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ON THE REGULARITY OF SOLUTIONS
TO A GENERALIZATION OF THE

MINKOWSKI PROBLEM

ERWIN LUTWAK & VLADIMIR OLIKER

The Minkowski Problem concerns the existence, uniqueness, and regu-
larity of closed convex hypersurfaces whose Gauss curvature (as a function
of the outer normals) is preassigned. Major contributions to this problem
were made by Minkowski [28], [29], Aleksandrov [2], [4], Lewy [23], [24],
Nirenberg [30], Calabi [9], Pogorelov [34], [35], and Cheng and Yau [10].
Variants of the Minkowski Problem were presented by Gluck [16] and
Singer [41], The survey of Gluck [17] still serves as an excellent intro-
duction to the problem. In this article we consider a generalization of the
Minkowski Problem.

We first recall the analytic formulation of the classical Minkowski Prob-
lem. Suppose u = (uι, ••• , un~x) are smooth local coordinates on the
standard unit sphere, Sn~ι, in Euclidean «-space Rn , and e = etj duι duj

is the first fundamental form of Sn~ . The Einstein convention on sum-

mation (over repeated lower and upper indices) is presumed everywhere

(with Latin indices running from 1 to n-l). Let Γ^ denote the Christof-

fel symbols of the second kind for the metric e. For h e C2(Sn~ι), let
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For a smooth strictly convex hypersurface whose support function is h,
the reciprocal Gauss curvature (as a function of the outer unit normals) is
given by N(h).

The strong solution to the Minkowski Problem is that for each positive
g e Cm{Sn'{), m > 3, such that

JsH ug{u)du =

there is a unique (up to translation) convex hypersurface with support

function h e C w + 1 ' α ( 5 / I " 1 ) , for any a e (0, 1), such that

(0.1) N(h) = g.

Furthermore, if g is analytic, then h is analytic as well. The solution in
this form is given by Pogorelov [36] and Cheng and Yau [10].

In this paper, we consider the following generalization of this problem.
Suppose y G l . What conditions on a given g e C(Sn~ι) are required to
guarantee a solution h to the partial differential equation

(0.2) hγN(h) = g.

For γ = 0, this is, of course, the classical Minkowski Problem. For y = 1,
the question was posed by Firey [14].

This question will be answered under the restrictive assumptions that
y < 0, y φ\ -n , and that g is an even function. Specifically, it will be
shown that given γ e R, such that 1 - n Φ y < 0, and a positive even
g e Cm{Sn'1), m > 3, then there is a convex solution h e C m + 1 α ( 5 w " 1 ) ,
to equation (0.2). Moreover, the solution h is even and unique. If g is
analytic, then h is analytic, as well.

1. Preliminaries

Let ^ π denote the set of compact convex subsets of Euclidean π-space,

Rπ . The subset of &" consisting of the convex bodies (compact, convex

sets with nonempty interiors) will be denoted by J£n . For the set of

convex bodies containing the origin in their interiors, write 3£* . Let

ô Γ" denote the set of centered (i.e., symmetric about the origin) convex

bodies. For K e &n, let hκ = h(K, -) : Sn~ι -• R denote the support

function of K i.e., for u € Sn~ι, h(K, u) = max{w x : x e K}, where

U'X denotes the standard inner product of u and x in Rn . The set %?n

will be viewed as equipped with the usual Hausdorff metric, d, defined by

d(K, L) = \hκ - AL|oo , where | 1^ is the sup (or max) norm on the space
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of continuous functions on the unit sphere, C(Sn~ι). Let B denote the
centered ball of unit radius in Rn , and write ωn for its ^-dimensional
volume.

For real p > 1, K, Le X" , and λ, μ > 0 (not both zero), the Firey
linear combination λ-K + μ-L € Xo

n , is defined by

h(λ.K + μ-L, f=λh(K, )P+μh(L, ) p .

Note that " " rather than " " is written for Firey scalar multiplica-
tion. Firey combinations were introduced in [12] (see also [5, §24.6]). For
p = 1, these linear combinations are the classical Minkowski combinations
of convex bodies.

