΦ - Φ)τ/) + g-1 (dΈ

Bg) .

Hence

g-A = B + Φη + Φ<ft + | ((-Φ + iΦ)dί + (iΦ - Φ)η) +

- \ ((-Φ + iΦ)Λ + (iΦ - Φ)τ/) + 5"1 ( a | 5 ) *

= g B + Φr? + Φdί + \ ((-Φ + zΦ)dί + (iΦ - Φ)r?)

= 5(0). q.e.d.

To analyze the case of boundary values in ^ ^ we will need more
detailed information about the asymptotics of the connection. At a
flat connection Γ on Y, let S^ = { a G ΩX(Y; QE) \ d>ra — 0 } denote the
slice for the gauge group action on connections on Y, then the Hessian
of Chern-Simons HessΓ CS is the operator

— *

This is an essentially self-adjoint operator with discrete real spectrum
unbounded in both directions. If Γ is a reducible connection preserving
the splitting gE = M Θ £, then there is a corresponding decomposition
of the slice S^ = 5Γ(M) 0 SΓ(L). We can assume that L is pulled back
from a bundle Lt —> Σ with connection, where Ci(L )̂ = L Let C -> Σ
denote the corresponding holomorphic line bundle. By tensoring with
the normal bundle of Σ, we can also assume that 0 < \ί\ < n/2 (that
is we take i = 2m if 0 < m < f and I = 2m - n if f < m < f).

Proposition 3.16. Let Γ be a flat connection representing a point
°f&m(Y) Then the spectrum o/Hessr CS has the following properties.
(i) The kernel o/HessΓ CS \SΓ(R) is identified with i ϊ ^ Y adΓ).

(ii) The smallest positive and negative eigenvalues ofΉessΓ CS |sΓ(z,m)
are ± ^ . The eigenspace corresponding to ^ is identified with the
pull-back from Σ of the harmonic representatives of the Dolbeault
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cohomology group i / 1 ) 0 (Σ;£) while the eigenspace corresponding
to —^ is similarly identified with iyo>1(E;>C).

Proof. Item (i) is a standard fact. Let P£ —> Σ be the total
space of a principal S1 -bundle with Euler class ί and let Lt denote the
associated complex line bundle. The pull-back τr*(P^) is the Whitney
product bundle of Y -> Σ and P£ -> Σ. This makes π*(P^) into the
total space of a principal S1 x S1 bundle over Σ, where the first S1 is the
circle action coming from Pt and the second comes from Y. The second
^-action decomposes the space of sections of π*(L£) into irreducible
representations of S1. We say that a section has weight k if it transforms
according to f(p (l,e2^)) = e~ιkθf(p). A section of weight k then
transforms under the diagonal action as f(p (eiθ,eίθ)) = e~^l~k^e f (p) ̂
and as such defines a section oiN®k®Lt -> Σ, where N is the C-bundle
associated to Y. The generator, υ, of the circle action on Y acts on
sections of weight k by the formula S7\f = —ikf.

Now suppose that b + φη is an eigenvector for — * dp with eigenvalue
λ where b and φ have weight k. We have

— * dτ(b + φη)

= - * ( η Λ Vj> + d^b + i-η Λ 6 + ~ * Σ lφ + df,φ Λ η)
\ n V J

= - * (-ikηAb + d^b + i-ηAb+ y * Σ 1<£ + df,φ Λ 77 J

= i ί k J *Σ b + *Έdγ,φ + ηA \-^ψ ~ *df,b J ,

where we consider φ as a section of N®k ® Li and b as a section of
N®k ® L̂  ®R T*Σ and Γ' is the connection in N®k 0 L̂  induced by the
connection in L and iη in JV. Thus the condition that b + φη is an
eigenvector gives

_ * d*b =(\+^λφ and *Σ d*φ = (λ - i (k - -λ *Σ

The slice condition now reads.

= (λ - i (k - -

r(6 + φη) = - * (7? Λ cfΓ' * Σ 6 + dp * Σ ^ + η Λ V Γ ' * Σ <p + i-7? Λ
V n

i [k φ
\ n)

= 0.
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The argument now breaks up into two case according to whether or

not φ = 0.

If φ = 0 then using the decomposition

L£ ΘR T*Σ = N®k ® Z^ ®c TX>°Σ Θ

we see that if 6 is a section of N®k ® L^ ® c T
l ί 0 Σ (respectively

Li ®c T°ΛΣ) with dΓb = 0, then cff 6 = 0 and (6,0) is an eigenvector
with eigenvalue k — ί/n (respectively k + Z/ri) and by the choice of ί
the result holds in this case.

Suppose that φ Φ 0. Decompose b as b' + 6", as above. Let

and

5 r ^ , : Ω^^Σ; 7VΘ/: ® Lέ) -> Ω^^Σ; ΛΓ®* ® L£).

(Here i\Γfc has the complex structure induced by the connection iη.)
The Hodge identities imply that these operators are the restriction of
the Hodge Laplacian to the given space, and hence we have

and

where ξ = ψ and £ = (& — £). Since both of these operators are semi-
positive and we have dealt with the case where either of b1 or b" is in
the kernel of the corresponding operator, we must have

and

0<λ2+ξλ-ξζ-ζ2.

The roots of the left-hand side of the first of these inequalities are — ξ+ζ
and — ζ while for the second inequality the roots are — ξ — ζ and ζ, so
we must have λ < — |A; — £| or λ > \k — £| as required. q.e.d.

We now turn to the proof of the correspondence theorems 3.8—(3.11).
Let A be a smooth finite energy ASD connection in QE o γ e r K± x Y.
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According to [36] we can find T so that after gauge transformation we
can assume that

(3.17) ^l[r,oo)χy = Γ + ΊA{t) + α(ί),

where Γ is an ^-invariant flat connection, ηA{t) is a flow line in a
center manifold for the Chern-Simons flow through Γ and a(t) is an
exponentially decaying one-form. By Lemma 3.13, we can arrange that
jA(t) is S1 -invariant.

Case 1: r±([A]) = [Γ] e ^ . We can choose Γ to be the pull-back
of Γ', a flat connection with determinant w on EΈ —> Σ. If we are
working with K+ x Y then according to [36], the flow in the center
manifold is constant regardless of whether or not Γ' is a smooth point
of c^(Σ). So we have jA(t) — 0 and hence A|[T}Oo)xy = Γ + a(t).
Thus Guo's extension theorem applies to give a holomorphic structure
EA on a bundle E -» N+ extending EA. Furthermore the restriction
of 8A to Σ+ is equivalent to the holomorphic structure induced by
Γ'. If we are working with L x F and Γ is irreducible, then Γ is a
smooth point of «^ ,̂ so the flow in the center manifold is trivial and
the argument proceeds as above. If Γ is reducible, the flow in the center
manifold is non-trivial. The term ηA in (3.17) is therefore present, and
is not exponentially decaying in general; but it is S1 -invariant, so by
Lemma 3.15 there is an ^-invariant complex gauge transformation h
of E on (-oo,T], so that h(T) = 1 and

where Δ is a connection pulled back from <?Σ —> Σ. Note that Δ is not
necessarily a flat connection: if Γ + ηA is written in the form used in
Lemma 3.15, then Δ is the connection B(T). We now have

where o! is exponentially decaying. Theorem 3.12 applies to this con-
nection to give a holomorphic structure EA extending 6A. But now the
restriction of the holomorphic structure to Σ_ is equivalent to that in-
duced by Δ = B(T). The proof of Lemma 3.15 shows that B(t) stays
in a single We orbit for all ί, and approaches Γ as t —• —oo. The most
we can say, therefore, is that Γ is in the closure of the Qc orbit through
Δ; that is to say, the holomorphic structures are s-equivalent.
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Case 2: r±([A]) = [Γ] E &™d. This case is almost the same at Case
1, but the limiting connection Γ is π*(Γ') + ±Όia,g(i,i)η which is not
pulled back from Σ. Let h0 be the Qc gauge transformation

1 1

h0 = Diag(r±25r
±2).

Then Λ*(Γ) = π*(Γ'). The argument now continues as in Case 1.
Case 3: [Γ] E &%. Every point of JP™ is a smooth point so j A = 0

and A decays exponentially to Γ. The argument breaks up into various
subcases. Suppose first that we are working on R^ x 7, and 0 < m <
n/4. Then

Γ = Diag(^(r^)^*(C2)) + Diag ( " A ^ ) η,

where Γ'mi and Y'm2 are Yang-Mills connections on line bundles of first
Chern classes m1 and m2 respectively and where 0 < πii — m2 < f
and m = |(mχ — ra2). Let Cmi and Cm2 denote the corresponding
holomorphic structures. Again Γ is not pulled back from Σ. It follows
from Proposition 3.16 that an ASD connection asymptotic to Γ has an
asymptotic expansion as t -> oo

where ί — 2m, c° is diagonal and has exponential decay, while c x is
off-diagonal and and has exponential decay faster than e " * , or in polar
coordinates vanishes faster than r». The form b is the pull-back from
Σ of a (l,0)-form with values in Cm2 ® C*mi. Let h0 be the complex
gauge transformation defined by the equation

h0 = Dΰ

Then h*0T = Diag(π (Γ^),π (Γ^)) and so

where d1- is off-diagonal and exponentially decaying. We can now apply
Guo's theorem to get the extension. In this case the restriction of
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the holomorphic structure έA to Σ is the extension of Cπi2 by Cmi

determined by —b as required.
If we are working on R+ x Y and n/4 <m< n/2 then we can write

Γ as above but the asymptotic expansion of A(t) takes the form

where ί = n — 2ra < 0, c° is diagonal and has exponential decay,
while cL is off-diagonal and has exponential decay faster than e^*, or
in polar coordinates vanishes faster than r~. In this case the one form
b is the pull-back from Σ of a holomorphic one-form with values in
the conjugate bundle of λί ® C*m2 ® Cmi, where λί is the holomorphic
structure in the normal bundle of Σ + determined by the connection
induced by η. Let h0 be the complex gauge transformation defined by
the equation

Then h*0Γ = Diag(π (Γ'mi),π*(Γ^2 ® (iη))) and so

where dL is off-diagonal and exponentially decaying. We can now apply
Guo's theorem to get the extension. In this case the restriction of the
holomorphic structure 8A to Σ is the extension of Cmi by Cm2 ® λί
determined by b as required. The cases involving L x 7 are entirely
analogous and are left to the reader.

Combining these three cases implies the existence of the required
extensions for each of the propositions (3.8)—(3.11). To determine the
characteristic number c, notice that only in the third case do the com-
plex gauge transformations change the value of the integral; in that
case, the change is determined by a Chern-Simons invariant and the
proof of Lemma 3.4 of [27] easily gives the desired result. It is straight-
forward to check that the determinant for the extension can be chosen
as claimed. q.e.d.

(iii) Tunneling and elementary modification. Using the cor-
respondence results above, we now analyze K-relatedness. When K is
small, this turns out to be closely related to the notion of elementary
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modification of bundles on a curve. We therefore begin with a discus-
sion of elementary modification. This is standard material.

Let Σ be an algebraic curve and let S and β' be two rank-2 holo-
morphic bundles. Let / : β1 -Λ β be map of sheaves which is an
isomorphism at the generic point. As a map of sheaves, / is then
injective. Let

be the effective divisor defined by the vanishing of det /. We regard D
as a zero-dimensional subscheme of Σ, possibly non-reduced. Since /
is injective we have an exact sequence

g> -L> g — > g m

The support of the quotient sheaf £ί is contained in D. Looking at the
holomorphic Euler characteristics of the sheaves in the exact sequence
above, we also see that the dimension oϊH°(£ί) is equal to the difference
in the degrees of β' and <?, which is also the degree of D. The following
definition is not quite standard.

Definition 3.18. In the above situation, we say that β is obtained
from β' by elementary modification along D. If £ is a locally free
^-module (so that J? = &B in fact), we say that the modification is
regular.

For now, consider the case that D is just a multiple of a point P.
That is, D = nP and the structure ring of D is

The sheaf 2 is an n-dimensional module over this ring. Such a sheaf
is precisely an n-dimensional complex vector space with a nilpotent
endomorphism. These are classified by partitions of n via their Jordan
canonical form. Thus we see that

where mi is a partition of n. The regular case is when there is a single
Jordan block of size n; in the non-regular case, the support of £ is
contained in mP for some m < n.

In general, if we exhibit £1 as an extension of ^np-modules, say
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then we can regard g as being obtained from S" in two stages, via an
intermediate Sλ\

ff - > <Si - > ^ o

Conversely, if <? is obtained in two stages from &1 in this way, then S is
clearly also obtainable from S1 in one stage, with cokernel an extension
of J?i by J?o Because of the exact sequence ΰP —> &mP -> ^( m _i)p, we
can reduce any elementary modification to a sequence of modifications
of the form

gX -> δ -» up,

i.e. a sequence of elementary modifications at closed points. Thus we

have shown:

Lemma 3.19. If D is a divisor of degree N, then an elemen-

tary modification along D is the same as a sequence of N elementary

modifications at closed points Pi7 where ΣPi = D.

The next Lemma is equally elementary:

Lemma 3.20. // § is obtained from &' by elementary modifica-

tion along D, then £"[D] can be obtained from £ also by elementary

modification along D.

The following proposition shows that if a holomorphic bundle <f on

the ruled surface W has c(S') sufficiently small, then the restrictions

of S to the curves Σ+ and Σ_ are related by elementary modification.

Similar results are contained in [21] and [22].

Proposition 3.21. Let $ -+ W be a rank-2 holomorphic bundle,

and let c = c(&). Let £+ and <f_ be the bundles on Σ obtained by

restricting β to the curves Σ+ and Σ_. Suppose $+ admits no line-

subbundle of degree greater than m + | d e g ^ + ; for some m < n/2.

(a) If
c + m2/n < n{\ - m/n)2,

then Cι(S>)[F] is even. (Here F is again the fibre.)

(b) //cχ(^)[F] is even, so Cι{ff)[F\ = 2p say, and

c + m2/n < n( l - m/n)2,

let άf = [-pΣ_], so that cx{β ® 3f)[F\ = 0. Then there is an

effective divisor D in Σ of degree at most c and a holomorphic
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bundle So on Σ such that both S+ and S_ <g> J2?|Σ_ are obtained
from So by elementary modification (possibly non-regular) along
D.

The rest of this subsection contains the proof of this proposition. A
rank-2 holomorphic bundle on QP1 splits as 0(p) φ 0(q) for some p
and g, by Birkhoff 's theorem. For a holomorphic bundle S on W, one
can examine the splitting type on each fibre. On the complement of a
finite set of fibres, the splitting type will be constant: this is the generic
splitting type of S. We also make the following definition:

Definition 3.22. Let S be a rank-2 bundle on QP1, isomorphic to
0(p)®0(q), say. The splitting degree ofS is the number r = \\p — q\ G
| Z . For example, G{r) φ 0(—r) has splitting degree r, while 0(1) © 0
has splitting degree | .

Lemma 3.23. Let S be a rank-2 bundle on the ruled surface W
with the property that S\χ+ admits no line sub-bundle of degree greater
than m+ |deg(<?|Σ+), for some number m. Let r be the splitting degree
of S on the generic fibre. If r is non-zero, then

c(S) + m2/n > n(r - m/n)2.

Proof. We illustrate the algebra only with the case that cλ (S) = 0.
If the generic splitting is G(r) φ 0(—r) with r > 0, then we have a
distinguished line-subbundle on the generic fibre. This extends to give
us a line bundle & -> W and a map

which we may assume is an injective map of bundles except at isolated
points. Thus there is an exact sequence

& -> S -> A2S ® &~ι ® Xz

where Z is a zero-scheme. We have Cχ(^)[F] = r, so

Prom the condition on <?|Σ+, we have a <m. From the exact sequence
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above, we have

m2/n = -c\(&) + l(Z) + m2/n
= r2n - 2ar + l(Z) + m2/n
> r2n — 2mr + m2/n
= n(r — m/n)2

since r and I are positive. q.e.d.
Now let us return to the situation of Proposition 3.21. If the degree

of S on the fibre F is odd, then the splitting degree r on the generic
fibre is in \ + Z, and is therefore non-zero. The hypothesis on g+ fits
the above Lemma, and we conclude that

c(<?) + m2/n > n(r - m/n)2.

Because m is supposed to be less than n/2, and r > | , the right-
hand side is not less than n{\ — m/n)2. This proves part (a) of the
Proposition.

Replacing S by S ® «έf if necessary, we may assume in part (b)
that Ci (<£*) is zero on F. The generic splitting degree r is now a non-
negative integer, and the upper bound on c(β) in the hypotheses of
part (6) forces r to be zero, by the Lemma above. So $ is trivial on
the generic fibre. Let π be the projection of W onto either Σ+ or Σ_;
the two cases are much the same, and we focus on Σ = Σ + . The direct
image sheaf S' = ττ^(S>) on Σ is isomorphic to <?|Σ+ — &+ wherever the
splitting degree is trivial. The direct image is also torsion free, since ά?
is torsion free. The sheaf <?' is therefore a rank-2 vector bundle on Σ.

There is a tautological inclusion of π*(<?') in 8 as sheaves, and this
is an isomorphism except at the exceptional fibres where £ splits non-
trivially. So we have a map between vector bundles

on W, and the divisor {det/ = 0} is π*{D) for some divisor D on
Σ. We can estimate the degree of D using the Grothendieck-Riemann-
Roch theorem. We shall treat only the case that Ci(<?) = 0 on W. In
this case, we have

Let B}-π*g be the first higher direct image of g. This is a sheaf on
Σ supported in the neighbourhood of the divisor D. The difference
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g' — Rιπ*$ defines an element σ in the K-theory of Σ, which corre-
sponds to the index of the family of d-operators. We calculate:

ch(σ) = ch{g)Td{T*F)/[F]
= (2-c2(g))(l
= 2-c2(g)/[F].

So Ci(σ)[Σ] = -c2(g)[W], and hence

deg(D) = c2(g) - h^

Thus the degree of D is at most c = c2(g).
Restricting the map / to Σ+, we see that there is a map / : g' —> g+

whose determinant vanishes on the divisor D. Thus <?+ is obtained from
g' by an elementary modification along D. Restricting / to Σ_, we see
the same thing for <?_. This completes the proof of Proposition 3.21.
q.e.d.

(iv) Proof of the dimension estimates. We now set out the
proofs of Theorem 3.2 and Propositions 3.4-3.6, using the results of
the previous two subsections.

Proof of Theorem 3.2. Suppose p and σ are in ffi™^8 and p — * σ, for
some k < n, as in the Theorem. (The case σ — & p will be no different.)
Then there is an anti-self-dual connection A o n R x Y with r_(A) = p,
r+(A) = σ and c(A) < k.

Let gp and gσ be the holomorphic bundles on Σ corresponding to p
and σ. Proposition 3.8 provides a holomorphic bundle g —> W with
det(^) = ω and c(g) = c2(g) = c(A), such that the restrictions g\γι_
and g|Σ+ are isomorphic to gp and gσ respectively. (There is strict
isomorphism at Σ_ rather than just s-equivalence because gp is stable,
not just semi-stable.)

Because gσ is stable, the hypotheses of Proposition 3.21 are satisfied
with m = —1: that is, gσ = g\Σ+ has no line-subbundle with normal-
ized degree dega>(«έf) greater than — 1. The hypothesis k < n is more
than enough to ensure that

c + m2/n < n(l — m/n)2

when m = —1, so part (b) of Proposition 3.21 applies: there is a bun-
dle g0 and a divisor D of degree at most k such that both gp and gσ
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are obtained from SO by elementary modification along D. Using Lem-
mas 3.19 and 3.20, we can rephrase this conclusion by saying that S9 is
obtained from $σ\—D\ by elementary modification along 2Ό. Using the
same lemmas, we see that we can arrange that D has degree k exactly.

We now build a manifold Uk as required in the Theorem. First, given
a bundle S1 and a divisor D written as an ordered sum

we build a manifold EM(β[\ D) whose points correspond to data spec-
ifying an elementary modification of <?' along D. Such a space can
be constructed as an iterated CP1 bundle using Lemma 3.19, because
the data needed to effectively specify an elementary modification at a
single point P is a point of a CP1.

Define Uk to be the total space of the smooth fibre bundle

(3.24) p:Uk—> «^ey x Σ*

whose fibre over (σ, (Pi,... ,Pk)) is EM(gσ[-D],2D), where D =
ΣPi- The base has dimension βg — 6 + 2k and the fibre has dimen-
sion 4fc, since it is a 2Λ;-fold iterated CP1 bundle, so Uk has dimension
6g — 6 + 6fc. To each point of u £ C4, we can assign two bundles £[
and <f2: if u lies in the fibre EM(βσ[-D\, 2D) over (σ, D), then we take
£2 to be <?σ, and £ι to be the result of the elementary modification to
S^l—D] which u specifies. Let Uk C Uk be the open subset on which <§Ί
is stable. On this subset, Sλ and <?2 provide maps tλ and t2 from Uk to
&£;s. The statement that βp is obtained from &σ[—D] by elementary
modification along 2Ό is now the same as saying that (p, σ) is in the
image of t = (ίi, <2)> as required. The case that p and σ belong to <^QS

is not essentially different. q.e.d.

Proof of Proposition 3.4. Suppose p ^κ σ with p E ffi™v and
σ e 3!™ά. (The case σ ^κ p is little different.) Then, by Proposition 3.9
there is an & —> W with c($) < n whose restriction <^|Σ+ is isomorphic
to Sσ. Because p and σ belong to different components, Cχ[β)\F\ is odd.
The semi-stability of <?|E+ means that we can apply Proposition 3.21
with ra = 0. Part (a) of the Proposition tells us that K must be at least
n/4. So, if K is less than n/4, we cannot have p —k σ. q.e.d.

Proof of Proposition 3.5. Suppose σ E !%%;sin9 and p —k σ, with
p e ^ s and k < n. Let S -* W be the bundle with det(<?) = ω
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and c{β) < k supplied by Proposition 3.8, so that <?|Σ_ = S*p and
<?|Σ+ = $σ Again, there is an isomorphism at the Σ_ end rather than
5-equivalence because p is irreducible. Because Sσ is semi-stable, we
can apply Proposition 3.21 with m = 0; part (b) is the relevant part,
since Cι(#)[F] = 0. We conclude that, as c(<?) < k < n, the bundle
βp is obtained from &σ\—D\ by elementary modification along 2£), for
some divisor D of degree &. As in the proof of (3.2), the set of all
bundles on Σ obtainable from a fixed §σ by such a modification can
be parametrized (not necessarily effectively) by a 2λ;-fold iterated QP1

bundle over Σ Λ . That is to say, if we write D as an ordered sum,

and write
2D = P1+P1+P2 + P2 + - + Pk,

then we have a QP^s worth of choice in making successive modifications
at Pi, Pi, P 2 , P 2 and so on. However, because gσ is reducible, the first
QP1 is not effective: there is a C* acting by automorphisms of $σ which
has three orbits in its standard action on QP1. Therefore, the bundles
obtainable from 8σ in this way can be parametrized (still not effectively
perhaps) by three bundles over Σ>k with fibres which are (2k — l)-fold
iterated QP1 bundles. Amongst this family, the stable bundles form an
analytic family of real dimension 6k — 2.

This shows that Tk {σ}Π&™v'
s is contained in dimension 6k —2. If we

consider more generally a subset K in &™v'
sin9 covered by a smooth map

f : Z —^ &Q, where Z has dimension 5, it is straightforward to build a

family over Z of dimension δ — 2 +6k which covers Tk (K)fλM^;s. Once

again, replacing the even component by the odd one does not lead to

any difficulty. q.e.d.

Proof of Proposition 3.6. Parts (a) and (b) of this Proposition are

very much the same. Indeed, when n is even the two statements are

entirely equivalent, for in this case there is a real line-bundle ( o n 7

with holonomy —1 on the fibre, and tensoring by ξ interchanges ίff™y

with 3g™d and ^ with ^ , . We will consider only part (a) there-

fore. Furthermore, taking our lead from the paragraph above, we will

consider only the case that K C ĉ ™ is a single point and δ = 0: it

will again be clear that the constructions can be carried out over any

smooth family.
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So take σ in <̂?™ and suppose p ^κ σ, with p G ffi™^s. Prom
Proposition 3.10, we obtain a bundle g -* W with determinant ω
and c(<?) + ra2/n < K. The restriction <?|Σ+ is an extension

lO.ZOj - £ - m -> © | Σ + ->• -^m ?

where Jέf_m is the line-bundle corresponding to σ, with degωL_m = — ra.
Prom this sequence it follows that <?|Σ+ admits no line subbundle of
normalized degree greater than ra. Therefore Proposition 3.21 applies
and tells us that, if n < n(l—ra/n)2, then the generic splitting type of <f
is zero and <?|Σ_ (which is isomorphic to <t?p) is obtained from <?|Σ+[—^]

by an elementary modification along 2Ό. Here D can be taken to be an
effective divisor of degree c(<?), which is at most K — m2/n; the Chern
number c(^) has to be non-negative in this situation, as β has trivial
splitting type on the generic fibre.

