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METRIC STRUCTURE OF CUT LOCI
IN SURFACES AND AMBROSE'S PROBLEM

JAMES J. HEBDA

Abstract

It is shown that every compact subset of the cut locus of a point in a com-
plete, two-dimensional Riemannian manifold has finite one-dimensional
Hausdorff measure. When combined with a result from an earlier paper,
this completes the solution of the two-dimensional case of a long-standing
problem of Ambrose.

1. Introduction

This paper is devoted to the proof of the following theorem.
Theorem 1.1. Let M be a complete, 2-dimensional Riemannian man-

ifold, and let p be a point in M. Then every compact subset of the cut
locus of p in M has finite I-dimensional Hausdorff measure.

Consequently, the cut locus of a point in a complete, two-dimensional
Riemannian manifold must satisfy stringent conditions relative to the dif-
ferentiable structure of the manifold. This means that the problem of
determining what subsets of a given surface can be realized as the cut lo-
cus of some point for some Riemannian metric depends not only on the
topology, but also on the metric structure (or more precisely on the local
Lipschitz structure) that they inherit as subsets of the surface. To illus-
trate this, recall that Gluck and Singer [5] show how a certain subset of
the sphere, consisting of countably many great circle arcs radiating out
from a common endpoint, can be realized as a cut locus. Altering this set
by extending the arcs slightly, so that their lengths form a divergent se-
ries, results in a set homeomorphic to the original, but possessing infinite
Hausdorff locus. (1-measure, and so no longer realizable as a cut locus
(c.f. Example 6.2).

Along the way to proving Theorem 1.1, it is shown that embedded arcs
in the cut locus of a point in a surface have finite length (Theorem 4.7).
Thus there is an intrinsic metric on the cut locus in which the distance
between two cut points is defined to be the length of the shortest arc in
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the cut locus that joins them. We will use Theorem 1.1 to show that this
intrinsic metric induces the same topology on the cut locus as that which
it inherits as a topological subspace of the surface (Theorem 6.1).

Recall that W. Ambrose proved that a complete, connected, simply con-
nected, Riemannian manifold is determined up to a global isometry by the
behavior of the curvature tensor under parallel translation along all the
broken geodesies emanating from a given point [1]. This result is some-
times called the Cartan-Ambrose-Hicks Theorem (e.g., [2, pp. 37-40]).
However, Ambrose thought the hypothesis might be too strong and posed
the problem to decide whether or not the behavior of curvature along the
unbroken geodesies emanating from the point would yet be enough to de-
termine the manifold.

In an earlier paper [8], the author solved Ambrose's problem in the
case of a surface for which every compact subset of the cut locus of the
given point has finite one-dimensional Hausdorff measure. Thus combin-
ing Theorem 1.1 with Theorem 1 in [8] results in the next theorem which
completes the solution of Ambrose's problem in dimension 2. For higher
dimensions, Ambrose's problem remains unsolved (cf. [6], [8]).

Theorem 1.2. Suppose that M and Λf are both complete, connected
Riemannian manifolds of dimension 2, possessing respective Gaussian cur-
vature functions K: M —• R and R : M —> R. Given points p e M and
p eΉ, let I : TpM -+ TpΉ be a linear isometry between the tangent
spaces at p and p respectively. Assume that M is simply connected, and
that

for all X e TpM where expp : TpM -• M and exp^ : TpM -> Ή are the
exponential maps at p and p respectively. Then there exists an isometric
immersion F : M —• M such that F(p) = p and dF = / at p.

An isometric immersion between two complete Riemannian manifolds
of the same dimension is a covering map. Thus in Theorem 1.2 if M is
also simply connected, then F must be an isometry.

