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INFINITESIMAL RIGIDITY FOR
HYPERBOLIC ACTIONS

STEVEN HURDER

1. Statement of results

Let Γ be a finitely-generated group, M a compact manifold and
φ: Γ x M -» M a enaction of Γ on M.

Let TZ(Γ^Diff1(M)) denote the variety of representations of Γ into
Diff1(M). It is a natural problem to study the local structure of
1Z(Γ,Diffι(M)) in a neighborhood of a given action.

For example, there is a natural "formal tangent space" at the point
[φ] determined by the action φ, which is given by the 1-cocycles over
φ with coefficients in the continuous vector fields on M (cf. Chapter 2,
[15]). The 1-coboundaries form a closed subspace of the formal tangent
space, and when these two spaces are equal the action is said to be
infinitesimally rigid.

Every action φ can be perturbed by conjugating it with a diffeo-
morphism of M, and the set of these conjugates yields a subvariety of
U(Γ,Diff1(M)). The action φ is C1-locally rigid if the set of conju-
gates forms an open neighborhood around [φ] - that is, every action ψ\
which is C1-close to φ on a set of generators of Γ must be (^-conjugate
to ψ.

Weil proved that for a representation p: Γ -» G into a connected Lie
group G, infinitesimal rigidity implies rigidity, for the tangent space
to the variety of representations is contained in the space of 1-cocycles
over the Adjoint representation [20]. The converse is not true: there
are rigid representations which are not infinitesimally rigid (cf. proof
of Theorem B, [17]; section 2, [15]). For non-isometric group actions
on manifolds, only partial results are known connecting infinitesimal
rigidity and local rigidity (cf. [1]).
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The purpose of this note is to give a short proof of the infinitesimal
rigidity of a hyperbolic group action, whenever the periodic points are
dense and the group satisfies a vanishing cohomology condition. Previ-
ous results on infinitesimal rigidity for group actions have been obtained
by R. Zimmer [21] for cocompact lattices. J. Lewis [10] showed that
for n > 7 and Γ C SL(n,Z) a subgroup of finite-index, the standard
linear action of Γ on Tn is infinitesimally rigid. M. Pollicott proved
that the standard action of SX(3, Z) on T 3 is also infinitesimally rigid,
using only methods of elementary linear algebra [18]. Both of these
latter results follow from our Theorem 1.6 below. The methods used in
this paper are based on dynamical systems techniques parallel to those
used in [4] to prove deformation rigidity of group actions.

We first establish some basic notation. A set Λ C M is invariant
under ψ if φ(j)A = A for all 7 E Γ. We say that ψ is hyperbolic
on Λ if there exists at least one element, jh £ Γ, such that φ(jh) is
hyperbolic when restricted to Λ. That is, the restricted tangent bundle
admits a continuous direct sum decomposition, TAM = ES®E~, which
is invariant under Dφ(jh)\A with E+ uniformly expanding and E~
uniformly contracting. When Λ = M, the action is said to be Anosov.

A C1-diffeomorphism f:M-ϊM induces a map on continuous
vector fields σ E C°(TAM) over a closed invariant set Λ by f*σ =
Dfoσof-1.

A 1-cocycle in Zλ{Γ] C°(TAM)φ*) assigns to each 7 E Γ a continuous

vector field a(j) E C°(TAM) satisfying the cocycle condition

(!) α(7i ° 72) = α(7i) + φiΠiY^Ίi)-

A 1-cocycle a is a coboundary if there exists a continuous vector field
r E C°(Λ,ΓΛM) such that

(2) α(7) = φ{j)*τ - r for all 7 E Γ.

H1 (Γ; C°(TAM)φ.) will denote the quotient group of Z1 (Γ; C°(TAM)φ*)
by the continuous coboundaries. We say φ is infinitesimally rigid on
A if fl^Γ; C°(TAM)φ*) is trivial. When Λ = M the reference to Λ is
omitted.

When φ is a C°°-action, it induces an action on the smooth vec-
tor fields C°°(TM). We say that φ is C°°-infinitesimally rigid if the
cohomology group i?^(Γ; C°°(TM)φ*) of smooth (^-cocycles modulo
smooth coboundaries is trivial.



