J. DIFFERENTIAL GEOMETRY
41 (1995) 343-396

ON MODULAR INVARIANCE
AND RIGIDITY THEOREMS

KEFENG LIU

1. Introduction

Let M be a compact smooth manifold with group action, and P be an
elliptic operator on M which commutes with the action. Then the kernel
and cokernel of P are representations of the action group. For an element
g in the action group, the Lefschetz number of P at g is

F(g) = tr,KerP — tr,CokerP.

We say that P is rigid with respect to this group action, if F(g) is inde-
pendent of g . In the following, we will only consider S'-action, in which
case two well-known rigid elliptic operators are the signature and the Dirac
operator. Obviously, if P is rigid with respect to S 1-action, then it is rigid
with respect to any compact connected Lie group action.

Motivated by the work of Landweber and Stong [19], in [34] Witten
derived a series of elliptic operators from LM , the loop space of M.
The indices of these operators are the signature, -genus or the Euler
characteristic of LM . He also derived some elliptic operators which do
not have finite-dimensional analogues. The cohomological aspects of these
operators were discussed in detail by Lerche, Nilsson, Schellekens, and
Warner [20] and many other physicists. Surprisingly the elliptic genus of
Landweber and Stong turns out to be the index of one of these elliptic
operators. Motivated by physics, Witten conjectured that these elliptic
operators should be rigid with respect to S !.action. These conjectures
generalize the rigidity of the usual signature, Euler characteristic and Dirac
operator to infinite-dimensional manifolds.

After some partial work of Ochanine [28] and Landweber and Stong
[19], these remarkable conjectures were first proved by Taubes [33], by
Bott and Taubes [8]. Hirzebruch [12] and Krichever [16] proved Witten’s
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conjectures for almost complex manifold case. They used the very tech-
nical transfer argument. Many aspects of mathematics are involved in
their proofs. Taubes used analysis of Fredholm operators; Krichever used
cobordism; Bott and Taubes and Hirzebruch used the Atiyah-Bott-Segal-
Singer-Lefschetz fixed-point formula ([2], [5]).

In [23] we observed that all of these operators have some kind of in-
trinsic symmetry under the action of the modular group SL,(Z), which
actually implies their rigidity. This observation immediately gives a very
simple and unified proof of the above conjectures of Witten. There the
classical Jacobi theta functions came into play in a very nice and crucial
way. Strictly speaking, it is the theta function expressions of the Lefschetz
numbers of these elliptic operators that attracted us to the modularity ar-
gument.

This paper is the continuation of [23] and is naturally divided into three
parts. The main results, which were circulated in [24], [25] and [26], were
announced in [27].

In the first part, by using the beautiful results of Kac-Peterson-Wakimoto
[14] about the modular invariance of the characters of affine Lie algebras,
under a very natural assumption on the first equivariant Pontrjagin class,
we prove the rigidity of the Dirac operator on loop space twisted by posi-
tive energy loop group representations of any level, while the Witten rigid-
ity theorems are the special cases of level 1 (see Theorems 1 and 2 in §2.1
and §2.6). One can immediately construct many new rigid elliptic opera-
tors from this theorem. In this paper we have only considered the tensor
products of level 1 representations and hope to discuss the general case
in another paper. In the second part, we generalize the rigidity theorems
in part I and [23] to the so-called nonzero anomaly cases. As corollaries
we obtain a series of interesting holomorphic Jacobi forms and many new
vanishing theorems, especially an @-vanishing theorem for loop spaces
with spin structures (see Theorems 3 to S in §3.1). Using our result, Hohn
[13] was able to characterize the -vanishing theorem for this loop space
in terms of MO < 8 >-fibrations.

In the third part we discuss the relationships between these elliptic op-
erators and the geometry of elliptic modular surfaces. We show that the
Lefschetz numbers of these elliptic operators are holomorphic sections of
certain holomorphic line bundles on some elliptic modular surfaces. In
studying their degenerations to the singular fibers of the elliptic surfaces,
we get some topological results for manifolds and bundles with group ac-
tions. This idea also gives a very natural algebrogeometric explanation of
the transfer argument used in [8], [12] and [16]. Finally, in Appendix B,
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by a simple observation we prove a rigidity theorem for mod 2 elliptic
genera which was also obtained by Ono [29] independently.

While its rigidity property is basically clarified, many aspects of elliptic
genus remain mysterious, notably the geometric construction of elliptic
cohomology, its relationships with the monstrous moonshine, with vertex
operator algebras, with mirror symmetry and with the Virasoro algebra.
The study of these topics is under progress.

2. Loop groups and rigidity theorems

In this part we prove the rigidity of the Dirac operator on loop space
twisted by general positive energy loop group representations for both spin
manifolds and almost complex manifolds.

After stating Theorem 1, the main result in this part, we review some
basic results in affine Lie algebra theory, especially the modular invariance
of the characters of integrable highest weight modules. Then we give the
construction of w(E, V), which, used in Theorem 1, is a formal power
series with coefficients in the K-group K (M), from a positive energy rep-
resentation E of LSpin (2/) of highest weight and a rank- 2/ spin vector
bundle ¥ on M . This construction is motivated by Brylinski’s work [9].
Some examples, including several new rigid elliptic operators, are given in
§2.4 as corollaries of Theorem 1. From the point of view of loop group
representation, our examples have exhausted all of the rigid elliptic genera.
Theorem 1 is proved in §2.5. In §2.6, we discuss the rigidity theorems for
almost complex manifolds.

2.1. A general rigidity theorem. Let LSpin (2/) denote the central ex-
tension of the loop group LSpin (2/), and E be a positive energy rep-
resentation of it. See §2.2 for the definition of positive energy. Given
a rank-2/ spin vector bundle V' on a spin manifold M, we can con-
struct an element w(E, V) in K(M)[[q]] associated to E and V . Here
q = e*™" with 7 in the upper half plane H is a parameter. See §2.3
for the construction. In this paper, by a vector bundle we always mean
a real vector bundle, except otherwise specified. Let D denote the Dirac
operator on M . Assume that there exists an S !.action on M which lifts
to V. For an equivariant vector bundle F, let p(F)q denote its first
equivariant Pontrjagin class. See Appendix A for a geometric discussion
about equivariant characteristic classes. Then we will prove the following:
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Theorem 1. For every positive energy representation E of LSpin(2l)
of highest weight of level m, if p/(M)g = mp,(V)g , then

D®®, S/(TM)®y(E,V)

is rigid.
Here recall that, for a vector bundle F,

S(F)=1+tF +£S’F+---

is the symmetric operation in K(M)[[¢]]. Theorem 1 actually holds for
any semisimple and simply connected Lie group, instead of Spin (2/). It
actually holds in much more general situations. See §2.4 for the details.

If m =1, we know that LSpin (2/) has four irreducible highest weight
representations of positive energy which exactly give those elliptic opera-
tors considered by Witten [34], Bott and Taubes [8] and Liu [23]. See the
examples in §2.4. Therefore Theorem 1 includes all of the Witten rigidity
theorems for spin manifolds.

In our proof, the actual use of the spin condition on M is the existence
of the Dirac operator which we need to show that the modular transfor-
mations of the Lefschetz number of the above elliptic operator are still the
Lefschetz numbers of some twisted Dirac operators. This shows that the
modular invariance of the characters of the representations of affine Lie
algebras discussed in §2.2 implies the rigidity of the elliptic operator in
Theorem 1. This is surprising. We would like to know whether there is a
finite-dimensional analogue of this modular property which may explain
the famous A-vanishing theorem of Atiyah and Hirzebruch. We are also
interested in giving an explanation of our results by using the geometry of
loop space and physics.

2.2. Affine Lie algebras. In Theorem 1 we need highest weight positive
energy representation of LSpin (2/). This kind of representations can
always be obtained by lifting the integrable highest weight representations
of the affine Lie algebra Lso(2/) associated to so(2/), the Lie algebra
of Spin(2/). In this section we review some basic facts about affine Lie
algebras, especially the modular invariance of their characters.

Given a simple, simply connected compact Lie group G of rank /, let
g denote its Lie algebra. Let h be the Cartan subalgebra, W be the Weyl
group. Denote by Q = ZLI Zo;, where {a,} is the root basis, the root
lattice of g. The affine Lie algebra associated to g is

Lg=g®,Clt,t '@ CK & Cd,
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where K, d are two operators on g. Explicitly K (resp. d) is the in-
finitesimal generator of the central element (resp. the rotation of S‘) of
LG.
Lg has the triangle decomposition,
Lg=t_obhaof,
where fi are the nilpotent subalgebras, and

h=bhe®, CoCKaCd

is the Cartan subalgebra. Let h* be the dual of § with respect to the
normalized symmetric invariant bilinear form (-, -) on Lg which extends
the standard symmetric bilinear form on g, such that

(CK+Cd, g@,C[t,t ')=0; (K,K)=0,
R

d,d)=0, (K,d)=1.

Let < -, - > denote the pairing between § and h*. Then the level of
Aeh” isdefinedtobe <A, K >.

Lg falls into class XI(VI) in the classification of Kac-Moody algebras (see
[14])). An Lg-module U is called a highest weight module with highest
weight A € §™ if there exists a nonzero vector v A € U such that

fi,(v)=0;  h(vy)=A(hv, forheh;

and
U(Lg)(vy) = U,

where U(Lg) is the universal enveloping algebra of Lg. If an irreducible
representation L(A) of Lg is of highest weight A and the level of A =k,
we say that L(A) is of level k. L(A) is said to be integrable if A € P,
where

P, ={A€b"|(4, ;) € Zand >0 forall i}

is the set of dominant integral weights.

An integrable highest weight representation L(A) of Lg can always be
lifted to a representation of LG which turns out to be irreducible and of
positive energy. This lifted representation has the same level as L(A) (see
[30]). Recall that for each level there are only finitely many integrable high-
est weight representations induced from the irreducible representations of
G.
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An Lg-module ¥ can be split into the form ®,¢4+ ¥, » when restricted
to the Cartan subalgebra §. The formal Kac-Weyl character of V is
defined to be ch, =3, ;. dimVle’1 .

The normalized character of L(A) is x, = q"Ach LA) > where

(A+2p, A) mdimg

AT A mA k) 24(m+ k)

with 2" =< p, K > the dual Coxeter number of g, and p half the sum
of the positive roots. We call g™+ the anomaly factor.

Let M = Z(W -6) be a lattice in h*, where 6 is the long root in Q,
and W is the Weyl group of g. For any integer m, let

P ={leP|<A, K>=m}

be the level m subset of the dominant integral weights. Let A, d € h*
be the elements such that

5|h@c1<=0’ <d,d>=1;

Aolb@c(z=0’ <Ay, K>=1

Then x, can be expressed as

A
_ TA+p
(+) XL(A) - A ’
p

where
A= sw)8,,
wew
with ©, the classical theta functions associated to the lattice M . If we

choose an orthonormal basis {vi}f.=l of h* ®, C, such that for v € h*
one has
i
V= 27ziZzsvs —tAy+ud,

s=1
where z = Ei=l zv, €h" ®, C, then

2nimu nimt(y,y)+2nim(y, z)
0,(z,1)=¢ Z e .

yeM+m™'2
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Here 1 means the orthogonal projection of 4 from §* to h* ®, C with
respect to the bilinear form (-, :), and y = Zﬁzl ?;v; with

1
¥,2)=)_ 7z,
i=1

Obviously x,(z, 7) is well defined for 7 in the upper half-plane. Another
expression of x, is a finite sum

A
Az, )= Z ¢ (1)8,(z, 1),
ieP"mod(mM+Cs)

where P™ isthelevel m element in the integral weight lattice, and {cf(t)}
are some modular forms of weight —%l , which are called string functions
in [14].