In contrast to higher dimensions, parallel translation of curvature plays
no part in the hypothesis of the Cartan-Ambrose-Hicks Theorem in dimen-
sion 2. This accounts for the simple formulation of the curvature assump-
tion in Theorem 1.2. This assumption can be rephrased in terms of unbro-
ken geodesies emanating from p . Every geodesic segment γ: [0, 1] —• M
emanating from p takes the form γ(t) = expp(tX) for 0 < t < 1 for some
X e T M. By means of the linear isometry / , a corresponding geodesic
γ : [0, 1] -• Ή emanating from p is defined by γ(t) = expMI(X))
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for 0 < t < 1. Obviously the curvature assumption in Theorem 1.2 is
equivalent to the assumption that κ{y{\)) = κ(γ(l)) for every geodesic
segment γ emanating from p , where γ is the corresponding geodesic in
M emanating from p.

Throughout this paper, &ι denotes 1-dimensional Hausdorff measure
[3], [4], [11], and A\B denotes the relative complement of the set B in
the set A. All Riemannian manifolds are smooth, i.e., C°° .

2. Topological structure of cut loci

Let M be a complete ^-dimensional Riemannian manifold, let p be a
point in M, and let C(p) be the cut locus of p in M. A cut point q e
C(p) is said to be a conjugate cut point if it is conjugate to p along at least
one minimizing geodesic joining p to q , and is said to be a nonconjugate
cut point otherwise. The order of a nonconjugate cut point q e C(p) is the
number of minimizing geodesies joining p to q . The order is always finite
and at least 2. A cut point is said to be a cleave point if it is a nonconjugate
cut point of order two; it is a noncleave point otherwise. The topological
structure of C(p) is summarized in the following proposition which was
proved in [8, Proposition 1.2].

Proposition 2.1. Let M be a complete n-dimensional Riemannian
manifold, and let p e M. The cut locus, C{p), is a closed subset of
M. The set of cleave points is a relatively open subset of C(p) forming a
smooth (n — l )-dimensional submanifold of M. The set of noncleave points
in C(p) is a closed subset whose (n - lydimensional Hausdorff measure
is zero.

Remark 2.2. By applying the Morse-Sard-Federer Theorem [4, 3.4.3],
[11, p. 113] in place of the version of Sard's Theorem used in the proof
of the above proposition, one obtains the stronger conclusion that the s-
dimensional Hausdorff measure of the set of noncleave points in C(p) is
0 for all s > n - 2. Thus the HausdorfF dimension of the set of noncleave
points is at most n — 2.

It is also known that at a cleave point q , the two minimizing geodesies
joining p to q make the same angle with the tangent space at q to the
submanifold of cleave points, but from opposite sides [14, Remark 2.5].
Further, if M is compact, then C(p) is connected and nonempty. If M
is not compact, then C(p) may be empty, or may have countably many
connected components, none of which is compact. Only finitely many
components meet a given compact subset of M.
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When M is a surface, i.e., when n = 2, the topological structure of
C(p) was investigated in more detail by S. B. Myers [12], [13]. Three
definitions are needed in order to concisely state his work. An arc is
a topological space homeomorphic to the unit interval [0,1]. A tree is
a topological space with the property that every pair of points, qχ, q2,
is contained in a unique arc with endpoints qχ, q2. A local tree is a
topological space in which every point is contained in arbitrarily small
closed neighborhoods which are themselves trees.

Theorem 2.3 (Myers). Let M be a complete two-dimensional Rieman-
nian manifold, and let C{p) be the cut locus of a point p e M. Then C(p)
is a local tree. Furthermore, if M is simply connected, then each connected
component of C(p) is a tree.

Myers' results are even stronger when the Riemannian metric on M
is real analytic. Then he showed the cut locus is triangulable. Gluck and
Singer [5] have produced examples of smooth metrics with nontriangulable
cut loci.

Each point of a local tree is either an endpoint, ordinary point, or branch
point depending upon the number (one, two, or more respectively) of
connected components possessed by a deleted neighborhood of the point.
The relation between Proposition 2.1 and Theorem 2.2 is that (1) every
endpoint is a conjugate cut point, (2) every cleave point is ordinary, and
(3) every nonconjugate, noncleave point is a branch point. These three
statements follow easily from Myers' paper, especially §3 of [13].