We now count the dimension of a space which parametrizes a family
of bundles on Σ which includes all the possible bundles S*p. First,
the bundle <?|Σ+ is determined by the class of the extension (3.25),
which belongs to a projective space PJH"1(Σ, (Jίf_m)2), which has real
dimension 2g — 4 + 4ra. There are at most 2(κ — m2/n) parameters in
choosing the divisor D, and a further 4(κ — ra2/n) parameters of choice
in specifying the elementary modification along 2D. The total count is
therefore at most 2g — 4 + 4ra + 6(κ — m2/n), as claimed. q.e.d.

Remark. For each of the Propositions we have proved in this
subsection, one can construct a variant considering families of metrics,
along the following lines. The relation ^κ on &!W(Y) depends on the
chosen Riemannian metric on Σ, through the corresponding complex
structure. Consider a family of metrics on Σ, parametrized by a man-
ifold /. Let i ί b e a subset of / x <^/s, contained in dimension 5, and
fix K n. Consider the subsets of / x 3%Zf

U ( « χ τM(p)n^ey) and

where Tk,i and Tk,i are the relations defined by the metric corre-
sponding to i G /. A variant of Corollary 3.3 states that these two
sets are both contained in dimension δ + 6k. The only observation
needed to verify this is that the construction of the family of bundles
parametrized by Uk (see (3.24)) can also be used to construct a similar
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family parametrized by I x Uk. (Note that the underlying manifold of
Uk is independent of the complex structure.) We leave the reader to
formulate similar versions of the other propositions.

4. Floer homology for circle bundles

Let (X, Σ) be a pair consisting of a 4-manifold and a smoothly em-
bedded surface. Let g be the genus, and suppose the self-intersection
number n = Q{Σ) is positive. Write X° for the open manifold X/Σ
equipped with a cylindrical end modelled onY = Y(n,g), and let W°
be a tubular neighbourhood of Σ, which we can equip with a cylindri-
cal end modelled on Ϋ. Suppose that X° is admissible in the sense of
(2.14) and that the pair (X, Σ) is admissible in the sense of (2.23). We
aim here to describe a Floer homology theory which allows partial cal-
culation of the invariants D% and D^J in terms of relative invariants
of the manifolds X° and W°. The theory is 'partial' in that we impose
restrictions on the dimensions of the moduli spaces involved. Subject
to these restrictions, the invariants of X° and W° take values in the
ordinary homology and cohomology (respectively) of the irreducible
representation variety, ^S(Y)U^S(Y).

(i) Construction of cycles from maps with small frontier.
We establish some notation for this section. Let Aδ be the standard
5-simplex. A singular 5-simplex in a space R is a map σ: Aδ -> R. A
rational singular chain c is a formal finite rational linear combination
c = Σ£LX

 rισi' The Oi are called the characteristic maps of c. We say
that a singular chain in a smooth manifold is smooth if each of its char-
acteristic maps is smooth. For a smooth manifold fl, let Cs(R) denote
the space of smooth rational 5-chains. A singular 5-chain is transverse
to a submanifold S if the restriction of each of its characteristic maps
to any face of Aδ is transverse to S. More generally a pair of singular
chains c and d of dimensions δ and δ' are said to be transverse provided
that the restriction of each characteristic map of c to any face of Aδ is
transverse to each of the restrictions of the characteristic maps of d to
any face of Aδ>.

Definition 4.1. Let M be an oriented δ-manifold and let f: M -> R
be a smooth map. We say that smooth singular chain c agrees with
(M, /) outside an open set U C R if there is a triangulation T of M
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so that c — Σ t e r / ° * as e^emen^s °f Cs(R> U).
Finally if / : S -» R is a map, we define the frontier of /, denoted
Fr(/), to be the set

{r € R\r = lim f(si) and (s^ has no convergent subsequence}.

This is the complement of the largest open set U in R such that f\f-i(u)
is proper.

Proposition 4.2. Let M be a smooth, oriented δ-manifold and let
R be a compact smooth oriented manifold of dimension n > δ possibly
with boundary. Suppose that f:M—>Risa smooth map such that
the closure of f(M) is contained in int(iϊ) and such that the frontier
Pr(/) is contained dimension δ — 2. Then there is a neighborhood U of
Pr(/) with the following two properties. First, for every neighborhood
V of Pr(/) with V C U, there is a rational singular smooth δ-cycle
c E Cδ(R) which agrees with (M, /) outside V. Secondly, any δ-cycle
which agrees with (M, /) outside U defines the same rational homology
class as c. Thus (M, /) gives rise to a well-defined homology class in
Hs(R] <&), namely the class [c] of any cycle agreeing with (M, /) outside
a sufficiently small neighbourhood ofFr(f).

Definition 4.3. We call the rational homology class produced by
this lemma [MJ]e Hδ(R;Q).

Proof of 4.2. Since Pr(/) is contained in dimension δ — 2 there
are manifolds Nι,... , Ns of dimension at most δ — 2 and smooth maps
gi\ Ni -> R so that U^g^Ni) D Pr(/). For the neighborhood U
of Fr(/) we can take any neighborhood so that the following three
properties hold: U is a smooth manifold with boundary, / is transverse
to 9C/, and every homology class in Hn-δ{R, dR; Q) has a representative
disjoint from U. To see that such neighborhoods exist we argue as
follows. Since Fr(/) is a closed set, we can always find arbitrarily small
neighborhoods satisfying the first two conditions. Since R is a compact
manifold possibly with boundary, its homology is finitely generated and
we can find a basis for the homology in general position with respect to
the maps 51,... ,3*. By the dimension hypothesis, this basis will miss
Fr(/) and hence also a sufficiently small neighborhood of Fr(/).

Consider the (δ — l)-dimensional rational homology class h repre-
sented by f\f-i(du): f~ι{dU) -+ R. We claim that h is in the image of
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the boundary map

This will be the case if h pairs trivially with the image of the restriction
map if^-^ί/ Q) ->• i f^^SC/ Q); or equivalently, by Poincare duality,
if the intersection number of h with every singular cycle in the image
of

is zero. Choose a cycle 5 representing an element of Hn-δ(U,dU;Q)
so that ds is transverse to h. We can assume 5 is transverse to /
and the gι. Then the image of 5 is disjoint from Pr(/) The fibered
product f~ι{U) Xf s defines a smooth 1-cycle with boundary h Π ds
proving the claim. Thus h = dk for some rational smooth singular
J-cycle in U. Now take a chain j which represents the homology class
of {f-^R \U)J) so that dj = h then j -he Cδ{R) is a cycle of the
desired form.

It remains to prove the uniqueness assertion. Let c and c' be cycles
representing elements of Hδ(R] Q) which agrees with (M, /) outside V.
To check that they are homologous it suffices, by Poincare duality, to
check that they have the same intersection number with elements of
Hn_δ(R,dR]Q). This is clear since, by construction, there is a basis
for Hn_δ(R,dRm,Q) represented by cycles disjoint from V. q.e.d.

The next proposition gives a useful condition under which the cycles
obtained from (Mo,/O) and (M^/i) are homologous.

Proposition 4.4. Let f0 : Mo —>• R and /1 : Mi -> R be two
maps satisfying the conditions of Proposition 4.2. Suppose that W is
a smooth, oriented 5 + 1 manifold with boundary M o U Mλ and that
g: W —> R x [0,1] is a smooth map with g\M{ = fi Suppose g satisfies
the following conditions.
(i) £

(ii) Fΐ(g) is contained in dimension δ — 1.

(iii) g is transverse to R x {0,1}.

Then we have the equality of homology classes [Mo,/o] = [Mi,/i].

Proof. We must show that the intersection numbers of [Mo, /0] and
[Mi, /1] with cycles representing elements of Hn_δ(R, dR; Q) agree. Let
s be such a cycle. We can assume that s is transverse to / 0 and fx

and disjoint from the frontier of these maps. The hypotheses of this
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proposition imply that a generic perturbation s of the product cycle
s x [0,1], relative to the boundary s x {0,1}, will be disjoint from the
frontier of g and that the fibered product W xg (s) is a 1-cycle. The
boundary of W xg (s) is the fibered product M1 X/x s — Mo X/o s, which
proves the result. q.e.d.

We also will need the relative case of Proposition 4.2. For our appli-
cations it is convenient to phrase the results in terms of cohomology.
We make the following definitions.

Definition 4.5. A map / : M -> i? is said to be orientable if
f*AmΆX(T*R) is isomorphic to Λmax(T*M) and is said to be oriented if
such an isomorphism is chosen.

Notice that an oriented map f:M^R has a well defined intersec-
tion number with oriented submanifolds of the correct dimension. Sup-
pose S C R is a smooth oriented manifold so that dim(S') + dim(M) —
dim(i?) and that / is transverse to S. Suppose that f{m) E S. Then
we have an exact sequence

0 ->• T*Sfim) A T*Rf{m) A T*Mm -»• 0.

This exact sequence induces an isomorphism

Λ m a x (ΓM m ) ® /*Λmax(T*S)m = /*Λm a x(T*iϊ)m.

Using the orientation of / and 5, we determine whether or not this
isomorphism is orientation preserving. This determines the sign of m.

Definition 4.6. Let M be an (n — <5)-manifold and let R be a
smooth, compact manifold of dimension n > 5, possibly with boundary.
Let / : M —> R be an oriented smooth map. We say that a smooth
singular cochain a agrees with (M, /) outside an open set U C R if
for every smooth singular chain c in C$(R \ U) which is transverse to
/, the oriented intersection number of c with / equals the Kronecker
pairing {a,c).

Proposition 4.7. Let M be a smooth n — δ manifold and let R
be a smooth, compact manifold of dimension n > δ, possibly with
boundary. Suppose that fiM-ϊRisan oriented smooth map so
that the complement f(M) \ (/(M) U dR) is contained in dimension
n - δ - 2. Then there is a neighborhood U of f(M) \ (/(M) U dR)
with the following two properties. First, for every neighborhood V of
f(M) \ (f(M) U dR) with V C U there is a rational singular smooth
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relative δ-cocycle a G Cδ(R) which agrees with (M, /) outside V. Sec-
ondly, any δ-cocycle which agrees with (M, /) outside U defines the
same rational cohomology class.

Definition 4.8. We call the cohomology class of the cycle a pro-
duced by this lemma [MJ]e Hδ(R;Q).

The reader can easily formulate and prove the relative analogue of
Proposition 4.4. The next lemma compares the intersection numbers
of these classes with the geometric intersection of these maps in the
case the domains have complementary dimension.

L e m m a 4.9. Let R be a smooth oriented n-manifold, possibly with
non-empty boundary. Suppose we are given r + : M+ -> R satisfying the
hypotheses of Proposition 4.2 and r_ : M_ —> R satisfying the hypothe-
ses of Proposition 4.7. Furthermore suppose that:

(i) dim(M+) + dim(M_) = dim(Λ);

(ii) the image of each map is disjoint from the frontier of the other,

i.e.

r+(M+)Πr_{M_) = r

(iii) r + and r_ are transverse.
Then the signed count of the number of points in the fibered product

M + X(r+,r_) M_

is equal to the Kronecker pairing of the classes [M+,r+] and [M_,rJ\.

Proof. This is clear from the construction of [M±,r±]. q.e.d.

(ii) Weak limits on cylindrical end manifolds. Given a positive
real number t, we define τt: R+ x Y -» [—ί, oo) x Y to be the translation
by — t. There is a similarly defined map for bundles over IR+ x Y. A
multi-set z C Z is an n-tuple of points of Z possibly with repetition and
where n is an arbitrary non-negative integer. The number of elements
of z is denoted |z|. We recall the Uhlenbeck compactness theorem for
cylindrical-end manifolds (Proposition 6.3.1 of [36]), which gives the
behavior of weak limits of connections in M™(Z).

Theorem 4.10. Let [Ai] be a sequence of connections in M™(Z).
After passing to a subsequence we can find the following data:
(a) a finite multi-set z° C Z and finite multi-sets z 1 , . . . , zN C Mx Y

(b) a bundle E° -> Z with Cι(E°) = w and a finite-energy ASD-
connection A0 on E°;
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(c) bundles E1, E2, ... , EN -+ R x Y with Cι(E*) = w\RxY and
connections Aj on Ej for j = 1,... , N; if zj is empty then the
connection A7 is not equivalent to a product connection;

(d) a finite set of sequences of positive real numbers {ίj}£χ, . ,
{*f}£i with
(i) t\ < t? < < t? for all i,

(ii) l im^oo t\ — oo for all j = 1 , . . . , JV,

(iii) l im^oo t\ - t\~x = 0 0 for j = 2 , . . . ,N.

This data satisfies the following:
(a) [Ai\z\m°] converges uniformly in the C°°-topology on compact sets

of Z \z° to [A°|z\zo] and the curvature densities tr(F,4i Λ FA{)
converge in the sense of measures on compact subsets of Z to

(β) [τ*jAi\^xγ\zj] converges uniformly on compact sets of ( I x Y)\zj

in the C°°-topology to [A^\^xY\zj] for j = 1,... ,i\Γ, and the cur-

vature densities r* ti^i*1^ ΛJP4J converge in the sense of measures

on compact subsets ofRxY to tτ(FAi Λ FAi) + 8π2 Σze** ^(z)/

(7) the Chern- Weil integral tz = c(A) satisfies

{δ) r{[A0]) = r - i l A 1 ) ) , and r + ( [ A ^ ] ) = r_{[A^1]) for l < j < N .
The second clause of item (c) is to ensure that this collection of

limiting data is unique. The kind of limits that arise in this theorem
lead naturally to a notion of ideal connection:

Definition 4.11. Any collection of data

as in (a)-(c) satisfying (7) and (5), is called an ideal connection with
charge K.

The integer N is called the length of the connection. The space of
ideal connections of length N and charge n can be described as the
union of the iterated fibered products

(4 .12) M%(Z) x ( r , r _ ) A C x ( R x Y) x ( r + f r _ ) M £ ( R x Y ) . . .
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as ft0, ft1,... , κN > 0 vary over κ° + ft1 + ... κN = ft. Here M denotes
the usual Uhlenbeck closure of a moduli space M. There are, of course,
further constraints on the possible sequences, (ft0, ft1,... , ft^), that can
arise if the fibered product above is non-empty. The following definition
encodes the constraint that arises from the Chern-Simons invariants.

Definition 4.13. For a real number ft > 0, we say that a sequence
ft0, ft1,... , κN is ft-appropriate if the following hold:
(a) ft°,ft\...,ft">0;

(b) Σlo **<*',
(c) there is a sequence of flat connections p°,... , pN on Ew -> Y so

that

C.S.(p°)ΞΞft° (mod 1)
and C. S.(/9*) - C. S.^" 1 ) = κ{ (mod 1),

for all t, (1 < i < N).
Note that the definition of ft-appropriate implicitly uses Y as an

oriented manifold. Also, for any ft > 0, there are only finitely many
ft-appropriate sequences. We only consider ft > 0 to avoid problems
with flat connections. Using the blow-up trick from [34] this causes no
loss of generality on the level of the invariants on X or X° and we will
leave the blow-up implicit when dealing with these manifolds, but there
are some issues to keep track of on W° so we will be explicit in this
case.

The boundary map r on M™(Z) has a natural extension to ideal
connections. If ([-A0],... , [AN]; z°,... , z^) is an ideal connection we
define

Finally notice that the image of the boundary map can be described
in terms of T«. For example, the image under r of the fibered product
(4.12) is contained in

Consider again a pair (X, Σ), with n — Q(Σ) > 0, and the resulting
cylindrical-end manifolds X° and W°, as in the opening paragraph of
this section. Fix a line bundle w on X, and use the same notation for
its restriction to Y = Y(n,g), the boundary of the complement of a
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tubular neighbourhood of Σ. Because w is given on the whole of X,
its restriction w —> Y is identified, up to isotopy, with the pull-back
of a bundle from Σ. We can therefore talk unambiguously about the
components &™v etc., of the representation variety &ίw(Y). For K E K ,
let

δ(κ) = Sn - 3(1 - bλ{X) + & + P0).

If z € As(X°), then the formal dimension of the moduli space

M:(X°; *e;od) n v(z)

is δ(κ) — δ. We can now show that, for /̂ , g and n in a certain range,
the frontier of this space under r is contained in dimension δ(κ) — 2.

Remark. Before stating the results, we remind the reader that the
metric on Y (and hence on the ends of X° and W°) is fixed, and rather
special, because we wish to apply the results of section 3. Accordingly,
when we talk about a generic perturbation of the metric on X° for
example, we are talking about a compactly-supported perturbation.
This should be understood throughout this section.

Proposition 4.14. Suppose X° is an admissible cylindrical-end 4-
manifold, arising from the complement X/Σ as above. Let z E As(X),
and suppose that δ and /ίGR satisfy the following inequalities:
(i) δ(κ) -δ<4g-6

(ii) δ(κ) -δ<2g-A-n/2

(iii) δ(κ) -δ<2n-2.
Then for all cylindrical-end metrics on X° in a Baire set, all n-appro-
priate sequences κ°,κ1,... ,κ,N, and all good representatives V(z) C
M™(X°) for z, we have

(i) r(M™o{X°) Π V(z)) is contained in St%* Π ^ Q ' ,

(ii) the set

(4.15) ?*" o • o τ«i (r(M™o(*°; @TS) Π V{z)))

is contained in &™'s, for * ='ev ; and Όά',

(iii) the set (4.15) above is contained in dimension δ(κ) — δ — 2N,

(iv) if S is any subset of 8£™"s contained in codimension greater than
δ(κ) — δ — 2N, then for a generic metric on X°, the set (4.15) is
disjoint from S.
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Furthermore, for each metric in a generic path of metrics gt, items (a)
and (b) hold, and

( ) C [0,1]
0<ί<l

is contained in dimension δ(κ) — δ — 2N + 1, for * = 'ev' and fed'.
Before giving the proof of this proposition, we deduce the following

crucial corollary.
Corollary 4.16. Let (X, Σ) be a pair for which X° is admissible.

Let z G As(X°), and suppose

δ(κ) - δ < min{4# - 6, 2g - 4 - n/2, 2n - 2}.

Then, for generic cylindrical end metrics g on X° and all good rep-
resentatives V(z), the set r(M™(X°) Π V(z)) is contained in a com-
pact subset of ffi™^s Uόtf™^, and its frontier is contained in dimension
δ(κ) -δ-2.

Proof of Corollary. Without loss of generality, we can assume that
z is a monomial βλβ2 ... βr and that V(z) is the transverse intersection
of good representatives V(βi) for the $ . For any subset / of {1,... , r},
let zj denote the corresponding product and dj its degree.

The set r(Af™(X°)ΠV(z)) is contained in ^sU&%£ by part (a) of
the Proposition above. If p lies in the closure of r(M™(X°; &£'oά) Π
V(z)), then the compactness theorem (4.10) and parts (α) and (b) of
the Proposition above imply that p lies in

(4.17)

for some subset / C {l,...r} and some ^-appropriate sequence «°,
K;1, ... ,κN. Furthermore, from the definition of a good representative,
the integer s (the number of points of concentration of curvature in
X°) satisfies

5s > δ — δi,

by (2.7). In the case N = 0, the dimension of the moduli space
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is therefore at most δ(κ) - δ - 3s, and its image under r is therefore
certainly contained in dimension δ(κ) — δ — 3 if s is non-zero. If N ψ 0,
then by part (c) of the above Proposition, the set (4.17) is contained
in dimension

δ(κ) -8s-δτ-2N> δ(κ) -δ-2N.

If p is actually in the frontier rather than just the closure, then at
least one of N and s must be non-zero. There are only finitely many
^-appropriate sequences, so the conclusion is that p must lie in one a
finite union of subsets of <^X'/od, each of which is contained in dimension
at most δ(κ) — δ — 2. q.e.d.

Proof of 4.14. We give the proof when there are no homology
classes; that is, when z = 1 and δ = 0. The general case is essentially
the same. Since X° is admissible, Lemma 2.14 tells us that twisted
reducible connections cause no problem for a generic metric on X°.

First we prove (a). As a function of ra, the formal dimension of the
moduli spaces M™(X°; <^m),

ra2

δ(κ) - 8 — + 4m + 3 - 2#,
n

achieves its maximum value, δ(κ) + n/2 + 3 — 2#, when m = n/4.
Thus inequality (ii) implies that this formal dimension is negative, and
hence this moduli space is empty for generic cylindrical-end metric on
X°. (See also [27], Lemma 3.8.) To analyze M^(X°; ^ ) , we use the
local structure theorem for cylindrical end manifolds Theorem 14.0.4
of [36] (see Theorem 2.13). For a generic metric on X° the dimension
of the preimage under r of the ad-trivial stratum of 0$™y or &™d is

8κ - 3(1 - bι(Z) + b\(Z)) - 6g + 3 = δ(κ) - 6g + 3,

while the preimage of the S1 -reducible stratum has dimension

8κ - 3(1 - b\Z) + bl(Z)) -4g + 2 = δ{κ) - 4g + 5.

Thus, if inequality (i) is satisfied, these dimensions are negative, and
hence for a generic metric these moduli spaces are empty.

Now we prove (b), (c), and (d) together by induction on N. For
N = 0, there is nothing to prove in (b), while (c) and (d) are the
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dimension formula and generic metrics theorem (2.13). So suppose
N > 0, and that (b), (c), and (d) hold with N - 1 in place of N.
There are two cases to consider, corresponding to the even and odd
components. We treat only the former, because the two are otherwise
identical. Consider a K-appropriate sequence κ°, /ς1,... , κN and the set

2 > o o f«χ (r (JICo (X0)) ΓΊ J C ' )

By the induction hypothesis, this has the form

2> (K)

for some subset K C £β™v'
8 contained in dimension δ(κ) — 8κN — 2N +

2. By part (d), we can assume that K is disjoint from any set S
contained in codimension larger than this, provided that S is specified
independently of the metric on the interior of X°.

Inequality (iii) implies δ{κo) + 8(κ1 + - - + κN) < δ(κ) < 2n-2. For a
generic metric on P , we must have d(κ°) > 0 and hence κ{ < n/4 for all
i, and for i = N in particular. Thus, the hypotheses of Propositions 3.2,
3.4, 3.5, 3.6 and corollary 3.3 are satisfied when we consider Tκ,N

Let us now prove (b). Proposition 3.4 immediately implies that

is empty. Suppose that

Then K meets the set Sm =T {&m) Π ̂ s . By Proposition 3.6, T
(^m) Π^^ ' 5 is empty unless κN > m2/n and is contained in dimension

Ag - 4 + Am + 6{κN - m2/n) < Ag - 4 + Am + 8(κN - m2/n)

otherwise. This achieves its maximum when m — n/A, so Sm is con-
tained in codimension

2g - 2 - - - 8κN.υ 2

By inequality (ii), this is strictly greater than δ(n) — 8κN, which in turn
is at least as large as the dimension of K. By the induction hypothesis
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on part (d), we may assume that K does not meet Sm, so obtaining a
contradiction. A very similar argument shows that

is empty, using the estimate on the dimension of TKN (&£;sίn9) provided
by Proposition 3.5. This competes the induction step for (b).

The induction step for (c) follows from Proposition 3.2, which says
that TKN (K)Π^S is contained in dimension dim(K) + 6^^. In this
situation κN is a positive integer, and so 6κN < 8κN — 2, which we can
combine with the induction hypothesis to give

dim (K) + 6κN < (δ{κ) - 8κN - 2{N - 1)) + 8κN-2
< δ(κ) - 2ΛΓ,

as required. To prove (d), consider a subset S of «^Λ and let S'
be TκN (S) C &t%;8. If S is contained in codimension greater than
δ(κ>) — 27V, then by Proposition 3.2, S' is contained in codimension
greater than δ(κ) — 8κN + 2. By the induction hypothesis, S' will be

disjoint from K for a generic metric, so S will be disjoint from TK

N (K)
as required. This completes the proof of (b), (c), and (d).

The result for a generic path of metrics is proved similarly. q.e.d.
Next, we consider the cylindrical end manifold W°. In order to

avoid problems arising from flat connections, we consider the blow-
up W°#UP2 and take C/(2)-bundle with first Chern class w = w + E
where E is the cohomology class Poincare dual to the exceptional curve
e. Given any K, we use the notation h for

so as to hide the effect of the blow-up. We will always consider metrics
on VF°#QP obtained via the connected sum from metrics on W° and
GP in a standard fashion, for example as in Chapter 7 of [11]. Let R be
a parameter controlling the neck length. We call a metric corresponding
to a value of the parameter i?, a metric with neck of length R. The
following lemma follows from a straightforward compactness argument.

Lemma 4.18. For all K G K and all compact sets K\, /C2 of metrics
on X and QP , there is an R — i?(/<c,/Ci,/C2) > 0 so that for any
K1 < K and any metric on the connected sum, formed from metrics
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belonging to Ki, joined with a tube of length R' > R, the moduli spaces

M%(W°#& c ^ ) contain no reducible connections.

The proposition below parallels Proposition 4.14. Note that al-

though W° has a cylindrical end modelled on y , we identify &W(Ϋ)

with &W(Y), and label its components accordingly. So Y is still the

manifold Y(n,g), with n positive.