Let V(Q) denote the volume of Q e 3£n . For p > 1, the /?-mixed
volume, Vp(K, L), of K, L e Jί" , was defined in [26] by:

ε L)-V(K)

The existence of this limit was demonstrated in [26]. For p = 1, this
mixed volume reduces to a classical mixed volume of Minkowski.

It was shown in [26] that there is an extension of the Minkowski in-
equality: If K, L e 3f0

n , and p > 1, then

(1-2) Vp(K,L)n>V(K)n-pV{Lγ,

with equality if and only if K and L are dilates. For p = 1, this is the
Minkowski mixed volume inequality. For this classical inequality, there is
equality precisely when K and L are homothetic.

It was shown in [26] that, corresponding to each K e <3fo

n , there is a

positive Borel measure, Sp(K, •) on S""1 such that

(1.3) Vp(K, Q) = i j f ^ A ( β , u)pdSp(K, iι),

for all β € ^ " . The measure ^(AΓ, ) is the surface area measure of K
introduced by Aleksandrov [1] and Fenchel and Jessen [11]. When p = 1,
the subscript will frequently be suppressed.

It turns out (see [26]) that the measure Sp(K, •) is absolutely contin-
uous with respect to S(K, ), and that

(1.4) h(K9 )PdSp(K, ) = h(K, )dS(K, •)•

A convex body K e Xo

n will be said (see [27]) to have a ^-curvature
function

fp(K, . ) :S f l ~ 1 ->R,
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if Sp(K, •) is absolutely continuous with respect to Lebesgue measure

on Sn~ι and the Radon-Nikodym derivative of Sp(K 9 •) with respect to

spherical Lebesgue measure is fp{K, ) i.e., if

(1.5) Vp{K, Q)=l- / _χ h{Q, u)pfp(K, u)du,

for all Q e J^o

n. For p — 1, the p-curvature function is the ordinary
curvature function of a convex hypersurface, and the subscript will often
be suppressed.

It is easily seen that a body in 3£" has a positive continuous /7-curvature
function (for p > 1) if and only if the body has a positive continuous
curvature function. Let !Fn, &", ^ denote the set of all bodies in
3£n, J^o

n, JfJ1, respectively, that have a positive continuous curvature
function. Obviously, for K e ^ ,

(1-6) fn(K, ) = h{K9 -Y~Pf(K, •).
p

It was shown in [26] that for K, LeJ?" and nφp>\,

(1.7) Sp(K, ) = Sp(L, •) if and only if tf = L.

For the case p = n, one has only the weaker conclusion that Sp{K9 ) =
Sp(L, •) if and only if K and L are dilates. In slightly less general form,
this result is due to Simon [39] (see also [40]).

In [27], the /?-affine surface area, Ω IK), of K e ^ was defined by:

(1.8) QΛK)= I f(K,u)n/{n+p)du.
V Jsn-l V

For p = 1, the p-affine surface area reduces to the classical affine surface
area of affine differential geometry as extended by Petty (see [22]).

It was shown in [27] that the /7-affine surface area of a body is invariant
under 5X(Λ^transformations of the body. Unlike its classical counterpart,
the /7-affine surface area, for p > 1, is not invariant under translations of
the body.

A special case of Theorem 4.8 in [27] is that if K e SF" , then

(1.9) Ωp(K)n+P < nn+pω2p V(K)n~p ,

with equality if and only if K is an ellipsoid. For p = 1, inequality (1.9)
is the classical affine isoperimetric inequality of affine differential geometry
(as extended by Petty [33]).

Define the p-surface area, Sp(K), of K e 3?" by

(1.10) Sp(K) = nVp(K, B).
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For p = 1, the p-surface area is the ordinary surface area, and the sub-
script is suppressed. From (1.5) and the definition of ^-surface area, it
follows that for K e &" ,

(1.11) I

It was shown in [27, Proposition 5.2] that using the Holder inequality
we obtain that for K e 3f" and p > 1,

(1.12) Sp(K) > n~pV(K)X~pS(K)p.