Remark 2.4. There are countably many branch points in the cut locus
in a surface since the cut locus will be an increasing union of countably
many compact subtrees, and compact trees have countably many branch
points [10, p. 309].

The set of endpoints of a local tree embedded in a surface may be
uncountable, although it must be a totally disconnected set [10, p. 309].
However, if it is a cut locus, then Remark 2.2 implies that the Hausdorff
dimension of the set of ends be 0. This is a restriction upon which local
trees can be cut loci.

Example 2.5. Here is an example of a compact tree in the Euclidean
plane R2 whose set of endpoints is the Cantor set. Since the Cantor
set has Hausdorff dimension (Iog2)/(log3), the dimension of the set of
endpoints of this tree is not zero [3, p. 14]. By regarding R2 as a local
coordinate system on the two-dimensional sphere, were it not for Remark
2.2, this tree might have been a candidate to be the cut locus of a point
for some Riemannian metric on the sphere. Note that this example does
have finite Hausdorff 1-measure. Thus its failure to be a cut locus is not
on account of Theorem 1.1.



METRIC STRUCTURE OF CUT LOCI IN SURFACES AND AMBROSE'S PROBLEM 625

This example is constructed in parallel with the usual Cantor set con-
struction. Following [10, pp. 310-311], for any closed bounded interval
[a, b], let the union of the two line segments in R2 which join the point
({a + b)/2, (a - b)/2) to the two points (a, 0) and (b, 0) be called the
roof on [a,b]. Start the construction by forming the roof on [0, 1]. Then
form the roofs on [0, ^] and on [ |, 1], and, in general, form the roofs
on each of the 2n intervals of length 3~n that arise in the nth stage of
the construction of the Cantor set. The closure of the union of all these
roofs is a tree in R2 whose set of endpoints is the Cantor set contained
in the x-axis. Since the one-dimensional Hausdorff measure of this tree
is just the sum of the lengths of all the line segments constructed to form
the roofs, it is routine to verify that its Hausdorff 1-measure has the exact
value 2>/2.

3. An arclength estimate

Lemma 3.1. Let A be an oriented arc in R starting at q0 = (x0, y0).
Assume A = V u S where V, relatively open in A, is a smooth one-
dimensional submanifold of R 2, and ^ ι (S) = 0. Assume that the forward
pointing tangent vectors

y Q

satisfy (i) a(q) > 0 and (ii) \b(q)/a(q)\ < 1 at every point q of V. 77ze«

(1) the projection mapping x: A —• R on the first coordinate is a strictly
increasing function of the parameter on A, and

(2) for all ql9q2eA,

where Af is the subarc of A from qλ to q2.

Proof Since A is an arc, it is possible to parameterize A by the home-
omorphism h{t) = (x(t),y{ή) for t € [0, 1], where Λ(0) = (x(0),y(0))
= (xo,yo). Set G = h~ι{V), E = h~ι(S). The hypothesis (i) im-
plies that for all t e G, there exists arbitrarily small At > 0 such that

We first show that x is monotone increasing. For if not there would

exist t0 < t{ such that x(t0) > x{tx). Since the projection map is Lips-

chitz, and since βfx{S) = 0, it follows that the image of the projection of



626 JAMES J. HEBDA

S has ̂ -measure zero. Thus there exists an x* € (x{t{), x(tQ)) that is
not in the image of S.

Set
t* = sup{te[to,tl]:x(t)>x*}.

Then by continuity of x, x(t*) = x*. Thus t* e G and f < tχ. By
construction, x(t) < x* = x(t*) for all t e (t*, tx] which contradicts the
assertion that x(t* +Δt) > x(t*) for some arbitrarily small At. Hence x
is monotone increasing.

It is strictly increasing, for if not there would exist a nondegenerate
interval / c [0, 1] on which x is constant, say c. Thus h(I) is an arc
contained in in( {c}xR) . But FΠ({c}xR) consists of at most countably
many points. (Assumption (i) implies each component of V is transverse
to all vertical lines, hence meets each vertical line in at most one point.
There are only countably many components of V.) And since %*x (S) = 0,
SΠ ({c} x R) has ^-measure zero. Thus ^ι(A n ({c} xR)) = 0, which
contradicts that A Π ({c} x R) contains an arc. Therefore x is strictly
increasing. This proves (1). Thus A is the graph of a function y = y(x).