Proposition 4.19. Let W° be as above, and let 7 G As(W°). Sup-

pose d and K satisfy the following inequalities:

(i) δ < 4g — 6 ;

(ii) δ < 2g - 4 - n/2,

(iii) K < \n.
_ 2

Then for all cylindrical-end metrics on W°#CP in a Baire set of met-
rics with neck of length at least R(κ), for all ^-appropriate sequences
κ°, κι, . . . , κN with length N > 0 and all good representatives V(ej)
for eη, the set

(4.20) Tκ* o o 2 v (r(Mi»Q{W°#&2) Π V(eΊ))) Π 4 Q ' o d

is contained in dimension 6^ — 6 — 5 + 8/̂  — 2. Furthermore, for a generic

one-parameter family of metrics with neck of length at least R(κ), we

have that

Uo<t<i (*, Tκ» o . . . o TV (r(M*o(W°# UP2) Π V{eη))) Π ^ o d )

C [0,1] x K ^

is contained in dimension 6g — 6 — δ + 8κ — 1.
There is the following Corollary which can be deduced from the

above proposition just as (4.16) was deduced from Proposition 4.14.
Note that 65 — 6 — δ + 8κ is the formal dimension of the moduli space

* C ; o d ) Π V(erγ).

Corollary 4.21. Let 7 E A^VF0). Suppose that

δ < min{4ff - 6,2g - 4 - n/2}

and K < \n. Then for a generic cylindrical-end metric on W

and generic good representatives V(eη) for eη, the frontier of

r : M

_ 2

P
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is contained in dimension 6g — 6 — δ + 8κ — 2.

Proof of4.19. First, we need to consider the generic metrics theorem
in relation to moduli spaces of the form

M£(w°#dp2; *e;o d) n v(e7).

There are no reducibles in this moduli space, because the boundary
values are in the irreducible part of the representation variety «̂ X'/od

We must also consider twisted reducibles. For any non-trivial real
line bundle λ, we have 6+ (λ) = 0 and ^(λ) = 2g — 2. To see this,
observe first that any non-trivial two-fold cover of W°#CP is dif-
feomorphic to a tubular neighborhood of a surface of positive square
connect-summed with two copies OP , and hence the intersection from
on the anti-invariant part of the two-dimensional homology has b~ = 1
and 6+ = 0, so 6+(λ) = 0. The first cohomology, Hι of the two-fold
cover, has rank Ag — 2 and the invariant part of H1 has rank 2#, hence
6X(A) = 2g — 2 as claimed. Since the smallest formal dimension of a
non-empty moduli space is 6g — 4 > 2g — 2, Lemma 2.4 applies, and
we deduce that for a generic metric the twisted reducibles are smooth
points of the above moduli space. After cutting down, it is therefore a
smooth manifold of dimension 6g — 6 + 8κ' — δ.

The dimension counting argument is now as follows. There are,
as usual, two cases, corresponding respectively to the even and odd
components; we shall talk only about 3H^;S. If κ°, /c1, ... , κN is a in-
appropriate sequence, then inequality (iii) implies that all the κι are less
than \n so that the hypotheses of Propositions 3.2, 3.4, 3.5, 3.6, and
Corollary 3.3 are satisfied for all the moduli spaces on the cylinder that
we encounter. In particular, by Proposition 3.4, we will not encounter
any ASD connection asymptotic to the odd component 8t%ά.

Consider first the subset of (4.20) defined as

(4.22) #£ 'n τ > («£'n

(the set arising from sequences of connections on the cylinder all of
whose end-limits belong to 8t%;a). The estimate for the dimension of
this follows immediately from the generic metrics theorem applied to
the moduli space on W°#CP2 and repeated application of Proposi-
tion 3.2.
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Every point of (4.20) which is not contained in (4.22) is contained in

^ eyn τ > (^eyn ί>-i ( {&:/n τκi (S)) .))

where S is one of the components <%% or ^ s i n g and 1 < i < N. If S
is ?̂™, then by 3.4 and arguing as before, either this last set is empty
if κι < m2/n, or it is contained in dimension

- 4 + 4m + 6 ( ^ - m2/n)

j L i ^ ) + 4 i / - 4 + | n

6# - 6 - (2g - 2 - \n)

by inequality (ii). If 5 is &™/in9, then by proposition 3.5 the set is
contained in dimension

6 (

N

Σ ^ ) + 2^ - 2 + 6κf < 8^ - 6p - 6 - J - 2,
i=*+i

where we used inequality (i) to make the estimate. In all cases then,
the possible locus for a point of (4.20) satisfies the required dimension
estimate. We again omit the similar argument which deals with a one-
parameter family of metrics. q.e.d.

The last Proposition and Corollary in this subsection are a pair sim-
ilar to the two results above, but they deal with connections on W°
which are singular along the embedded surface Σ C W°. In consider-
ing the moduli spaces of singular connections

we shall always be dealing with a close to zero. Note that if a < l/(2n),
then there can be no flat connections in this moduli space (so we will
not need to blow up the manifold at a point). There are no non-
flat reducibles because b~ = 0 and there are no twisted reducibles
because iϊi(Σ;Z/2) maps onto Hι(WOm,Z/2) (see the remarks before
Lemma 2.22). Finally, recall that the metric on W° will have a cone-
angle 2π/v normal to Σ whenever we deal with singular connections.

Proposition 4.23. Letp G Z satisfy the parity condition (2.20); and
fix δ G N, KERf and a G (0, | ) . Suppose these satisfy the inequalities

(i) δ + 2p < 4<? - 6,



EMBEDDED SURFACES 643

(π) δ + 2p < 2g - 4 - n/2,

(iii) K < \n,

(iv) a < l/(2n),

(v) a{{g — I) — p) — θί2n < l/(4n).

Fix 7 E As(W° \ Σ). Then for all sufficiently small cone-angles, all
cylindrical-end metrics on W° in a Baire set, all ^-appropriate se-
quences n°, ... , κN of length N > 0 and all good representatives V^)
for 7, the set

is contained in dimension 6g — 6 + 8κ — δ — 2p — 2. Furthermore, for
a generic one-parameter family of metrics, the set

ϋo<t<i (*, 2 > o o τ«. ( r ( M ^ p ' α (M^0, Σ) Π F ( 7 ) ) ) Π

c [o, l] x ^Γ;; o d

«5 contained in dimension 6g — 6 + 8κ — δ — 2p — 1.

jProo/. The inequality (iv) excludes the possibility of flat reducible
connections, as stated above. The remaining dimension-counting ar-
gument is otherwise much the same in the proof of Proposition 4.19,
once we make the following observation. If ΛC°, K 1, . . . , κN is a n-
appropriate sequence coming from an ideal connection corresponding
to a limit point of M^)P'Q!(W/Γ0, Σ), then consideration of the Chern-
Simons invariants implies for a l i i > 0 we have κι > l/(4n), because
(2.11) shows that the Chern-Simons invariants are rational with de-
nominator An (recall that m may be a half-integer). The Chern-Weil
formula (2.16) says that the total action of such an ideal connection is

K + a((g — 1) — p) — a2n.

Inequality (v) tells us that this is less than K + l/(4n). Thus the same
/^-appropriate sequences can arise as in the proof of Proposition 4.19.
q.e.d.

Corollary 4.24. Fix p0 G Z. Take p > p0 and 7 G As(W° \ Σ).
Suppose

δ + 2p< min{4# - 6,2g - 4 - n/2}
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and choose a < l/(2n), also satisfying the inequality

a{(g - 1) - po + n/2) - a2n

Then for all cylindrical-end metrics on W° in a Baire set, and all good
representatives V(η) for j , the frontier of

is contained in dimension βg — 6 + 8κ — δ — 2p — 2.

Proof. The Uhlenbeck closure of the moduli space M™*p>a (W°,Σ) in-
volves moduli spaces M™,'p 'α, where p' may be different from p. Choose
the cone angle 2π/v for the metric along Σ so small that, for the given
value of α, Proposition 2.12 of [27] holds. This proposition implies that
the change in instanton and monopole numbers, (—ΔK, — ΔZ), satisfy
the constraints

(4.25) Δ/ί > 0 and Aκ + Al> 0.

Thus if /' = \{{g — 1) — p'), then V < I + K, and this translates into the
inequality

Since p > p0 and K < n/4, we obtain (g — 1) — p' < (g — 1) — p0 + n/2.
So the second inequality on a in the statement of the Corollary ensures
that condition (v) of Proposition 4.23 holds for p'. As in the proof of
Proposition 4.23, this condition ensures that the same /^-appropriate
sequences arise here as in the non-singular case, and the dimension-
counting proceeds as before. q.e.d.

(iii) Invariants for manifolds with boundary. The work of
the previous two subsections allows us to define relative invariants the
manifolds W° and X° taking values in a truncated version of the Floer
homology of Y. We fix n and g, with n > 0, and let Y = Y(n,g). Let
w be a line-bundle on F, given as the pull-back of a line bundle on
Σ, so that we can distinguish the components «^, ί%™ά and ^ of its
representation variety. Set

(4.26) Δ = min{4# - 6, 2g - 4 - (n/2), 2n - 2}

= min{2# - 4 - (n/2), 2n - 2},
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and define the Floer homology and cohomology of Y as the ordinary
homology and cohomology of the irreducible parts of ^ ^ ( F ) , truncated
at degree Δ:

Definition 4.27. The (truncated) Floer homology group of Y is
the sum

FW(Y) = (T) H(&w's) 0 H(&w's)
0<i<A

The truncated Floer cohomology group of Y is the sum

FW{Y) =
0<ΐ<Δ

We usually understand that the coefficients are real or rational.
Sometimes the mod 8 grading of FW(Y) and FW(Y) is of signifi-

cance; it arises from the mod 8 reduction of the ordinary grading on
the homology and cohomology of the representation variety. There is
a natural bilinear pairing

(-,.) : FW(Y) xFw(Y) ^QovR

which is the sum of the usual pairings between the ordinary homology
and cohomology in each degree i. The Floer homology and cohomol-
ogy also have a decomposition coming from the decomposition of the
irreducible representation variety into its two components. We set

0<i<A

0<i<Δ

with analogous definitions for Fw. These decompositions should not be
confused with the other Z/2 grading, arising from the decomposition
of ®Hi(&w) according to the parity of i. Finally, there is a natural
filtration of FW(Y) and FW(Y). For any δ < Δ we write

0<i<δ

0<i<δ
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The chosen value of Δ for the truncation arises from the inequalities

in the previous subsection (it is the right-hand side in Corollary 4.16),

and is not meant to be best possible.

Now let (X, Σ) be again an admissible pair, and let X° and W° be

the corresponding cylindrical-end manifolds. Suppose that X° is also

admissible in the sense of (2.14). Let w —> X be any line bundle,

and let w also stand for the restriction of this line bundle to X°, W°

and Y(n,g) = dX \ N(Σ). Note that on the end of W°, the line

bundle naturally acquires the structure of a cylindrical-end bundle.

We continue to suppose the self-intersection number n is positive. We

introduce the abbreviation A(Z)(Δ) for the truncation of A(Z):

A(Z) ( Δ ) = { 7 G A ( Z ) | d e g ( 7 ) < Δ } .

We use the notation i and j for the inclusions

r̂-Σ HI

j : X° ~ X/Σ <-> X,

and z*, j* for the induced maps in homology. The main result of this

section is the following theorem.

Theorem 4.28. Let X°, W° and w be as above. Let p be a non-

negative integer satisfying the parity condition (2.20), with 0 < 2p < Δ.

There are linear maps

D%o : A(X°) —>FW(Y),

D%o : A(W°){A) — • F w ( y ) ,

and J % : A(W° \ Σ) ( Δ _ 2 p ) —> F«(Y)

so that for all 7 G A(W°){A) and z e A(X°) we have

while for 7 E A(W° \ Σ)(Δ-2 P ) we have

), DZ.(Z)).

All three of the linear maps are natural with respect to diffeomorphisms,

with the single exception of D%o in the case that b+(X) = 2, in which
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case the invariant may depend (a priori) on a choice of generic Rie-
mannian metric. The maps D^o and D^fiχ respect the filtration by
degree, in that for any δ < Δ we have

D%o : A{W°){δ) -> F

Remark. We will see in section 5 (Corollary 5.8) that, in fact, the
invariant Dχo is independent of metric, even in the case b+(X) = 2.

Proof of the Theorem. We begin with the construction of the maps,
starting with the case of X°. Fix z G Ad(X°), which we may suppose is
a monomial, expressed as a product of integral homology classes. Pick
a good representative V(z) C M™(X°; 9H^Λ Π ^ / ) and consider the
cut-down moduli space with its end-limit map r:

r : M™{X° &%8 II &%£) Π V(z) -+ @%s U &%£.

The domain of r is a smooth oriented manifold of dimension δ(κ) — δ.

If δ(κ) — δ < Δ, then Corollary 4.16 implies that for a generic metric

and generic good representative V(z), the image of r is contained in a

compact subset of the irreducible representation variety, and its frontier

is contained in dimension δ(κ) — δ — 2. We can choose a compact subset

containing the image of r,

which has the same dimension 6# —6, is a manifold with smooth bound-
ary, and is a deformation retract of the whole. (Take the complement
of a regular neighbourhood of the singular stratum in &™vHί%™ά.) Then
by Proposition 4.2, for all such K satisfying the above inequality, the
map r defines a rational homology class

We set

Dχ'(z) = Σ [ ^ W ; ^ e T π ^ r / ) n v(z), r}.
ί(/c)-ί<Δ

The moduli spaces M^(X°; ^ / o d ) are oriented using the homology-
orientation of X, as described in the Appendix. When b+(X) > 2
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(so that b+(X°) > 1), the usual argument shows that this class is
independent of the choice of metric on X° and the data used to define
the V(z), as well as showing that the definition gives a linear map on
As(X°). The relevant points here are Lemma 4.4 and the last clause
of Proposition 4.14. In the case b+(X) = 2, one must choose the
Riemannian metric to avoid reducibles, and in this case the class we
have defined may, apparently, depend on the metric. (See Corollary 5.8,
however.)

Now consider the case of W°. The argument is analogous to the
previous case, using Corollary 4.21 rather than 4.16. Choose a man-
ifold with boundary, «ί3?~, which is a deformation-retract of the irre-
ducible representation variety, as above. Again we can assume that
7 G As(W°;Z) is a monomial, with δ < Δ. If K < \n then Corollary
4.21 gives a generic metric and generic good transverse representatives
V(ej) for eη so that

is a smooth manifold of dimension 6g — 6 + 8κ — δ. We consider only
K satisfying K < δ/8 (which certainly implies AC < n/4), so that the
dimension is not more than 65 — 6. Corollary 4.21 implies that the
frontier of

r λ/Γ™ (W°Jί(ΓΪP m tfPw>s TT ΰpw's\ Π VΎPΛΛ —^ ΰpw>s TT ^Pw's

1 . -iK-*/^-t-i/4\"" T/"^~^ 5 ΘV " ^ od / V // βv " ^ od

is contained in dimension 6# — 6 + 8/s — 5 — 2, and the same is true also
of the restriction

Applying Proposition 4.7 to this last map, we obtain a cohomology
class

Here we need to orient the normal to r, using the convention described
in the Appendix. Note that the image of r in this case may meet the
boundary of &~.) We then set

κ<δ/8
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Again, the result is independent of the metric on W°, and the other
choices.

Last in this sequence, we consider the singular moduli spaces. Fix
p > 0 satisfying the parity condition and 7 G As (W° \ Σ) with δ <
Δ — 2p. Choose α small enough that the hypotheses of Corollary 4.24
are satisfied with p0 = 0. Now choose a generic metric and good repre-
sentatives V (7) so that we can use Corollary 4.24 as above to construct
cocycles

[M™>p>a(W°,Σ; r ) n y ( 7 ) , r]

in Hδ-Sκ+2p(@Z) © Hδ-Sκ+2p(^d) whenever K < {δ + 2p)/8. (Recall
that the dimension of the cut-down moduli space here is 65 — 6 4- 8κ —
δ — 2p.) We then define

DWM = Σ [M:ιP a(W°,Σ; r ) n % ) , r].
κ<(δ+2P)/8

Using the second clause of Proposition 4.23, it is again straightforward
to check that this cocycle is independent of the choice of generic metric,
a and good representatives.

The last clause of the Theorem, concerning the filtration, is an imme-
diate consequence of the definition and the fact that the action K must
be non-negative: we see, for example, that if w = 0 and 7 E
then

a%a) Θ

To prove the assertion regarding the equality between the pairings
and the invariants of the closed manifolds, we need to check three
things. First, we need to check that the algebraic pairing of these
cycles agrees with the signed count of points in the fibered product
of the moduli spaces. This is the content of Lemma 4.9. Second, we
need to check that all points in the fibered product are accounted for
in the pairing. This is a straightforward dimension count, along the
lines of Propositions 4.14 and 4.19. We will go through the argument
in the case of the singular invariants and where there are no homology
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classes coming from X° (i.e. z = 1), and leave the reader to check the
remaining cases.

We begin by choosing appropriate generic metrics on the cylindrical-
end manifolds X° and W°. Choose 7 e As (W°) where δ < Δ - 2p, and
a satisfying inequalities (iv) and (v) of Proposition 4.23. Next choose
a generic metric on W° so that the conclusions of Proposition 4.23 hold
for all the cut-down moduli spaces

where p' > — \n and K < (5+2p)/8, and 7' is a factor of 7 in A(W° \Σ).
Write #_ for this metric on W°. By Theorem 9.0.5 of [36], we can choose
a metric g+ on X° so that the boundary maps

r : MZ(X' , ®:j

are transverse to all the sets of the form

(r(M:/'a(W°,Σ)ΠV(i))) n *%

for dllp1 > —\n.
Now consider a sequence of metrics Qi on X so that {X,gi) contains

a cylinder isometric to [— i,i] x Y and so that this sequence of met-
ric converges uniformly on compact sets to g+ on X° and #_ on W°.
Consider the Uhlenbeck limit, as in Theorem 4.10, of a sequence of
connections in

(4.29) MΪ*'a(X,V)9inVfa(<γ)),

where δ(κ) = δ + 2p, so that the intersection is zero-dimensional and
this cut-down moduli space defines J5X')Σ(J*(7)) For such a limit, an
obvious variant of Theorem 4.10 implies that there is a /^-appropriate
sequence κ~, K1, ... ,κN and a p' so that the intersection

is non-empty. Suppose also that there are j points of W° \ Σ (counted
with multiplicity) where the limiting sequence bubbles, and s points
of Σ where bubbling occurs. (Note that since 7 G As(W° \ Σ), the
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corresponding constraint does not disappear when bubbling occurs at
points of Σ.) We also have

using (2.25), and deg(7') > δ - 5j by (2.7). If N > 0, then using

Proposition 4.23 we see that the formal dimension of this intersection

is

δ{κ+) + 6g - 6 + 8(κ- + KX+ + κN) - 2p' - deg(V) - 2 - 6 ^ - 6
< δ(κ) -2p-δ-3j -2s-2
<-2,

and hence, by the transversality assumptions we have made, this inter-
section is empty. If N = 0, then the formal dimension of this intersec-
tion is

δ{κ+) + 8κΓ - 2p' - deg(Y) - 65 - 6 < δ(κ) - 2p - δ - Zj - 2s

Thus our transversality assumptions imply that j = s = 0 and K =
«+ + «~. In other words, any connection arising in such an Uhlenbeck
limit is a point of the fibered product

(4.30)

where /^++κ_ = K, and where δ(κ+) > 0 and κ_ > 0. Now 5(κ) = δ+2p
so we have

(4.31) 0<κ~ < |(2p + ί) < | Δ .

Hence all points in the fibered product appear in the range where the
pairing is defined.

Finally, we need to see that the points the union of the zero-dimen-
sional fibered products (4.31), as κ~ runs through the finite range indi-
cated, is diffeomorphic, in an orientation-preserving way, to the moduli
space (4.30) which defines the invariant on the left-hand-side of the
pairing formula, once the neck-length i is sufficiently large. Given the
above analysis of dimensions, this now follows from the gluing theorem,
Theorem 1 of [35]. q.e.d.
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We also have a vanishing theorem for the case of negative p. (See
also [27] and [25].)

Proposition 4.33. Let (X, Σ) be as above, and assume n and g
are such that Δ = Δ(n,g) is non-negative (4.26). Then for all p < 0
and all z G A(X/Σ), the invariant Dχ^(z) is zero.

Proof. Fix p < 0 and choose a so small that the inequalities of
Corollary 4.24 hold with p0 = p. Apply the argument used to establish
the pairing formula in the proof of Theorem 4.28 above, taking a se-
quence of Riemannian metrics g{ with increasing neck-length, but now
with 7 = 1 (so that δ = 0). The conclusion (4.32) is the same; but
now, because p is negative and δ is zero, there is no κ~ which can arise,
and one concludes that the moduli space is empty once i is sufficiently
large.

Remarks, (a) In the course of the proof of (4.28), we have seen
that the invariants of the manifolds X° and W° are independent of
the choice of perturbation of the metric, subject to the transversality
requirements. These perturbations, however, are still compactly sup-
ported. We can also consider changing the metric on Y (and hence
on the cylindrical ends), subject to the requirements of the correspon-
dence theorems in section 3. This class of metrics is connected, so one
easily shows that the invariants are also independent of this choice:
the relevant observations are that a version of the compactness theo-
rem (4.10) continues to hold when the metric on the end is varied, and
that Corollary 3.3 and Propositions 3.4-3.6 have variants involving a
one-parameter family of metrics, as described at the end of section 3.
As a consequence, the invariants of W°, for example, depend only on
the topology of the tubular neighbourhood N(Σ) and the chosen line-
bundle w —> Σ. The automorphisms of w covering the identity map
on the base act trivially on FW(Y). So Diff+(Σ) acts on the Floer
homology, and we have, for example:

Proposition 4.34. The map D^o : A(Σ) ( Δ ) -> FW(Y) respects the
action o/Diff+(Σ). For 7 = 1 and all p < | Δ , the element

W , E ( 1 ) 6 F»(Y)

is invariant under the action o/Diff+(Σ).
(6) There are some homology classes on X which lie in the image of

both i* and j * . These are the classes coming from the first homology
of Σ (if their image is non-zero in X) and the class x of a point in X.
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The pairing formulae allow us to express the values of the invariants of
X or (X, Σ) on these classes in more than one way. In particular, since
the image of the homology of X° contains the image of the homology
of W° \ Σ, all values of the invariant D^J can be calculated from the
second pairing formula of the Theorem with 7 = 1.

(c) In the pairing formulae, one of the manifolds involved has always
been the standard manifold W°. There is no real need for this, except
that, if the manifold is changed, then some of the dimension and action
formulae change too. Consider a 4-manifold Z° with a cylindrical end
modelled on y(n,#), with n > 0. Write

q(Z°) = (2g-2)-(b1(Z°)-b+(Z°)-l),

so that q(W°) = 0. The formal dimension of the moduli space

M?(Z°; JC/od) i s t h e n

dimilC(Z°; S% /oά) = 8κ + 6g - 6 - Zq.

The moduli spaces of ASD connections on Z° can be used to define
invariants which take the form of linear functions

where Δ(n, g) is as before. There are only a couple of points to mention.
First, reducible connections are irrelevant as we are always considering
connections on Z° with irreducible boundary values. The dimension-
counting arguments, used in the definition of the invariants of W°,
continue to show that ideal connections which involve intermediate re-
ducible flat connections on Y do not contribute more than codimension
2 to the frontier of the image of the moduli spaces in ̂ ^ * o d . For the
twisted reducibles, we used an argument that was special to W°, be-
cause it was convenient to do so. However, one can deal with them
in the same way that one treats the reducibles: there are only 2g — 2-
dimensional tori of twisted reducibles in «̂ X'/od, and they cannot con-
tribute anything of codimension smaller than Δ + 2 to the frontier.
Similar remarks apply to a pair (Z°, Σ).

In section 9, we will make use of a rather trivial case, Z° = W°#QP ,
in proving the blow-up formula for manifolds of simple type.

(d) Having completed the construction of the relative invariants, we
can now look again, with the benefit of hind-sight, at the inequalities
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in section 3(i), such as in Corollary 3.3. Had Y not been a circle
bundle, one would have expected the image under r of the moduli
spaces MK(X°; &™y*od) to have a frontier of codimension 1, contributed
by ideal instantons of length 1, consisting of an instanton [A°] of charge
κ—monX° and an instanton of charge m on the cylinder. Each moduli
space would not define a cycle, but the union of the moduli spaces of
different charge would need to be considered together, as defining a
class in a full Floer homology theory whose boundary map involved
instantons on the cylinder. Such a Floer theory for circle bundles over
Riemann surfaces has been constructed by Taubes [42].