Recall that the modular transformation of

g= (‘C’ 3) € SL,(Z)

on (¢, 1) € Cx H is given by

(t 1)—( t at+b
8LV =\ct7d’ ct+d)’

which defines a group action. Obviously two generators of SL,(Z),
0 -1 11
=03 ()

t 1
S(t,r)=(;,—?), T, 1)=(t,t+1).
The following theorem, which is due to Kac and Peterson [14], is one
of the most beautiful results in affine Lie algebra theory. It is an easy
consequence of the theta function expression (+) of the character.

Theorem. Let A€ P.". Then
(a)

act by

z 1 im(z,
XA(;’ Lo Primz, )T Z Sy aXp (2, 7)
A'eprmod cs

Jfor some complex numbers S, ., and

(b) 4
2rim,

Az, t+1l)=e xa(z, 7).
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In general, this theorem implies that, up to the factor ez 2/(ct+d)
the complex vector space spanned by the characters of the highest welght
modules of a given level is stable under the modular transformations. Note
that we have slightly revised the statements in [14] to fit our purpose. Espe-
cially we have omitted considering the variable u, and get the exponential
factors instead. For a € M we also have

0,(z+a,1)=06,(z, 1);

2nim(z ,a)+nim(a,0t)8

0,(z+at,17)=¢ (2, 7).

This, together with its transformation formulas under SL,(Z), means
that x, is an /-variable Jacobi form of index m/2 and weight 0. See
§3.2 for the definition of Jacobi forms. We refer to Theorem 13.8 in [14]
for the details of the above theorem. In the proof of Theorem 1 we will
take

(2, s z)=(ngt, -, m)
for some integers {n,} ; this makes y, into a one-variable Jacobi form.

Example. The irreducible highest weight Lsu(2)-modules of level /,
denoted by Vj,, , are parametrized by an integer j, and the corresponding
characters are given by

X002, 1) =0, 1,,(2,7)/0, 4(z, 1),
where
. . 2
m(Z,7)= e Z Mk TR ok e Z (mod 2m)
kezZ+4k

is the theta function of degree (m, k).
One has

z 1 jlz* l
X (2, -0y =" N A e(z.T),
kez (modamz)

where
A - V2 RO+ D+ D)
/) I+2

as appeared in the now-famous Verlinde formulas.

2.3. The construction of y(E, V). For a simply connected simple Lie
group G, the positive energy representation E of the loop group LG is
characterized by the following properties:

(a) E 1is a direct sum of irreducible representations.
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(b) Let R, be the rotation action of the loop by the angle . Then
R, acts on E as exp (—iAf) with 4 an operator of positive spectrum,
and the subspace E, = {v € E : R,(v) = ¢"v} is a finite-dimensional
representation of G .

(c) The action of LG x S "on E naturally extends to a smooth action
of LG x Diff*(S 1) , where Diff* (Sl) is the group of orientation preserving
diffeomorphisms of S’ .

Assume that the infinitesimal generator K of the central element of
LG actson E by K-v=muv, foranyv € E and a positive integer m.
Then m is called the level of E . As discussed in the last section, positive
energy representations of level m can always be lifted from the integrable
representations of level m of the corresponding affine Lie algebra. See
[30] for the details of positive energy representations.

Consider G = Spin(2/). Since the representation E in Theorem 1 is
of positive energy, one then has the decomposition £ = &, ,E, under
the action of R,. Here each E, is a finite-dimensional representation
of Spin (2/). Let Q, be the frame bundle of V. Then Q, is a prin-
cipal Spin (2/)-bundle. For each E, we can get an element En € K(M)
associated to E, and Q, . Let us write formally

w(E,V)=Y E,q" € KM)[qll.

n>0

This y(E, V) is the desired element in Theorem 1.
Now let us discuss the characteristic classes of w(E, V). For G =
Spin(2/), let {v j}j.=1 be an orthonormal basis of §*, the dual of the

Cartan subalgebra. The root basis {« j}§.=1 is given by
{o,=v, -0y, -0 ==Y, q=0_ +u},

and the root lattice is

Q= {Zkivilki €Z,) ke ZZ}.

In this case the long root 6 = v, + v,, the Weyl group W consists of
all permutations and even number of sign changes of the v j’s, the lattice
M = Z(W -0) = Q, the dual Coxeter number hY =2 -1), and the
affine Lie albegra Lso(2]) is of class DI(I) in the notations of [14].

Let R(Spin(2/)) denote the ring of Spin(2/) representations, and
Hépin(zl)(Q) the ring of characteristic polynomials. We have the char-
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acteristic map
ch: R(Spin(2/)) — Hgpin,(Q)

which sends a representation to its character. Let {v[}f=1 also denote the
standard character of §. Then

ngin(y)(Q) =Qllvy, - 'UI]]W

the W-invariant polynomials. By our choice of the coordinate in §* in
the last section, we can view x,(z, 7) as x,(v, 7), where

U:('Ul,... ,vl)’

i 0, 27ti2j
Bj=1 (—27tizj, 0 ) €heg C.

Therefore for E = L(A), considering w(E, V) as an element in
R(Spin(2/))[[q]], we can write the character as

ch(Y(E, V)) = chy(v, 1) =g "*xu(v, 7).

evaluated at

Under transgression, {:f:vj}ﬁ.=1 lift to {iZnixj}j.=l where {:I:27zixj}§=l
are the formal Chern roots of V', and the character map lifts to the Chern
character. Therefore we only need to replace z i by X; in the character
ch.(z, ) when considering the Chern character of y(E, V).

2.4. Corollaries and examples. In this section we give several examples
of the corollaries of Theorem 1. In the following, real bundles will be
automatically complexified.

Example a. Let 0,(v, 1), 6,(v, 1), 6,(v, 7) and 6(v, 1) be the clas-
sical Jacobi theta functions. Recall that we have

oo . 00 )
03(1] , ‘l') =c- H(l + qn—l/2e27m/) H(l + qn—1/2e—2nw) ,

n=1 n=1
= 2 2mivy T4 .
0,(v,7t)=c- H(l - q""l/ e™) H(l _ q"—1/2e—2mv),
n=1 n=1
1/8 2 00 2
01(’0,‘5)=C'¢1/2cos7wH1+qnenwH1+ ng=2miny
n=1 n=1
8 2 0 2
Ov,1)=c-q Y8)sinv H(l_ n_2miv H Ie mv ),

n=1
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where ¢ = H;’;l(l —4q"). Let M and V be as in Theorem 1. Con-
sider the case of level m = 1 and the spin representation S = S* + S~
of LSpin (2/), where ST are the half-spin representations. For a vector
bundle F, let

A(F)=1+1tF +A°F + ...
be the wedge operation in K(M)[[{]]. Then one gets

WS, V)=AaV) e, Ax(V),

where A(V) = AT(V) @ A™(V) is the spinor bundle of ¥ . In terms of
the coordinate of h* ® g C introduced in §2.2, the normalized Kac-Weyl
character is

1 l
xs(z, 1) = Wgel(zia 1),

where n(7) = 1/ 24 [1,2,(1—q") is the Dedekind eta function. The elliptic
operator in Theorem 1is
DRAW) &, Ap(V) @ Sn(TM).
Example b. Similarly for 7 = S* —S7, one gets
W(T,V)=(A"(V) = 2" (V) 8y A_p(V)

and the character

1
xr(z H

n(r
This gives another elliptic operator
DR (AT(V)= A" (V) &y  A_pn(V) &y Sn(TM).
Note that the anomaly factor for Examples a and b is ql/ 1z,

Let Q, be the frame bundle of V. From @, we naturally get a
principal LSpin(2/) bundle LQ, on LM . Actually LQ, is the loop
space of Q). If p,(V) = 0, we can further get a principal LSpin(2])
bundle QV by central extension. One can associate .S and T to QV to get
two vector bundles on LM , which are the infinite-dimensional analogues
of AY(VYe A™(V) and AY (V) — A™(V) respectively. See [9] for the
details. Since D ® ®, 1Sn(TM ) corresponds to the Dirac operator on
LM ,the constructlons 1n Examples a and b give, respectively, the signature
and the Euler characteristic operator for the loop bundle LV which is the
loop space of ¥V on LM .
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Example c. LSpin (2/) has exactly four irreducible highest weight rep-
resentations of level m = 1. The remaining two are denoted by S; and
S,.Let §'=5,+5" and T'=S, —S_. Then we have

1
n(t)’

xs(2,7) =

i
H 02(2,‘ ’ T) ’
i=1

1
X (z,7)= %)71:[193(%, 7);

and respectively
w(S', V) =& A_p-n(V),

w(T', V) =8 Ap-n(V).
Their corresponding elliptic operators are

De®, \A_n1n(V)®,_; S;m(TM)

m=

and
D@ &, \Ap-1n(V)®,_ S;m(TM)

m=1"gq

respectively. The anomaly factor for both operators is q_l/ 2

The above examples are exactly those elliptic operators considered in
[33], [8], [34], [35]. See also [9]. By Theorem 1 all of these elliptic op-
erators are rigid if p,(M)g = p,(V)s . Compare with the discussions in
[23].

Example d. Take V = TM in the above examples, we get the elliptic
operators discussed in [34]:

D® AM)®,”  An(TM) @, _ S»(TM),

D@, A_n(TM)®,_ S;n(TM),

D&, Ap-in(TM)®,_ S(TM),
where A(M) is the spinor bundle of 7M . Of course in this case, only
the level-1 representations can satisfy the assumption of Theorem 1, except
the trivial case p,(M)g = 0. Therefore we can say that for V' =TM in

Theorem 1 the only possible rigid elliptic operators are given by the level-1
representations of LSpin (2/).
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Example e. The virtual version of Example d, i.e., one replaces TM
by TM — dimM to get
D® AM)®,_, Ap(TM —dimM) @, S »(TM — dimM),
D® @, | A_-1n(TM —dimM) ®,_, S;n(TM — dimM),
D ® ®, | A-in(TM —dimM) ®,_, S;n(TM — dimM).

The indices of these operators are called universal elliptic genera.
We go further to consider the representation

P=Se2sedT
of LSpin(2/) and take ¥V = TM . The corresponding character is given
by

k k
xp(z, 1) = x5(z, T) + 2 xg (2, T) + 2 X (2, 7)

k k k
B R‘lz)—k(Hel(Zia T) + 2* HGZ(ZP )+ 2 HHS(Z,-, )
i=1

i=1 i=1

where k = %dimM . We would like to consider the virtual version of this
example. The index of

D®®, Sq(TM—dimM)® y(P, TM),

is an elliptic genus which gives modular forms of level 1. Here
w(P, TM), = AM)®,2, A +(TM — dimM)

+2° ©2 | A_ o2 (TM — dimM)
+2°®7% | A po1n(TM — dimM)

is the virtual version of w(P, TM). Its modular property under SL,(Z)
is easy to verify by using the transformation formulas of theta functions.
By Theorem 1 this genus is rigid. Without confusing the level of modular
forms with the level of loop group representations, we say that this elliptic
genus is of level 1. This example solves a problem of Landweber in [18]
about the construction of level 1 elliptic genera. From the point of view of
loop group representations, this genus seems to be the only possible rigid
elliptic genus of level 1 for spin manifolds.
One can get more general rigid elliptic genera by considering

P, . =a(mSebns ecvT,

a
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where a(1), b(t), c(t) are modular forms over a modular subgroup I'(2K)
for some positive integer K > 1. Then
D®®, Sqn(TM-dimM)ey(P, , ., TM),
is an elliptic genus of level 2K . Here
WP, > TM), = a(t)A(M)®;° Ap(TM — dimM)
+b(1) ®:il A_qn—l/Z(TM — dimM)
+¢(7) @y A p-12(TM — dimM)
is the virtual version of y(FP, , ., TM) and lies in K(M)[[qfl’?]] ®C.
The proof of Theorem 1 works for more general loop group represen-
tations. Especially it works for the tensor product of two positive energy

representations of highest weight and different level.
Example f. Consider the tensor product

0=S¢S T,

which is a level-3 representation. For an Sl-equivariant rank-2/ spin
vector bundle V' with 3p,(V)q = p,(M)q , by Theorem 1 we know that

D&, Sm(TM)2w(Q,V)
is rigid, where
W@, V)=A) &, Ap(V) &2 A_n-1n(V) @2y A (V).