INFINITESIMAL RIGIDITY 517

Definition 1.1. A point a G M i s periodic for φ if the set
Γ(x) = {φ(j)(x) I 7 E Γ} is finite.
Let V(φ) C M denote the set of periodic points for φ.
Definition 1.2. A group Γ satisfies the strong vanishing cohomol-

ogy (SVC) condition if fΓ^Γ; R%) is trivial for every finite-dimensional
representation p: Γ —> GL(N,R).

Note that if Γ has the SVC condition, then every finite-index sub-
group Γ c Γ also has the SVC condition.

We can now state the main results of this note.
Theorem 1.3. Let φ: Γ x M -ϊ M be a C1-action which is hyper-

bolic for the invariant set Λ C M. If Γ satisfies the SVC condition
and V{φ)Γ\k is dense in Λ, then ψ is infinitesimally rigid on Λ.

This will be proven in section 2.
A finitely-generated group Γ is a said to be a higher rank lattice if

Γ is a discrete subgroup of a connected semi-simple algebraic i?-group
Gi?, with the iϊ-split rank of each factor of GR at least 2, GR has finite
center and G®R has no compact factors, and such that GR/T has finite
volume. Theorem 2.1 of Margulis [16] implies that every higher rank
lattice satisfies the SVC condition.

Corollary 1.4. Let Γ be a higher rank lattice. Then every Anosov
C1-action φ: Γ x M -> M with dense periodic orbits is infinitesimally
rigid.

Remark 1.5. The action φ* also preserves the bounded vector fields
over Λ. The techniques of section 2 also show that Hi (Γ; Cb(TV(φ)M)φ*)
is trivial when the hypotheses of Theorem 1.3 are satisfied.

Theorem 1.3 applied to a C°°-action φ yields that every C°°-l-
cocycle is the coboundary of a continuous vector field r, but does not
address the question whether r is C°°. With some additional dynami-
cal hypotheses, Proposition 3.1 establishes the regularity of r. A linear
representation p: Γ —ϊ SL(n,Z) is maximal Cartan if there exists an
abelian subgroup ^ 4 c Γ generated (not necessarily freely) by elements
Δ = {71,... ,7n} so that each ρ(j{) is a semi-simple hyperbolic matrix
with exactly one eigenvalue of modulus less than one, and the collec-
tion of the corresponding eigenvectors {Xi,... ,Xn} forms a basis for
Rn. For example, a subgroup Γ C SL{n, Z) of finite-index is maximal
Cartan (Lemma 7.5, [4]). Corollary 2 of [5] implies that an affine action
of a higher rank lattice has dense periodic orbits, which combined with
Theorem 1.3 and Proposition 3.1 yields the following general result on
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C°°-infinitesiinal rigidity:
Theorem 1.6. (C°°-infinitesimal rigidity) Let p: Γ -> SL(n,Z)

be a maximal Cartan representation of a higher rank lattice. Then every
affine action φ: Γ x Tn ->• Tn with associated linear representation p
is C°°-infinitesimally rigid.

Corollary 1.7. Let Γ C SL(n,Z) be a subgroup of finite index for
n > 3. Then every affine action ofΓ on Tn associated to the standard
action is C°°-infinitesimally rigid.

Examples of affine actions without fixed-points are constructed in
[5].

2. Infinitesimal rigidity

The proof of Theorem 1.3 follows from two elementary lemmas.

Lemma 2.1. Assume that Γ satisfies the SVC condition. Let
a: Γ —> Maps(V(φ)iTV(φ)M) satisfy the cocycle law (1) for the re-
striction of φ* to V(φ). Then a is the coboundary of a set map
τ:V(φ)-+Tv(φ)M.

Proof. It suffices to prove the claim for each restriction ax: Γ —>
Maps(Γ{x),TΓ{x)M) to an orbit Γ(x) of x G V(φ). The action of φ* on
Maps(Γ(x),TΓ(x)M) defines an N-dimensional linear representation of
Γ for N = n |Γ(a;)|, and ax is a cocycle over this representation. By the
SVC condition, ax is the coboundary of some τx: T(x) -> Tγ(x)M.