Given qχ, q2 e A, let A' be the subarc of A from qχ to q2 , and let V{

be the countably many components of A'nV . Set (α., 6^ = JC(^) . These
intervals are mutually disjoint since the projection map x is one-to-one
on A. The function y = y(x) is smooth on (α , bt) because its graph
Vt is smooth. Since the Hausdorff 1-measure of a rectifiable curve is its
arclength [3, p. 29], the calculus formula for arclength and (ii) gives

in consequence of dy/dx\x,, = b(q)/a{q). Therefore,

V) = ̂  V n S) +

,. - fl,.) < >/2 W«f2) - x(qx)\,
i

because S has measure zero, and the intervals (ai, bέ) are mutually dis-
joint subintervals of x(Af).

An arbitrary Riemannian metric on R2 induces a distance function p
which is locally Lipschitz equivalent to the Euclidean distance d, i.e., for
every compact set K, there exists k > 0 such that

k'ld(gι, ί2)
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for all ql9 q2 e K. Hence on all subsets of K we have ^ < k^ and

%?p < k%?^ , where the subscripts denote which distance function was used

to define %?x. Therefore the condition that a subset has zero Hausdorff
1-measure and the condition that a compact subset has finite Hausdorff
1-measure are independent of which of the two distance functions, d or
p, is used to define the measure [4, 3.2.46].

Corollary 3.2. Under the same hypothesis as Lemma 3.1, but now with
<%Tι defined using the distance function p induced by an arbitrary Rieman-
nian metric on R2, there exists a constant C such that for all qχ, q2e A,

where A' is the subarc of A from qχ to q2.
Proof This follows immediately from Lemma 3.1. The value of C

is y/2k2, where k is the Lipschitz constant relating d and p on some
compact set K containing A.

4. Arcs in the cut locus

Throughout this section assume that M is a complete two-dimensional
Riemannian manifold, and that C(p) is the cut locus of a point p e M.
Let p denote the Riemannian distance function on M. For q e M and
r > 0, let

D(q ;r) = {xeM: p(x, q) < r}

denote the metric disk in M centered at q with radius r.
If q e C{p), then the link at q is the set Λ^ consisting of the unit

tangent vectors at q that are tangent to a minimizing geodesic joining q
to p. Clearly, Λ^ is a closed nonempty subset of the circle Sq = {X e
TqM : \X\ = 1} of unit tangent vectors at q. Obviously Λ^ = Sq if and
only if C(p) = {q}. (See [7].)

Proposition 4.1. Let q e C(p), and let r > 0 be less than the injectivity
radius of M at q. Let Γ be a closed neighborhood of q in C(p) which is
a tree and satisfies Γ c D(q r). (Such neighborhoods exist because C(p)
is a local tree by Theorem 2.3.) Then the connected components of ^\Λ^
are in one-to-one correspondence with the connected components of the
deleted neighborhood Γ\{#}.

Proof The connected components of the set

E = {exp(tX): X e S\A; 0<t<r}
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are open wedges in the disk D(q r). Clearly, these wedge components W
of E are in one-to-one correspondence with the components / of Sq\Aq

where W corresponds to / if and only if

W = {exp(ίX): X e J, 0<t<r}.

In turn, these wedges W are in one-to-one correspondence with the com-
ponents K of Γ\{#} where W corresponds to K if and only if K =
Γnw.

Lemma 4.2. Let q e C(p), and let Γ and r > 0 be as in Proposition
4.1. Suppose K is a connected component of Γ\{q} and J is a component
interval of S \A that correspond to each other under Proposition 4.1. Let

X+ and X" be the endpoints of J. Let qn be a sequence of points in K
converging to q.

If Xn is a sequence of vectors that converges to Xo e TM such that

Xn € Λ^ for all n, then either XQ = X+ or Xo = X~ .