One can also consider level-2 representations X =S®S', Y =S 7T,
and Z = S ® T'. As an easy corollary we know that, if the bundle V
satisfies p, (M) = 2p, (V) , then

Do, Sm(TM)eyU,V),

for U =X,Y, or Z, is rigid. By taking the first two terms of the ¢-
expansions we get the rigidity of the following elliptic operators

DeAV, DeSV,
DRAWV)®(TM +V + A’V),
D®(TM +S*(TM)+2TM @ A’V + A*V @ A2V — 2V @ A*Y),
DRIAWRATM+V +SH(TM)+V RV +VTM
+ AV + V@AY + TM o A*V).
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One can get more examples by taking tensor product of the basic repre-
sentations, S, 7, S’ and 7.
Example g. Take three nonnegative integers a, b, ¢, and consider the

representation

1®b

®
Qa,b,c, =S®a®S ®T’ C,

and the corresponding elliptic operator
De®, S (TM)ow(Q, , .. V),
where
W(Q, 4. V)= (D) &0 Ap(V)® ® (12 A_pin (V)™
® (@ Ag-12(V)) %

If py(M)g =(a+b+c)p,(V)g , then this operator is rigid. Actually it is
easy to see that {S,S’, T, T'} generate a graded ring by tensor product,
and each homogeneous term of degree m gives a rigid elliptic operator, if
the corresponding vector bundle V' satisfies p,(M)g = mp (V) .

Example h. If we have another rank-2n spin vector bundle W such
that

ap,(V)g +bp,(W)g = p; (M) g
for some nonnegative integers a, b, then as a corollary of Theorem 1 we

have that, for two highest weight posit~ive energy representations £ and F
of level a and b of LSpin(2/) and LSpin (2n) respectively, the operator

D&, Sm(TM)Qy(E,V)Qy(F, W)

is rigid. One can also consider the tensor product of several bundles and
representations. This example may be used to study the equivariant split-
ting of TM . More interesting examples may be obtained by considering
the explicit constructions of the higher level irreducible representations of
LSpin (2/). It is also interesting to get examples from Lie groups other
than Spin (2/) .

2.5. The proof of Theorem 1. To display our idea clearly, we first re-
strict our attention to the isolated fixed point case. By the discussions
in §§2.2 and §2.3 we can assume that E is an integrable highest weight
module L(A) of Lso(2l) of level m.

Let g = ¢?™ € S' be a generator of the action group, and {p} c M
be the set of fixed points. Let

TM|,=E & - ®E,, k=%dimM
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be the decomposition of the tangent bundle into sum of the S !.invariant
2-planes when restricted to the fixed points. Assume that g actson E ; by

e*™™' | Recall that {m 1} C Z is called the exponents of TM at the fixed
point p. See [8] and [23]. Choose the orientations of the E j’s compatibly
with the orientation of A . Similarly let {n,} be the exponent of V' at the
fixed point p, i.e., one has the corresponding equivariant decomposition

VI =L1®...@Ll’
2min,t

and g actson L, by e
Consider the followmg functlons:

k

H(t, ) = (2ni) " ]’I 0(’(',;0[ ’T)

CE(t, T) = XE(T, 1),
where T = (n,t,--- , mt), and xg(z, 1) = q'”AchE(z, 7) is the normal-
ized Kac-Weyl character of the representation E = L(A) of LSpin (2/).
Then it is not difficult to see that

Fg(t, 1) = ZH(I, T)cg(t, 1)
p

is the Lefschetz number of
g™ -D®®, SH(TM—dimM)® y(E, V).

See Appendix A for the derivation of F,(f, 7) in general. Obviously
we can extend Fg(¢, 7) to a (meromorphic) function on C x H. The
establishment of the rigidity theorem is therefore equivalent to the proof
of that F(¢, 7) is independent of ¢.

Lemma 2.1. If p)(M)g=mp,(V)g , then Fg(t,7)=3, H(t,7)cg(t,7)
is invariant under the action t - t+at+b for a, b€ 2Z.

Proof. For (a, b) € (2Z)2 , we have

H(t+at+b,1)=e" > sz‘(azﬁz‘")H(t, 1),

. 2, 2
cE(t+ar+b, 1.') —e mniy>, n,(a”1+2at)

cp(t, 1),

which can be seen by the transformation formulas of theta functions.
From Appendix A we know that, if p,(M)g = mp,(V)g , then - ; m]2

=my, nz for each fixed point, and the exponential factors cancel each

other. q.e.d.
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So the rigidity theorem is equivalent to that F(¢, t) is holomorphic in
t. We will prove that Fi (¢, 7) is actually holomorphic in two variables ¢
and 7 on Cx H.

Now we study the modular transformation of SL,(Z) on F(¢, 7). By
recalling that

a b
g=(c d)eSLz(Z)
actson (¢,7) € Cx H by

t at+b

$60={G5a covd

)

One has the following lemma. _
Lemma 2.2. Forany g= (Z Z) € SL,(Z), we have

Fy(g(t, 1) = (ct+d)F4(t, 1),

where gE = Y Ja,E, isa finite complex linear combination of positive

energy representations of LSpin (21) of highest weight of level m .
Actually the function

FgE(t, T) = ZZH(t, r)ch(t, )
L P

is the complex linear combination of the corresponding Lefschetz numbers.
Proof. We use the theorem of Kac and Peterson in §2.2, which tells us
the actions of the two generators

0 -1 1 1
=03 ()
of SL,(Z) on the characters. In general this gives

memi 3 zf/(cr+d)

xE(g(Z, 7)) =e XgE(Za 1),

where gE = W 4E, is a finite linear combination of positive energy
representations of LSpin (2/) of highest weight of level m. Here {aﬂ}

are some complex numbers, and E " is a representation of LSpin (2/) of
highest weight Au and level m, i.e., E, = L(A,). Here we define

Xep(z, 0 =) a,xp (2, 7)
u
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by complex linear extension, and also extend the elliptic operator associ-
ated to gE and its Lefschetz number linearly to K(M) ®, C. We have
the corresponding elliptic operator

Y a,d"™Dee, S(TM —dimM) e y(E,, V),
n

whose Lefschetz number is
)=y aH(, T (t5 7).
P u
It is easy to see that

. 2.2
cplg(t, 1) = ™D N a0 1, 0),
u

since we also have
- 2.2
H(g(t, 7)) = (ct + d)¥e ™ Ximt /e gy 1y

for any g € SL,(Z). By the condition on equivariant Pontrjagin classes,
the exponential factors cancel each other, and the lemma is proved. q.e.d.

One actually only needs to check Lemma 2.2 for the two generators S
and T of SL,(Z). The following lemma is a generalization of Proposi-
tion 6.1 in [8] or Lemma 1.3 in [23]. The proof is essentially the same.
For completeness, we give the details.

Lemma 2.3. For any g € SL,(Z), the function F, 2 £(t, T) is holomor-
phicin (t,7) for teR and te H.

Proof. Let z =™ and N = max{|m |} where m; runs through the
exponents of all fixed points. The expressions

cp(t, 7) = 3 cN1)8,(T, 7)
reP*amodkm+Cs)
and .
H(t, 1) = (2mi)~ H Ge(rizot Tl)

tell us that F,p(t,7) has a convergent Laurent series expansion of the

form
m, - g J
>_a,4"™ Y b (2)a
u Jj=0

in the domain |q|'/N <|z| < ]ql_l/N. Here {bfu(z)} are rational functions
of z with possible poles on the unit circle.
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But considered as a formal power series of ¢,
S (THM)® (L a,a™ v (E,. V) =3 a,a™ Y Vi
u

with Vji € K(M) ®, C. Note that the terms in the above two u-sums
correspond to each other. Applying Lefschetz fixed point formula to each

V]f‘ , we get that, for |z| = 1, each bf#(z) is the Lefschetz number of an

elliptic operator. This implies that
- 5 A
m=—N(j)

for N(j) some positive integer depending on j and afn’j. complex number.
Since both sides are analytic functions of z, this equality holds for any
zeC.

On the other hand, multiplying F 2 g(t, ) by

k
=HH(1 -zmj)9

p j=1

where the product runs over all of the fixed points {p}, we get a holomor-
phic function which then has a convergent power series expansion of the

form
> a4 Zc (2)q
u

with { z)} polynomial functions, in the domain |g
Comparmg the above two expansions, one gets

¢8 (2) = f(2) - b5,(2)

for each j. So by the Hilbert Nullstellensatz, we know that

;a#qm% ijg (2)q —Za g Z( f(z)

1/N —1/N
"N <zl < 1g7V.

is holomorphic in the domain |q|l/N < |z| < |q—‘/N . Obviously R x H
lies inside this domain. q.e.d.
Proof of Theorem 1. At this point the proof is almost identical to our

new proof of the Witten rigidity theorems in [23].
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By Lemma 2.1, we know that F,(z, 7) is a doubly periodic meromor-
phic function in ¢; therefore to get the rigidity theorem, we only need to
prove that F, (¢, ) is holomorphicon C x H.

First note that, as a meromorphic function on C x H , all of the possible
polar divisors of F,(t, ) can be expressed in the form ¢ = n(ct +d)/A4
with 4, n, c, d integers, 4 # 0 and ¢, d prime to each other.

Lemma 2.3 tells us that the divisor ¢ = % is not the polar divisor of
FgE(t, 7) for any g and any integers A, n.

For any polar divisor ¢ = n(ct +d)/A of Fg(t, 1) with (c,d) =1,
we can find integers a, b such that ad — bc = 1, and consider the matrix
g= (_i —ab> € SL,(Z). Since

t dt-b
—ct+a’ —ct+a

)

it is easy to see that if ¢ = n(ct +d)/A is the polar divisor of F(t, 1),
then a polar divisor of F,p(t, 7) is given by

Fp(t, 1) = (et +a) " Fy(

t n(c4zl 4 g)

—c1+a

—ct+a A

b

which exactly gives ¢ = n/4. This is a contradiction to Lemma 2.3. So
Fg(t, 1) is holomorphic on C x H, and Theorem 1 for the isolated fixed
point case is proved.

Now we discuss the general fixed point case. Obviously we only need
to verify the transformation formulas used above.

Let {M_} be the fixed submanifolds of the circle action, and

T™™|,, =E &---0E,eTM,

be the equivariant decomposition of TM with respect to the S !action.
We denote the Chern root of E, by 2mix, , and the Chern roots of TM ®
C by {£2niy;}. Assume that g actson E, by et
Similarly let

Viy =L &L
be the equivariant decomposition of V' restricted to M_ . Assume that g

actson L, by e2™"!  where some n, may be zero. We denote the Chern
root of L, by 2miu, .
Let 2k, denote the dimension of M_ . Then the Lefschetz number of

g™ -D® & S, (TM —dimM) @ y(E, V)
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is given by

F.(t, 1) Z(Hzmy F(yj,t)(HF(x +mt, 1))ep(u+1,1)[M,]

M, j=1
where

O(x, 1)’
with U+ T = (u, +n;t,--- , u,+n;t). See Appendix A for the derivation

of Fg(t,1).
Smce gE=3% a

F(x, 1) =(2mi) cplu+t, ) =xg,(U+T,7)

2y ﬂ , the corresponding elliptic operator is

> a,d"™ D& (@, S (TM - dimM)® y(E,, V),
u
whose Lefschetz number is

Fp(t, 7) Z(Hany F(y;, 1) (HF(x +myt, 7))c p(u+t, 1))[M,]

M, j=1

with
Ccop(U+1,1) = Z%CE”(“ +1,1)
u

as in Lemma 2.2.