5. Expressing the invariants of the pair in terms of the
Donaldson invariants

(i) The invariants of W° are an isomorphism in low degree
Fix a line bundle w —> Σ, and let &*'W(Σ) denote the space of (deter

minant one) gauge equivalence classes of irreducible connections in

where E —> Σ is a unitary rank-2 bundle with det(E) = w. Let

(5.1) μ Σ : A(Σ) -> H

denote the algebra homomorphism which extends the map

where U is the universal SO(3) bundle. According to [2], the inclusion
of the set of flat connections, i* : &!W>8(Σ) -> &*>W(Σ), induces an
isomorphism in homology or cohomology in degrees less than 2g — 1 Ίΐ
w [Σ] is odd and in degrees less than (2g — 3) if w [Σ] is even. In
particular we have the following:

Proposition 5.2. The map μΣ gives rise to isomorphisms,

) =As{Σ)

and

for δ<2g-4.
Let p : Y -> Σ be, as usual, the circle bundle over Σ of degree n. By
pull-back, p gives an isomorphism p* from &W'S(Σ) to @™*(Y). The
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cohomology of the latter in dimensions δ < Δ defines the even part of
the truncated Floer cohomology F£(Y) (see section 4(iii)), so we have:

Corollary 5.3. The maps μ% and p* give rise to an isomorphism

v : A(Σ) ( Δ ) -> F:V(Y).

Let W° be the usual disk bundle over Σ, with a cylindrical-end met-
ric. Note that we identify A(W°) with A(Σ) from this point on.

Proposition 5.4. The image of the relative Donaldson invariant

D^o : A(Σ) ( Δ ) -> F»(Y)

is contained in the even part, F£(Y) C FW(Y). The same is true for
the invariants of the pair, D^ΪΈ.

Proof. Prom the definition of the invariants, to prove the first
statement it is enough to show that for suitable metric on W°#QP
the moduli spaces

are empty for K < n/4. For this, it is enough to show that the moduli
spaces

are empty for some metric. For a conformally-Kahler, cylindrical-end
metric, a connection [A] in this moduli space gives rise to a holomorphic
bundle £ -> W, by Guo's extension theorem (3.12). Here W is the
(closed) ruled surface. The determinant of 8 is given by det E = w +
[Σ_] as a C°° bundle, so it has odd degree on the two-sphere fibres. At
the end of this section (Proposition 5.11), we will show that £ satisfies
the following stability condition: if T —> £ is a non-zero map from a
holomorphic line-bundle on VF, then

Because the degree is odd on the fibres, the generic splitting type of £
is at least 1/2. Prom this and the stability condition, one can easily
deduce that c(£) > n/4 using the argument of Lemma 3.23. Since
c(£) = ft, it follows that the moduli spaces are empty for n < n/4 as
claimed.
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Similarly, the second statement of the Proposition will follow if we
can show that the moduli spaces

(5.5) M:^(W°^^S)

are empty when K < | Δ < | n , for some sufficiently small a and some

cylindrical-end metric (now with a small cone-angle 2π/u along Σ). If

the metric is conformally Kahler and a is rational with denominator

ι/, we can use Guo's extension theorem and Proposition 8.18 of [27] to

show that a connection [A] in this moduli space gives rise to a holomor-

phic bundle Z —> W with c(£) = K and det(£) = w®[Σ_]. Furthermore

£ has a holomorphic line subbundle C C 8 | Σ + and

= -*,

where / is the monopole number. As in the ordinary case above, the pair

(£,£) satisfies a stability condition (5.14), which implies the condition

(5.5) above when a is small. It follows again that the moduli spaces

are empty for K < n/4.

By the first part of this Proposition, the invariant D^o induces a

map

D : A(Σ) ( Δ ) -> FZ(Y).

Let D = Σ i = 0 ^ 8 i ^ be the decomposition of D which arises from the
grading of F£(Y). That is, using the definition of the latter as

δ<A

we write D^ for the map

D ( 8 ί ) : As (Σ) -> Hδ-Si(^s) (i < ί/8),

(see (4.29)).

Proposition 5.6. The top-degree part of the relative invariant of

W° is given by

I><0> = v.
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Proof. By definition,

> 2 r ] ,

where SH~ C £%^s is a compact submanifold with boundary which is a
deformation retract. Here the connected sum W°#CP is formed with
a long neck. We claim that if C C ffi™^8 is any compact set, then for
all neck lengths L sufficiently large, the moduli space

Mc=Mf/ 4(W°#<ΠP2; C)

is compact. If not then there is a sequence of tube lengths Li going
to infinity and ideal connections ([Aj], [A*],... , [A^]) with compatible
boundary values and r+([A^]) € C, with total action | and each n* > 1.
(Since the original total action is smaller than 1 there can be no bub-
bling at points and hence the total action of the ideal connection is pre-
served under weak limits). Taking the Uhlenbeck limit of this sequence
of ideal connections, we get an ideal connection ([Ao], [Ai],... , [An])
with n > 1 on W° and a connection [B] on QP . Then action of [B]
is necessarily \ so the ideal connection ([Ao], [Ai],... , [An]) with com-
patible boundary values is flat, and hence we must have had n = 0, a
contradiction.

Once one knows that the moduli space is compact, standard gluing
arguments show that Me has the structure of a two sphere bundle over
M™(W°,C). The end-limit map r: M™(W°,C) -> C identifies the
base of the bundle with C. To prove the result it suffices to show that
for any 7 satisfying the degree constraint, and taking C to represent a
cycle in <^~, we have

Since Me is compact, the algebraic intersection of Mc with the good
representative V(ej) is simply the ordinary evaluation of the cohomol-
ogy class μ(ej) on [Me]:

By the blow-up formula, the class μ(e) evaluates to 1 on the fibers of
r and the result is immediate. q.e.d.

This implies the following result.
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Corollary 5.7. The even part of the relative Donaldson invariant.

is an isomorphism.
Proof. By the preceding results, D respects the filtration and its

top-degree part is an isomorphism. q.e.d.
There is another loose end which we can now tidy up. In the def-

inition of the invariant Dχo in Theorem 4.28, the possibility was left
open that the invariant depended on the choice of metric in the case
b+{X) = 2.

Corollary 5.8. The invariant Dχo is independent of the choice of
Riemannian metric, even when b+(X) = 2.

Proof. Consider first the part of the invariant taking values in F^:

for some z G A(X°). Prom the first of the pairing formulae in Theo-
rem 4.28 and the fact that odd part of D^o vanishes, we have

for all 7 £ A(W°)(Δ), where D is as in the previous Corollary. The left-
hand side is independent of metric since b+(X) > 1. By the previous
Corollary and the fact that the pairing between Fw and Fw is perfect,
we deduce that D%o ev(z) is also metric-independent. For the odd com-
ponent, one can identify Dχo o d with ±Dχoiey, where w' = w — [Σ].
q.e.d.

(ii) The existence of a universal formula. Combining Proposi-
tion 5.4 and Corollary 5.7, we obtain:

Proposition 5.9. For all n > 0, all g > 1 and all p < |Δ(n,g),
there is a unique inhomogeneous element ω™ = ω™(n,g) G A(Σ)(2p) so

that as elements of Floer cohomology

(The factor 29 is introduced for later convenience.) The material of
sections 3, 4 and 5 has lead us to the following theorem:
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Theorem 5.10. Let (X, Σ) be an admissible pair, such that X°
is an admissible cylindrical-end manifold. Suppose the genus #(Σ) is
at least 2 and the class S represented by Σ has Q(S) = n > 0. Let
% : Σ —>• X and j : X/Σ —> X be the inclusions. Suppose that the
quantity

Δ(n,g) = min{2# - 4 - (ra/2), 2n - 2}

is non-negative. Let p be a non-negative integer satisfying the parity
condition (2.20), so that D^^ is defined, and suppose that

Then there is an element ω™ G A(Σ), inhomogeneous of degree 2p, such

that

for all z e A(X/Σ). The element ω™ depends only on n = Q(S),
g = genus (Σ) and w S mod 2, and is uniquely characterized by Propo-
sition 5.9. It does not depend on X or z.

For p < 0, the invariant D^^(z) is zero for all z G A(X/Σ).

Proof. Combine Proposition 5.9 with the pairing formulae in Theo-
rem 4.28 to deduce the first statement. The vanishing of the invariants
for p < 0 was stated earlier as Proposition 4.33. q.e.d.

(iii) A stability condition. We now return to a matter which was
postponed during the proof of Proposition 5.4. First, we describe a
conformally-Kahler, cylindrical-end metric gcy\ on W°. The conformal
factor will be of the form

/ 2πn \
=exp(-—rj,

where r : W° —> K is a function agreeing with the first coordinate on
the end, [0,oo) x Ϋ, of W°\ so the corresponding Kahler metric g is
0"2ffcyi Such a metric can be written down explicitly by describing the
Kahler form Φ for g: we set

Φ = f(t)dtΛη +

where t is the standard coordinate on the interval (—π, oo), Φ Σ is the
Kahler form of a metric on Σ, and the other notation is as in (2.10). If
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we take / to be a smooth, monotone decreasing function on (—π, oo)
satisfying

_ J 1 — cost, when — π < t < —π/2

then it is not hard to verify that the form is closed, that the correspond-
ing metric g is positive and can be completed at t = — π by attaching
a copy, Σ+, of Σ, and that σ~2g is cylindrical in the region t > 10.
Notice that because the conformal factor is exponentially decaying, g
has finite volume. Let Λ: Ω1Λ(W°) -> Ω0'°(VF°) denote the contraction
with Φ.

Let W be the closed ruled surface, obtained by attaching Σ_ at the
end r = oo. Notice that neither gcy\ nor g extends to a metric on W.
Given an ASD connection A in the moduli space M™(W°; &™y/oά)g,
one obtains, as observed above, a holomorphic bundle EA -> W whose
restriction to Σ_ is semi-stable. If ω —> W is a holomorphic bundle
whose underlying C°° bundle is w, we can take det SA to be ω in the
even case and ω ® [Σ_] in the odd case.

Proposition 5.11 If s : T —> EA is a non-zero map from a holo-
morphic line bundle on W, then

Remark. One can interpret the conclusion as saying that E is

semi-stable with respect to the degenerate Kahler class [Σ+], defined

by Φ.

Lemma 5.12. Let T —>• W be a holomorphic line bundle with

Hermitian metric h and compatible connection B.

(i) There is a complex gauge transformation 7 ofT\w° so that AFΊ*(B)

is a constant multiple of σ~2:

= cσ~2.

(ii) The norm of η measured by h\Wo is bounded above by

where δ = 2ψL and β has the same sign as Cι{T) [Σ_].
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(iii) The sign of c is the same as the sign of cx{T) [Σ+].
Proof First we compare the metrics g and gcγ\. Let *g denote the

Hodge star operator for the metric g and let *cyi denote the Hodge star
operator for the metric gcy\. On p-forms these are related by

*9 =

Thus the L2-norm with respect to g on functions is given by

= / / 2 e x p ( - -
Jw° v

We write σL2 for the space {σ/ | / G ί 2 } with the norm ||σ 1 / | | L 2

So the norm of an element / G σL2(W°,g) is

We can compare these norms to the weighted Sobolev spaces of
[36] and [40]. These norms are defined by

where V is the covariant derivative for the cylindrical metric. The com-

pletion of C£°(W°) with respect to these norms is denoted

L2

kiδ,{W0,gcyl). Thus σL2(W°,g) = L2

δ,(Wo,gc*x) where δ' = -2πn/V.

The Laplacian is given by

Agf — —σ~ *cyi d * c y l σ2d,

so σ2Ag is the Laplace operator associated with the weighted Sobolev
spaces σL2{W°,g). For part (i), we need the following Lemma:

Lemma 5.13. For δf in the interval (—2£, 0) the operator

σ2Ag: Llδ,(W°,gcyl) -> L2,(W°,gcγl)

is a Fredholm operator of index zero. The kernel of Ag on these spaces
consists of the constant functions.
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Let λ > 0 be the square root of the smallest positive eigenvalue of

the Laplacian on functions on Y. Then for δ1 in the interval (0, λ) the

operator

σ2A9: Llδ.(W0,9cyl) -> L2

f(W°,gcyl)

is a Fredholm operator of index — 1. The kernel of Ag on these spaces

is trivial.

Proof On the cylinder [0, oo) x Y the Laplace operator has the

form

where Aγ is the Laplacian for Y. It straight forward to apply the Fred-
holm theory of Lockhart and McOwen [32] to deduce that for — 2δ <
δ' < 0 this operator is Fredholm on L2

δ,. For δ' = — δ the operator is
formally self-adjoint and one can check then that it has index 0. One
also finds that this operator is Fredholm for 0 < δ' < — δ + y/δ2 + 4 λ 2 .
The index drops by one when δ' becomes positive from the elimination
of constant functions from the kernel.

To continue with the proof of Lemma 5.12 we may assume without
loss of generality that h\%_ is Hermitian Einstein. For part (i), we seek
a solution ξ to the equation Agξ = cσ~2 — iAF or

σ2Δ,ξ = c- iσ2AF.

So by Lemma 5.13 and the Fredholm alternative, we find 7 satisfying

(i) if we can show that σ2AF G σL2(W°,g). Let σ~2Φ = Φcyi; note

that Φcyi is bounded. Then

g { )
= σ" 4 * c y l (σ2Φc yi Λ F)
= σ " 2 * c y l ( Φ c y l Λ F ) .

Since F bounded in the cylindrical norm, we see that σ2AF is also
bounded and hence is in σL2(W°,g), as required.

For part (ii) we use the fact that σ2AF = *Cyi(ΦCyi A F). Since h is
Hermitian Einstein on Σ_ there is a constant β with the same sign as
Cip7) [Σ_] so that iσ2AF - β + 0{e~at) for some a > 0. Thus the ξ
found above satisfies
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Consider the function η = fp-τ on W°. We have σ2Agη = c — β
on the end of W° so ξ — η satisfies

σ2Ag(ξ-η)eLl

for some δ1 > 0. Thus by the second clause of Lemma 5.13 we can find
u E L\δ, and υ E L2

δ, so that

σ2Ag(ξ-η)=σ2AgV + u.

Now by the first clause there is a constant d so that ξ — η = d + v
whence ξ = η + d + v, so 7 = e^ satisfies the required bound.

For part (iii), we have, on the one hand,

iAF(*gl) = c[ σ~2(*gl),

and σ~2 is integrable. On the other hand, we have

/ iAF{*gl) = ί iF ΛΦ.
Jw° Jw°

The form Φ is self-dual and has finite energy, so by looking at it in the
cylindrical-end metric and applying Proposition 4.9 from [3], we see
that Φ represents a class in the image of H2(W°) in H2(W°). Hence
Φ represents a positive multiple of [Σ+]. Also, iFΊ*(B) represents the
same class on W° as iFB, so the last integral represents the pairing
between 2πcι(Jr) and [Σ+].

Proof of Proposition 5.11. Given Lemma 5.12, the proof follows the
familiar pattern (see for example [11]). We view the map J " - > ί as a
holomorphic section, s, of T*®£. Using the fact that A (the connection
in g#) is ASD, and applying part (i) of Lemma 5.12 to det(^** ®8), we
can find a connection C in J7* ® 6 with

iAFc = cσ"2.

Viewed in terms of the cylindrical end metric and a Hermitian fibre
metric, /ι, pulled back from W, the restriction of 5 to W° is bounded.
We wish to estimate s with respect to the Hermitian Einstein metric
hjiE coming from the ASD connection. The comparison of h with HHE
comes in three steps. First there is a complex gauge transformation 70
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arising from Lemma 3.15. To estimate the growth 70 we need to esti-
mate the decay of the connection to its limiting value. If the boundary
value is irreducible then 70 is trivial and there is nothing to estimate.
If the boundary value is reducible then it follows as in the proof of
Lemma 13.3.2 in [36] that in a neighborhood of a reducible connection
Γ we have the following Lojaszewicz inequality for a connection A close
enough to the flat connections and in Coulomb gauge:

<\\vAcs\\L2
for some positive constant C. Here the distance is measured with re-
spect to the L\ metric. Thus

<-Cdist(A(t),3?(Y)\3

< -C\A(t) - AJ3.
Integrating this inequality gives

for some positive constants C\ and C2. A straightforward bootstrap
argument shows that this decay rate is valid for any stronger norm.
Since 70 is obtained as the solution to the ODE in Lemma 3.15 we
have

|7O|Λ <

Next is the gauge transformation 71 coming from the extension result.
Since in terms of the cylindrical end metric this gauge transformation
goes between connections exponentially decaying to the same connec-
tion, the gauge transformation exponentially approaches the identity.

Finally there is the gauge transformation 7 obtained in Lemma 5.12,
coming from the determinant line of F* ® 8. Since both 70 and 71
have determinant 1, det(J7)* ®8 is naturally still a line bundle over W
and the Lemma is applicable. Suppose now that c < 0. Since £ | Σ - is
semi-stable, β > 0. Thus Lemma 5.12 implies 7 is bounded.

Since BQS = 0, the Weitzenbόck formula for sections of T* <8> 8 says
that

1

41
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where all norms and covariant derivatives are taken with respect to the
Kahler metric g while the unitary structure in E is the one coming
from the ASD connection. We must check that /Δ|77i7 0s | 2 = 0. By
Stokes' theorem, we have for all T,

σ3 * c y l

T
/ Δ | 7 7 l 7 o s β *gl= I M 7 7 i 7 o s β = /

Jτ<T Jτ=T Jτ=

Because d|77i7os|^ grows at worst like e^ in the cylindrical norms,
the boundary term goes to zero. So by integrating the Weitzenbock
formula, we arrive at a contradiction if c is not positive. But by part
(iii) of Lemma 5.12, the sign of c is the same as the sign of — 2c1(JΓ)
[Σ+] + C l(5) [Σ+]. q.e.d.

There is a version of Proposition 5.11 for the case of connections
on W° with singularity along Σ. If [A] belongs to the moduli space
M™'p'a(W°,Σ; «fe^od), where a is rational with denominator z/, one
obtains a holomorphic bundle E = EA on W with c(E) = K and det E =
ω or ω ® [Σ_], together with a distinguished line sub-bundle C C £|Σ+

Proposition 5.14. Let (E,C) be as above. If s : T -» EA is a
non-zero map from a holomorphic line bundle on W, then

in the case that the image o/s|Σ + is contained in C, and

otherwise.
Proof. These inequalities are the condition for parabolic semi-

stability of these bundles on W, with respect to the degenerate Kahler
class [Σ+], and as such they can be regarded as an orbifold version
of the previous result, Proposition 5.11, along the lines of [27]. See
Proposition 8.20 of [27]. q.e.d.

6. Calculating the universal formulae

(i) The formulae. This section is devoted to a partial calculation of
the universal elements ω™ in A(Σ) which appear in the formulae (5.10),
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expressing the invariants DWφ of a pair (X, Σ) in terms of the invariants
Dw of X. As usual, we denote by S the fundamental class of Σ with
its chosen orientation and by x the positive generator of H0(Έ; Z). We
take αi, . . . , a2g to be a standard basis for Hi (Σ; Z), with the convention
that the non-zero intersection numbers are

a{ - ai+g = -ai+g a{ = 1.

As elements of A(Σ), the classes 5, α* and x have degree 2, 3 and 4
respectively. We write Γ for the following element of degree 6:

(6.1) Γ

This element is independent of the choice of symplectic basis. The
elements of A(Σ) which are invariant under the maps induced by all
orientation-preserving diίfeomorphisms of Σ are precisely the elements
of the polynomial algebra generated by 5, x and Γ.

Recall from section 5 that ω™ is an element of A(Σ) having non-zero
terms only in degrees 2p'', for p' satisfying pf < p and p' = p mod 4.
We write

ω -ω-o + α ^ + . . ,

where ω™{ is homogeneous of degree 2p — 8i. Each term is invariant

under the diίfeomorphism group by Proposition 4.34 so can be written

as a polynomial in S, x and Γ. Note that for p < 4 there is only one

term here, and cu™ is then homogeneous. Our first proposition gives

these low examples in full. We again write g for the genus and n for

the self-intersection number of Σ. According to Theorem 5.10, the

coefficients of CU™ depend only on 5, n and w(S) mod 2. In fact, neither

n nor w enter the formulae when p < 4.

Proposition 6.2. For all w and all intersection numbers n in the

range allowed by Theorem 5.10, we have

(a) ω% = 1

(b) ω? = S

(c) α;? = | ( 5 2 - ( p - l ) x )

(d) ^ = | ( S 3 - ( 3 £ - 4 ) S : r - Γ ) .
Remark. It should be understood here that g and w satisfy the

parity condition p = (g — 1) — w(S) mod 2 (2.20) in order that u™ is
defined.
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For the proof of Theorem 1.7, we need only the first three of these
four formulae, together with the following result:

Proposition 6.3. The coefficient of Sp in ω™ is l/p\
The proof of these formulae occupies the remainder of section 6. We

shall see, in fact, that the top-degree part ω™0 can be calculated quite
mechanically. In section 8, where we prove some results about simple
type, we will have need of one more in this sequence.

Proposition 6.4. The top-degree part, ω™0, of ω™ is given by

Calculating the lower terms ω™{ for i > 1 is more difficult. At the
time of writing, the authors believe they have a closed formula, modulo
Γ, for the generating function of Σω™sp/pl, and hope to return to this
in a later paper. The techniques and calculations which are presented
here draw on unpublished work of J.L. Evans [12].

(ii) An index calculation. The method of calculation we shall
employ is a generalization of the argument used in section 9 of [27].
Let Σ be a Riemann surface of genus g > 2, and let F b e a compact,
oriented manifold parametrizing a family of holomorphic rank-2 bun-
dles with fixed determinant on Σ. More precisely, we suppose there is
a rank-2 bundle E - ^ Σ x l ^ equipped with a 8 operator Bv on each
slice Σ x {Ϊ;}, and we suppose that Λ2E is isomorphic to ω ® K, where
ω is a fixed line bundle on Σ and K is pulled back from V. Let βv

denote the holomorphic bundle obtained from E|Σ x{υ} by equipping it
with the d operator dv.

Pick a non-negative integer p = ω - S — (g — I) mod 2 (2.20), and
write

(6.5) \ = \{{g-l)-p-w).

Let J = J\ be the Jacobian torus parametrizing line bundles of degree
—λ on Σ, and let

^λ4ΣxJ

be the Poincare bundle: the universal family of holomorphic line bun-

dles of degree — λ, normalized so that <^λ is trivial on {σ} x J , for

some base-point σ G Σ. For j e £?\, we write ^ for the corresponding

bundle of degree — λ on Σ.
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The space J x V parametrizes a family of bundles S£~x 0 ^ on Σ,
and a family of Predholm operators

(6.6) BhV : Ω 0 ^

The numerical index of 5 ^ is

by the Riemann-Roch theorem. We consider the subset

(6.7) Ξv = { (j,υ) I dimKerd^ φ 0} C J x V.

We make two assumptions about Ξv in the calculations below:
Condition 6.8.

(a) that dimKerδξ = 1 for all ξ = (j,υ) in Ξ, (and so dimCokerSξ =

P + ff);
(b) that the linearization of the family d3,v around each ξ G Ξ is a

surjectiυe linear map

(6.9) δξ : Tξ(J xV)^ Hom(Keraξ,Cokeraξ).

In (b), note that V is not supposed to be complex, so δξ is a linear map
over IL Its surjectivity is the statement that, in the neighbourhood of
£, the family B3ίV is transverse to the stratum of operators with kernel of
dimension 1 inside the space of Predholm operators of index — (p+g—ϊ).

Under these hypotheses, Ξv is a smooth submanifold of J x V of
real codimension 2(p + g). Its tangent space at ξ is the kernel of δξ and
its normal bundle can be oriented using the complex orientation of the
image of δξ. Using this orientation, Ξv defines a cohomology class

P.D.[ΞV] e H2p+2g{JxV).

We put

(6.10) Uv = P.D.[ΞV]/[J] e H2p(V),

and set ourselves the task of calculating Uv. We will restrict our at-
tention to the case

dim V = 2p.
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In this case Ξv is zero-dimensional, and evaluating Uv on [V] gives the
number of points in Ξv counted with sign.

Lemma 6.11. Let σ e K(J x V) be the index of the family (6.6).
ThenP.Ό.[Ξv] = cp+9{-σ).

Proof. For each point ξ of the finite set Ξy, let Mξ be the kernel of
dξ. By condition (a) above, this is a line, and there is no obstruction
to extending Mξ to a trivial line subbundle M over all of J x V so as
to give a decomposition

Let N be the vector bundle of rank (p + g) over J xV with fibre

In this way, the family of Predholm operators is reduced to a family of
finite-dimensional operators, giving a homomorphism of vector bundles

d : M -> N.

Since M is trivial, the index σ is ~[N] in if-theory. The zeros of d
are the points of Ξv, and these zeros are transverse by (b) above. The
orientation defined for the normal bundle of Ξv coincides with usual
orientation of the normal bundle of the zero-set of d. So the Poincare
dual of Ξy represents the top Chern class of JV, which is cp+g(—σ).
q.e.d.

Let c be the 4-dimensional class

and w the first Chern class of the universal bundle,

w = C l ( E ) E i ί 2 ( Σ x y ) ,

so that

(6.12) ch(E) = 2exp(w/2)

formally. Regarding x, α̂  and S as a basis for ^ ( Σ ) , we let ί, ά̂  and
5 be the dual basis of iϊ*(Σ), so that x = 1 etc. For i < g we have

άi w ai+g = S.
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We can decompose c as

c = v(χ) + u(S) ̂  S +

This formula defines v (Newstead's map) as a map ϋΓi(Σ) —> -H'4""i(Vr),

which we may extend to a map of algebras

v. A(Σ) ->H*(V).

For brevity, we write
2<?