The weak solution of the classical Minkowski Problem (see e.g., [2],

[36], and [37]) is that corresponding to each Borel measure, μ, on Sn~ι,

whose support does not lie in a great sphere of Sn~ , and that satisfies the

orthogonality condition

/ udμ{u) = 0,
Js"-1

there exists a convex body K e 3£n , such that

S(K, •) = μ.

Furthermore, the body K is unique up to translation.

A Borel measure on Sn~ι is said to be even if it assumes the same
values at antipodal Borel sets. Note that an even measure trivially satisfies
the above orthogonality condition.

The following existence theorem was proved in [26].
Theorem 1.13. Ifnφp> 1 and μ is an even Borel measure on Sn~ι,

whose support does not lie in a great sphere of Sn~ι, then there exists a
KeJT", such that

SP{K, ) = μ9

or equivalently,

hl

κ~
pdS(K, •) = dμ.

Moreover, the body K is unique and centered.
The statement of Theorem 1.13 is an open question for all p < 1.

2. Bounds for the circumradii and inradii

For K e %>", let b(K, ύ) denote the width of K in the direction

u e Sn~ι i.e., b(K, ύ) = h(K, u) + h(K, -ύ). Let

b(K,u)du
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denote the mean width of K, and let d{K) and D(K) denote the minimal
width and diameter of K i.e.,

d{K) = min{b{K, ύ): u £ Sn~1}, D(K) = max{b(K, ύ): u £ Sn~1}.

For u £ Sn~ι, let ΰ denote the centered closed line segment of unit

length in the direction of u. For K £ 3ίn and u £ Sn~ι, let K]^ denote

the image of the orthogonal projection of K onto u1', the codimension

1 subspace of Rn that is orthogonal to u.

Let WQ9Wl9'" 9Wn denote the Quermassintegrals in Rn . One def-

inition of the Quermassintegrals is inductive: For n = 2 and K £ W2,

define WQ(K) to be the area of K, 2Wχ{K) to be the perimeter of K,

and W2(K) = ω2 = π. Let wQ9 wχ, ••• , wn_χ denote the Quermass-

integrals in R"" 1 . For K £^\ define WQ(K), Wχ{K), , Wn(K) by

letting WQ(K) = V(K), and for i > 0,

By definition, W0(K) = V{K), the volume of K. By the Cauchy sur-
face area formula, nWχ{K) — S(K), the surface area of K. Obviously,
Wn{K) = V{B) = ωn, while (2/ωJW^K) = W{K), the mean width
of K.

T h e m i x e d Q u e r m a s s i n t e g r a l s WQ(K, L),W{{K, L ) , ••• ,Wn_χ(K, L)

of K, L e i" 1 are defined by

From W.(λK) = λ^W^K), it follows that H^(A:, A') = Wt(K), for all
/. Since the Quermassintegral Wn_χ is Minkowski linear, Wn_χ{K, L) =
Wn_χ{L) for all A . Note that the mixed Quermassintegral WQ(K9 L) is
just Vγ(K9L).

Lemma 2.1. If K e 3?n and i is an integer such that 0 < / < n - 1,

min ^(^Iw" 1) < n WAK).
ues"-1

Proof. Let uo e Sn~ι be any direction for which

b(K, u0) = max b(K 9 ύ) = D(K).
uesn~ι

Since, up to translation, D{K)U0 c K, from the translation invariance
and monotonicity of the mixed Quermassintegrals it follows that
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Hence,
D(K)Wi(K,U0)<Wi(K).

To complete the proof, we need the easily established fact (see, e.g., Schnei-
der [37]) that n W.(K, a) = w^K^).