Let us first check the modular transformation of g= (‘Cl Z) € SL,(Z).
We have
t at+b
FE(CT+d ’ cr+d)
k. at+b
=Z(I_12ﬂlij(y ot d)
h mt at+b t at+b
. —_r = - =
(HF(x7+ ct+d’ cr+d))cE(u+ ct+d’ cr+d)[M°‘]

y=1

ka
= (ct+d)* Y ([] 2miy;F((ct +d)y,, 1))

M, j=1

a

h
. (H F((ct+ d)xy +mt, ‘t)) cgE((ct +d)u+t, 7)[M]
y=1
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Here to cancel the exponential factors one needs
2 2 2
SIS+ m ) = m Y, )
J ? v

which is exactly the localization of the equality p,(M)g = mp (V) to
M _ ; see Appendix A.

But since we only need the k_-th homogeneous terms of the polynomials
in x’s, y’s and u’s, one gets

k

(1,F (et +dy,, )
j=1
h
X (H F((ct+d)x, + mt, T)) cpllct+ du+t, 1)[M]
y=1
ke h
=(I»Fw;. ) (H F(x,+m,t, r)) Cop(u+ 1, DM,
Jj=1 y=1
Therefore

k
Fp(g(t, 7)) = (ct+d) Fyp(t, 1),
as in the isolated fixed point case.

We leave to the reader to check the actionof t - t+at+b for a, b €
2Z . Note that, for this, one only needs the conditions

Zm12.=m2n3, Zmyxy=m2nyuy,
J v y v

which are easy consequences of the localization of the equality of the first
equivariant Pontrjagin classes. The proof of Theorem 1 is complete.

2.6. Almost complex manifolds I. Now let X be a compact almost
complex manifold of complex dimension k, and W be a complex vector
bundle of rank / on X . Here by complex bundle we mean a real bundle
with a complex structure. One has the decompositions

TXeC=TX0oT'X, weC=waew",

where T"X and W” are the complex duals of 7'X and W’ respec-
tively. Assume that there exists an S !_action on X , which lifts to W and
preserves the complex structures of X and W .

Following Witten, consider the fiberwise multiplication action by a com-
plex number y = ¢™ and y~' on W’ and W" respectively. In this way
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we get a real G -equivariant bundle V® such that V°@C =W o W",
where Gy denotes the multiplicative group generated by y. One notes
that V' is actually isomorphic to W viewed as a real bundle.

If w,(W) =0 which is equivalent to ¢, (W) =0 (mod2), then V* is
a Spin (2/)-vector bundle, and the method in §2.3 can be used to get an
element w(E, V*), associated to V' and a positive energy representation
E of LSpin (2/) of highest weight.

Let 8 denote the antiholomorphic differential on X . Assume further-
more that w,(X) = 0 and denote the Dirac operator on X by D. Recall

that D= 8 ® K~} with K = detT’ X . Consider the equivariant elliptic
operator

De®, S/(TX®C)oy(E, V")

under the action of Gy xS'. Take a =1 /N for some positive integer N .

For a complex vector bundle F, let p,(F)g = cf(F)Sl —2¢,(F)g be the
first equivariant Pontrjagin class of the underlying real bundle. We have
Theorem 2. For any positive energy representation E of LSpin(2l) of
highest weight of level m, if w,(X) = w,(W) =0, ¢, (W) = 0 (modN)
and p,(X)g = mp,(W)g, then the Gy x S'-equivariant elliptic operator

Do, SH(TX®C)oy(E, V)

is rigid with respect to the S Laction.

Proof. We only give a sketch for isolated fixed-point case and leave the
general fixed-point case to the reader.

Let {p} be the fixed points of the S'-action. Choose the orientation
compatible decompositions of 7'X and W' at each fixed point. One then
has

! k ’ /
TX|,=0,_,E;, W|,=9,,L,
Assume that g = ¢*™" actson E ; and L, by 2" ™M! and e*™™' respec-
tively. Write
X:‘(Z9 T) =XE(Z+Q’ T)a

where z+a=(z,+a, -, z;+a). First by the same method as in §2.5,
we get that

Fo(t,1)=Y_ H(t, 1)cp(t, 1),

p

where

cp(t, 1) = xp(T, 7)
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is the Lefschetz number of
g™ -D®®, S (TX®C—dimX)® y(E, V)

at yx ™™ ¢ G, x S'. Here H(t,t) , T and m, have the same ex-
pressions as in §2 5. As in the proof of Theorem 1, one first verifies that
E(t , T) is doubly periodic with respect to the action

T—>t+at+b

for a, b € NZ. Then one can check that, for any g = (‘; Z) €SL,(Z),

Fa(g(t, 1) = (ct+d)Foy (e, 1),

a(ct+d)

where F E (t , T) is the Lefschetz number of

i 2
Mt g "D ® L™ ® ®77 | Sp(TX ® C — dimX)
u

® l//(E” ’ Va(CH-d)).
Here L =detW’ and {a,} are some complex numbers. Also pelertd) g
the corresponding equivariant bundle with respect to the fiber multiplica-

tion by y = e2™*™9 and w(E,, y€m+d) is the element in K (X)[[q]]

associated to ¥*“*) and the positive energy representation E, = L(A )

of LSpin (2/) of highest weight A, of level m. Recall gE = Z
In terms of the local data, we convcmently write

llllll

a(cr+d)(t ‘L') ZH cr+d)(t )
with
a(c‘t+d)( lmnicaz(cr+d) 2nimca Y, n,t a(ct+d)
t,7)= Eae vy (t, 7).
(] E, ’

By our discussions in §2.5, these two properties, together with Lemma
2.3 of that section, are enough for the proof of Theorem 2. q.e.d.

As the applications of Theorem 2, we give some examples. We will use
the same notation S, T, S’ and T as in §2.4 to denote the four highest
weight representations of LSpin (2/) of level 1.
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Example A. Taking m =1 and E = T, one easily sees that
w(V*, T) =L @@ A_ -1 W" &0 A_ W',

and get the rigidity of 8 ® (K~' ® L)} ® ©2(TX|W). Here L = deth’,
K =detT’X and

OZ(TX|W) = ®:o=0A—y"q" w" ®:o=1 A—yq" w' ®:i1 Sq" T'X ®:il Sq" T'X.

Actually, in [23] we have proved this result by assuming the slightly weaker
condition w,(W) = w,(X), ¢,(W) =0 (modN), and p,(W)a =p,(X)g.
Taking W = T X, we obtain the rigidity theorem of Hirzebruch [12], i.e.,
the rigidity of 6 ® ©7(TX), where

O5(TX) =& o A_ -1 o T X0 A wT' X @7 SpT X @7, ST X.
These examples were also discussed by Witten in [34].

Example B. Taking m=1and E=S, S’ or T', one gets the rigidity
of 9@ (K ' ® L)} ® PXTX|W), D® QX(TX|W) and D® R:(TX|W).
Using W = TX, one has the rigidity of § ® P(TX), D ® Q,(TX)
and D® RZ(TX ). The rigidity of these operators were proved in [23,
Proposition 2.1]. Here recall that

P:(TXl W)= ®;.;0Ay"q" w" ®:i1 qu" W ®Zl Sq" T'X ®:‘;1 Sy T'X,

QT X|W)

o] N _ 0o !/ 0o ! [e ] 1"
= ®"=1A_y n_|/2W ®n=1 A_ qn_l/ZW ®n=1 San X ®n=l San X,

~q y

R (TX|W)
= @ AW O Ay pin W @) ST X @) SpT X
and for W =TX one gets
a /! / oo / oo /!
PYTX) =@ A1 pT X, AT X®,, SpTX®,, SpT X,

Q:(TX)
7 ’ / 0o 1"
= ®;11A_y—lqn-l/2T X ®:o=1 A_yqn—l/ZT X ®:il San X ®,=1 San X,

/!

RATX)=8) At pin T'X @ A ooin TX . SpTX® ST X,
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Example C. Consider the tensor products of S, T, S’ and T, one
can obtain some higher level rigidity theorems, especially the examples in
§4 of [23]. We omit the details here. In fact {S, T, S', T'} form a ring
by tensor product, where each homogeneous term of degree m gives a
rigid elliptic operator, if the corresponding bundle W satisfies ¢, (W) =
0 (modN), w,(X) =w,(W)=0 and p,(X)g =m-p,(W)g .

Take m =1, W = TX and consider the following elliptic operator

308682 SH(T'X —dimX) @72, Sa(T"X - dimX) ® y (V9 1), ,
4

where the sum is over
a b
g= (C d) € SLy(Z)/T|(N).

The index of this operator gives a rigid elliptic genus of level 1 for compact
almost complex manifolds with ¢, = 0 (modN) . Explicitly

p(VrD 1), = L @@ A1 n(W" — dimW)
®7, Ay o(W' — dimW)

2nia(ct+d)

with y=¢ . Also we recall

rl(N)={(‘c‘ b)lc— (modN), aEdEl(mOdN)}.

It is not difficult to see that when ¢, (W) = 0, Theorem 2 actually holds
for any complex number «, generalizing the result of Krichever [16] to
higher level loop group representations. See the corresponding discussions
in [23].

3. Jacobi forms and rigidity theorems

In this part we generalize the rigidity theorems in the previous section
and in [23] to the nonzero anomaly case from which we derive a family of
holomorphic Jacobi forms. As corollaries we get many vanishing theorems,
especially an Ql-vanishing theorem for loop space.

3.1. Nonzero anomaly. Let M be a compact smooth spin manifold
of dimension 2k with an S l-action, and V be a rank-2/ equivariant
spin vector bundle on it. We consider the equivariant cohomology group
Hg (M, Z) of M. Obviously Hyi(M, Z) is a module over H*(BS', Z)
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induced by the projection 7: M xu ES ' - BS'. Recall that
Hy(M,Z)= H' (M x4 ES', Z).

Let p,(V)g1, p,(M)g € Hou(M, Z) be the equivariant first Pontrjagin
classes of V' and TM respectively. See Appendix A for a geometric
discussion of equivariant characteristic classes. From our previous discus-
sions, one knows that the condition p, (V) = p,(M)g puts very strong
restriction on the characteristic numbers of M and V. Actually this con-
dition governs the modular invariance of the elliptic operators discussed
in [23] and the previous section, and is one of the essential reasons for
their rigidity.

In this part we consider the situation where p,(V)g — p,(M)g €
Hg (M, Z) is equal to the pullback of an element in H*(BS', Z). Since

H'(BS', Z) = Z[[u]]
with u a generator of degree 2, we know that this is equivalent to
* 2
p(V)g—p(M)go=n-mu

with n an integer. We call n the anomaly of rigidity. The reason for
this will be clear in the following. Follow [23], we introduce the following

elements in K(M)[[q%]]:
8 (TM|V), =& | Ap(V —dimV) @ S n(TM — dimM),
8, (TM|V), = ®;,“;1A_q,,_ y(V —dimV) @), S;n(TM — dimM),
e_,(TMV), = ®:‘;1Aq,,_ y(V —dimV) @, S;n(TM — dimM),
O, (TM|V), =@, | A_(V —dimV)®,_| S»(TM — dimM).