2 = 1

A short calculation gives η2 — —2v(Γ)S and η3 = 0. This allows us to

calculate the powers of c: we have

(6.13)

cs = v{x°) + svix'-'S)^ + svfr-^η - s(s - 1) u(xs~2Γ) S.

We record also the Chern character of the Poincare bundle. We have

where

1

and OLi is a standard basis for Hι(J). Using the relation

r2 = 2 ( Σ ? α i - α i + 9 ) - 5 '

= -2Θ - 5

we obtain

cϊv{&>^1) = 1 + (XS + T) - (Θ w 5),

where Θ is the standard 2-dimensional class satisfying Θ 9 [J] = g\.
There is one further class which appears in our calculation, namely the
class

Δ = ΣMai+>i-v(ai)<Xi+9) e H4(JxV)
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which arises in the formula for the product

η^r = Δ — S E H6(Σ xJxV).

Finally, we have

w = Cι(ω) + K

where K = Cι(K) is a 2-dimensional class on V. (Recall the assumption
concerning Λ2E made at the beginning of this subsection.)

Prom the index theorem for families, we now obtain

ch(-σ) = -ch(^λ-
1)ch(E)Td(Σ)/[Σ].

Because K is pulled back from V, it comes out of the formula and we
can write

(6.14) exp(-κ/2)ch(-σ)

= - ( l + (λS + τ)-ΘS)

x(l + cχM/2)(l - (g - S

Over Q we can introduce the element of if-theory

Since —σ has rank p + g — 1, we have cp+g(—σ) = cp+g{—σ), and this
allows us to ignore K and work with σ from now on. Taking the formula
(6.13) for the powers of c and using it in (6.14), together with the
formula for ητ, we finally obtain

(6.15)ch2s(-σ) = i^L

ch2s+1(-σ) = j ^ - ((4s + 2)v(x*)@ + v(x'S) - sφ
[ZS -h 1).

To extract a formula for Πy, we must now derive the Chern class
cp+g{—σ) from these expressions for the Chern character, and then we
must integrate over [J]. To deal with the latter first, the only classes
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involving the cohomology of J in the above expressions are Δ and Θ.
The integral of a general combination of these two is given by

(6.16) A2rΘg~r/[J] = (-2)r(g-r)\r\v{Γr) e H6r(V).

At this stage it is clear that the formula for Uv can be expressed in
terms of classes in the image of v. We therefore have:

Proposition 6.17. There is an element πPi9 E A(Σ) of degree 2p,
expressible as a polynomial in S, x and Γ (and as such depending only
on p and g), such that

Uv = 29u{πpJ e H2p(V).

The factor 29 is introduced here for convenience, matching the same
factor in (5.9).

Proposition 6.18. For p < 4 the polynomials πp,g are given by:

πo,g = 1

π l f , = S

£ + 3(g - l)(g - 3)x2 - 45Γ).

The coefficient of Sp in πPί9 is l/p\, for all p.

Proof. We begin with the last statement. The Sp term in πPi9 arises
from the term with v(S)pΘ9 in cp+g(-σ). We can therefore neglect x,
Δ and Γ, and write (6.15) as

ch(-σ) = (p + g - 1) + (2Θ + i/(5)).

Only ch0 and chx have survived. The following identity among sym-
metric polynomials (see [1] for example) relates the Chern classes Q to
the Chern character ch^:

(6.19)

where
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and the sum is taken over all hi such that the degree of the cohomology
class on the right-hand side is d. In this first case, the formula reduces
to cd = (chxY/dl from which we obtain

and hence Uv = (29/p\)v(S)p, which gives the term Sp/p\ in πPy9 as
required.

Next we examine the coefficient of Sp~2x. For this purpose we can
neglect Γ, Δ and rz2, and write

ch(-σ) =

or

y ι = 2Θ

Neglecting terms which cannot contribute Sp~2x we have

from which we extract the terms with θgu(Sp~2x):

+ 9-l) _ __V_ V \
\(p-2)\ 3 5 ! b - 3 ) ! (g -1)! (p - 2)\)2g

Thus the coefficient of Sp~2x in τrPi3 is

( p - 2 ) ! V 2 6

This gives three more of the non-zero coefficients in the Proposition,

and completes the calculation of πp,g for p < 2 (which is all that we

need for Theorem 1.7).
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Prom (6.16) we see that the coefficient of SP~3Γ in π P i 9 arises from the
terms involving i ^ S " " 3 ^ 2 © 5 " 1 and u(Sp-3T)&9 in cp+g. We therefore
write

y i = 2 0 + i/(
2/2 = - Δ

P+Q—3

and calculate

2 9

09

I Θ 9 ( S p ~ 3

ignoring other terms. Applying the formulae (6.16) we obtain

which gives the terms —Γ/6 in π 3 ) P and — ST/6 in π 4 p . We leave the
coefficient of x2 in π 4 ^ as an exercise for the reader. q.e.d.

Two small generalizations. Rather than being a smooth mani-
fold, V could be a 2p-dimensional simplicial complex. We should as-
sume that the family of Fredholm operators (6.6) is smooth on each top-
dimensional simplex, that the jumping locus Ξv lies in J x U C J x V,
where U is the union of the interiors of the top-dimensional faces. Ori-
enting the normal bundle of Ξv as before, we still have a dual coho-
mology class (in fact a cocycle) and can define Πy by (6.10). Given a
top-dimensional cycle [V] on 7 , we can evaluate Uv on [V] by counting
points of Ξy, using the coefficients of [V] as multiplicities.

A second point which arises in practice is that there might not be a
universal bundle E. It can happen that there are only local families.
That is, V has a finite open cover by open sets Ui: and over ΣxUi there
is a bundle E^ with an isomorphism ψι : Λ2E; -> ω. On the overlaps
Ui Π Uj there will be isomorphisms ψij respecting the ^ , but on triple
overlaps, the cocycle condition will fail by a sign:

Ψi,jψj,kψk,ι = ±1-
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These failures define a Z/2-valued 2-cocycle and hence a cohomology
class κ2 e H2(V;Z/2). If this class can be lifted to an integral class
K, then there will be a universal bundle E for the family, in the sense
described at the beginning of this subsection.

If there is no integral lift κ;, the set Ξv and its normal orientation
can still be defined using the local families E», and we therefore obtain
a class Uv e H2p(V) as before. On the other hand, we can still define
a map v, over the rationals, using the 4-dimensional class

where P is the (well-defined) SO(3,C) bundle on Σ x V, associated to
the Ei This is the class which is equal to c2(E) — ̂ ( E ) 2 in the case
that there is an integral lift.

Proposition 6.20. In the case that κ2 has no integral lift, the
statement of Proposition 6.17 continues to hold (with the same polyno-
mials 7ΓPig), with v and Uv defined as above.

Proof One way to argue is to show that there is a 2j9-dimensional
complex W, a class [W] E H2p(W) and a map / : W -¥ V such that
/*[W] is a non-zero multiple of [V] and such that the pull-back /*(«2)
has an integral lift in H2(W]Z). The previous calculations can then
be applied to the pulled-back family of bundles parametrized by W.

In fact, one can arrange that f*(κ2) is zero. To see this, pick a base-
point σ E Σ, and let P σ be the restriction of P to V x {σ} (which we
identify with V). We must choose / and W so that the SO(3) bundle
/*(P σ) has a lift to an SL(2,C) bundle. Let W be the homotopy
quotient of P σ by SL(2,C). This is a fibre bundle over V with fibre
RP°°, and the pull-back of Pσ to W lifts to SL(2,C) tautologically.
Since the fibre has no rational homology, the map W —> V gives an
isomorphism on rational homology, and in particular there is a rational
cycle [tV], supported on some 2p-dimensional subcomplex W C W,
whose image is [V]. q.e.d.

(iii) A transversality question. Continuing from the previous
subsection, we now let Jίs denote the moduli space of all strictly stable,
rank 2 holomorphic bundles with fixed determinant omega. If cx (w) S
is odd, there will be a universal family over Σ x ~ # s , but in any case,
as noted above, we can still describe a well-defined jumping locus

Ξ C J x Jί\
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with the same definition as (6.7). We wish to investigate the extent to
which the transversality conditions (6.8) (a) and (b) hold in this case.
Let us decompose Ξ into two subsets: we write

where Ξi is the set of (j, v) such that all non-zero maps 3£3 -> £v are
injective. The complement Ξz is the set where at least one such map
has a zero.

Lemma 6.21. The transversality conditions (6.8) hold at all points
ofΞ\

Proof. If there is are two linearly independent, injective maps Si, s2

from άfj to δυ then there is a point σ G Σ such that (sχ)σ and (s2)σ &
re

dependent, for otherwise βv is the direct sum of the images of the two
maps and therefore not stable. So some linear combination of S\ and
s2 is a map with a zero, showing that (j, υ) is in Ξz. Thus (a) holds on

Now we show that (a) implies (b). Since we are concerned with the
local properties near (j, v), we can exploit the fact that there is a local
isomorphism between J x Jί8 and Λ^+, where J(+ is the moduli space
of stable rank 2 bundles of degree ω S + 2λ, without fixed determinant:
the local isomorphism sends («£?, <?) to -Sf"1 ® <̂ . So we consider a rank
2 bundle <? with H°(£) of dimension 1, spanned by a section 5. The
map of the tangent space in (b) corresponds now to the map

Since 5 spans H°(&), we can identify the right-hand side with J
in which case the map is the one induced on H1 by the map of sheaves

End(<?) A δ.

Since Σ is one-dimensional, the map is onto. q.e.d.
Let us temporarily record the dependence of Ξ on the integer p by

writing Ξ(p). (The integer p enters in determining λ and hence the
particular component J of the Picard group.)

Lemma 6.22. The bad set Ξz(p) is contained in the image of an
analytic map from Σ x Ξ(p + 2).

Proof. If there is a map from «5f to β which as a zero at σ, then
there is a line bundle Jίf' = Jδf [σ] of degree one greater and a non-zero
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map from «ίf' to £. The pair (_έ?, £) can be recovered from the data
(σ,i?',<?). q.e.d.

The next proposition summarizes our conclusions:
Proposition 6.23. For p < g — 2, the analytic subset Ξ C J x Jϊs

has complex codimension p + g, and at a generic point (j, v) there is a
unique, injective map from Jέ^ to ά>v. The class

Π = P.D.[Ξ]/[J] e H2p{Ji8-Q)

is given in terms of Newstead's classes by an expression

Π = 2»u(πPtβ)t

where πPί9 £ A(Σ) are the polynomials which are partially computed in
Proposition 6.18.

Proof. At the injective points Ξ*, the variety Ξ is smooth and of
codimension p+g by Lemma 6.21, because the transversality conditions
ensure this. Using Lemma 6.22, one can see by induction on p that the
remaining points Ξz have codimension at least p + g + 1. If Ξ* is non-
empty, then the class Π can be defined. A homology class in H2p(^s)
can be represented as a C°° singular cycle V —> Jί8 which is transverse
to Ξι and does not meet Ξz; applying the analysis of subsection (ii)
above to the induced family of bundles over V, one can then deduce
the value of the pairing between Π and [V], and so conclude that Π has
the value claimed for it, as a rational class. (In case c1(ω) is even and
there is no universal bundle, one must use Proposition 6.20.)

If Ξf is empty then the same reasoning shows that ^(τrP)P) is zero
in H2p{JZs). The polynomial πPi9 is non-trivial because of the last
clause of (6.18), so this is a non-trivial relation among the Newstead
generators. This is not possible if p < g — 2 (cf Proposition 5.2).
q.e.d.

(iv) Bundles with parabolic structure. Let W be the ruled
surface containing Σ + and Σ_, as at the beginning of section 3(ii).
Let W° be again the Riemannian manifold obtained by removing Σ_
from W and equipping the complement with a metric with cylindrical
end. We also want to arrange that the metric has a cone-like singularity
along Σ+, with small cone-angle (see the discussion in section 2(v)). Let
Ew be a U(2) bundle on Σ + with determinant w, and let it be pulled
back to W°. Let ffi™v be the corresponding representation variety for
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the restriction of this bundle to the three-manifold Y', and consider

again the moduli space

Mp{W°) := M^P(W°,Έ+ ^ S ) ,

of singular connections with holonomy a at Σ+, asymptotic to the
smooth part ffl™/. The dimension of this moduli space is

dimMp(W°) = (6g - 6) - 2p

and the connections A in this moduli space have Chern-Weil integral

c(A) = 2al - a2n,

where p = (g — 1) — 21 and n = Q(Σ+) as usual. If p is small compared

to n and #, so that 2p < Δ (where Δ is as in (4.26)), and if a is

sufficiently small (see 4.24), then the end-limit map

r : MP(W°) -> &%'

defines a class

(6.24) Ω = [Mp(W°),r] G H2p(&£a)

in the sense of Definition 4.8. This was shown in Theorem 4.28. By
definition (see Proposition 5.9), the element ω™0 is the unique element
of A(Σ) which is homogeneous of degree 2p and satisfies

Ω - 2'i/(<o),

where v is the Newstead map A(Σ) —> H*(3t%;8). After choosing a
holomorphic structure ω for the line bundle w, we identify 3ftw'8 with
the moduli space of stable bundles Λts.

At the beginning of this section, we laid out the aim of a partial
calculation of the polynomials ω^0. In view of the calculations of the
polynomials in part (ii) above, what we need to do is to show that ω™0 is
equal to the polynomial πPi9. The Propositions 6.1-6.4 will then follow.
Because of Proposition 6.23, what we need to establish is therefore:

Proposition 6.25. The class Ω defined by the moduli space MP(W°)
in equation (6.24) is equal to the class Π = [Ξ]/[J] which appears in
(6.23).
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The good part, Ξz C Ξ, defined above, is a smooth manifold, and
using Definition (4.8) we can describe the class Π as

(6.26) n=[Ξ\p2],

where p2 : J x Λίs —> Ms is the projection on the second factor.
A direct approach to the proof of Proposition 6.25 would be to show
that, for a suitable choice of metric, the moduli space MP(W°) could
be identified with Ξe (give or take some strata of codimension 2 or
more), so that r coincided with p2. We believe this can be done by
extending the results of [20], but we prefer to adopt instead the line
taken in sections 7 and 9 of [27], which means first showing that Ω can
be described in terms of gauge theory on the closed manifold W rather
than the cylindrical end space W°. The reader should refer to [27] for
more details of the argument we present here.

Let the closed ruled surface W be equipped with a Riemannian met-
ric gR by taking the given metric on W°, truncating the cylindrical end
at distance R and attaching the tubular neighbourhood of Σ_ with
some fixed, compatible metric. Consider the moduli space

MP(W) ~M%*>a{W,Y>+).

According to Lemma 7.5 of [27], if JR is large and a is small, the only
non-compactness phenomenon which occurs for a sequence of connec-
tions in this moduli space is that curvature can concentrate on Σ+,
leading to a different, larger value of p (or smaller monopole number I)
in the weak limit. We can therefore define a compactification

MP(W) = MP(W)UMP+2(W)U - .

The moduli spaces Mp> (W) are free of reducibles and are empty once

2p' > {g ~ 1) (Lemma 7.2 of [27]). Because no bubbling off occurs at

Σ_, restriction to Σ_ defines a continuous map

p:Mp(W) ->#£_.

The proof of Lemma 7.6 of [27] shows that the connections p(A) on

Σ_ have curvature which is small in C° or any other norm, once a is

small. We can therefore take it that the image of p is contained in a
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neighbourhood 9/ of the moduli space of flat connections M f l a t C 3&w

with the property that the heat-flow defines a retraction

h:W -> M f l a t .

If we identify M f l a t with Jί, the moduli space of semi-stable bundles,
then the composite hop has another description: it is the map which
assigns to A the s-equivalence class of the semi-stable bundle $A —* Σ_
defined by restricting A to Σ_. Let MP(W)8 denote the part of MP{W)
which lies over Jίs C jtf, and consider the class dual to the image of
MP{W)S in Jίs'.

Ω' = [Mp{W)\hop] e H2p{Jϊs).

L e m m a 6.27. The class Ω' defined by the moduli space on the

closed ruled surface W is equal to the class Ω of (6.24) defined by the

moduli space of the cylindrical end manifold W°', as long as R is large

and a is small

Proof Let K be any compact subset of «/#s, and let Mp(W)κ

and MP(W°)K be the parts of the two moduli spaces which lie over K.

The connections in Mp(W°)κ have curvature which is uniformly small

on the end of the manifold, so by gluing these connections to the flat

connections on the neighbourhood of Σ_ we obtain a map

Φ : MP(W°)K -> MP{W),

which is a diffeomorphism onto its image when R is large. This can be

extended to continuous a map

Φ : MP{W°)K -> MP(W).

We have also continuous maps

f : Mp(W°) -> &%* Ξ M f l a t

The composite pΦ is C° close to f in SSγ,_, and is C1 close on the
smooth stratum MP(W°)K Composing with the retraction Λ, we have
a map h p Φ which is still C1 close to f. It follows that if we evaluate
Ω' and Ω on a closed 2p chain V in Jίs by counting points of inter-
section, we will obtain the same count, because the two point-sets will
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be isomorphic. (A more detailed version of this argument is given in
section 7 of [27].) q.e.d.

The definition of Ω' did not rely on the specific nature of the metric
gR on W. Two things about the metric are all that is important. First,
the metric should be such that there are no reducible connections in
the moduli space MP(W). This is a condition that depends on α: since
b+(W) = 1, there is a one-dimensional space of self-dual harmonic
forms, which we can take to be spanned by the Poincare dual of the
class

(6.28) P+] + ί [ n

where F is the 2-sphere fibre of the ruled surface and t 6 M; there are
no reducibles in MP(W) provided that

a(n + t) < 1

in the case that w is even, or provided that

a(n + t) < \

in the odd case. (The former statement is proved in section 7 of [27],
and the reader can easily adapt the argument to the odd case.) The
other feature of the metric which is important is its geometry in the
neighbourhood of Σ_, because this determines how small a will need
to be in order to ensure that the image of p lands in U. If a and the
Riemannian metric are allowed to vary in a 1-parameter family, the
class Ω' remains well-defined and unchanged, as long as 6.29 is true at
all points along the path and the geometry near Σ_ is constant.

As in [27] therefore, we are free to calculate Ω' using a suitable Kahler
metric. As was shown in Appendix 2 of [27], we can choose a Kahler
metric ψ on W with a cone-like singularity along Σ + , whose Kahler
class [φ] has the form 6.28 for some small, positive t. We summarize,
from [27], a description of the moduli space in this situation.

Proposition 6.30. Let φ be a Kahler metric on W, as above.
Suppose that the cone-angle in the metric is 2π/v for some integer v,
and that a is rational with denominator v. Suppose that a(n + t) is
less than 1 in the even case, or less than \ in the odd case. Then the
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moduli space MP(W) is regular for all p and can be identified with the

space of isomorphism classes of triples (S'^φ^Jf), where

(a) β is a semi-stable rank-2 holomorphic bundle on Σ with an iso-

morphism φ : K2£ ->• ω; and

(b) -έ? is a line-subbundle of £ of degree —λ, where

\ = \{g-l-ω S-p).

Under this correspondence, the bundle § associated with a connection
A is the same as the holomorphic bundle on Σ_ determined by the
restriction of A.

Proof. The results of section 8 and section 9(ii) of [27] established
this in the case ω is trivial. The general case presents no new difficulties,
q.e.d.

On account of the last clause, the map

hop:Mp(W) -> M

corresponds to the map which assigns to (<?,?/>,-έf) the s-equivalence

class of S\ and the subset MP(W)S C MP(W) corresponds to the triples

(<?,^,JSf) where S is strictly stable. Let MP(W)U denote the still

smaller set where £ is stable and the line subbundle _έf admits just one

map to £ (up to a scalar multiple). The proofs of Lemmas 6.21 and

6.22 show that MP(W)U can be identified with ? c J x Jίs, and also

show that the complement of MP(W)U in MP(W)S has real codimension

2 or more. We therefore have equalities

= [Mp(W)u,hop]
= [Ξ\p2]
= Π.

This proves Proposition 6.25, and completes the proofs of Propositions
6.2-6.4. q.e.d.

A word on orientations. The careful reader will note that the
arguments above do not make any mention of the standard orientations
of the moduli spaces concerned, and can only be taken as calculating
ωp,o UP to an overall factor of ±1. One way to see that the final sign
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is correct (and that the leading coefficient of ω£0 is not — 1/p!) is to
observe that what has been used at every stage in the calculations is
the complex orientation of moduli spaces. So, in the case that (X, Σ) is
a Kahler pair, if we define modified invariants D% and D^^ using the
complex orientation, the polynomials ω™ we have partially calculated
are the right ones to describe a universal formula for the latter in terms
of the former. On the other hand, from [9] one knows that

when X is given a standard homology orientation determined by the
Kahler structure; and in Appendix 1 of [27] it was verified that exactly
the same relationship holds between ί)χ^ and D^. Therefore, the
overall sign of ω™ can be correctly calculated by working with the
complex orientations throughout. See the Appendix.

7. The structure theorem

In this section, X will always be an admissible 4-manifold (see Def-
inition 2.1), and Σ will be an oriented embedded surface. As in pre-
vious sections, we will write S for the class [Σ] in H2(X) and x for
the point class. We write % for the inclusion of Σ, and j for the in-
clusion of X/Σ in X. Prom part (ii) onwards, X will always have
61(X) = 0. In this case, if λ is any non-trivial line bundle, one has
6+(λ) = b+(X) +b1{\) + l> b^λ) + 4, so the pair (X, Σ) is automati-
cally admissible in the sense of Definition 2.23, and the cylindrical-end
manifold X° is admissible in the sense of Definition 2.15.

(i) Relations among invariants. The universal formulae (5.10),
expressing the invariants of a pair in terms of the ordinary invariants,
give rise to relations among the latter. Recall from [27],[28],[25] that
there is a natural identification of moduli spaces of singular connections,

(7-1) Φ . f f

in which the holonomy parameter, instanton number, monopole num-
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ber and determinant are related by

o/ = \ - a

V = \Q{Σ) - I

wf = w- [Σ].

As S0(3) connections on X/Σ, one has Φ[A] = [A], and the transfor-
mation Φ just corresponds to changing the preferred orientation of the
2-plane K in the decomposition gE = R®K near Σ (see section 2(v)).
In terms of the parameters w and p by which we label the invariants

the transformation is

w' = w- [Σ]
p' = a(Σ)-p,

where

α(Σ) = 2g - 2 - Q(Σ)

as in 1.11. In the Appendix, we shall show that Φ preserves or reverses

the standard orientation of the moduli spaces according to the sign of

(-i)p'
Remark. (i) The effect of Φ on the standard orientation was

treated in [27] in the case that w = 0 and [Σ] is divisible by 2. Note
that in this case, although w1 = 0 mod 2, the value of w1 itself is used to
determine the orientation of the moduli space on the right-hand-side.
In this way, our present conventions differ from those of [27] and [25],
where the moduli space was always oriented as an SU(2) moduli space.

(ii) The transformation w »->• w' does not have order 2. It would have
been possible to define Φ instead with w' = [Σ] — w, but the formula
for the sign change would then have been more complicated: there is
an advantage in having the change in w be local to the neighbourhood
of Σ.

The map Φ respects the process of cutting down moduli spaces by
classes μ(z) for z E j*A(X/Σ) (where j : X/Σ -> X is again the in-
clusion), because the chosen geometrical representatives can be made
to depend only on the restriction of the connections (as SO(3) connec-
tions) to suitable neighbourhoods U of classes supported in X/Σ. It
follows that

(7.2) Dw'*'(z) = (-i
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for all z G A(X/Σ,). From this relation, we obtain the following result,
which is a central tool in our argument. Recall from (4.26) the value Δ,
which is the largest (co)dimension in which our Floer homology theory
was valid:

(7.3) Δ(n, g) = min{2ff - 4 - (n/2), 2n - 2}.

Theorem 7.4. Let (X, Σ) be an admissible pair. Let % : Σ —» X

be the inclusion and S G H2{X]Z) the class carried by Σ. Suppose

Q(S) = n > 0 and suppose the genus g of Σ is at least 2. Let p and

w satisfy the parity condition p = (g — 1) — w S mod 2 (2.20), let

p' = α(Σ) — p, and suppose that

max{p,p'} < |Δ(n,5).

Then there is a relation

valid for all z G A(X/Σ). The elements ω™ on the left-hand-side are the
distinguished (generally inhomogeneous) elements of A(Σ) determined
by 5.9, depending only on Q(Σ), genus (Σ) and w - Σ mod 2. On the
right-hand-side, ώ^, is the element corresponding to w' = w — [Σ] in
place of w. If either p or p' is negative, the corresponding side of the
equation is to be interpreted as zero. The ω™ do not depend on X or z.

Proof This follows immediately from Theorem 5.10 and the rela-
tion (7.2). q.e.d.

We describe explicitly the simplest consequences of these relations.
Because the concept will occur regularly in this section and the next,
we introduce a term to describe surfaces Σ C X with α(Σ) = 0:

Definition 7.5. A surface Σ C X is tight if α(Σ) = 0; that is, if
2g-2 = Q(Σ).
Prom this point on, we will frequently abuse notation by omitting z*
and j * when referring to the images of A(Σ) and A(X/Έ) in A(X).