For / = 0, the inequality of Lemma 2.1 was obtained by Firey [13]
using other methods. Since wn_χ( ) = con_{, the inequality of Lemma
2.1, for i = n - 1, becomes: If K e Xn , then

(2.2) D(K) < £^
2ωn-\

A right circular cylinder with a base whose radius is small relative to its
height shows that the constant, nωn/2ωn_ι, in (2.2) is best possible.

The projection body UK of K e 3£n is the body whose support func-
tion, for u e Sn~ι, is given by

h(ΠK, u) = w^Klu 1).

Recall that w^K^) is the (n - l)-dimensional volume of the image of
the orthogonal projection of K onto the (n - l)-dimensional subspace of
Rn that is orthogonal to u.

Lemma 2.3. If KeXn and p>\, then

d(K)Sp(K)l/p>2n{l-p)/pV(K)ι/p.

Proof. Let uoeSn~ι be any direction for which

b{K, uo) = min b(K, u) = d(K).

Since a translate of K is obviously contained in the right cylinder with
base K\u^ and altitude d(K)uo , we have

d(K) max h{UK, u) > V(K).

But (2.2) shows that

D(UK) < ^ - W(UK) = ^ — ί b(UK, u) du

= —!— / wo(K\u±)du = nW

The observations that nWx(K) = S{K) and

D{UK) = 2 max h{UK, u),
ues"-1

together with (1.12), complete the proof.
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A right circular cylinder with a base whose radius is large relative to its
height shows that, for p = 1, the constant in Lemma 2.3 is best possible.

Let C+(Sn~ι) denote the set of nonnegative functions in C{Sn~ι). For

p > 1, define the p-cosine transform, Cpg, of g e C+(Sn~x), by

for u e Sn~ι. For p = 1, the p-cosine transform is the classical co-
sine transform. (See Goodey and Weil [18] for some useful connections
between the cosine transform and the spherical Radon transform.) The
cosine transform of the curvature function of a convex body is propor-
tional to the support function of the projection body of the convex body.
Specifically, if K e ^ n , then

2h(ΠK, •) = nCf(K, •)•

(See Schneider and Weil [38] and Goodey and Weil [19] as references
regarding projection bodies.)

The p-cosine transform, C g, of g e C*(Sn~ι), is not only continu-

ous, but also, in fact, the support function of a centered convex body. To

see this, extend the definition of Cpg to Rn by homogeneity of degree 1;

i.e., for x eRn , define

{ ] ί Ί 1 / / 7

nJsnJ
x'vlPg{v)dv\ *

From the Minkowski integral inequality (see, e.g., [20]), it follows that
Cpg is subadditive; i.e., for all x, y e Rn ,

(Cpg)(x + y)< (Cpg)(x) + (Cpg)(y).

Hence Cpg is the support function of a convex body. Obviously, Cpg
is strictly positive, unless g is identically 0. The body whose support
function is Cpfp(K, ) will be denoted by PpK i.e.,

h(FpK, •) = Cpfp(K, •).

For p = 1, the subscript will be suppressed. Clearly, n P= 2 Π.

Associated with each K e 3£* is its radial function p(K, ): Sn~ι —>

(0, oo), defined for u £ Sn~ι, by
p(K, u) = max{λ > 0: λu e K}.

For K e J^o

n , let r(K) and R(K) denote the inradius and circumradius
of K, relative to the origin; i.e.,

r{K) = maxμ > 0: λB c K] = min{p(K, u): u e Sn~1},
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and

R{K) = min{λ > 0: K c λB} = max{p{K, u): u e Sn~1},

where B is the centered unit ball. Note that for K e JfJ1 (i.e., when K
is centered),

(2.5a) r(K) = d{K)/2 = min{h(K, u):ueSn~1},

and

(2.5b) R(K) = D(K)/2 = m a x { Λ ( ϋ : , u):ue Sn~1}.

The following crude estimate will be needed.
Lemma 2.6. If Ke^e

n and p>\, then

p(K,u)-lV(K)Xlp>[Cpfp(K, .)](«),

for all ueSn~ι.

Proof From the definitions of the support and radial function, it fol-

lows immediately that for all u, v e Sn~ι,

p(K9u)-ι>\u.υ\/h(K,υ).