One of our main results in this part is the following theorem which gener-
alizes the rigidity theorems to the nonzero anomaly case:

Theorem 3. Let M and V' be as above. Assume p,(V)g —p,(M)g =
n-n*u®. Then the Lefschetz numbers of D ® A(V) ® 8;(TM|V)v ,D®
e,TM\V),, DeO_(TM|V), are holomorphic Jacobi forms of index
n/2 and weight k over (2Z)* xT with T equal to To(2), T°(2), T, re-
spectively, and the Lefschetz number of D®(A™( V)—A‘(V))@@Z(TM "),
is a holomorphic Jacobi form of index n/2 and weight k — [ over 7 %
SLy(Z).
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Here by Lefschetz number we actually mean its extension from the unit
circle to the complex plane. See the discussions in §3.2 for definitions of
the modular subgroups that appeared in Theorem 3.

As a corollary of Theorem 3 we have the following vanishing theorems
for loop space.

Corollary 3.1. Let M, V and n be as in Theorem 3. If n = 0, the
Lefschetz numbers of the elliptic operators in Theorem 3 are independent of
the generators of S' . If n < 0, then these Lefschetz numbers are identically
zero. In particular, the indices of these elliptic operators are zero.

This explains the reason that we call n the anomaly. There are some
other corollaries by applying several simple facts about Jacobi forms in
[11] to our situation. We believe that the applications of certain deeper
results in Jacobi form theory may bring new light to elliptic genus theory.

It is very interesting to discuss the operator

D®®, S(TM—dimM),

which corresponds to the Dirac operator on LM . One notes that this
operator is the same as

oo

[0 -a""-Dee S-(TM).

n=1

We will prove the following ¥-vanishing theorem for loop space.
Theorem 4. If p,(M)g = n- n*u’ for some integer n, then the Lef-
schetz number, especially the index, of

D®®, Sq(TM —dimM)

is zero.

We note that p,(M)g =n- n*u’ is the equivariant spin condition on
LM . If M is 2-connected or the S'-action is induced from an S$>-action,
then this condition is equivalent to the condition p,(M) = 0 which is the
spin condition on LM . See the discussion in §3.4.

We remark that Witten has predicted Theorem 3 by considerations from
physics. See the discussions in [35]. We may view the results here as part
of his famous rigidity theorems.

It is also interesting to generalize Theorem 3 to higher level cases. In
last part, we considered the Dirac operator on loop space twisted by some
element y(E, V) € K(M)[[q]] associated to a spin vector bundle V' of
rank-2/ and a positive energy representation E of LSpin (2/) of highest
weight of level m . Our theorem there states that if p,(M)q = mp,(V)g ,
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then
De®,  SH(TM)®y(E,V)

is rigid. Using a refinement of the modular invariance of the characters
of the highest weight modules of affine Lie algebras given by Kac and
Wakimoto, we will show the following.

Theorem 5. Let M, V and E be as above. If

* 2
mp,(V)g —p(M)g=n-mu,

then
4D ®®, S (TM - dimM)® y(E, V)

is a holomorphic Jacobi form of index % and weight k over (ZZ)2 x
I'(N(m)).

Here N(m) is an integer depending on the level m and given in [14],
and m, is as given in §2.2 of the last part. As a corollary one has that
if n < 0, the Lefschetz number of the above elliptic operator must be
zero, and so is its index. If n = 0, Theorem 5 gives the rigidity theorem.
There are similar theorems for almost complex manifolds which will be
discussed in §3.3.

We organize this part in the following way. In §3.2 we prove Theorems
3 and 5. In §3.3, we discuss the corresponding theorems for almost com-
plex manifolds. §3.4 contains a proof of Theorem 4 and some vanishing
theorems by combining several simple facts in the theory of Jacobi forms
with the theorems in §§3.2 and 3.3.

3.2. Proofs of Theorems 3 and 5. Recall that a (meromorphic) Jacobi
form of index m and weight / over L xI', where L is an integral lattice
in the complex plane C preserved by the modular subgroup I' € SL,(Z),
is a (meromorphic) function F(¢, 7) on C x H such that

t atr+b, 1 2mim(ct*/(ct+d))
(1) F(c1+d’c1+d)_(CT+d)e (

(2) F(t+AiAt+u,t)=e

t, 1),

—2mim(Att+241) Flt, 7)

b

where (A,u) € L, and g = (Z ‘bi) e I'. If F is holomorphic on
C x H, we say that F is a holomorphic Jacobi form. It is important for
us to emphasize this point, since the key point of our proofs is that those
Lefschetz numbers are holomorphic Jacobi forms.
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Jacobi forms can be viewed as sections of holomorphic line bundles on
the elliptic modular surface

Xf=CxH/LxT.

See [11] and [15], and also §4.1 for more detail about elliptic modular
surface. Obviously F(¢, 7) is holomorphic iff it is a holomorphic section.

Now let us start to prove Theorem 3. We first prove that the Lefschetz
numbers of the elliptic operators in Theorem 3 are, possibly meromorphic,
Jacobi forms over the corresponding modular subgroups. ‘

Let us first consider the isolated fixed point case. Let g = 2" € S' be
a generator of the action group, and {p} C M be the set of fixed points.
Let {m j} , {n,} C Z be the exponents of TM and V' respectively, at the
fixed point p. See §2.5 for the geometric meaning of these local data.

Denote the Lefschetz numbers of 2~/ - D ® AV)® 9;(TM|V)U , D®

Gq(TMlV)v , D®©_ (TM|V), and 2. Dw® (AT(V) - AT (V) ®
9;(TX|V)U by F;:(t, 1), F,;’(z, 1), F_VD(t, 7) and F,;/.(t, 7) respec-
tively. Apply the Atiyah-Bott-Segal-Singer Lefschetz fixed-point formula,
one has

/ k 1!
FV R =(2 Nk 0(051') Hyzlel(nyt,‘f)’
o (-1 = (0 Zp: 0,0, 7)’ H’;zl 0(m;t, 7)
6'(0, 0" II,_, 0,(n,t, 7)

|4 \—k —
F, (t, 1) = (2mi) et ,
b Zp: 0,(0, 1) TT*_, 6(mt, 7)
|4

k= 0'0, XTI, 0,(n t, 7)
FY (t,7)=@ni)™* v=t 7370 )
° " z,,: 6,0, 1) TIX_, 6(m,t, )
k=1 Hf/:l (n,t, 7)
Hf:l H(mjt’ T)

Here 0(¢, 1), Hu(t, 7) for u =1, 2, 3 are the four classical Jacobi theta
functions, and

Fpe(t, 1) = (2mi) 3" 6'(0, 1)
)4

' 0
0 (Os T) = ae(ta T)I;:Os eu(o9 T) = Oﬂ(ta T)I[:O'
Similarly let us denote the Lefschetz number of

D®®, Sq(TM - dimM)
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by H(t, 7). Then

K k 0/
H(t, 1) = (2mi) ZHO(mt =t

p j=I

As Lefschetz numbers, the F V>sand H are only defined for ¢ € R, i.e.,
for z = ¢*™ € S'. But we can obviously extend them to well-defined
meromorphic functions for (¢, 7) € C x H, by following easily from the
infinite product expressions of the theta functlons In the following, by
F"’s and H we shall actually mean their extensions.

Recall the three modular subgroups

T,(2) = { (“ 3) € SL,(Z)|c = 0 (mod 2)} ,

r’e) = {(“ Z) € SL,(Z)|b =0 (mod 2)} , and

r,= {(‘Z Z) € SL,(Z)| (“ Z,) = ((1) (1’) or (‘1) (‘)) (mod 2)}.

First one has the following.

Lemma 3.1. If p,(V)g —p,(M)g =n- n*u’, then

Fdf(t, 1) is a Jacobi form over (2Z)* x y(2);

Fl;/(t, ) is a Jacobi form over (2Z)* % l"0(2);

EY (t, 1) is a Jacobi form over (2Z)* x T, ;

If (M) = —n - u*, then H(t, ©) is a Jacobi form over (2Z)2
SL,(Z).

All of them are of index 5 and weight k .

FDV.(t, 1) is a Jacobi form of index % and weight k — 1 over y A
SL,(Z).

Proof. The condition p,(V)g —p,(M)g = n-n*u’ implies that

2 2
S-St
v J

for each fixed point. See Appendix A. First under the actionsof a, b € 2Z,

one has

_ —m‘mz.(azr+2at)
Hﬂ(mj(t+ar+b), T)=e " 6,(m;t, 1)

and

2,2
6,(n,(t+at+b), 1) =e " T0G (n 1, 1)
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for 0” =0,0,, 0, or 6,. Therefore

1
Hu 1 ey(n (t t+at+ b) T) e—nin(a21+2at) Hf,:l ey(nyt, 7)

I\, 6,(m;(t+at+b), 1) I, 6(m;t, 1)

So these F"’s satisfy condition (2) in the definition of Jacobi forms. Sim-
ilarly if p(M)g =—-n- 't , then zj mf = —n for each fixed point,
and one can get

. 2
H(t+at+b)=e ™™g, 1)

On the other hand, we obtain the well-known modular transformation
formulas for theta functions under the action of the generators S, T €
SL,(Z). See [10] or [23]. For S, we have

00, ~ D To 4%, =1 _ kuinss 60, 0 Loy (1,0 0
6,00, -1 I1_, 6%, -1y 0,00, ) IT;_ 0(mt 7)’
60, —1)* Mo 63(%° . —1) _ i mintse0'(0, )" 1, 05,1, ©)
6,0, -1 TI*_, 6%, -1 6,0, 7 I, O(m,t, 7)
e'(o O e, Ly e rint/ (0, r) IT,_, 6(n,t, 1)
~OP Ik, 6 zg_',_%)_ 0(0,7) TI*_, 6(m;t, 1)
Therefore
and

vt 1 k—I mintjt LV
Fp(z, —2) =7 & Tt v),
For H(¢, 1), we have

H(— _ ) k mnt /rH(t’ ‘L').
Similarly under the action of T,
F/(t,1+1)=F, (t,t), Fy(t,t+1)=F ,(t,7)

and
Fl(t, t+1) = Fp.(t, 7).
For H(¢, 1), one has

H(t,7+1)=H(¢, 7).
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Thus T and ST’ST generate I(2), and also I°(2) and T, are conju-
gate to I'j(2) by S and TS respectively. So the assertions for F, dV(t, 7)),

F 1;/ (¢, ) and F_VD(t , T) follow easily from the above formulas. The cases
for Fl;/.(t, 7) and H(¢, 1) can then be proved easily. q.e.d.
The above proof gives some transformation formulas of the F"’s and

H which are crucial for the proof of Theorem 3. We single them out as a
lemma.

Lemma 3.2. If p,(V)g —p,(M)g =n- n*u®, we have

)
F/(4, - =" F (), F(tc+)=F/(t,0;
L2
Flpt, -y =™ "F a0, Ry, c+ ) =F/p,0;
L2
Fp(t, -H =™ B, 1), Fp(r,t41) = Fpu(t, 1),

If py(M)g =—n- n*u*, then

L2
H(‘i', —%) =" "H(t, 1), H(t,t+1)=H({, ).

For g = ((Cl Z) € SL,(Z), let us use the notation

t ar+b)
ct+d’ ct+d

o2
F(g(t, Oy p = (cT+ d)_ke_z’”’”c’ /(cr+d)F(

to denote the action of g on a Jacobi form F of index m and weight k.
Lemma 3.2 tells us that, for F € {F V/s , H}, its modular transforma-
tion F(g(t, r))l% x 1s still one of the F”’s or H. Similar to Lemma 2.3
of §2.5, we have the following.
Lemma 3.3. For any g € SLy(Z), let F(t, t) be one of the F"’s or
H. Then F(g(t, ‘c))|n/2’k is holomorphic in (t, 1) for te R and 7€ H.