L e m m a 7.6. Let X be an homology-oriented A-manifold with
b+ — 61 odd and 6+ > 1. Let i : Σ —> X be a tight surface representing
a class S, let w be a line bundle on X and let w' = w — [Σ]. Then the
following relations hold.
(a) Suppose w Σ = genus (Σ) — 1 mod 2 and suppose that

genus(Σ) > 3 (or equivalently Q(S) > 4). Then for all z G
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A(X/Σ), we have

Dw(z) = Dw'(z).

(b) Suppose w Σ — genus (Σ) — 1 mod 2 and suppose that

genus(Σ) > 7 (or equivalently Q(S) > 12). Then for all z G

A(X/Σ), we have

Dw(S2z)-(g-l)Dw(xz) = 01

where, as usual, x denotes the positive generator of H0(X)'L).

(c) Suppose w Σ = genus (Σ) mod 2 and suppose that genus (Σ) > 5

(or equivalently Q(S) > 8). Then for all z E A(X/Σ)9 we have

Dw {S2z)~ gDw (x z) = 2DW> (z).

Proof. (a) Since α(Σ) = 0, we have p' = —p. The inequality for
g = genus (Σ) in (a) ensures that the upper bound on p in Theorem 7.4
is satisfied by p = p' = 0, and the parity condition on w means that
p = 0 satisfies the parity condition. We therefore have a relation

The result then follows from Proposition 6.2(a), which says that

ctf = u#' = 1.
(6) Now take p = 2 and p' = — 2, so that the right-hand-side of the

relation in 7.4 is zero. If g > 7 then p is in the admissible range, so we

have

Dw{ω™z) = 0.

According to Proposition 6.2(c), we have ω™ = \{S2 — (g — 1)#), s o

result follows.
(c) For this example, we apply the relations using a surface different

from Σ. Let T 2 be a standard, null-homologous torus in X/Σ and let Σ
be the internal connected sum Σ # T 2 of genus g = g + 1. This surface
has α(Σ) = 2, so we have p' = 2 — p. The lower bound on the genus,
and the parity condition on w, ensures that we can apply the Theorem
to the pair (X, Σ) with p = 2. This gives a relation
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Now u)™' = 1 and, as in (&),

The result follows. q.e.d.
(ii) The invariants for ΛΓ3. We begin with an elementary lemma

about embedded surfaces.
Lemma 7.7. If S € H2{X\1) is a homology class with Q(S) > 0

and Σ5 is a surface of genus at least 1 representing S, then for all
m > 0, the class mS can be represented by an embedded surface ΣmS

with
a{ΣmS) = ma(Σs).

In particular, if S is represented by a tight surface then mS can be
represented by a tight surface.

Proof. Let N be a disk-bundle neighbourhood of Σ 5 , and consider
first the case that its degree Q(S) is strictly positive. Choose m sections
Si : Σs —> JV, and let T{ be their images, (i = 1,... ,ra). These can be
chosen so the intersection points ΓjΠTj are transverse and have positive
sign. Smooth out each intersection point by replacing each pair of
intersecting disks with a standard annulus having the same boundary.
Thus modified, the union of the Tj becomes a smooth embedded surface
Σ m s, and the formula for a(Σms) is easily verified.

When Q(S) is zero, the disk bundle N is trivial. As the genus is non-
zero, one can choose a surjective homomorphism φ : τri(Σs) -> Z/mZ.
Let P be the corresponding principal Z/mZ bundle. The circle bundle
associated to P is trivial, so P may be embedded in Sι x Σ5 and
hence inside iV, where its image is the required surface. Note that the
surjectivity of φ ensures that P is connected. q.e.d.

Lemma 7.8. Let X be a K3 surface. Then every homology class
S 6 H2{X',ΊJ) with Q(S) > —2 can be represented by a tight surface.

Proof. Because of the previous Lemma, it is sufficient to consider
a primitive class S. Further, because the diίfeomorphism group of K3
acts transitively on the primitive classes of any given square, we need
only construct one tight, embedded, primitive surface for each even
self-intersection number n > — 2 (the intersection form takes only even
values). The standard Kummer model for K3 shows how X can be
realized as an elliptic surface having a section T which is a sphere of
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square —2. Let Σ' be the union of T and (n/2) + 1 torus fibres, and let
Σ be the surface obtained by smoothing the intersection points between
the tori and T as in the previous Lemma. The genus of Σ is (n/2)+l and
its self-intersection number is n, so Σ is tight. Furthermore, Σ realizes
a primitive class, because its intersection number with the torus fibre
is 1. q.e.d.

The following Lemma is well known, but the sign involved is less
familiar than the absolute value of the invariant.

Lemma 7.9. On K3 with its standard homology-orientation, we
have

\θ ifw2 = 0 mod 4.

Proof. The second case is merely a consequence of our definitions,
for there is no zero-dimensional moduli space when w2 = 0. The calcu-
lation in the first case appeared first in [10] where it was shown that the
invariant is 1 for a particular w if the zero-dimensional moduli space
is oriented with its 'complex' orientation. According to [9], the ori-
entation determined by w differs from the complex orientation by the
sign (-1)(™2+** ™)/2, which is - 1 , since Kx = 0. The result for this
particular w follows, and as usual one can use the transitivity of the
action of the diffeomorphism group to obtain the result for general w.
q.e.d.

The next series of lemmas determines the entire invariant for K3.
The final result is again well known [37],[17], but we include a proof
here to show how it can be deduced from the universal relations of the
previous subsection together with Lemmas 7.8 and 7.9 and knowledge
of the homotopy type and diffeomorphisms of K3. (In particular, the
following argument makes no use of Floer homology for homology 3-
spheres.)

Lemma 7.10. Let X be a K3 with its standard homology-orienta-
tion, and let w be any line bundle. Then there is a wf with (w')2 =
w2 + 2 mod 4 such that

Dw{x) = -2Dw\l).

Proof. Let Σ be a tight surface representing a class S which is
orthogonal to w. We can arrange that Q(S) is large and equal to 2
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mod 4. The genus of Σ is then even, since 2g — 2 = Q(S). We can
therefore apply Proposition 7.6(c) with z = 1 to obtain

DW(S2) - (1 + ±Q(S))Dw(x) = 2DW'(1).

Now let Σ 2 be a tight surface representing 2S. This has odd genus
(since genus (Σ2) = 2Q(S) — 1), so we can apply 7.6(6) to obtain

Dw(4S2)-2Q(S)Dw(x) = 0.

Subtracting this from four times the previous equation, one obtains the
result. q.e.d.
A trivial extension of this argument yields

Lemma 7.11. Let X be a K3 with its standard homology-orienta-
tion, and let w be a line bundle. Then for all r > 0 there is a wf with
(w1)2 = w2 + 2r mod 4 such that

Proof. Use induction on r. For the induction step, follow the
proof of the previous Lemma, but apply Proposition 7.6(c) and (b)
with z = xr~1 instead of z = 1. q.e.d.

The next lemma, when combined with Lemma 7.9, gives the entire
invariant.

Lemma 7.12. Let X be a K3 with its standard homology-orienta-
tion, and let w be a line bundle. Then given r and i > 0 there is a wf

with (w1)2 =w2 + 2(r + i) mod 4 such that

forallheH2{X).
Proof. The case i = 0 is the previous Lemma. We proceed by

induction on i. We can restrict our attention to classes h in the integer
lattice. Given such an h, let S be an integral class orthogonal to both
h and w, with the property that Q(S) is large and equal to 0 mod 4,
so that S can be represented by a tight surface Σ of odd genus. It is
well known [33] that the action of the diffeomorphism group of X on
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its homology is large enough to ensure that, with w, r and i fixed, the

function

Dw(xrh2i)

is a multiple of Q(h)1. Using the polarization identity we can therefore

deduce:

Dw(xrh2i) = ^ r {2i - l)Dw{xrS2h2i-2).
Q{o)

Now apply the universal relation of Proposition 7.6(6) with z = xrh2ι~2

to obtain
Dw(xrS2h2i~2) = (g- l)Dw(xr+1h2i~2)

and hence

Dw(xrh2i) = \{2% - l)Q(h)Dw(xr+ιh2i-2).

This reduces the calculation to a case with smaller i and larger r, and

the result follows. q.e.d.

We summarize the result of Lemmas 7.9 and 7.12:

Proposition 7.13. The K3 surface has simple type. For all w,

the Donaldson series @w is given by

9 =(-1) exp(-J

with the standard homology-orientation.

Proof. Prom Lemmas 7.9 and 7.12 we obtain

w2 + 2(r + i) = 2 mod 4

otherwise,

which we can rephrase as

yΔί) rnuM W2 + 2(r + i) = 2 mod 4

otherwise.

Prom this we obtain

D»((l + \x)h2i) = {-l)w2/
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and hence

i

= (-lΓ 2 / 2 exp(§). q.e.d.

(iii) Simple type and universal relations. The universal rela-
tions described in Theorem 7.4 take a simpler form when X has simple

type and bι(X) — 0. Recall from section 1 that when X has simple

type, we define

(7.14) +Dw(z) = Dw((l + ±x)z),

to obtain a linear function +DW : A(X) —>• K satisfying

for all z. When Σ is an oriented embedded surface, we define

(7.15) +Dw>p(z) = DW*{{1 + § φ ) ,

in a similar way, whenever p satisfies the parity condition 2.20. The-
orem 5.10, which expresses the invariants of the pair in terms of the
ordinary invariants, for p in a certain range, takes the following form
in the case of simple type:

Proposition 7.16. Let X be a manifold of simple type with
bι(X) = 0. Let i : Σ *—>• X be the inclusion of an oriented, embed-
ded surface of genus at least 2 ; representing a class S E H2{X\rL) with
Q(S) = n > 0, and let j denote the inclusion j : X/Σ —> X. Let p
and w satisfy the parity condition (2.20), so that +DW'P is defined, and
suppose that

p<|Δ(n,5).

Then there is a polynomial η™(t) G Q[ί], inhomogeneous of degree p,
such that
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for all z G A(X/Σ). The polynomial η™(t) depends only on Q(Σ),
genus (Σ) and w Σ mod 2. It does not depend on X or z. The coefficient
oftp in η™ is \/p\. The polynomial is either odd or even, according to
the parity of p.

Proof. In the algebra A(Σ), let I be the ideal generated by (2 — x)
and ϋfi(Σ). Because X has simple type and no first homology, we have

for all w e I. Let u™ be the elements of A(Σ) from Theorem 5.10.
There is a unique element r/^(5) E Sym(H2(Σ; R)) equal to ω™ modulo
/: it is obtained by writing out ω™ in terms of the standard generators,
deleting any term involving i ϊ ^ Σ ) , and replacing x by 2. The Proposi-
tion then follows. The value of the leading coefficient comes from (6.3).
The final statement follows from the fact that UJ™ has terms only in
degrees equal to 2p mod 8, because the only inhomogeneous generator
of / is 2 — x, which involves only degrees divisible by 4. (Note that S
has degree 2, so a polynomial of degree p in S is an element of A(X)
of degree 2p.) q.e.d.

From this, one obtains the following result: a version of Theorem 7.4
for the case of simple type. In this statement, we again omit z* and j *
from our notation.

Proposition 7.17. Let X be a manifold of simple type with
bι(X) = 0. Let i : Σ ^> X be an embedded, oriented surface of genus
at least 2, representing a class S E H2(X]Z) with Q(S) = n > 0. Let p
satisfy the parity condition (2.20), let p' = α(Σ) — p, and suppose that

Then there is a relation

+Dw(η;(S)z) = (-1)"' +DW'(V;,'(S)Z),

valid for all z G A(X/Σ). Here η™ is the polynomial of degree p which
arises in the previous Proposition. If either p or p' is negative, the
corresponding side of the equation is to be interpreted as zero.

The relations described by this Proposition are most often useful
when p > α(Σ), so that the right-hand side is zero. In this case, they
do not involve w1. Let us spell out the nature of these relations and
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their consequences. Let (X, Σ) be as in the Proposition, let wbe a line
bundle, let z 6 A(X/Σ), and consider

+Dw{Sdz)

as a function of d. The above Proposition gives linear relations among
the values of +Dw(Sd z), for different d satisfying

(7.18) d=(g-l)-w S (mod 2).

The relations have the following consequence.

Proposition 7.19. Suppose that Q(S) = n is at least 20 and that

(7.20) α(Σ)<i(n-20).

Let α + be the smallest integer which is strictly greater than α(Σ) and
has the same parity as (g — 1) — w Σ. Then the values of +Dw(Sd z),
for d satisfying 7.18, satisfy universal linear relations: the relations
determine +Dw(Sdz) for all d>a+ in terms of values of+Dw(Sdz) for
d < a+. The relations depend only on g, n and the value of w Σ mod
2; they are otherwise independent of (X, Σ) and independent of z.

Remark. We have not taken pains to give the sharpest possible
bounds on α(Σ) and n here.

Proof of Proposition 7.19. For all p = (g — 1) — w S mod 2 in the
range

(7.21) α + < p < | Δ ( n , 5 ) ,

Proposition 7.17 gives a relation

+Dw(η;(s)z)=o,

which, when written out long-hand, takes the form

(l/p\γDw{Spz) + κp-2*Dw(Sp-2z) + . . . = 0.

This relation determines +Dw(Spz) in terms of +Dw(Sdz) for d < p,
of the same parity. This would be the end of the proof if it were not
for the upper bound on p in 7.21. To circumvent the upper bound
on p and so obtain relations which determine +Dw(Sd z) for all larger
d, we exploit the following device. Let Σ m be the embedded surface
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representing mS, as in Lemma 7.7. Let Σ m be either Σ m or Σ

(the internal connected sum of Σ m and a null-homologous torus); we

choose one or the other to ensure that

(genus (Σ m ) -l)-w Σm = (genus (Σ) - 1) - w Σ (mod 2).

Let g, n, α + etc. be the corresponding quantities for Σ m ; so for example,
n = m2n.

The inequality (7.20) is designed to ensure that the upper bound on
the right-hand side of (7.21) is not less than 2α + 4, so our original Σ
gives us valid relations for p in the range

α + < p < 2a + 4.

Because n grows quadratically with m while a only grows linearly,
the surfaces Σ m also satisfy (7.20), so we can use them also to obtain
relations on +DW ((mS)p z) (or equivalently +DW(SP z)) for p in the range

β + < P < 2α + 4.

These ranges overlap. Indeed, when m = 2, ά + is not greater than
2a + 4: this is because, α is either 2a or 2a + 2, and ά+ is at most ά + 2.
So taking m to be each power of 2 in turn (for example), we obtain
relations which determine all +Dw(Sd z), for d of the correct parity, in
terms of the values for d < a+. q.e.d.

We can recast this result in terms of the analytic function or formal
power series

Let S be an integral homology class as usual, and consider the formal
power series

This power series is either even or odd, depending on the parity of
w2 + (6+ +1)/2. Let us describe an embedded surface Σ representing S
as fitting if (g — 1) — w S has the same parity as w2 + (6+ -f l)/2. In this
case, the above Proposition gives us linear relations on the coefficients
of the power series. The following Corollary can be deduced directly.

Corollary 7.22. Let (XuΣχ) and (X2,Σ2) be two pairs, and let
Wi —> Xi be line bundles. Suppose each Xι has simple type with b1 =
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0, suppose that Σi and Σ 2 have the same genus and self-intersection
number and that Wι Σi = w2 Σ 2 mod 2. Suppose also that both Σi and
Σ 2 are fitting, in the sense above, and the inequality 7.20 is satisfied.
Then we have

provided only that these two power series agree up to and including the
term in ta, where a = a(Σλ) = α(Σ 2 ) .

More generally, if we have r such pairs (X ί5 Σ^) (i = 1,... , r ) , and
if there are constants α* such that

then the left-hand side is identically zero. (The notation o(ta) indicates

a general element of ta+1R[[t]].)

(iv) K3 blown up. Let X be K3 with its standard homology

orientation, and let X be X#p(QP ) (or K3 'blown up at p points'),

with the homology orientation that it acquires as a result of the fact

that H2(X) is naturally a summand of H2(X) and that a maximal

positive subspace in the one is also maximal in the other. Let it; be a

line bundle on X which is trivial on standard spheres CΊ, . . . , Cp of
-- 2degree 1 in the p copies of QP , so w can be regarded as coming from

X under the 'blow-down' map which collapses these spheres. Let i?i,

. . . , Ep be the cohomology classes represented by CΊ, . . . , Cp.

Proposition 7.23. The manifold X = X3#p(OP 2 ) has simple

type. For any w which is trivial on the E{, the Donaldson series is

given by

2 = 1

Here the homology classes Eι are regarded as defining cohomology class-

es, through Poincare duality. More generally, for the line-bundle w =

w + Ex H \- Eq (q<p), one has

p

JJ cosh^.
2=g+l

Proof. We proceed through a number of lemmas. The first four are
well known (if not quite in this form). The fourth can be proved using
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Floer homology and a splitting of UΓ3, but we have preferred to avoid
those techniques: we base our arguments on the universal relations.
We start with the case p = 1.

Lemma 7.24. The manifold X = X#QP 2 has simple type. There
are power series J and L such that the invariants of X are given by

The series J is even, and L is odd.
Proof. Let w be either w or w + E, and consider the invariants

Z)^. The proof of Lemma 7.12 was based entirely on the geometry of
certain embedded surfaces in K3 and the diίfeomorphism group of the
manifold. The argument adapts without change to prove that, for any
d, and any h G H2(X) C H2(X),

D%(xr h2iEd) = 2 r ( - l ) r + i - ^ Q(hY D%(Ed),

where, as in (7.12), the first Chern class of w' satisfies (w1)2 = w2 +
2(r + i) mod 4. Furthermore, w' can be taken to have the form w' or
w' + J5, for some w' coming from X, according as w is w or w + E
respectively.

It follows that X has simple type, so we may define the simple-type
invariants +DW. It is a consequence of the action of diffeomorphisms
and the formulae above that "Ό* depends on w only through the value
of w2/2 mod 2, and then only in its sign. So the relation

+D%{h2ί Ed) = (-1)* - ^ Q(hγ +D%(Ed),

for h G H2(X), which is derived from the one above, can be rewritten

Now set
ad = {-l)w2/2+Dw(Ed)
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These do not depend on w. Define power series J and L by

Because the invariants +DW and +DW+E are even and odd respectively
as functions on H2(X), so are the power series J and L. The most
general second homology class in X can be written T = h + \E, for
some h £ H2(X), and with the binomial theorem we calculate

d

Σ Σ (o)X"~2i +Dw(h2iEd-2i)/d\
d i \ /

T)d/d\

(In the sixth and seventh lines we use the fact that E2 — —1.) This
verifies the shape of the formula for @w', and the calculation for @W+E

is identical. q.e.d.

Lemma 7.25. The constant term in J(t) is 1.
Proof. This arises from the statement (4.8) in [10], that the restric-

tion of +£>| to H2{X) is equal to +D%. q.e.d.

L e m m a 7.26. The coefficient of t in L(t) is —1.
Proof. This is just a statement of the result of Kotschick [23],

adapted to the present notation. We give an alternative derivation,
based on the universal relations.
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Let S be an integral homology class in X with Q(S) large and posi-
tive. Put

S = S + EeH2{X).

Represent S by a tight surface Σ, and let Σ be a surface representing
5, formed as

έ = Σ#C.
For convenience, make S divisible by 2 in the integer lattice, so that
+DS = +D°. We apply the relations of Proposition 7.17 for the pair
(X, Σ) with p = 1 and w = E. Because α(Σ) = 1 we have p' = 0. Prom
(6.2.) we have η™(t) = t and η™ = 1, so the relation says

Using the expressions in the previous lemma, we see that the left-hand
side is minus the coefficient of t in L(t). The right-hand side is J(0).
So the result follows from the previous lemma. q.e.d.

We now return to the case of general p > 1. Let X — X#p(CP )
again, and w = w + Eι + + Eq, as in Proposition 7.23. The same
argument as above shows that X has simple type. Furthermore, we
have

Lemma 7.27. The Donaldson series of X for the line-bundle w
has the form

. n . Q P

Π T ί Ί? \ I I Ίί T? \

t=l i=q+l

where J and L are the power series from Lemma 7.24.

Proof Write E = (Eu . . . , Ep), and for any multi-index d write

The proof of Lemma 7.24 extends to show that there is a power series
L in p variables such that

where
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and

Also, L is odd in the first q variables and even in the remaining vari-
ables, and the proof of (7.26) shows that the coefficient of tλt2 tq is
1.

To show that L is a product as stated, what we need to establish is
the following. Fix j with 1 < j < p, and write

t = (ί 1 ? . . . , ί j , . . . ί p ),

Fix a (p — l)-multi-index d and let L(tj) be the coefficient of t d in
L(t), so L is a power series of one variable. We need to show that L is
a multiple of L,

(7.28) L{t) = aL(t)

if j < q-> and a multiple of J(t) otherwise. The constant α, of course,
will depend on d.

Let Σ again be a tight surface in X representing a class S with Q(S)
large and positive. Arrange that the genus of Σ is odd and w S is zero,
so that Σ is fitting. Let Σ C X be a surface representing S = S + Ej,
formed by summing Σ with a sphere:

Σ = Σ#Cj.

Let Xι be X blown up at one point (rather than p), and let Σ x be a

similar surface representing SΊ = S + E in Xγ. Let wx -> Xλ be w + E

if j < q and w otherwise. The surface Σ x is fitting in Xι for the line

bundle w\. Consider the two power series

and

These two power series are either odd or even together, depending on j.
Because S and S\ have the same self-intersection number and both have
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a = 1, we can apply Proposition 7.19 to see that there are universal
linear relations (the same for A as Λ) which determine the coefficient
of td for all d > 1 in terms of the leading coefficient (that of t1 or t°
respectively). It follows that A is a multiple of Λ (since the latter is
non-zero), and this is entirely equivalent to (7.28). q.e.d.

Lemma 7.29. The power series J and L satisfy

J(2t) = 2J{t)2 - 1,
L{2t) = 2J(t)L(t).

Proof. Let X be X blown up at two points. Let w be the trivial
line bundle on X. Fix a large positive n equal to 2 mod 4, and consider
three surfaces Σ i 5 Σ 2 and Σ 3 with Q(Σ<) = n and α(Σ4) = 2. (The
condition n = 2 mod 4 means that the genus of these surfaces is odd,
so they are fitting.) The surfaces are to be constructed as follows.

For Σi, start with a tight surface Σ' in K3 with Q(Σ') = n + 2, and
let

Σi = Σ'#CΊ#C 2 .

For Σ 2, start with a tight surface Σ/; in K3 with Q(Σ") = n, and let

Σ 2 = Σ"#T 2 ,

where T 2 is a null-homologous torus. For Σ3, let S be a class in H2(X)
with Q(S) = n + 4, and seek a surface with homology class

[Σ3] = S-2E1.

To find such a surface with α(Σ3) = 2, start with an immersed surface
Σ in X representing 5, with genus satisfying 2g — 2 = n+2 and having a
single transverse self-intersection point of positive sign. An example of
such a surface with the correct genus would be an algebraic curve with
a single ordinary double-point. It is, however, quite easy to construct
such a surface, for any desired n, by imitating the proof of Lemma 7.8.
Now blow up X at two points, the first being the double-point of Σ
and the second being away from Σ. Let Σ 3 be the proper transform
of Σ (in the topological sense of [18]), which is a surface of the same
genus, representing the class S — 2Eλ as desired. Let SΊ, 52, S3 be the
homology classes represented by the three surfaces.
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Prom Lemma 7.27 we have

Because J(t) is an even series with constant term 1, we have

J(2t) = 2J(t)2 - 1 + O(*4),

so
@w(tS3) = 2 ®w{tSλ) - ®w(tS2) + O(ί4).

Since a = 2, we can apply the universal relations, in the shape of
Corollary 7.22, to conclude that the terms in O(ί4) vanish, and hence

J(2ί) - 2J{t)2 - 1.

For the second of the two formulae, take X as before, and consider
the two surfaces Σi and Σ 3 above. Let w be a line bundle on X with
w Σ 3 = 1 and w2 = 0 mod 4 (such a w can be found as long as the
homology class of Σ above is not divisible by 2.) Set Wι = Ex and
w3 = w + Eι. Then Wι SΊ = w3 S3 = 1 mod 2, and both surfaces are
fitting. We have

a

Since L{t) = -t + 0{t3) and J(t) = 1 + 0{t2), we have

Again, Corollary 7.22 shows that the equality is exact to all orders, so

L(2t) = 2J(i)L(t). q.e.d.

The proof of Proposition 7.23 is now complete: it is an elementary
exercise to show that the only pair of power series J(t) and L(t) sat-
isfying the relations of (7.29) and the initial conditions of (7.25) and
(7.26) are

J(t) = cosh(t),
L(t) = - s i
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so the final result follows from Lemma 7.27. q.e.d.
(v) The structure of the invariants on a ray. Having found

the invariants of K3 blown up, we are now ready to treat a more general
manifold. Let X be a manifold of simple type with b1 = 0, and let Σ be
an embedded surface representing a class S with Q(S) > 0. Pick any
w —> X, and consider the restriction of @w to the ray {tS}. Because
Sfw is a priori only a formal power series, the restriction is formal too:
we simply mean the power series @w(tS) in t.