But by (1.6),

"< {- f h(K,v)f(K,v)dv)

and the last quantity is just Vλ(K, K)i/Pp(K, u)~ι = V(K)ι/pp(K, u)~ι.

For K € &" and nφp>\, define δ~(K) and δ+{K) by

3. A priori estimates involving the p-curvature function

d δ+{K)

^ . ifp<n,

p { \(Sp(K)/nωnγ«"-p) if p>n,

ί(Sp{K)lnωnγ iίp<n,

p ( \ {a{K)/)W«-» ifp>n.

Note that δ~(K) and δp{K) involve only fp(K, •), and also that since

f(K, •) > 0 is not identically 0, we have δ~{K), δp(K) > 0.
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Inequalities (1.9) and (1.12) immediately yield:
Lemma 3.1. If Ke^e" and nφp>\, then

δ+

p{K) > [V(K)/ωn]
1/n > δ~p{K) > 0.

Combine Lemma 2.3, (2.5a), and Lemma 3.1, to get:
Lemma 3.2. IfKeS^" and nφp>\, then

r(K) > ωi

n'
pn{l-p)/pδ;(K)n/pSp(K)-υp.

Note that the lower bound given in Lemma 3.2 for r(K) depends only

on f p ( K , •)•
For K e ^ " , define op{K) by

σp(K) = l/ minJCpfp(K, .)](«)•

Recall that the p-cosine operator, Cp, maps (not identically 0) func-

tions in C+(Sn~ι) into strictly positive even functions which are the

support functions of centered convex bodies. Specifically, the function

C f (K, ) > 0 is the support function of the centered body P K e J3Γ" .

Thus, by (2.5a), we have

σp(K) = l/r(PpK) = 2/d(PpK).

From Lemma 2.6 and Lemma 3.1 follows:
L e m m a 3 . 3 . IfKe&*e

n and nφp>\, then

ωlJpδ;(K)n/pσp(K) > R(K).

Again note that the upper bound on R(K) depends only on fp(K, ) .

4. Regularity for the p-Minkowski Problem

An immediate consequence of Theorem 1.13 is that corresponding to
each p e R , such that nφp > 1, and to each continuous even function,
g: Sn~ι —> (0, oo), there exists a centered K e &" , such that

fp(K, •) = g

or equivalently,

h(K, )l-pf(K, •) = g.

In addition, the body K is unique. The uniqueness claimed is not in
the class 3?", but rather in the larger class J£", and is an immediate
consequence of (1.7).
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It will now be shown that if g is sufficiently smooth, then the support
function of the body K e ^ is also smooth.

Theorem 4.1. Suppose g: Sn~ι —> (0, oo) is an even function of class

Cm(Sn~ι), m>3. Then there exists a unique convex body K with support

function h = h(K, •) e Cm+ι>a(Sn~ι) ,for any a e (0, 1), such that

(4.2) h(K, ) l p

Furthermore, if g is analytic, then h is analytic as well
The proof of this theorem is based on analytic arguments applied to the

differential equation corresponding to (4.2).
First we reformulate (4.2) analytically. Hartman and Wintner [21] have

shown that if dK is of class C 2 and the Gauss curvature of dK does not
vanish, then dK can be parameterized by points on Sn~ι by using the
inverse of the Gauss map of dK onto Sn~ . In this parameterization,
h = h(K, . ) e C 2 ( S f l l " 1 ) , a n d

where the notation is as in the introduction.
Thus (4.2) can be rewritten as

2(Sn~ι)where K and u have been suppressed. For h e C2(Sn~ι), define

, ndet(V,,A + e,,A)

Our objective is to show the solvability for A of

(4.3) Np(h) = g,

for a given even g . For that we use a continuity scheme as in [30].
For t € [0 , 1], let

gt(u) = (l-t) + tg(u),

and consider the family of equations

(4.4) Np{ht) = gt, ί € [ 0 , 1].