For this lemma, it is crucial that the F V>s and H are the Lefschetz
numbers of the elliptic operators. This is also the place where the spin
conditions on M and V come in. The following lemma can be viewed
as a summary of our key techniques.

Lemma 3.4. For a (meromorphic) Jacobi form F(t, t) ofindex m and
weight k over L x I', assume that F may only have polar divisors of
the form t = <4 in C x H for some integers c,d and | # 0. If
F(g(t, ), x is holomorphic for t € R, 1 € H for every g € SLy(Z),
then F(t, t) is holomorphic for any t € C and 7 € H.
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Proof. Since the possible polar divisors of F(¢, 7) can be written in the
form t = n(ct+d)/l with (¢, d) = 1, we can always find integers a, b

such that ad —bc=1. Take g = (_dc _ab) € SLy(Z). Since

t dt+b

Fle(t, 7)) =F(—C‘L'+a’ —c1+a)’

it is easy to see that, if ¢t = n(ct +d)// is the polar divisor of F(¢, 1), a
polar divisor of F(g(t, 1)) is given by solving the equation

N +d>
—ct+a /

which exactly gives ¢t = n//. This is a contradiction to the assumption.
q.e.d.

Proof of Theorem 3. Now it is easy to prove Theorem 3. By Lemmas
3.1, 3.2 and 3.3 we know that the F V>sand H satisfy the assumptions of
Lemma 2.4. In fact all of their possible polar divisors are of the form ¢ =
(ct+d)/m where c, d are integers and m is one of the exponents {m}.
This easily follows from their theta function expressions. So Lemma 3.4
gives Theorem 3 for the isolated fixed-point case.

For the general fixed-point case, one only needs to verify the transfor-
mation formulas of the F"°sand H under the action of (2Z)2 xSLy(Z).
We only check the operator D ® A(V) ® 8;(TM |V), and leave the other
cases to the reader. Let us keep the notation as in §2.5. In terms of those
data the Lefschetz number F d’:(t , T) is then given by

F[(t,7)
k, i
=> (2miy F(y HF(x +myt, 7)) NI Fiw, +n,t, 1)[M,]
M, j=1 r=1 v=1
where
1600, 1) _0x, 7
F(x, 1) = (2xi) 9, 1) Fl(x’T)_Hl(O,r)’

and 2k, is the dimension of M _ .
First recall that the condition on the first equivariant Pontrjagin classes
implies the equality

S, +n,t =y + Y (x, +m)y=n-1
v J Y
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for each fixed point. See Appendix A. This means
2 2 2 2 2
va —Zmy =n, Znuuv = Zmyxy’ and Zuv = Zyj +ny'
v Y v y v J b4

Applying the transformation formulas of the theta functions, we easily
get the following:
(1) Under the action ¢t — t+at+ b with a, b € 2Z. We have

—ni(m:(a21+2at)+2amyxy)0

0”(x7+my(t+at+b), T)=e (X, +mt, 1)

and

_ni(nlz, (a21+2at)+2an,, u,) 0 (
u

0ﬂ(uy+nu(t+at+b),t):e u,+n,t,1)

for 0” one of the four Jacobi theta functions. Combining these with the
equalities derived from the condition p,(V)q —p, (M) =n - n*u® gives

: 2
F/(t+at+b,7)= e MR (1, 1),
(2) Under the action of SL,(Z). We only check the action of S =

((1) _01) and leave to the reader to check the action of 7. We have

m,t 1 1 [T ni((ex,+m. 0% /7)
? L
g(xy+T’ -=) = ie n 0(1x7+m?t’1)’

1 1 [T zi((zy.)?/e ' 1 T [T
0(yj,—-‘;)=—.\/;€7”((Tyj)/)G(Tyj’T)’ 0(0’__{)=-17\/;6 0, 1),

l

nt 1 T ni 2
0,(u,+-2+,-—-)= \/;em((w"”'”t) /1)02(114” +n,t, 1).

Write
-1 oz(x ’ T)

Fz(x, T) = (27[1) WT—) s
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and put the above equalities together to get

v, 1
£y (3 —;)

k,
t
= Y Teniy, o, AT Fx, + 22, =)
M

k,
_ k ni(nt* 1) Z H Zniij(ryj, 7))
Ma

/
([T F(ex, + mt, )] ] Fy(zu, +n,t, 7))[M,]
y=1 v=1

)
_ Tkem(nt /1) Z
M

(2miy F(y;, 1))

e

—_—

J

(I1Fx, +m,t, 1)(HF2(u +n,t,7)[M,]

y=1 v=l1
. 2
= Femi™ /T)Fl;/(t, 7).

For the second equality one needs

Z(uu + nut)z - (Zyjz + Z(X}, + myt)2) =n- [2 s
g J Y

which is exactly the localization of p,(V)g —p,(M)g =n- n*u*; for the
third equality one notes that we only need the k_-th homogeneous term

in the expansion in {y i Xy u,}. q.ed.

Proof of Theorem 5. We only discuss the isolated fixed-point case, since
the general fixed point case is the same as above. Take E = L(A) to be a
level m highest weight representation of LSpin (2/), and recall that the

Lefschetz number of
4D, Sx(TM—dimM)® y(E, V)

is given by
Fg(t, ) =Y H(t, 1)cg(t, 1),
p
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2nit

where the sum is over the fixed points of g =¢ with
—k 6’0, 6(0,17)
H(t, 1) = (2mi) 1‘[ B 1, D

and
cg(t, 1) = x(T, 7).

Here T = (nt,--- ,nt), and xz(z, ) = ¢"*chg(z, 7) is the normal-
ized Kac-Weyl character of the representation E = L(A) of LSpin (2/).
See §§2.2 and 2.5 for the notation.

First we extend F(t, T) to a (meromorphic) function on C x H, and
then verify the following properties:

(a) Under the action of (a, b) € (2Z)2: From the transformation for-
mulas of theta functions it follows that

H(t+at+b,1)=e">i mi(azﬁzat)H(t , 7)),

. 2,2
cpt+at+b,v)=e"" Zom@TE (1 ),
Since )
mp,(V)g —p,(M)g=n-n"u

implies m 3, ni - j mf = n for each fixed point, we immediately get

. 2
F(t+at+b,7) =" ™F (1, 1)

b
d

mation formulas of 6(¢, 7) and 6'(0, 1), we can show that

t at+b
ct+d’ ct+d

(b) Under the action of g = (i ) € SL,(Z) . By using the transfor-

H(g(t, 1) = H (

: 22
_ (C‘t+d)ke_cmzj m;t /(“+d)H(t, 7).

On the other hand, by a theorem of Kac, Peterson and Wakimoto
([14, Chapter 13]), there exists an integer N(m) such that, for any g €
I'(N(m)), where

rvem) ={g= (¢ 7) esn@ie= (5 ) moantm},

one has

memiys, n,z,tz/(ct+d)

cplelt, ) =e eplt, 7).
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Therefore, if mp (V)g —p,(M)g =n- n*u*, we have

. 2
Fp(g(t, 1)) = (cTt+ d)*e™" /(”J'd)FE(t, 7).

Obviously, (a) and (b) together with Lemma 3.4 imply Theorem 5.
We leave the consideration of the general fixed-point case to the reader.
q.e.d.

3.3. Almost complex manifolds II. Now we consider the case of almost
complex manifolds. For simplicity we restrict ourselves to the isolated
fixed-point case and leave the general fixed-point case to the reader.

Let W be a complex vector bundle (i.e., a real vector bundle with a
complex structure) of rank / on a compact almost complex manifold M
of dimension k . Assume that there exists an S'-action on M with respect
to which W is equivariant, and that the action preserves the complex
structures of M and W .

Recall

T,(N) = {(‘; Z) € SL,(Z)|c =0 (modN), a=d=1 (modN)}

and the decompositions
TMeC=TMoT'M, WC=W aWw".
Let L =detW', K =detT'M and
O (TMIW), = @2y A_-1 (W' —dimW) @2 A_, (W' —dimW)
®ne ) Sp(T'M — dimM) ®,7, S,.(T" M — dimM)
with y = e*™ an N-th root of unity. Then we have

Proposition 3.1. If w,(W) = w,(M), ¢, (W) = 0(modN) for some
positive integer N and

p(W)g—p(M)gr =n- n*uz,

then the Lefschetz number of 8 ® (K™' ® L)'* ® 8, (TM|W), is a holo-

morphic Jacobi form of index § and weight k over (NZ)2 x| (N).
Here recall that p,(-);1 means the equivariant first Pontrjagin class of
the intrinsic real bundle, and 8 is the antiholomorphic derivative.
We actually have more results. In fact all of the virtual versions of
the elliptic operators in Proposition 2.1 of [23] give holomorphic Jacobi
forms. We summarize this in the following.
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Proposition 3.2. Let M and W be as above. If w,(M) = w,(W)=0
¢,(W) =0(modN) and

p(W)g —p(M)g=n- T

then § ® (K™' ® L) ® PXTM|W),, D ® QXTMW), and
D® RZ(TM |W), are holomorphic Jacobi forms of index 5 and weight
k over (2NZ)* x T,(2N).

Here recall that D = d ® K~'/* is the Dirac operator on M which
exists by the assumption and

PHTM|W), =&, Ay_l (W' —dimW) @7 A (W' — dimW)

o Sp(T'M — dimM) ®;7 Sqn (T"M - dimM),

Q(TM|W), = A_y-,q,,_ ) (w" - dimW) &7, Ay (W' - dimWw)

n 1
@ So(T'M — dimM) @7 | S+(T"M — dimM),

(e oo . (o] ! .
RyTM|W), =@; A _, (W' —dimW) e, A ooy (W' —dimW)

By S, T M — d&imM) @), S»(T"M — dimM).

_.1 n_

For the proofs of Propositions 3.1 and 3.2 we have to introduce the
following elliptic operators:

de (K 'oL) oL e (TMW),
for Proposition 3.1, and

d oK' & L)} @ Lo P (T
D ®Lca ®QZ(01+d)(TM|W

c alct+d)
DL ®R, (TM|W),

a(ct+d) Pa(cr+d) Qa(cr+d) and
’ q

q
are the same as the Gq, Pq , Qq and RZ respectively, but
a is replaced by a(ct + d). We denote their Lefschetz numbers by
Fa(cr+d)(t, ‘t), Pa(ct+d)(t, 1.'), Qa(cr+d)(t, 1.') and Ra(cr+d)(t, ‘C) respec-
tively. Let {m}, {n,} be the exponents of 7'M, W' respectively. See

for Proposition 3.2. Here the bundles 8
Ra(ct+d)
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§2.6. Then in terms of the theta functions we have

Fa(C‘H-d)(t , T)

_ (27zi)_k Z eZm'ca St
p

Pa(cr+d) ([ T)

0'0, 0% TI._, 0(nt+alct+d), 1)

v=1

O(a(ct+d), 1)1 Hle H(mjt, T)

’ 1
= (2ni)F ZeZNl’COE"ul 6'0, )" I1,_,0,(n,t+a(ct+4d), 1)

. 0,(a(ct +d), 7) s, 60m;t, 7)

Jj=1
Qa(c1+d)(t , ‘C)

/ !
— (27”-)—" ZehicaZ n,t 6 (0, T)k l Il,_, 02(an[ +alct+d), 1)
» 6,(a(ct +4d), 1) I, 6(m;t, 1)

Jj=1
Ra(ct+d)(t T)

. / k [
- 2ni)™* ZeanaZ"ut 6 (0, 1) : IL,_, 03(kn,,t +alct+d), )
05(a(ct +d), 1) T, 6(mjt, 1)

)4 j=1

Obviously when ¢ = 0,d = 1 we recover the Lefschetz numbers of the
operators in Propositions 3.1 and 3.2.