Lemma 2.2. Assume that φ is hyperbolic on A, and V{φ) Π Λ is
dense in Λ. Let a: Λ —> 7\M be a bounded cocycle over φ* whose
restriction to V{φ) is the coboundary of r : V(φ) -ϊ TV(φ)M. Then r
is a bounded map and uniquely determined by a. Moreover, if a is
continuous on Λ, then r admits a continuous extension T : Λ -> T\M
such that a is the coboundary of T.

Proof. Let ̂ (7^) be hyperbolic on Λ. Then φ{jh)* is a hyperbolic
automorphism of the Banach space of bounded sections Ch{T^M) (cf.
Lemma 6.3, [19]) so that

(3) (Dφm (Ίh) - Id)-1: Cb(TAM) -> Cb(TAM)

is a well-defined bounded linear map.

DφΛlh) preserves the closed subspace of bounded sections
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Cb(Tv{φ)M) C Cb(TAM) which are non-zero only on V(φ). The restric-
tion of a{ηh) to V{φ) defines such a section, so we define the bounded
section

τ = {Dφ,{Ίh)-Idy1{a{Ίh)\V{φ))

which obviously satisfies

(4) a{Ίh)\V{φ) = {Dφ*{Ίh)-Id)τ.

The functional equation (4) has a unique solution τx when restricted
to each each periodic orbit Γ(rr), by the hyperbolicity of φ(jhY'- Both
τx and the restriction of f to Γ(x) satisfy this restricted functional
equation, hence r = f on all of V(φ), and r is a bounded section.

Observe next that (φ{jh)* — Id)~ι preserves the closed subspace of
continuous sections C°(TAM).

For, given a continuous section σ, we can write it as a sum σ =
σ+ + σ~ 6 C°(TAM) where σ± are continuous sections taking values
in the unstable and stable subbundles over Λ for Dφ(jh), respectively.
Then

71=0

with uniform convergence, so defines a continuous section. Similarly,

n=l

again with uniform convergence so the sum is continuous on Λ. Thus
{ψ{lhY — Id)~ισ is continuous on Λ.

Assume that α is continuous on Λ, and we are given a bounded
section r : V(φ) -> Tv{φ)M with α{η)\V(φ) = (φ(j)* - Id)τ for all
7 G Γ. Apply this coboundary identity to the element ηh then by
the above observation, r is the restriction of the continuous section
T = (φ(jhy - Id)-ια{Ίh) E C°(TAM) to the set V(φ).

The continuous section T satisfies (4) for all 7 G Γ on the dense
subset V{φ) C Λ. By the continuity of the actions, the coboundary
identity must hold for T on all of Λ. This concludes the proof of
Theorem 1.3.

The reader familiar with the method of proof of deformation rigidity
will see the direct analogy between Proposition 3.7 and Corollary 3.8
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of [4] and the above two lemmas. This note uses the Banach space
fixed-point principle applied to the linear action Dφ* to extend a coho-
mological solution from the periodic orbits to a continuous solution on
the full set Λ, resulting in a very direct proof of infinitesimal rigidity.

3. Cocycle regularity for Cartan actions

In this section we establish the regularity of the coboundary r con-
structed in section 2. Proofs of regularity tend to be very delicate, as
there are surprising counter-examples when the hypotheses are suffi-
ciently weakened. For example, there exists an n x n-hyperbolic ma-
trix with all eigenvalues distinct so that its standard action on Tn ad-
mits C1 -perturbations which are topologically conjugate, but not C1-
conjugate, to the standard action [13]. There are also smooth infinites-
imal deformations of these algebraic actions which are coboundaries of
continuous vector fields but not of smooth vector fields. We will there-
fore assume that our action admits a Cartan subaction, which is then
sufficient for applying the strongest forms of the regularity techniques
(cf. Theorem 2.15, [4], and Theorem 4.1, [9]).