We begin with the case g e C°°(Sn~ι). The case where g e Cm{Sn~ι),
m > 3, will be treated at the end, by approximation.



238 ERWIN LUTWAK & VLADIMIR OLIKER

Let Λ denote the set of all t e [0, 1] for which (4.4) admits a positive
solution, ht e C°°(Sn~{), on which the operator Np is elliptic and such
that ht = ht(Kt, -), for some Kt e 3£" . Ellipticity here is equivalent to
the requirement that the quadratic form

(4.5) (V^ + e^)??, ίeR11'1,

be positive definite at every u e Sn~ι.
Obviously, if t = 0, then (4.4) admits a solution h = 1. Hence,

Λ / 0 . The desired conclusion that Λ = [0, 1] will follow after it is
shown that Λ is both open and closed on [0, 1]. From Λ = [0, 1], it
will follow that (4.4) is solvable at t = 1.

The proof that Λ is closed will be given in several steps. We begin by
establishing uniform estimates, in t, of max5«-i \ht\ for solutions of (4.4).
It will also be shown that ht > 0, and in fact, that the ht are uniformly
bounded away from 0.

Define cnp > 0 by letting

Cnp { i

for some u e Sn ι . Obviously, the integral is independent of the partic-
ular choice of u e Sn~{.

From Lemmas 3.2 and 3.3, it follows that for Kt € 3?" and p < n ,

m a x ^ - , gt(u)\[ η nfp(n-p)
m a x , g(u)\

np J

and
]n/p{n-p)

1/P

while for Kt e JfJ1 and p > n,

fco[
mm gA\

uesn~ι

and
i I/(Λ-/0
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Since gt{u) = ( ! - * ) + tg{u), we have

and

max g (u) = (1 - t) + t max g(u)
uesn~ι uesn~ι

min g{u) = (1 - i) + t min
uesn~ι uesn~ι

Hence, there exist ax, a2, bx, b2 € (0, oo), depending only on g, such
that

(4.6) a, < max g,(w) <aΊ,bλ < min #,(«) < b7, for all ί G [0, 1].
uesn~x uesn~ι

Thus, there exist a = a(g), 6 = b(g) e (0, oo), such that

a<r{Kt) and R(Kt)<b for all ί G [0, 1] ,

or equivalently,

(4.7) a<ht = h(Kt, )<b for all / e [0, 1].

Next, we show that the A, admit a uniform a priori C 1 estimate. The
arguments here are similar to those in [31]. Set

where

and (eιj) = (e,-,-)"1. At any critical point of vt on Sn~x we have

0 = V Λ = (V/5Af + V ί s ) ^ β * A / ' / = 1, , « - 1.

From (4.4) and (4.7) it follows that the determinant of this system does

not vanish on Sn~ι. Hence dkht = 0 at critical points of υt. Thus,

(4.8) τ|VAJ2 < max VJII) < i max hAuf < \b2.

This establishes a uniform estimate of C^-norm of ht.
The estimates (4.7) and (4.8) show that the family {ht: t e Λ} is com-

pact in C°'β(Sn~ι) for any β e (0, 1). Suppose tk e Λ is a sequence
such that l i m ^ ^ tk = tQ. The Blaschke Selection Theorem (see, e.g.,
Schneider [37]) will yield a subsequence of the tk also denoted by tk and
a body in 3ί" denoted by Kt , such that

tk

uniformly on Sn~ι. Abbreviate A (AT. , •) by ht .
*0 £0
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We now show that ht e C2'a(Sn~ι) for any α e ( 0 , l ) . The arguments

here are similar to those in [31, §5.2].

For u0 e Sn~ι, let Su° denote the open hemisphere for which u0 is

the pole. We will show that ht eC2'a in some neighborhood of u0. Let

H denote the hyperplane tangent to Su° at u0, and let H* denote the

hyperplane parallel to H that passes through the center of Sn~ι. Choose

cartesian coordinates so that xι, , xn~{ are coordinates for H* (with

origin at the center of Sn~ι) and xn is directed toward u0 . Project Su°

radially onto H and then orthogonally onto Hf. Thus we introduce on

Su° the coordinates x = (χ{, , xn~x), and in these coordinates Su°

has the parametric representation

u(x) = {x, \)IQ{x) where Q(x) = y/l + |x|2.