By the same method as before, one can check the modularity of F*(¢, 1),
P%(t, ), Q°(t, ) and R*(¢, 1) under the actions of the corresponding

a b

groups. Also for any g = (c d) € SL,(Z) one has the following trans-

formation formulas:
F(g(t, D)y = F* e, 1),

and
a a d
P(g(t, D)y , = U e, 1),

where U“™*)(¢, 1) is one of the P9z 1), 0°““*D(t 1) and
R"("J'd)(t, 7). It is quite easy to show that they are preserved by the
corresponding modular subgroups. Consult [23].

Together with Lemma 1.4 in [23], we can prove Propositions 3.1 and
3.2 in the same way as Theorem 3.

Some higher level elliptic operators for almost complex manifolds were
discussed in the last part. Under the assumption

* 2
mp](W)s' _pl(M)Sl =n-mu,
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one can get holomorphic Jacobi forms of index 4 and weight k over
(2NZ)2 x ['(2N(m)) for the elliptic operator in Theorem 2 in §2.6; we
omit the details.

3.4. Vanishing theorems for loop space. In this section we apply some
simple facts in the theory of Jacobi forms to our situation and get certain
topological results for manifolds with S'-actions. It is conceivable that
the applications of some deeper theory of Jacobi forms might give much
deeper topological results. This should be an interesting topic for further
studies.

The following lemma which is Theorem 1.2 in [11] can be easily proved
by using property (2) of Jacobi forms in §3.2 and considering the integral
of %PL/F around the boundary of the fundamental domain of the lattice
L.

Lemma 3.5. Let F be a holomorphic Jacobi form of index m and
weight k. Then for fixed T, F(t, 1), if not identically zero, has exactly
2m zeroes in any fundamental domain for the action of the lattice on C.

This tells us that there are no holomorphic Jacobi forms of negative
index. Therefore, if m < 0, F must be identically zero. If m =0, it is
easy to see that F must be independent of 7.

The following lemma is Theorem 2.2 in [11] and can be proved by using
the property (2) of Jacobi forms as given in §3.2.

Lemma 3.6. Let F be a holomorphic Jacobi form of index m and
weight k . Assume that F has Fourier development zmc(l , r)qlz'. Then

c(l, r) depends only on 4lm — ¥ and r(mod2m). If m=1 or m is
prime, then c(l, r) depends only on 4lm —r*. If m = 1 and k is odd,
then F is identically zero.

Combining Lemmas 3.5 and 3.6 with Theorem 3, we have the following
result:

Corollary 3.2. Let M, V and n be as in Theorem 3. If n = 0, the
Lefschetz numbers of the elliptic operators in Theorem 3 are independent
of the generators of S'. If n <0 or n=2 and k=3dim M is odd, then
these Lefschetz numbers are identically zero, in particular, the indices of
these elliptic operators are zero.

We know that, when k = %dimM is odd, the indices of these elliptic
operators should be zero by the Atiyah-Singer index formula, since the
degree of the characteristic classes of a compact real manifold are 4/. But
it is not so obvious that their Lefschetz numbers should be zero.

One can also get the following results from the above lemmas and The-
orem 5.
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Corollary 3.3. Let M, V, E and n be as in Theorem 5. If n =0,
the Lefschetz number of

"D ® @, S(TM-dimM)® y(E, V)

is independent of the generator of S'. If n <0, this Lefschetz number is
identically zero; in particular, its index is zero.

For almost complex manifolds, we have

Corollary 3.4. (a) Let M, W and n be as in Proposition3.1. If n =0,
the Lefschetz number of d @ (K™' ® L)% ® O (TM|W), is independent of
the generator of s'. If n <0 or n =2 and k is odd, this Lefschetz
number is identically zero; in particular, the index of this operator is zero.

(b) Under the assumptions of Proposition 3.2, the same conclusions hold
for 8@ (K @ L)' @ P(TM|W),, D® QXTMW), and D ®
R‘q"(TM W), -

Another quite interesting consequence of the above discussions is the
following.

Theorem 6. Let M be a compact spin manifold with an S'-action.
If p(M)g1 = —n - ntul for some integer n, then the Lefschetz number,
especially the index, of

v’

D@®,, S(TM —dim M)

is zero.

Proof. 1n fact, from the proof of Lemma 3.1 we find that the case n > 0
can never happen, since the condition on the first equivariant Pontrjagin
class tells us that ijg = —n for each fixed point. The case n = 0

implies that all the exponents {m ;} are zero, so that the S'-action cannot
have a fixed point. This in turn yields the vanishing of any characteristic
number. For n < 0, one can apply Lemmas 3.1, 3.4 and 3.5 to get the
result. q.e.d.

Theorem 6 may be viewed as a loop space analogue of the 2-vanishing
theorem of Atiyah and Hirzebruch [4] for compact spin manifolds with
S'-actions. It is easy to show that, if M is 2-connected, the condition
p(M)g = -n- ntut s actually equivalent to p,(M) = 0 which is the
spin condition on LM . Because of the special role played by the Dirac
operator on a spin manifold, Theorem 6 suggests that there should be much
more interesting theory lying behind this vanishing theorem. A. Dessai
informed me that when the S'-action is induced from an S3-action, the
condition p,(M)g = —n- 7" u’ is also equivalent to p,(M)=0.
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One can draw more corollaries from our theorems. Here we only give
several examples.

(1) If p (M) —mp,(V)g = n- n*u’ with the integer n < 0, then
D®V and DR A(V)® V are rigid.

() If p(V)g =n-n"u’ with n <0, then d,® V is rigid.

(3) If n <0, then the indices of the above operators vanish.

These results can be derived from the tensor products of the four level-1
irreducible representations of LSpin (2/). See §2.4.

3.5. Appendix A: The derivation of F (¢, 7). In this section we de-
scribe a simple way to derive Fg(t, t), which is the local expression in
the Lefschetz fixed-point formula for the elliptic operator in Theorem 1.
We also discuss equivariant characteristic classes from the point of view
of differential geometry.

Still let M be a 2k-dimensional compact smooth spin manifold with
S 1-action, and V' be an equivariant spin vector bundle of rank 2/ on M .
All elliptic operators on M are twisted Dirac operators. Consider elliptic
operator D ® V' and denote its Lefschetz number at g = e e §' with
respect to the S !.action by L(t, V).

It is very interesting to understand the Lefschetz fixed-point formula
in the category of equivariant cohomology. First every equivariant vector
bundle ¥ on M has an equivariant extension which is the bundle p :
V xgq ES' - M x s ES'. The characteristic classes of this bundle are
the equivariant characteristic classes of V. We denote the equivariant
H-class by ﬁlsl , and the equivariant Chern character by chg: .

Using differential geometry, we can give explicit formulas for these
equivariant classes. Let D, be a covariant derivative on V', w, be
the S'-invariant connection form and Q, = D,w, be the curvature ma-
trix. Let J,, = iy, , where X is the Killing vector field generated by the
Sl-action, and i, is the contraction operator. Since ®, is S'.invariant,
it is easy to see that

i,Q,=-D,J,.

Similarly we have the corresponding J,, and Q, for the tangent bundle

TM of M. Replace the generator u of H*(BS1 ,Z)=Z[[u]] by t. We
then can use

N _ 1/2 (QM-i-tJM)/Z
Agi (M) = det sinh(Q,, + 1J,,)/2
chaV =tr eQ”“J"
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in practical computations. Here, modulo torsion, we have used the iden-
tification of equivariant cohomology with the cohomology of the complex
Qi (M), d + tiy), where Qg (M) is the S'-invariant C*-differential
forms on M . See [2] and [7] for further details about this identification.

When restricted to the fixed point set, using the notation in §2.5, we can
formally write

_ 0 2min,
Ty =@ (—27zin,/ 0 ) :

_ 0 2niu,
2, =8, (—2niuu 0 > ’

One has similar expressions for J,, and Q,  in terms of the {y i My xy}
in §2.5. Denote the push-forward map by #,: Hu(M,Z) — H*(BS',Z),
where n: M xg ES !, BS' is the canonical projection. We then have
the following identities:

where E(v,) is the equivariant Euler class of the normal bundle of A
in M , and the second equality is called Bott localization.

Let i, : M, — M be the inclusion, and let i; denote the induced
homomorphism in equivariant cohomology. In terms of the local data on
M, , we have

and

h
paM) =4m) [
y=1€

Xy +myt

mi(x,+m,t) _

e—m‘(xy+mvt) :
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One then notes that i;chsl &y S qn(TM ) is the inverse of

oo Kk,

H H(l _ ez"iyfq”)(l _ e—Zniyjqn)

n=1j=1

H(l 2m(x +m,1) n)(l _ e—Zni(xy+m},t)qn) ’

and
g™ i chaW(E, V)=cgu+t,1)=x,(U+T,1)

with U+ T = (u; + nyt,--- , u; + n;t). Also recall that the Jacobi theta
function is given by

O(v, 1) = q%ZSinnv H(l —qd"(1 =M1 - e M.

n=1

Putting these formulas together, we get the expression of F.(¢, 7).
One also has explicit expressions for the equivariant Pontrjagin classes:

l

Mg =[I00+ @, + n,,t)z),

v=1

k, h
ip(M)g = [[(1+yDH [T+ (x, + m0)).

Jj=1 y=1

Therefore

)
* 2
lapl(V)sl = § :(u,, +n,,t) s
v=1

k, h
o 2 2
i,p(M)g = Zyj + Z(xy +m,t)".
j=1 =1
These are the formulas of the first equivariant Pontrjagin classes which we
used in our proofs of the rigidity and vanishing theorems.

4. Elliptic genera and elliptic surfaces

In this part we use the geometry of elliptic modular surfaces to study the
topology of manifolds with S !_actions. We also use this idea to explain
the algebraic geometry behind the transfer argument in [8], [12] and [16].
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From now on we only consider the level-1 case and assume that the anoma-
lies vanish. So we are in the situation that the Witten rigidity theorems
hold. For explicity we only consider the isolated fixed-point case.

4.1. Localization and elliptic surfaces. For a positive integer K, con-
sider the open elliptic surface

2
Xy = C x H/Z' xT(K),

where the action of (a, b) € Z 2 is given by
(t,7)—> (t+at+b, 1),

and g € I' acts by modular transformation. Let Xr( ) be the toric com-
pactification of Xrx) by adding singular fibers, and consider the natu-

ral projection 7 : Xr(x) — _I"(K) , where Yru() is the compactification

of H/T'(K) by adding cusps. The fiber over 7 € Yrk is (1) =
C/Z + Zt. For K > 2 the singular fibers of 7, lying only above the
cusps of Yr( K)> are equivalent to each other and are K-gons of rational

curves. Explicitly a singular fiber is given by Uf —01 ©,,with®, 6.0, =1

where 6 ~ CP' . We know that © has self-intersection —2 and is cov-
ered by two affine charts Wy0 and WVl , where the coordinates (u,, v,)
of WVO can be chosen such that ©, |, is given by v, = 0. Then the

2 v,). From this the following relations

. 1 -1
coordinates of W, are (u, , u,

can be deduced easily:

where a4 = e27tit/K L z= eZnit .
We keep the conventions of the last two parts, i.e., M is a dimension-
2k spin manifold with an S'-action, and V is a rank-2/ equivariant

spin vector bundle on it. First let us consider the behaviors of F dV(t , T)
and F V.(t, 7) around ©, by using the above local coordinates. Let
Fd‘:(u,':“v: , (,v,)%) denote Fd‘:(t, 1), but replace (z, g) by the local
coordinates u#,,v, on ©, . We use the same notation for FDV.(t, 7) as
well as for the theta functions in the fixed point formula expressions.