Proposition 7.30. Let (X, Σ) and w be as above, so Σ represents
S with Q(S) > 0, and let a = α(Σ). Then there exist constants βr such
that

' (^)$>h(rί), or

according as the invariant @χ is even or odd. The sum extends over
integers r in the range 0 < r < a satisfying r = Q(S) mod 2.

Proof. Write n — Q(S). At the outset, we make two additional
assumptions on Σ. The first is that Σ is fitting: i.e. that (g — 1) — w Σ
is even if @w is even, or odd if @w is odd. The second is that n is large
compared to α, in the sense required by Propositions 7.19 and 7.22:
that is, the inequality (7.20) should hold.

Let X denote K3 blown up at N points, where N is any number
larger than α. (We continue to use X to denote the general 4-manifold
of the Proposition, and hope this does not cause confusion.) For 0 <
r < a, with r = a mod 2, construct a surface Σ r C X as follows. Start
with a tight surface Σ' C K3 representing a class Sf of square n + r.
(Note that n = r = a mod 2, so n + r is even). Let

Σ r - Σ' # ( C Ί # - . # ά ) # ( | ( α - r ) T 2 ) .

This surface represents the class

Sr = D — Eι — — Er.

It has the same invariants as Σ, in that Q(Σr) = n and α(Σr) = α. We
choose S' so that it is not divisible by 2. There is a Wι on K3 with

wx S' = 1 and (wχ)2 = 0 mod 4.
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We also pick w0 —> K3 with

w0 - S' = 0 and (^o)2 = 0 mod 4.

For example, w0 = 0 will do. We now break up the argument into four
cases, according to whether &w is an even or odd power series, and
according to whether n (or equivalently a) is even or odd.

&w even and n even. Consider the surfaces

Σ o , Σ 2 , . . . , Σ α _ 2 , Σ α

in X. Set w = w0 or w\, chosen so that ώ Σ r = w-Έ mod 2. According
to Proposition 7.23, we have

The power series (cosh £) r, for r = 0,2,... , α, span the space of even

power series in t modulo terms of order ta+2. So we can find constants

α 0 , ot2 > 5 &a such that

a) = O( t α + 2 ) .

All the surfaces in this formula are fitting and have the same a and n.
It follows from Corollary 7.22 that the left-hand side is identically zero.
That is,

9%{tS) = ent2/2(a0 + α2(cosh*)2 + + aa(cosht)a).

Using the multi-angle formulae this becomes

= ent2/2(β0 + β2 cosh(2t) + + βa cosh(oί)),

which is the assertion to be proved.

$}w even and n odd. Now a is odd and we use the surfaces

Σi, Σ3, . . . , Σ α _ 2 , Σ α .

Choose w as before. The functions (cosht)Γ, for r = 1,3,... ,α, span
the space of even power series in t modulo terms of order t α + 1 . There
therefore exist constants α l 5 α 3 , . . . , α α such that

K $ = O(ta+1).



704 P.B. KRONHEIMER & T.S. MROWKA

Corollary 7.22 again implies that the left-hand side is identically zero.
So

9%(tS) = ent2/2(ax cosh* + α 3 (coshί) 3 + - + α α (coshί) α ),

which can be re-written

9%(tS) = ent2/2 (ft cosh t + β3 cosh(3t) + + βa cosh(αΐ)).

9W odd and n even. Use the surfaces with even r, excluding Σ o :

Σ 2 , Σ 4 , . . . , Σ α _ 2 , Σ α .

Take w = w0 + Eι or wx + Ex, chosen so that w Σ r = w Σ mod
2. (Note that w Σ r is independent of r for the family above, because
the case r — 0 is excluded.) The invariant ^ ^ is odd; according to
Proposition 7.23, we have

The functions sinhί (cosh£)Γ~~1, for (r — 1) = 1,3,... , (α — 1), span the

odd power series in t modulo terms of order ία+1. It follows that we

have constants α r for which

% = O(ί α + 1 ) .

Again, the left-hand side must vanish, so

®%{tS) = -ent2/2(a2 sinht cosht -hα4 sinhί (coshί)3 + •

+ α α s i n h t ( c o s h ί ) α " 1 ) ,

which can also be written

= ent2/2 {β2 sinh(2ί) + β4 sinh(4ί) + + βa sinh(αt)).

odd and n odd. Because a is odd we have the family of
surfaces with r odd:

Σ i , Σ3, . . . , Σ α _2, Σ α .

Take w = w0 +Eλ or κ;χ -f -Ei as in the previous case. The odd functions
sinh t (cosh i ) r ~ \ for r = 1,3,... , α, span the space of odd power series
in t modulo terms of order a + 2, and the proof is completed as before.
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This completes the proof of the Proposition under the additional
hypotheses that Σ «-»> X is fitting and n is large compared to a (the
inequality 7.20). Consider now a surface Σ <—ϊ X which does not nec-
essarily satisfy these conditions. Let 5 be the class it represents, and
write a = α(Σ) and n = Q(S). Let Σ m be a surface representing mS,
constructed as in Lemma 7.7. We have

α(Σm) = ma and Q(Σm) = ra2α.

Because the former grows linearly with m and the latter grow quadrat-
ically, the surface Σ m satisfies the constraint 7.20 once m is sufficiently
large. The surface Σ m may or may not be fitting. If it is, define
Σ'm = Σ m . Otherwise, put Σ'm = Σ m # Γ 2 , so that Σ^ is fitting. We
therefore have

α(Σ^) =ma + 2e,

where e = 0 or 1.
Choose two coprime integers mx and ra2, both large enough that

Σ ;

m i and Σ'm2 satisfy 7.20, and both bigger than 2 and odd for later
convenience. The Proposition has already been established for surfaces
satisfying these conditions. So, using Σ^ni, we have, say

where the sum runs over integers r equal to πiia = a mod 2 and not
exceeding m^a + 2e. Here we have taken the case that the invariants
are even: the odd case is no different. We can rewrite this in the form

^cosh(pί),

where the sum now runs over rational numbers p in the set

Ωx = { p = r/rrii \ r = a mod 2 and 0 < p < a + 2e/πiι }.

Using Σ'm2 in just the same way, we have

(^ |^) £ 7σcosh(σί),
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where

Ω2 = { σ = r/m2 \ r = a mod 2 and 0 < σ < a + 2e/ra2 }.

Prom these two expressions we have

βPcosh(pt) = Σ 7σcosh(σt).

Because the functions cosh(λt) are linearly independent, there must be
a non-zero term on the right-hand side to match each non-zero term
on the left. It follows that βp can be non-zero only for p in the set
Ωi Π Ω2. Since πiχ and ra2 are coprime odd integers, not less than 3,
this intersection is precisely the set of integers r in the range 0 < r < α,
satisfying r = a mod 2. This completes the proof of the Proposition,
q.e.d.

(vi) The structure theorem for fixed w. We shall now prove
Theorem 1.7 for a fixed value of w. That is, we shall show that, for X
of simple type with 61 = 0, there are constants βr{w) and classes Kr,
which are integral lifts of tί;2(X), such that

r=l

We shall also establish the adjunction inequality which forms part of
(b) of the Theorem. The question of how the βr and Kr depend on w
will be left to the next subsection.

Proposition 7.30 can be slightly generalized without additional cost.
Recalling the definition of &w as

ωw(h) — +Dw(eh)

we introduce temporarily the notation

<Z)™(h A — +Πw(phrλ
-£/ 1/ 6, /C J JLs l t > /ύ J ,

regarded as a function of h (or a formal power series), with z G A(X)
fixed. We are particularly concerned with the power series @w(tS] Td),
for T G H2(X;R) a class orthogonal to S. In this case, because Td

comes from A(X/Σ), the proof of (7.30) also establishes the following:
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Proposition 7.32. Let X, Σ and w be as in Proposition 7.30,
let S be the class represented by Σ, with Q(S) > 0, and let a = α(Σ).
Further, let T be a two-dimensional homology class orthogonal to S,
and fix an integer d>0. Then there exist constants βr (depending on
T and d also) such that

or

according as the power series @χ(tS\Td) is even or odd. The sum
extends over integers r in the range 0 <r < a satisfying r = Q(S) mod
2.

Starting from this Proposition, the proof of Theorem 1.7 (for a fixed
w) is a matter of elementary manipulation of formal power series. First
we recast this Proposition and its predecessor in slightly different terms.
Given a surface Σ with α(Σ) = α, representing a class S with Q{S) > 0,
let PΣ denote the differential operator

regarded as an operator on functions on H2(X). Here V5 is ordinary
differentiation in the direction S and eQ/2 is a multiplication operator.
This operator acts also on power series, quite formally. Let (S) denote
the ray spanned by S in H2(X), and let @w\(s) denote the formal
restriction of @w to this ray. Then Proposition 7.30 asserts:

(7.33) ft(#Ί<s>) = 0.

This is a less sharp statement than the Proposition, because it makes
no mention of the (trivial) fact that @w\{s) is either odd or even, nor
of the less trivial fact that only integers r = a mod 2 are needed; but
this simplified form is all we need at present.

We need two elementary lemmas about these differential operators
on formal power series.

Lemma 7.34. For any T e H2(X; E), we have

Vτ@
w = @w( Γ).
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Proof. We calculate

= S>W(S;T). q.e.d.

Lemma 7.35. If S T = 0 then VT commutes with P%.
Proof. Let T+ be the linear function h >-+ h • T on H2(X). We

calculate

Because S T = 0, we also have VsTt = 0, which we can write as

We also have [Vτ, V5] = 0 irrespective of whether T is orthogonal to
S. Thus

[e-«/ 2 oV τ oe«/ 2 ,Π(Vs-r) ] = 0,

and hence [ V T , ^ ] = 0. q.e.d.
On account of the first of these two lemmas, we can recast the con-

clusion of Proposition 7.32 in the spirit of (7.33) by writing

for all T orthogonal to S and all d > 0. On account of the second
lemma, we then have

So Pγ,@w is a formal power series which vanishes on the ray (S) together
with all its normal derivatives of all orders. We deduce:

Lemma 7.36. Let X be a A-manifold of simple type with b1 = 0,
and let Σ be an embedded surface with α(Σ) = α; representing a class
S with Q{S) > 0. Then PΣ@

W = 0, for each w.
Proof of Theorem 1.7 for fixed w. Let SΊ,. . . , Sb be an integral basis

for Hi{X\TL) consisting of classes of positive square; here b = b2(X)
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therefore. Let Σ; be surfaces representing the classes <%, and pick
w -> X. Let a{ — α(Σi), and write a = (αi , . . . ,α 6 ) . According to the
last lemma, we have

PΣi$
w = 0, (i = l,...,b)

and the general solution to this system of equations amongst formal
power series is

Q

where the sum is over all r = (ri,... , r6) with |rj| < αi5 and Kτ is the
unique integral linear form on H2(X;1J) satisfying

To complete the proof of part (a) of the main theorem, it remains
to show that βr is zero unless Kr is an integral lift of w2(X). Because
of Wu's formula, the latter condition equivalent to

Kr(S) = Q{S) mod 2

for all integral S. It is certainly enough to consider only S with pos-
itive square here, and the desired result follows straight from Propo-
sition 7.30 which describes the structure of &w on a ray: the relevant
part of that Proposition is the statement that the sum extends only
over r satisfying r = Q(S) mod 2.

In a similar vein, Proposition 7.30 shows that βτ is zero unless Kr is
such that

α(Σ) > Kr(S) mod 2

for all Σ representing classes S with Q(S) > 0. This is equivalent to
the inequality in (b) of Theorem 1.7, and completes the proof of parts
(a) and (6) except for one small detail.

The remaining point is that the Theorem claims the inequality in (6)
holds whenever S Φ 0 and Q(S) > 0, whereas we have only proved it
when Q(S) is strictly positive. Suppose then that Q(S) = 0. Let T be
an embedded surface in X with Q(T) > 0 and [T]-S > 0. Such a surface
exists if S is non-trivial. Increasing the genus of T if necessary, we may
assume that T meets Σ transversely in [T]-S points. Let Sm be the class
[T] + rnS, and let Σ m be a surface representing Sm, formed by taking m
disjoint, nearby parallel copies of Σ, and smoothing out the intersection
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points between these copies and T. We have Q(Sm) > 0 now, and an
elementary calculation shows that if Σ violates the inequality in (6)
then so does Σ m once m is sufficiently large, whatever the genus of T.
The result therefore follows from the case Q(S) positive, which was
already established. q.e.d.

(vii) Comparing different determinants w. In the notation
of (7.31), we are left with the question: how do the coefficients βr(w)
depend on w ? There is also the question of whether the set of basic
classes Kr is independent of w. Theorem 1.7 gives an answer: the
βr(w) depend on w only through a possible change of sign, and the
basic classes Kr do not depend on w. We now prove these assertions.

Let S be once more an integral class in H2(X) with Q(S) large and
positive. Let Σ be a fitting surface representing S. Fix a w on X, and
let w' = w — S. Write n = Q(S) and a = α(Σ) as usual.

Lemma 7.37. There is a universal linear relation which deter-
mines the power series @w (tS) in terms of Qfw{tS). The relation de-
pends only on n, a and w S mod 2.

Proof. By passing to a multiple of S if necessary, we may suppose
that n is at least 20 and that the inequality 7.20 holds. (The multiple
should be odd, so that w — S is still the same, mod 2.) In the proof of
Proposition 7.19, we used the relations of Proposition 7.17 only in the
range 7.21:

α+ <p< f min{2#-4-(n/2), 2 n - 2 } .

The condition a < p ensures that the right-hand side of the relation
in (7.17) is zero. Now, however, we use also the relations in the range
0 < p < α, with p satisfying the parity condition (which says that p
is even if @w is even, and odd otherwise, because Σ is fitting). With
z = 1 we obtain

where p' — a—p. Note that Σ will also be fitting for w': that is, p' will
have the same parity as +DW .

Taking
p' = 0, 2, ... , 2[α/2]

in turn in the even case, or
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in the odd case, we obtain relations which determine all coefficients of
9W* (tS) up to (and including, if the parity is right) the term of order
ta. The remaining terms are then fixed, by Corollary 7.22. q.e.d.

We can now determine what the relation in the Lemma must be,
based on the known examples supplied by K3 blown up.

Lemma 7.38. In the situation of Lemma 7.37, if we write out
@w{tS) as

ψ
the sum running over integers r in the range —a < r < a satisfying
r = a = n mod 2, then

9"\tS) =

Proof Recall the notation used in the proof of Proposition 7.30,
and the examples of embedded surfaces Σ r in X = K3#N(& ) used
there: we again take

Σ r = Σ' # (<?!# • #<%) # (|(« - r)T2),

for r = a mod 2, representing the class

Sr = S — Eι — — Er,

where Sf is a class in K3 with square n + r, and Σ' is a tight surface
representing it. Each Σ r has self-intersection n and α(Σr) = α. Let w*
be an arbitrary line-bundle on if 3, which may have even or odd degree
onS'.

In proving Proposition 7.30, we saw that, for any (X, Σ) and w,
the function @χ(tS) could be written as a linear combination of the
functions @g(tSr), for a suitable w: we took w = w* or w* + Eλ

according as @χ was even or odd respectively, and w* was chosen so
that w - Sr = w S mod 2. Since the relation in Lemma 7.37 is linear,
we therefore need only verify that the formula for 3lw (tS) is correct in
the case that X is K3 blown up, Σ = Σ r , and w = w* or w* + Eλ. We
treat the two cases in turn.

The case w = w*. In this case, when S = Sr, we have

W' =
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From Proposition 7.23 we obtain:

ωw(tq) — (_-nw*/2 nt2/2 (rn~hf\r

/ -i \wl/2 _nί2/2 o—r V ^ / r \ Jr—2s)t

= (_l)(^-S')2/2 ent2/2 2-r (_!)r ^ j Γ j (_l)»e(r-2*)t

The rule of transformation is therefore that βre
rt be replaced with

which is as asserted in the Lemma.
The case w = tu» + Ex. In this case

w' = w* + 2EX + E2 + + Er.

We have

and the latter is what is given by Proposition 7.23. We obtain

2-r j

entVa coshί(-sinh<) r-1

T ~ 2 ) (-l)*e ( r- 2 s ) t .

The rule of transformation is therefore that βre
rt be replaced with

which is again as asserted in the Lemma. q.e.d.
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Proof of Theorem 1.7, completion Let w and w' be two different
line-bundles on X, and let the corresponding invariants be

9* =

We suppose these are written without redundancy, so that the coeffi-
cients βr and β'r are non-zero, the Kr are distinct, and so are the K'r.
Write Cι(w') = Cι(w) — δ, and choose a homology class S G H2(X]Z)
with Q(S) positive, satisfying S = P.D.(5) mod 4. This ensures that
φ*' = ^ - P . D . ( 5 ) W r i t e Q ( 5 ) = n ? a n d l e t Σ b e a n y fitting s u rface

representing S. Applying the previous Lemma to this situation, we
find that

r = l

= ent2/2 J2(

r = l

It follows that

r = l r=l

As this holds for all S Ξ P . D.(J) mod 4, it follows that the expressions
are equal term by term, and that after reordering, we have Kr = K'r\
and, switching notation so as to write βr(w') for β'r:

βr(w') = ( - i r 4 ( a

This we can rewrite as

which shows that the dependence of βr(w) on w is as claimed in The-
orem 1.7. q.e.d.
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8. The simple type condition.

(i) Tight surfaces and simple type. In this section we describe
some sufficient conditions for a 4-manifold X to have simple type. Re-
call that an oriented, embedded surface Σ representing a homology
class S in X is tight if 2 genus (Σ) - 2 = Q(S).

Theorem 8.1. An admissible A-manifold X with &i(X) = 0 has
simple type if it contains a tight embedded surface of genus 2 or more.

Proof. The genus of Σ being at least 2 means that the self-
intersection number of the class S which Σ represents is positive. Be-
cause of Lemma 7.7, there is no loss of generality in assuming that S
is divisible by 2. In this case, the self-intersection number n = Q(S) is
divisible by 4 and the genus is odd. We can also make the genus of Σ
and n as large as we wish, using the same lemma. We will need n to
be at least 20.

Pick any w —> X. The singular invariants D^^ are defined for p
even, because (g — 1) and w(S) are even (2.20); and as long as n is at
least 20 we can apply the basic relations of Theorem 7.4 with p = 4 to
obtain

(8.2) Dw{ω™z)=0

for all z £ A(X/Σ). (We omit the maps i* and j* from our notation
again.) Now recall the partial calculation of ω™ which we made in
Proposition 6.4. We have

- 3)x2 - 4SΓ) + Fw(g,n).

In our case, g is \n + 1 and Γ makes no contribution, since h(X) is
zero. Thus

w{S4z - (3n - 4)xS2z + | ( n 2
Dw{S4z - (3n - 4)xS2z + | ( n 2 - 4n)x2z + 24Fw(±n + l,n)z) = 0.

The function Fw(\n + 1, n) is a universal function of n. We can work
out what it must be from the one example we understand well, namely
the K3 surface. Prom this example we obtain, with 3 = 1,

3n2 - (3n - 4)(2n) + 3(n2 - 4n) + 2±Fw{\n + l,n) = 0,
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SO

The universal relation (8.2) therefore reduces to

Dw (S4z - (3n - 4)xS2z + §(n2 - 4n)x2z + 4nz)= 0.

As this relation is universal, we can apply it to the class kS in H2(X] Z),
which, like 5, is represented by a tight surface of large genus, for any
positive integer k. The self-intersection number is λ;2n, so we obtain

Dw (k4S4z - k2(3k2n - 4)xS2z + \k2{k2n2 - \n)x2z + 4k2nz) = 0.

This identity has parts involving k2 and fc4, and we can equate both of
these to zero, because the identity holds for all k. Prom the k4 terms
we obtain

Dw (S4z - 3nxS2z + \n2x2z) = 0,

and from the k2 terms we obtain

Dw (4 xS2z - 3n x2z + Anz)= 0.

We now use also the relation with p = 2, namely Dw>2 = 0, as in

Lemma 7.6(b). Applied to the class xz E A(X/Σ), this gives

Dw (S2xz - (n/2)x2z) = 0.

Cancelling the S2 term between these last two equations and dividing

by n gives

Dw{x2z)=4Dw{z).

This equation is the defining condition for simple type, but we have

established it only when z G A(X/Σ). To conclude the proof, we now

show by induction on p that

(8.3) Dw(x2Spz) = Ww{Spz).

We treat first the case of even p, the case p = 0 having been already

established. For this, we use the recurrence relations, in the shape of

the formula

(8.4) Dw(ω"z) =0.
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This allows us to write

TΛW ( qp \ _ V ^ T)W ( qp-2l i \
u yo zj — j u>iU yo x £j .

In this universal formula, we can also substitute x2z for z to obtain

Dw {Sp χ2z)=Σ aiDW (SP~2i χ i + 2 z)

If the formula (8.3) is known to hold for all smaller, even p, then we
can apply (8.3) with xιz in place of z to obtain

Dw {Sp x2z) =Σ ^aiDW (SP~2i χi z)
i>0

= 4Dw(Spz)

as required. As it stands this argument is valid only for p in a certain
range, because the universal relation (8.4) is valid only for 2p < Δ(n, g).
The by now familiar device of replacing S by kS allows one to continue
the induction for all p.

For the odd case, consider a surface Σ' = Σ # T 2 with α(Σ') = 2, still
representing the same class S. Since g — 1 — w(S) is now odd, we can
apply the relations with p = 1 to obtain

and hence, since ω™ — 5,

Dw(Sz)=0.

One can now prove by induction that DW(SP z) — 0 for all odd p, using
the relations Dw(ω™ z) = 0 for odd p > 1, applied to the pair (X, Σ')
Again, when p becomes large, one must replace S by kS and take a
surface with a = 2 representing this multiple. q.e.d.

Corollary 8.5. A A-manifold X with bλ = 0 and b+ > 1 has simple
type if it contains a sphere of square —2 meeting a torus of square 0
transversely in one positive intersection point.

Proof. Take two disjoint, parallel copies of the torus and smooth
their intersection points with the sphere to obtain a tight surface of
genus 2. q.e.d.
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Remark. In section 7(ii), we showed that K3 had simple type using
an argument which was rather simpler than the proof of Theorem 8.1
given above, in that the main mechanism was the relation of degree 2
in 5, rather than the degree 4 relation which fuelled the argument here.
An examination of the argument used in 7(ii) reveals that it depends
on having a tight surface with (g — 1) — w(S) odd. This makes the
argument less general: the proof of Theorem 8.1 used a tight surface
with (g — l)—w(S) even, and such a surface can always be constructed
from an odd one by replacing S by 2S.

(ii) Examples. Tight surfaces can arise naturally as totally real
submanifolds of complex surfaces, and this leads to one criterion for
simple type:

Lemma 8.6. Let X be a smooth, 2-dimensional variety defined
over R. Suppose the real locus X(R) has a component which is a closed,
orientable surface. Then that component is a tight surface, regarded as
a submanifold of the complex locus X(C) with its standard complex
orientation.

Proof. The complex structure /, thought of as an endomorphism of
the tangent bundle of the 4-manifold X(C), carries the tangent bundle
of X(1R) onto the normal bundle. If (vι,v2) is an oriented frame for
the tangent space to X(R) at a point, then (Iυι,Iv2) is a frame for the
normal bundle, but (υi, v2, Ivι,Iv2) is not a correctly oriented frame for
the 4-dimensional tangent space with the standard complex orientation.
Therefore the normal bundle is isomorphic to the cotangent bundle in
an orientation-preserving way. The degree of the normal bundle to an
orientable component of genus g is therefore 2g — 2, which shows that
the component is tight. q.e.d.

Corollary 8.7. Let X be a smooth protective algebraic surface
defined over M whose real locus X(R) contains an orientable component
of genus 2 or more. Suppose the complex surface X(C) has bx = 0 and
6+ > 1 (or equivalently q — 0 and pg > 0). Then X(C) has simple
type.

Proof. Combine the Lemma above with Theorem 8.1. q.e.d.
Similar considerations give:

Proposition 8.8. Let X be a symplectic A-manifold with bι = 0
and 6+ > 1. Suppose X contains an orientable Lagrangian surface of
genus 2 or more. Then X has simple type.

Lemma 8.9. Let Y be a smooth protective 3-fold with 61 = 0, and
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let Xd be a smooth surface in Y belonging to the linear system \dH\,
where H is the hyperplane class. Then Xd has simple type if d> 4.

Proof Choose homogeneous coordinates for the ambient pro-
jective space CPN in such a way that the codimension-three space
K = {Xι = X2 = X3 = 0} meets Y transversely in isolated points.
When d is at least 4, let Sd be a singular hypersurface in CPN one of
whose components is the quartic

(8.10) X*+X*+X* = 0

and whose other components (if d > 4) are well away from the isolated
points Y Π K. Now deform this (possible reducible) hypersurface Sd
slightly so that it becomes smooth and meets Y transversely. Let Xd

be the intersection. Near each of the points of Y which meets the
locus if, the new Xd will contain a C°° copy of the Milnor fibre of the
singularity (8.10), regarded now as an affine quartic in C 3 . To conclude
the proof we should find a tight surface of large genus in this Milnor
fibre, and then apply Theorem 8.1. One way to find a tight surface
is to use Lemma 8.6. A suitable real form of the Milnor fibre is the
smooth quartic surface

(X?-3)2 + (X|-3) 2 + (X3

2"3)2 = 16,

whose real locus is a compact, orientable surface of genus 5. (The genus-
5 handlebody which this encloses in R3 looks like a much-thickened
1-skeleton of a standard cube.) q.e.d.