With each function Â  , associate the function

Clearly, the sequence ht converges uniformly to ht on any compact
k -v 0

subset of the hypeφlane H'. In addition, ht >a, where a is as in (4.7),

and ht —> oo, when |JC| —> oo.

Equations (4.4) will now be rewritten in terms of ht . A few preliminary

computations are needed.
Since Q(x)u(x) = (x, 1), we have

(4.9) d i Q u + Q d i u = ( 0 , . - , 0 , 1 , 0 , ••• , 0 ) .

/-I

Differentiating (4.9) yields

(4.10) duQu + djQdjU + d.Qdμ Λ-Qd^u = 0.

By the Gauss derivation formulas,

diju = Γk

ijdku-eiju.

Taking the inner product of (4.10) with dsu, and noting that (dsu, u) = 0
and (dsu, dkύ) = esk , we get

On the other hand,

d,h, =d,Qh. +Qdλ,
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which leads to

« A = duQ K+d*Qdi\+d>QdK+Q β A
+ (dtQeJg + djQeis) es'd,hlk + Q d ^

Now, taking the inner product of (4.10) with u gives

Hence,1

Equations (4.4) now become

On the other hand, it follows from (4.9) that

-3£
j Q2

and
det(^ •) = QΓln.

Substituting this into (4.12), we obtain the equations satisfied by ht ,

(4.13) det^^X-'cΓ1-'.

It follows from (4.11) that the matrix {dijht ) is positive definite when-

ever the matrix (Vf. A +hfeij) is positive definite. Since the ht are el-

liptic solutions of (4.4), and (4.5) is satisfied, we conclude that the graphs

xn = h (x) 9 for x e H1, are strictly concave. Consequently, ht is a
ιk l0

concave function on Hf.
Since ht -• oo when Ijcl —• oo, we can choose λ, sufficiently large, so

0

that the set A = {x e Hf: ht (x) < λ] is a nonempty compact convex set

The counterpart of the next equation in [31] contains a misprint. Specifically, equation
(5.3) in [31] should read

* 2 ?
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in H1. Since the ht converge to ht , uniformly on each compact subset
ιk ι0

of Hf, we may choose λ so that some compact set θ is contained strictly

inside all the sets At — {x e Hf: ht (x) < λ} as well as the set A .

Now consider the functions

h't =k -λ.

From (4.13) it follows that, on H1, these functions satisfy

(4.14)

Obviously h't vanishes on the boundary of At . Furthermore, by (4.6)
and (4.7), the right-hand side of (4.14) is bounded away from 0, uniformly
in t. We now apply Theorem 4.2 of [31], according to which, for any
i, j = 1, , n - 1, the following bound exists:

(4.15) | ^ ( * ) | < c ,

where c depends only on the C^-norm of h't in At , the C2-norm of

gt Q~n~p in At , and the distance of the point x to the boundary of At .
'* ιk ιk

From our preceding C° and C1 estimates of ht , we conclude that on the

set θ , the Cι-norm of h't can be estimated uniformly in t. Clearly, the

same is true for the C2-norm of gt Q~n~p . Consequently, on the set θ ,

the estimate (4.15) holds uniformly in t (possibly with a suitably adjusted

c).
It follows from an estimate of Calabi (see Theorem 4.5 in [31], or [8,

§3]) that at every interior point x e At , the third derivatives of h't admit
an estimate depending on the C2-norm of h't in At , the C3-norm of

St Q n P in At , and the distance of the point x to the boundary of

At . Clearly, this together with (4.15), and the uniform boundedness of

the C3-norm of gt Q~n~p , in θ , implies that the third derivatives of h't
are uniformly bounded in θ .