Let us first take V' = TM and simply write the corresponding F dV(t , T)
as Fds(t , 7). Denote by d, = D ® A(M) the signature operator on M .
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(1)On ©,, z=u,, q= (uovo)zm . It is easy to see that, when v, =0,
one has ¢ = 0 and ©,(TM), = 1. Therefore F, (t,7) = the Lefschetz
number of d, on M. )

(2) On 8, for v >0, we assume that mv = 2ml; + k; with k;>20.
Here recall that the m j’s are the exponents of TM at the fixed points.
See §2.5. When v, goes to zero, one has

0'0, )"
6,(0, (u,v,)*")

and

01 ((uvvy)mjuulrznj 4 (uuvu)zm)

0((u,v,)™" ul"s, (u,v,)"™)

= (_1)1’ 01((uuvu)kju1’/nj > (uuvu)zm)
0((u,0,Y5u, (u,v,)")
{(—1)’f if ke, # 0;

(-1 itk =0,

Since M is spin, {(—1)21' lf} have the same parity for different points
in one connected component of M, which is the fixed submanifold of the
cyclic group Z,, C s! (see Lemma 8.1 in [8]). Then the limiting terms
sum up to the Lefschetz number of the signature operator on M, =
U;M,,, where {M,,} denotes the connected components of M, .

By rigidity theorems we know that F, (¢, t) is independent of 7, so we
have '

Theorem 7.

S (1= sign(M,,,) = sign(M),
",

where sign(-) denotes the signature, i.e. the index of d_ .

The constancy of F d‘:(t, 7) and F DV.(t, 7) can also give some interesting
topological results which we would like to leave to the reader to verify.
For example, assume M and V are spin with p,(V)q = p,(M)g . Let
nv= 2mpj +4; with q; 2 0, where the nj’s are the exponents of V' at

j
the fixed points. We then have

Ind(D ® A(V)) = 3 (-1)™ ' Ind(D}, ® A(V1))
Mi
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e(V) =S (-2 =Py,
M,

¢ 2m?> "m
part of V restricted to M,, ,and e(-) denotes the Euler number.

We leave the discussions of the case of almost complex manifolds to
the reader. For example, let M and W be as in §3.3. Let {m J.} be the

exponents of TM' and

where D' denotes the Dirac operator on M. . V' isthe Z, -invariant
m 2m

Td,(M) = the index of § @ A_, - T" M.

Then one can easily get

Zy EihTd (M),

where {/;} are integers such that m ;v = 2ml; + k; with k; > 0 as in the

spin case, and UiMzim are the fixed-point submanifolds of Z,

The following corollary also corresponds to the singular fibers of the
elliptic surface Xr(zm) . We use the same notation as above.

Corollary 4.1. (a) For spin case, if w,(V) =0 and p,(V)g =p,(M)g,
then D@ A(V), D@ (AY (V)= A" (V)), and DRV are rigid.

(b) For almost complex case, if p,(W)g =p,(M)g, wy(M) = w,(W)
and ¢, (W) =0 (modN), then I (K™ ®L)% ®LY for —-N<s<1 and
oK 'eD? A_ - w" are rigid for y an Nth root of unity.

Recall that L = detW’ and K =detT'M .

Proof. At ¢ =0,

8, (TM|V), =1; €,(TM|V), =1; and 6;(TM|W),=A_ - W".

Also V is the second term in the g-expansion of Gq(TM V), aqed.

As observed by Bott, we even do not know a direct proof of the rigid-
ity of D ® TM without using the Witten rigidity theorems. Therefore it
will be interesting to find a simple direct proof of the above corollary. Our
proof of the Witten rigidity theorems is, in some sense, representation the-
oretic, since the modular invariance is essentially related to the characters
of the representations of affine Lie algebras. It will be interesting to find a
representation theoretic proof of the 2-vanishing theorem of Atiyah and
Hirzebruch, which may bring some new light to rigidity theorems. The ge-
ometric relationship between the rigidity of the elliptic operators on loop
space and their modular invariance is still mysterious at present.
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4.2. Transfer and elliptic surfaces. In this section we study in more
detail the behavior of F, (¢, t) around the singular fibers of the elliptic
modular surface Xl"(2m for any positive integer m > 1. It may be inter-
esting to see that the expression of F d (t, 7) on O, discussed in the last

section naturally invites us to the transfer argument which is the crucial
technique in [8], [12] and [16]. We leave the considerations of the other
elliptic operators to the reader. For simplicity we consider the nonvirtual
version of F ds(t , T), that is, the elliptic operator

DRAM)® @, S TM®, | AnTM,

and still denote its Lefschetz number by F, (¢, 7). In terms of theta func-
tions, we have

G(mt T)

F(t, =1 ZHGmt o

p j=1
See [23]. ‘ .
Let M and M,, = U;M,, be as in the last section. Let p € M,, bea

fixed point of the S'-action, and still let {E;} be the line bundles in the
equivariant decomposition of TM restricted at p. Then according to the
action of the Z, C S ! we have

TMly; =TM,,®E & - &E,,

and the S' acts on E; by e2™"™i! with k; #0 where m;v =2ml, +k; as
in the last section. Note that those E j’s which have kj = 0 are absorbed

into TM;m . It is easy to see that

0,((u,v,)" " ul, (u,v,)"")
0((uuvy)’”1”u"’f (uyvy)z’")

= (—l)Ifchslewv(Ej),

where w, =u,v, =¢"*" and

A E A 2mn+kj E : A 2mn+kj E*
®oo w, J ® w,, J

A k E A 2mn+kj E] A 2mn+kj E*
—w, —-w, J

.._»wv

8, (E) =

Here chg: is the equivariant Chern character restricted to Mém , and E;
denotes the complex dual of FE ;-
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For a vector bundle F, write
8, (F) = ®,,_S;nF ®,_ ApF.
Then one gets

F, ", (u,0,)"") = Z(—I)E[/’(the Lefschetz number of
My,

d'®6(TM,,) e, 8, (E)onM,,),

where a'; is the signature operator on M,, . By Proposition 6.1 of [8]
or Lemma 2.3 of [23] (see also Lemma 2.3 in §2.5), one knows that
{1 = z™q ™2™ = 0}, which is the same as {1 — u)y =0} in (u,,v,) co-
ordinates, is not the polar divisor of F, (¢, 7). Note that only the kj =0
terms in the fixed-point formula may contribute polar divisors of the form
{1 - u,',"i = 0} in the neighborhood of ©, , and they are eliminated by
the above expression. In this way one can consider other components of
the singular fibers and prove that all of the possible polar divisors cannot
happen. In fact all of the polar divisors of F dj(t, 7) can be transformed

into the form {1 — w7 = 0} around some singular component 6,. We

have not considered the action of —1 € S , but we refer the reader to [8],
[12] and [16] for the details of this transfer argument. Note that we come
up to this argument from a different point of view from that of [8], [12]
and [16]. It is quite interesting to relate this technique to the geometry
of elliptic modular surfaces. For example, we find that the ‘transfer’ to
the Z, fixed-point submanifold in [8] corresponds to the ‘transfer’ from
6, to 8, for v # 0 on the singular fibers of Xl"(2m) . Our proof of the
Witten rigidity theorems is, in some sense, a global transfer, because we
have used the whole elliptic surface. Modular group action interchanges
different singular fibers and transforms the ©, of one singular fiber to the
6, of another singular fiber. The proofs of [8], [12] and [16] are, in a
sense, local transfer, because they worked around one singular fiber.

4.3. Appendix B: A mod 2 rigidity theorem. Let M be an (8k + 1)-
or (8k + 2)-dimensional compact smooth spin manifold. Let A(M) =
A*(M)® A™ (M) be the Z,-graded spinor bundle on M, and let

D: AY (M) - A (M)
be the Dirac operator. Given a real vector bundle £ on M we can form

the twisted Dirac operator D ® E and obtain a skew adjoint or skew
Hermitian elliptic operator, which gives a well-defined index:
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(a) dimg Ker D® E mod 2, if dimM =8k +1,
(b) dim. Ker D® E mod 2, if dimM = 8k + 2,

as topologically invariant; we write it as Ind,D ® E. This index can be
naturally extended to a homomorphism from the real K-group KO(M)
to Z,.

Recall that a modular form f(7) over a modular subgroup I is a holo-
morphic function on the upper half plane H, with the following transfor-
mation law

at+b

g =@+ f(0),

A

where g = (? 2) €Tl',and y: I' = C” isacharacter of I'". The integer
k 1is called the weight of f. We also assume that f is holomorphic at
T=1I00.

The power series expansion of f(7) in g, = e for some pos-
itive integer N is called the Fourier expansion of f. We denote the
ring of modular forms over a modular subgroup r w1th integral Fourier
coefficients by M* (I). For f(r) = Z'—o aqu e M*? (I') and a prime
number p, we consider the modulo p reductlon of f, which is given by
f) =% =0 qu where a; is a;modp . We call f(r) amod p modular
form.

From number theory, we know that M Z(]"0(2)) has an integral ba-

sis consisting of two elements. We also know that FO(Z) and I, are
conjugate to I)(2). Let © (TMIV) and ©_ (TM|V), be as in §3.1.
Take V=TM and denote the corresponding elements by © (TM ) and
©_,(TM), respectively. In [21] we proved

Theorem B1. Let M be a compact smooth spin manifold of dimension
8k + 1 or 8k + 2. Then the following mod-2 indices are mod-2 modular
forms over the corresponding modular groups:

(1) Ind,(D ®©,(TM)), over T°(2);

(2) Indy(D®O_, (TM)), over I'y.

The proof is essentially an index formula interpretation of an idea of
Ochanine. See [21] for the detail. The mod-2 modular forms in this
theorem are called mod-2 elliptic genera.

Now we prove a kind of mod-2 rigidity theorem. First recall that an
odd type involution on a spin manifold cannot be lifted to an action on the
spin structure. See [2] II for a detailed discussion about odd involutions.
The proof is very simple. Our purpose is to motivate the study of mod-p
rigidity in topology.

2rit/N
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Theorem B2. The existence of an odd-type involution on an (8k + 1)
dimensional compact smooth spin manifold implies the vanishing of the
mod-2 elliptic genera.

Proof. We only consider D ® ©,(M),. Let T be the odd involution
on M. Naturally T induces an action on 7'M , which we still denote
by T. Since T is of odd type, only its double cover can be lifted to the
spin bundle. See [4]. We denote the lifting by 7. Then 72 = —1 on the
spinor bundle.

By choosing a T-invariant metric on M, we can assume that both
T and T commute with the action of the skew-adjoint operator P =
D® Gq(TM ), - Consider the action

S=TxT

on
AT (M) ®6,(TM),;
then
S =T'eT’ =-1.
This is because T acts on the virtual bundle TM — dimM by involu-
tion, and 77 acts on AT(M) by —1.
S? induces identity action on M and e,(TM),, while S induces
a nontrivial action on T(A™(M)) ®©,(TM), . Since S commutes with
P, naturally it induces an action on Ker(P ® Gq(TM )), Wwhich satisfies
§*=-1.
As a family of (virtual) real vector spaces, each term in the g-expansion

of Ker(P®R© ,(T'M), hasacomplex structure S, so the dimension is even
and

dimyKer(P ® 6 ,(TM)), = 0(mod 2). q.ed.

It is easy to see that this argument can be used to prove that Ind,D ®
E = 0 for any T-equivariant vector bundle E. In particular, the %-
invariant and the Brown-Kervaire invariant vanish. For this see [22].
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