Lemma 8.11. Let Y be a smooth protective 5-fold and Xv,q,r

 a

surface in Y formed as the transverse intersection with three hypersur-
face in CPN of degrees p, q and r, all at least 2. Then Xp,q,r has simple
type.

Proof. The same argument as in the previous lemma reduces one to
considering a 2-dimensional surface singularity Z formed as the com-
plete intersection of three homogeneous quadratic cones in C 5 , and its
Milnor fibre Ze. We must find a tight surface of genus 2 or more in
Z€. Seeking to apply Lemma 8.6 again, we are led to seek a suitable
real form of Ze. Consider a 2-dimensional plane Π in M5, so positioned
that its intersection with the Octant' in which all 5 coordinates are
non-negative is a (compact) pentagon. Take the surface in E5 defined
by the condition

1^17 X2i ^ 3 ? ^ 4 5 X5) ^ **"
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This is a complete intersection of three quadrics, so it is a real form of
some Ze. It is a closed, orientable surface, and the coordinate hyper-
planes divide it into 32 pentagons, which tessellate the surface, with 4
pentagons meeting at each vertex. The genus of the surface is therefore
5. q.e.d.

Corollary 8.12. If X is a smooth complete intersection of general
type in QPN, then X has simple type.

Proof. If N is at least 5, then Lemma 8.11 applies. The remaining
cases all come under Lemma 8.9, with one exception: the intersection of
two cubics in QP4. To deal with this case, let S be a smooth, real cubic
surface in RP3 of negative Euler characteristic, such as the projective
completion of the affine surface

x3 + y3 + z3 = x + y + z.

Let C(S) be the cone on 5, sitting in IR4. The intersection of (7(5) with
the unit sphere S3 is the orientable double-cover of S. This exhibits
an orientable surface of negative Euler characteristic as a complete
intersection of a cubic and a quadric. The same surface arises as a
component of the complete intersection of two cubics: one only has to
make one of the cubics reducible. Now apply Corollary 8.7. q.e.d.

Various branched coverings can be handled in a very similar manner.
For example:

Proposition 8.13. Let Z be a smooth complex projective surface
with bι — 0, and let Cv C Z be a smooth curve in the linear system
\2pH\. Let Xp be the branched double-cover of Z, branched along Cp.
Then Xp has simple type for all p > 3.

Proof. Along the same lines as the previous propositions, we can
consider the affine surface X which is the branched double-cover of C 2,
branched along the Milnor fibre of the singularity x6 + y6 = 0. All Xp

for p > 3 contain a copy of this X, so we need only find a tight surface
of genus 2 or more in this space. If one deforms the plane singularity to
obtain a real, plane sextic consisting of three ovals, two of them inside
a third, then the real locus of the double covering (for a suitable lift
of the real involution) consists of an orientable surface of genus 2: it
arises as the doubling of the disk with two holes which lies between the
three ovals. q.e.d.

Proposition 8.14. Regular elliptic surfaces with 6+ > 1 have
simple type.
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Proof. Using the non-standard nuclei of [19], one can find inside an
elliptic K3 surface a configuration consisting of a sphere and a torus,
of the sort required by Corollary 8.5, entirely disjoint from one elliptic
fibre F. Without disturbing the configuration, one can alter the K3
surface, either by performing logarithmic transforms in the neighbour-
hood of F or by forming a fibre sum with copies of the rational elliptic
surface. According to [17], every regular elliptic surface is diffeomor-
phic to one of the manifolds obtained in this way. They all have simple
type by Corollary 8.5. q.e.d.

(iii) Discussion. The examples given above do not constitute
strong evidence for the conjecture that all 4-manifolds with 6χ = 0
and b+ > 1 (or even all regular complex surfaces with pg > 0) have
simple type. Although the authors have no counter-example to such
a conjecture, the cases which are understood are too special to give
confidence.

All the cases treated above can be seen to have simple type on ac-
count of having a tight embedded surface of positive square, using
Theorem 8.1. It is therefore sobering to observe that there is at least
one family of simply-connected 4-manifolds with 6+ > 1 which contain
no such surfaces: examples are provided by the non-complex, fake K3
surfaces of [19] and their non-spin companions, in the case that loga-
rithmic transforms are performed on three disjoint nuclei. A 4-manifold
X of this sort does in fact have simple type: there is an elementary
argument using Floer homology, starting from the fact that the elliptic
surfaces have simple type. One can also calculate the basic classes. For
example, if one performs a single logarithmic transform of multiplicity
2 in each nucleus, and if the cohomology classes dual to the resulting
multiple fibres are Ki, n2 and /ί3, then there are 8 basic classes given as
±Ki ± κ2 ± ^3 Using Theorem 1.7, the assertion that X contains no
tight surfaces of positive square is easily verified as a consequence of
the fact that any class of positive square in H2{X) has non-zero pairing
with at least one of the basic classes.

Corollary 8.7, of course, can be applied to many more surfaces than
complete intersections and branched double-covers. It seems quite
likely that minimal surfaces of general type satisfying the hypothe-
ses of Corollary 8.7 are as widespread, at least with regard to their
characteristic numbers c\ and c2, as regular surfaces in general.
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9. Other issues

In the final section of the paper, we take up some topics which were
touched on in the introduction. We give first a proof of the 'blow-up
formula' for the invariants of X#QP when X has simple type. Then we
discuss the relationship between the results of this paper, particularly
the lower bound for the genus of embedded surfaces in part (b) of
Theorem 1.7, and the earlier results of [[24],[25]]. After clarifying this
relationship, we are able to use an observation of Brussee [6] to give
a sufficient criterion for the canonical class of a complex surface to be
one of the basic classes. We also mention various open questions in the
course of the discussion.

(i) The blow-up formula for manifolds of simple type. We
give here a proof of Proposition 1.9. Since the publication of the an-
nouncement [28], Fintushel and Stern have provided a simpler proof of
a more general result [13], so we keep our treatment brief. Let X, X
and E be as in the proposition. Pick an integer d > 0, and consider
the invariants +D%{Ed z) and +DγE(Ed z), for z <Ξ A(X) C A{X). The
content of the proposition is the statement that

(9.1) +D%(Edz) =

and +DfE{Edz) = bd

+D%{z),

where ad and bd are the values that occur for KZ (so ad and bd are the
dth derivatives at t = 0 of the functions e~* /2 cosht and — e~* /2 sinht
respectively).

Pick a surface Σ C X representing a homology class S. Let n and
g be the self-intersection number and genus, and let these be large in
comparison to α(Σ) and d, so that 2d < Δ(n, #) and the inequality 7.20
holds. For definiteness, let us arrange (as we may) that n is even, g is
odd and w is even on S. Let X° and W° be the complement of Σ and
the tubular neighbourhood of Σ respectively, with cylindrical ends, and
let w also denote the cylindrical-end bundle obtained by restricting w
to X° and W°. On the blow-up X = X#OP 2, let w be w or w + E,
according as d is even or odd respectively.

Lemma 9.2. In the situation described above, there is a polynomial
ζ(S), depending on d, n, g and the value of w S mod 2 but otherwise
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independent of X and Σ, such that

for all z E A(X/Σ). With the above assumptions about the parity of n
and g, we can assume that ζ is an even polynomial of degree at most
α(Σ).

Proof. Let W° be the connected sum W°#CP2, with a metric with
long neck for the connected sum. This manifold has a relative invariant,
which is a map

The possibility of defining such an invariant, satisfying a pairing for-
mula similar to Theorem 4.28, was mentioned as Remark (c) at the end
of section 4. (Note that the definition of the invariants, as always, may
involve a second blow-up, which is hidden in our notation.) The proof
of the vanishing theorem for the odd components (5.4) adapts to this
manifold also, so D^o takes values in F£(Y). The surjectivity of D^o

established in (5.7) means that there is a class 7 E A(Σ) such that

D%o{Ed) = D^O{Ί).

Using the pairing formulae, this gives

D%{Edz) = Dw

x{Ίz).

Let ζ(S) be the polynomial in S which is equal to 7 modulo the ideal
generated by (x — 2) and the odd-dimensional classes in A(Σ). Then
the simple type condition and the hypothesis bλ(X) = 0 mean that we
can reduce the above relation to

+D%{Edz) = +D%(ζ(S)z).

The assumption that d has the same parity as w E means that the
class D^o (Ed) has dimension 0 mod 4, so ζ will be an even polynomial.
Using the universal relations, in the form of Proposition 7.19, we can
reduce ζ to a polynomial of degree at most α(Σ). (Note that α(Σ) is
even.) q.e.d.

To complete the argument, we need to show that ζ has degree zero
and is equal to the constant ad or bd, according as w is w or w + E
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respectively. Let us deal with the former case, where d is even and
w — w. The number of coefficients in ζ is 1 + α(Σ)/2. So we can
determine ζ if we have this many (independent) inhomogeneous linear
constraints. To this end, let X be a K3 surface blown up at N points
(where N is any number greater than a = α(Σ)), let w -> X be the
trivial bundle, and let

Σo, Σ2, ... , Σα_2, Σα

be surfaces in X, as described in section 7(v). These all have the
same genus g and self-intersection number n; the surface Σ r meets the
first r of the exceptional curves. Proposition 7.23 gives the invariants
explicitly for both X and X in this case. The number of surfaces here
is equal to the number of constraints needed. We leave the reader to
check that the resulting constraints on ζ are independent and have the
solution ζ(S) = ad- The odd case is similar. q.e.d.

(ii) Comparison with other obstructions. Part (b) of Theo-
rem 1.7 provides an obstruction to embedding surfaces in X, by estab-
lishing a lower bound for the genus in each homology class of positive
square. In [25], a slightly different obstruction was identified, also using
singular connections. Here we compare the two results.

Let (X, Σ) be an admissible pair, and write g for the genus and n for
the self-intersection number of the class S represented by Σ, as usual.
Introduce a formal parameter 5 and consider the series

R(s) =

which we regard as a polynomial in s taking values in the linear func-
tions on A(X/Σ). Essentially the same series was considered in [25].
We have normalized the powers of s slightly differently here, and we
differ from [25] in regarding R(s) as a function on A(X/Σ) rather than
A(X). Neither of these points is of particular importance for our dis-
cussion. Note that with our present conventions, the sum extends only
over p satisfying the parity condition (2.20), in the range 0 < p < α(Σ).
In the simple type case, we can define similarly

+R(s) = ΣsP+Dx%-
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Such a variant was also considered in [25] (section 5(ii)). For definite-
ness, let us suppose that the polynomial invariants of X have even
degree, that g is odd, that (g — 1) — w S (and hence p) is even and that
n is even. The range of summation then includes p = 0 and p = a.

Lemma 9.3. Suppose X has simple type with bι(X) = 0, and that
the above parity conditions hold. Suppose that the Donaldson invariants
of X are non-zero. Suppose further that a = α(Σ) is small compared to
n and g, so that

2a<A(n,g).

Then the value of +R(s) at s = 1 is non-zero if and only if there is a
basic class K such that

o(Σ) = K S.

More generally, the order of vanishing of +R{s) at s = 1 is given by

ords=i +R(s) = min α(Σ) - K - S,

where the minimum is taken over all basic classes.
Proof. The universal formulae, in the form of (7.17), hold for all p

in the range of summation, so if we put

η»{s,S)=
0<p<o

then we have a universal formula for +R(s):

Note that the coefficient oΐsaSa in ηw(s, S) is 1/α!, and that Sa does not
appear with any lower power of s. Prom this we deduce that ηw(l,S)
is non-zero in R[S].

Proposition 7.32 can be recast as saying that there are linear func-
tions βr on A(X/Σ) such that

*Dϊ(e*sz) = exp(^) £
r=0

The sum only runs over even r. Combining this with the previous
formula, we find that there are constants 7 r, such that

r = 0
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Here the βr depend on (X, Σ), but the ητ depend only on n, g and w S
mod 2. We will obtain some information about j r from our standard
example, K3.

Let X be K3 blown up at JV points, and let Σo, Σ 2, ... , Σα be the
surfaces of the previous subsection. Because we know the invariants of
X, we know what βr is, for each of the pairs (X, Σp). In particular, for
the pair (X, Σp), the function βr is zero for r > p and is non-zero for
r = p. On the other hand, in section 5 of [25] it was shown that +R(1)
is zero if Σ has the form Σf#T2#T2 in X. This applies to all Σ p for
p < a — 4. Prom this we deduce that ηr = 0 for all r < a — 4. We can
also show that 7α_2 vanishes. To do this, let Σ' be a tight surface in
K3 with genus #, and let Σ be the following surface with genus g and
α(Σ) = a:

Σ = Σ' # ( d # C 2 # • #Cα_ 4) # Oα_3.

Here Ci, as before, is the exceptional curve in the ith blow-up, and
Oα_3 is a sphere representing twice the exceptional class in the (a—3) th
blow-up. One of the basic classes, E\ Λ h £7α-35 now has intersection
number a — 2 with Σ. So for this pair (X, Σ), we have /?α_2 φ 0 and
βa = 0. The results of [25] again give +i?(l) = 0, because Σ contains
the conic curve O as a summand. We conclude that 7α_2 is zero.

We have proved that ηr is zero for r < a. We cannot have ηa = 0
too, because of the observation above about the leading coefficient of
7/(1,5). So there is a non-zero coefficient ηa such that

+R{ΐ){z)=Ίaβa{z).

The function βa is non-zero on A(X/Σ) if and only if there is a basic
class K with K S = a. This proves the first statement in the lemma.

The more general statement, about the order of vanishing at s = 1,
has a proof along the same lines, using the fact from [25], that if Σ can
be written as Σ ; # (2/)T2 # raO, then the order of vanishing of +R(s)
at 5 = 1 is at least 21 + m.

Lemma 9.4. With the same hypotheses, R(s) has the same order
of vanishing at s = 1 as +R(s).

Proof. We can run through the same arguments with ~R as with
+i2, to-see that the previous Lemma holds, with the same basic classes.
So +R and ~R have the same order of vanishing at s = 1. We have

R(s) = +R(s) + ~R(s),
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so the only way the present Lemma can fail is if there is cancellation
on the right hand side. However, for any class h in [Σ]1- C H2(X), we
have a formula of the general shape

λez

while for ~R we have

so cancellation is impossible. q.e.d.
In [25] it was shown that, if X is simply connected, the value of

+RX,Έ(S) at s = 1 is an obstruction to finding a surface Σ' of odd
genus smaller than #(Σ), in the same homology class. More generally,
it was shown that any any odd-genus Riemann surface Σ' in the same
homology class as Σ must satisfy

(9.5) 2genus(Σ')-2 > Q(S) + J,

where
J = α(Σ) - ord,

and the last term is the order of vanishing of +R(s) (or just ϋ(s), by
the above Lemma) at 5 = 1. It was shown that J actually depends
only on the homology class «!?, and not on the chosen representative Σ,
as long as X is simply connected.

What the last two lemmas show is that, if Q(S) is sufficiently large
and the parities are correct, then

J(S) = max K 5,

where K runs over the basic classes. In particular, this holds for all
sufficiently large, even multiples of any class of positive square. For
such classes, the lower bound (9.5) for the genus, from [25], coincides
with the lower bound given by part (b) of Theorem 1.7. Note that
the definition of J does not reveal any clues as to the nature of this
function of S. The lemmas show that it is eventually linear on every ray
in the positive cone. It seems natural, therefore to pose the following
question:
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Question 1. Let X be a simply-connected 4-manifold of simple type.
Let J be the function on H2{X] Z) defined by the order of vanishing of
the series R(s) at s = 1, as above. Is J(S) equal to maxκ(K 5) for all
classes S of positive square? What about classes of negative square?

A related question is whether the ubiquitous assumption (for exam-
ple in (5.10)) that n and g are large compared to α(Σ) can be relaxed.
A glance at the formulae for the elements LU™ — ω™{n,g) given in sec-
tion 6 shows that their coefficients have a polynomial dependence on n
and #, at least for p < 4. This is likely to be a general phenomenon,
as there are recurrence formulae relating the u™ for different values of
n and g (a matter which the authors hope to take up in a later pa-
per). We can therefore extrapolate downwards, so as to define a class
ω™(n,g) even when Δ(n,#) < 2p.

Question 2. Let ω™(n, g) be defined when Δ(n, g) < 2p by extrapo-
lating the formulae from large n and g. Does the universal formula for
Dχ% given in Theorem 5.10 continue to hold in this range?

(iii) Complex surfaces and related topics. Regular algebraic
surfaces with non-zero geometric genus pg are 4-manifolds to which our
main theorem may apply, though we do not know whether they all have
simple type. If X is such a surface and does have simple type, we can
sometimes prove that its canonical class Kx is one of the basic classes,
using the two lemmas of the previous subsection.

Let X be such a surface and let Σ be a smooth, complex curve with
large, even self-intersection and odd genus. We can take Σ to belong
to the linear system of some large, even multiple of the hyperplane
class of some projective embedding. Because it is complex, the genus
of Σ is given by the adjunction formula, so α(Σ) = Kx • Σ. In [24], a
non-vanishing theorem was stated; the Theorem extends an argument
from [38] to show that, for the pair (X, Σ), the value of R(s) at s = 1
is non-zero provided that pg(X) is odd and that there is a smooth,
reduced divisor in the canonical linear system of the minimal model.
(It has since been pointed out to the authors that the assumption of
smoothness can probably be eliminated using the results of [30].) Prom
the previous lemmas, then, there is a basic class K such that

K Σ = Kχ-Σ.

In [6] it is shown that this equality can hold only if K = Kx. We
therefore have:
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Proposition 9.6. Let X be a regular algebraic surface with pg odd.
Suppose X is of simple type and has a smooth, reduced canonical divi-
sor. Then the canonical class of X is one of the basic classes.

Question 3. Let X be a regular algebraic surface of simple type. Is
the canonical class Kx always a basic class? What about symplectic
4-manifolds, where one defines Kx as minus the first Chern class of a
compatible almost complex structure?

The techniques of [15] have recently allowed calculation of the invari-
ants of some regular surfaces. Since the elliptic case is well-understood
now, and the effect of a blow-up is known, the remaining questions
of calculation concern minimal surfaces of general type. In all cases
where the invariant of a minimal, regular surface X of general type has
been calculated, the result has been that X has simple type, the only
basic classes are ±KX, and the coefficient β of eKχ in the formula of
Theorem 1.7 is

where χ(O) = pg + 1 is the holomorphic Euler characteristic, so

(υ.() JJX — Δ e x p ^ y v 6 ± e )-

This prompts the following question, which subsumes part of Ques-
tion 3.

Question 4. Is the formula (9.7) correct for all (perhaps regular)
minimal surfaces of general type with pg > 0? In particular, do such
4-manifolds always have simple type?

It may be that one obtains the result above in all known cases only
because one can always use the constructions of [15] to make the cal-
culation, and these constructions preserve this form of the answer.
However, some weight has been added to the speculation that (9.7)
might hold generally: recent work of Witten [43] shows that a formula
equivalent to this can be derived from standard conjectures using the
procedures of quantum field theory, at least in the case that X has a
smooth, reduced canonical divisor.

In all known examples, the basic classes K satisfy K2 = 2e + 3σ,
where e is the Euler number and σ is the signature. These examples
include some non-Kahler symplectic manifolds with K2 non-zero.

Question 5. If X is a 4-manifold of simple type with b1 = 0, do the
basic classes K always satisfy K2 = 2e + 3σ ?
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Finally, we ask:

Question 6. Is the lower bound (1.7) (b) for the genus of embedded
surfaces sharp, in the case of classes of positive square in a 4-manifold
X of simple type with @% non-zero? If not, is it at least sharp for large
enough multiples of a fixed class in the positive cone?

The first five questions, though some may require substantial new
ideas, appear to be within the possible scope of gauge theory. It is
clear, however, that to give an affirmative answer to Question 6 one
would need to draw on quite different techniques.

Appendix: The orientation of moduli spaces

The purpose of this appendix is to describe conventions for consis-
tently orienting the moduli spaces on manifolds with cylindrical ends
that we encounter, as well as moduli spaces of singular connections.

Let X be an oriented 4-manifold with a homology-orientation, and Σ
an oriented embedded surface of genus g. Let w be a line-bundle on X,
and use the same letter to denote the restriction of the line-bundle to
X°. On X°, the line-bundle has a preferred cylindrical-end structure,
and w\γ is given as pulled-back from Σ. Fix a compact submanifold
with boundary, Sfr C «̂ ™'s, of dimension 6g - 6. Let 38^W{X°\ Sfr)
be the Banach manifold consisting of irreducible connections on the
cylindrical-end manifold X° = X/Σ having (^-exponential decay to a
flat connection p G ̂ ?~ (for some sufficiently small £, depending on
Sf), as described in [36]. Let λ(X0) -> &ΪW(X°; Ά~) be the real
determinant line bundle corresponding to the deformation complex Eδ

of [36]. It follows from [36] and the fact that ffi~ is orientable, that
\{X°) is orientable. To orient the moduli spaces M™{X°\ ffi™/), we
need to specify a convention for orienting X(X°).

Let λ(X) denote the real determinant line bundle over 38^ (X)^ for
the deformation operator on the closed manifold. By the excision prin-
ciple, if specify an orientation for the quotient

(A.I) λ(X°)®λ(X)-\

then this will determine an orientation for the same quotient in all cases
where the pair (Σ,W|Σ) is isomorphic. Consider therefore the closed
ruled surface X = W containing the surface Σ = Σ+. Let w be the
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line-bundle on X pulled back from Σ. Let X° = X/Σ. In this instance,
the moduli spaces M™(X) and M™(X°-, Sϋ^) are both isomorphic to
the representation variety &™v, and we orient the above quotient by
the canonical trivialization which results. A homology orientation, o,
for the closed manifold X determines an orientation for X(X) by [9].
Having trivialized the quotient, we therefore obtain an orientation for

There is another useful way of looking at this. Let &™'*(W°;p) be
the Banach manifold of irreducible connections on W° asymptotic to
a fixed p G ffiζ;s. Let Xf(W°) be the determinant line for the complex
F(δ) of [36] on W°. An orientation of Xf(W°) determines an orientation
of the fibres of the boundary map r : MW{W°\ &£) -> &%, over
smooth points, when r is a submersion, and (equivalently) determines
an orientation of the normal bundle of r where r is an immersion. A
choice of orientations for X(X°) and χf(W°) determine an orientation
for λ(X), via the gluing description of the MW(X), as a fibred product.
Our chosen orientation for the quotient (A.I) above corresponds to the
canonical orientation for the moduli space M™(W°; p), which is a single
point.

For the odd component, one can fix an orientation for M™(X°; 3ί™£)
by identifying it with M™'(X°; <^' ' s ), where w' = w - [Σ].

We now turn to the moduli spaces of singular connections. In this
situation, we have determinant line bundles X(X, Σ), λ/(VF°,Σ) and
X(X°). Trivializations of these determine orientations of the moduli
spaces M ™ ( X , Σ ) , M^'p'α(W°,Σ; &£a) and M™{X°] @%8) respec-
tively. Prom [27], a homology orientation of X determines an orienta-
tion of λ(X, Σ). Prom the previous paragraphs, we have an orientation
of \{X°). These two therefore determine an orientation of Xf(W°, Σ),
compatible with the fibre-product description.

Let us spell out the consequences of this prescription. The excision
principal assures us that the orientation of Xf(W°,Σ) which we have
just specified is independent of X. We therefore take X to be the
closed ruled surface. The moduli space M£'*{X) = M™(X°; St!%*) is a
complex manifold, and is isomorphic to the representation variety. The
standard orientation of this moduli space [9] differs from the complex
orientation by the sign

2 ) / 2 _ / l)wΈ
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The moduli space M^>Pia(-X", Σ) is complex too, and its standard ori-
entation [27] differs from its complex orientation by the same sign. It
follows that our chosen orientation of Mw'p>a(W°, Σ; p) is the one which
gives the complex orientation to the fibres of

(or the complex orientation to the normal, as the case may be).
The only remaining task is to determine whether the standard ori-

entations are preserved by the 'flip' identification

Φ V '

as discussed at the beginning of section 7. It is enough to consider the
case that X is the closed ruled surface. In this case, the moduli spaces
are all complex, and Φ is holomorphic, so it preserves the complex ori-
entation. The standard orientation of M™'p'a differs from the complex
orientation by the sign

where we have used the equality Kx — — 2[Σ_] + (2g — 2 — n)[F] in
H2(X). (Here n = Q([Σ]).) Similarly, the orientation of M ^ V ' α '
differs from the complex orientation by

as wf = w — [Σ]. Therefore Φ preserves or reverses the standard orien-
tations according to the parity oΐw-Yl + g — 1 — n. This is the same
as the parity of p' — α(Σ) — p, because p satisfies the parity condition
(2.20) and α(Σ) = n mod 2.
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