The analysis of regularity for a continuous vector field whose cobound-
ary is a smooth infinitesimal deformation turns out to be more subtle
than that of establishing the regularity of a topological conjugacy. An
infinitesimal deformation represents the derivative to a putative C°°-
deformation {φt | 0 < t < 1} of smooth actions. Thus, the prob-
lem is analogous to establishing that a family of smooth conjugacies
Ht: M —>• M between φt and φQ depends differentiably on the param-
eter. Theorem 2.12, [4] established the continuous dependence in the
C°°-category of maps of Ht on the parameter. For the special case of a
maximal Cartan action, the conjugacies depend C1 on the parameter
[3]. The main result of this section establishes the counterpart to this
latter statement for an infinitesimal conjugacy:

Proposition 3.1. Let p: Γ -> SL(n, Z) be a maximal Cartan repre-
sentation of a higher rank lattice, ψ: Γ x Tn —> Tn an affine action with
associated linear representation p, and a: Γ -> C°°(TTn) a 1-cocycle
over φ*. Then r G C°(TTn) which satisfies the coboundary equation
(2) must be C°°.

Proof. Let Λ C Γ be generated by elements Δ = {71, . . . , 7 n } so



INFINITESIMAL RIGIDITY 521

that each p(ηi) is a semi-simple hyperbolic matrix with exactly one
eigenvalue of modulus less than one. Let X{ be a unit-length contract-
ing eigenvector for p(ji) with eigenvalue 0 < A* < 1. Use the basis
{Xu.. .jXn} of Rn to define a framing of the tangent bundle TΓ n ,
where Xι will also denote the parallel vector field which it determines.

Note that for k φ ί, the maximal Cartan hypotheses implies that

p(lk)Xi = μk,ί Xί for μkj > 1.

We express α, r and p in terms of the parallel framing {X\,... , Xn}

ofTn:

• A: Γ -» GL(n,R) denotes p with respect to the eigenbasis

{Xi,... ,Xn}, so that

Ai = A(η/i) = diag(μ ί }i,... , λ i ? . . . , μiyTl) for 1 < i < n.

• The differential Dφ(j) = A(j).
• The coboundary τ can be written as a map r = ( r 1 , . . . , τ n ) :

rpn _ι Rn w h e r e

n

τ = Y^τk Xk for C°-functions τk:Tn -¥ R.

• For each 7 € Γ, the vector field a(j) can be expressed 5(7) =

(α 1(7),... , a n ( 7 ) ) : Tn -»• i?n where

n

α(7) = 2 α*(7) Xfc for C°°-functions ^ ( 7 ) : Tn -+R.

• The cocycle equation for a becomes

(5)

+

• r satisfies the coboundary equation

(6)
k=l k=l
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Set ψi = φic/i) and g\ — 0 (̂7*) for 1 < % < n. Apply (6) to 7̂  and
extract the coefficients of Xi to obtain the functional equation

(7) gi = \i-τioφ-1-τi

for τ% which has the explicit solution

(8) T^-

The integral curves of each vector field Xt forms a 1-dimensional lin-
ear foliation Tι of T n , and the collection {^Ί,... ,^1} forms a regular
C°°-trellis in the notation of [4]. By Theorem 2.6, [6] the continu-
ous function τim.Tn-ϊR is C°° if and only if, for each immersed leaf
t: R —ϊ Tn of Tι, the restriction τι o 1 is uniformly C°° as a function
on the line. This is equivalent to proving that for all 1 < ί < n and all
powers p > 0, the p-fold iterated partial derivative X^r1) exists and
is continuous on Tn. For ί Φ ΐ, it is easy to show: apply the chain rule
to the absolutely convergent series (8) to calculate

O CD~k

k=0

which by the assumption μ^t > 1 is uniformly absolutely convergent
on T n .

The key issue for regularity of rl is the existence of the partial deriva-
tive Xi(τ*), as there is no "hyperbolic principle" to guarantee that the
formal expression X^r1) = — Y^LoXiigt) ° φj1 will converge. The
approach will be to formulate a functional equation that Xi(τι) must
satisfy if it exists, show the existence of a C°°-solution to the functional
equation, and then show this solution is the actual derivative.

Suppose that ft = X^r1) exists. Then set Gι = Xi{gj) and differen-
tiate (7) with respect to X{ to obtain

(9) Gi = fiθ ψr1 - /-.