The Arzela-Ascoli Theorem will now yield a subsequence of the h't

that converges uniformly to h't in C 2 α , for any a e (0, 1). Thus, h't
is an elliptic solution of (4.14) in θ . Under such circumstances, standard
arguments and results from the theory of elliptic PDE's (see, e.g., [15,
§17.5]) can be used to deduce that h't is, in fact, in C°°(θ). This implies

that A,o € C°°(θ), and finally that ht G C°°(Sn~ι). Hence we have

proved that Λ is closed.
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As an aside, we note that instead of using the a priori estimates of Calabi
for the third derivatives of h[ , one can instead use the interior Holder
estimates of Evans and Krylov for the second derivatives (see [15, §17.4]
and the references given there).

To see that Λ is open we proceed as follows. Suppose t e [0, 1), and
h = hj is a C°° solution of (4.4) for t = t. Consider the map

P(t, h) = Np(h) - gt: C°°(Sn~l) —* C°°(Sn~ι).

We require the kernel of the derivative

p\t, am = 4-
"° 5=0

or equivalently, the solutions of the equation

(4.16) P'(t,h)(ξ)

det(^..) * det(^ )

where ElJ = cof(Vijh + eijh). Recall that

det(V .h + e

and rewrite (4.16) as

(l-p)N(h)ζ +

After integration over Sn ι , we have

(4.17) {l-p)jsniNCh)ξdu +jsnJ-^-)iVijξ + eijζ)du = 0.

As is well known (see [32, Lemma 2.1]), the operator [ElJ/dQt(eij)]Vij is
selfadjoint, in the sense that

£-, * airy v«ί"«=L-,«a^ίv«s""•
Since

£ l 7 ( V l 7 ί + euh) = (n- 1) det(V l 7ί

and p Φ n, it follows from (4.17) that

ί N{h)ξdu = 0,
.As"-1
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which we rewrite as

< 4 l 8 )

A theorem of Hubert and Aleksandrov (see [3, §6]) shows that (4.18)

implies

(4 i9) Lt*k$^+e>&du - °
However, multiplying (4.16) by hp~ιζ and integrating over Sn~ι give:

(1-/7) / h-χN(h)ξ2du + f ξj£—φ ξ + eijζ)du = 0.Js

Since p > 1, this and (4.19) yield that

'ιN(h)ξ2ί
Js"

h'ιN(h)ξ2du < 0,

and hence ξ vanishes identically.
Thus, Ker Pf(t, h) = {0} . The implicit function theorem can now be

used to conclude that the equation P(t, h) = 0 is solvable in C°°(Sn~ι)
for all t sufficiently close to t. The solution ht is close to h = h-t in
the C^-norm, for any k > 0, and therefore it is also elliptic and the
corresponding body Kt belongs to &" . Hence the set Λ is open.

To complete the proof of the theorem, the assumption that g e
C°°(Sn~ι) will be removed. Suppose g is a positive, even function of
class Cm(Sn~ι), where m > 3. Approximate g in Cm(Sn~ι) by positive
analytic functions g.. Since g is even, the sequence of even functions g(,
defined by 2£.(w) = g^u) + g^-u), also approximates g in Cm(Sn~ι).
Let ht be the elliptic solutions of

= gi in S"-1 , i = l , 2 , . - . .

The a priori estimates described in the proof showing that Λ is closed,
can now be used again to see that there is a subsequence of the ht that
converges to h in C2>a(Sn~ι), for any a e (0, 1), and that h satisfies
the equation

h{-pN(h) = g in Sn'1.

Again, by standard results from elliptic PDE theory we can conclude that
h e Cm+Ua{Sn~ι), for any α € (0, 1), and that h is analytic provided
that g is analytic.
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If in Theorem 4.1 we only assume that the function g is continuous
and positive, then it follows from a result of Caffarelli [7, Theorem 1] that
the solution (in the weak sense of Aleksandrov) of (4.2) is in the class

W2ik for any k < oo.
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