Cohomology equations of the type (9) over Anosov maps were studied
by Livsic [11], [12], [2]. Define the local obstacle at x G V{ψi) of period



INFINITESIMAL RIGIDITY 523

p to be the sum

(io) oi(χ) = Σσ,(tf(*)).
k=0

Livsic proved that a continuous solution fc for (9) exists if and only if
the local obstacles vanish at a dense set of periodic points. Transitivity
of the Anosov map ψi implies that a continuous solution to (9) is unique
up to a constant. Livsic also proved the much stronger conclusion that if
there is a measurable function hi which satisfies (9) almost everywhere,
then all local obstacles vanish and h{ agrees almost everywhere with a
continuous solution. It was later shown in [14] (cf. also [6], [7], [8]) that
if Gi is a C°°-function, then a solution ft to (9) must be a C°°-function
onΓ.

Lemma 3.2. For each x* G V(φ) the local obstacle Oi(x*) = 0.
Proof. The coefficients of X{ in (5) applied to η\ o 7? yields

α *( 7 [+ s ) = α*(7[) + XI - a4(7?) o φτr. Differentiate with respect to X{

to obtain

Xi WW+S)} = Xi Will)} + Xi W(Yi)} o ψ~r,

so that by induction we have

CM*.) = Σ ^ i Win)} (φik(χ*)) = Xi {α*(τf)} (^)
k=0

Let us consider more generally the result of differentiating (5) by the
vector field Xi,

h=l k=l
n

Σ

k=l
n

k,r,s=l
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Let Γ, C Γ be the isotropy subgroup of z,. Define a map

x,
(12) O

(13)

which by (11) is a 1-cocycle over the Adjoint representation Ad o
A:Γm->GL(gl(n,R)).

Γ* has finite index in Γ as the φ(T)-oτb'ιt of x* is finite. Thus, Γ*
has the SVC condition so the 1-cocycle OXm must be trivial. That is,
there exists a matrix b G gl(n, R) so that for all 7 G Γ*,

Ox,(l) = A(Ί) • b • Aij)-1 - b.

In particular, 7? G Γ* so we have

as conjugation by a diagonal matrix acts as the identity along the
diagonal. This concludes the proof of Lemma 3.2.

Remark 3.3. The above proof has an intuitive geometric inter-
pretation when a is the tangent cocycle associated to a path of actions
φt: Γ x Tn —> Tn. Take the total derivative of ^(7) with respect to the
framing of Tn to get the derivative cocycle Dφt: Γ x T M GL(n, R).
Suppose that the group Γ has the SVC condition. Then an isolated
periodic point #* G V(ψo) of the action is stable under perturbation,
so there is a smooth path of periodic points {xt \ 0 < t < e} with
XQ = x*. The derivative representation DXtφt\ Γ* -> GL(n,R) at xt

of the isotropy subgroup Γ* is stable by Weil's theorem [20] and the
SVC condition. That is, there is a path of inner automorphisms which
conjugates DXtφt(Γ*) to DXφφ0(Γ*). In particular, the exponents at
xt of the hyperbolic element jf G ΓXΦ are constant under the path of
actions. Hence the diagonal entries of the derivative d{DXtφ(jf)}/dt
vanish; the local obstacle Oi(x) is the derivative of the iί/ι-diagonal
entry.

The proof of Proposition 3.1 is completed by:
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Lemma 3.4. For each 1 < i < n, the p-fold partial derivative
Xf(τι) exists and is uniformly continuous on Tn.

Proof. τι is the uniform limit of the partial sums

k=Q

Let fi be a solution to (9) which exists by the Livsic theorem and
Lemma 3.2. Then estimate the derivative of each T^:

N

k=0
N

ifc=O

This is uniformly bounded for all N, so the limit function rl is uniformly
Lipshitz when restricted to the integral curves of the vector field X{
and therefore has a derivative with respect to Xι almost everywhere
on T n . Moreover, Xiir1) gives a measurable solution to (9) so by the
measurable uniqueness of solutions to (9) there must exist a constant
Ci so that Xiir1) = C< /< almost everywhere. Now note that f{ is C°°
and Lemma 3.4 is proven.
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