Proof Since the geodesies exp(tXn), 0 < t < p{qn,p), are mini-
mizing geodesies joining qn to p, the geodesic to which they converge,
exp(tX0), 0 < t < p(qQ, p), is minimizing joining q to p . Thus Xo e
Aq . None of the geodesies exp(tXn), 0 < t < p(qn, p), meet either of

the two geodesies e x p ( ^ + ) or e x p ( ^ ~ ) , 0 < t < p(qo,p), except at
p, because the latter two are minimizing from q to p . Hence, when n
is sufficiently large, i.e., when p(qn, q0) < r/2, then exp((r/2)XJ e W,
where

W = { e x p ( ^ ) :X eJ, 0<t<r}.

Therefore exp((r/2)X0) is in the closure of the wedge W. Since Xoe Aq ,

either Xo = X+ or Xo = X~ .

Let A be an oriented arc in C(p) starting at q0. Then A determines
a unique component interval of Sn \An as follows: Choose r > 0 less
than both the diameter of A and the injectivity radius of M at qQ. Let
q* be the first point on A such that p(q0, q*) = r. There is such a
point because r is less than the diameter of A. Let AQ be the subarc of
A from q0 to q*. Choose a tree neighborhood Γ of qQ in C(p) such
that Γ c D(q0 r ) . Then Ao meets exactly one of the components K of
Γ\{<70}. Clearly the component interval of Sq \Aq that corresponds to
K under Proposition 4.1 is independent of the choice of both r and Γ.
Hence it is determined only by the arc A.

Continuing, let / denote the component interval of S \A deter-

mined by A. The two endpoints X+, X~ e An of J will be called
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respectively the left and right link vectors determined by A. Next set

W = {exp(tX) :XeJ, 0<t<r}.

Clearly A0\{qQ, q*} c W. Hence

W\A0 = W+ U W~ ,

where W+ and W~ are two disjoint open topological disks in M. (This
uses the Jordan Curve Theorem.) Here notation is chosen so that the
geodesic segment exp(tX+), 0 < t < r, lies in the closure of W+ , and
exp(tX~), 0 < t <r, lies in the closure of W~ . For any q e C(p) Π W
and X G Λ^ , the geodesic exp(tX), 0 < t < p(q, p), will meet no point
of C(p) other than q, because it minimizes from q to p . In particular,
it does not meet A unless q e A. Hence there exists an e > 0 such that
the geodesic segment cxp(tX), 0 < t < e , either lies in W* or in W~ .
Depending upon which one of the two cases holds, we will say X is either
on the left side or the right side of A respectively.

Lemma 4.3. Let A be an oriented arc in C(p) starting at qQ. Let J

be the component interval of Sq \Aq determined by A, and let X+ and

X~ be the left and right link vectors determined by A. Let

W = {exp{tX) :XeJ, 0<t<r},

where r > 0 is less than both the diameter of A and the injectivity radius
of M at qQ. Suppose qn is a sequence of points in C(p)ΠW converging
to q0, and suppose Xn e Aq is on the left side (respectively right side) of

A for all n. Then the sequence Xn converges to X+ (respectively X~).
Proof We will consider only the left side case. The right side case is

similar.
Let Γ c D(q0 r) be a tree neighborhood of q0 in C(p). We may

assume qn e K = Γ n W for all n because qn converges to q0. Since Xn

is a unit vector at qn , the Xn are contained in a compact subset of the
tangent bundle. Hence it suffices to show every convergent subsequence
of the Xn converges to X+ . Thus we may as well assume Xn converges
to some Xo e TM. By Lemma 4.2, either Xo = X+ or Xo = X~ . But
as we saw in the proof of Lemma 4.2, none of the geodesies exp(tXn),
0 < / < p(qn, p), meet either of the two geodesies exp^Λ"*) or exp(tX~),
0 < t < p(q0, p), except at p. Hence, when n is sufficiently large, i.e.
when p(qn, qQ) < r/2, then exp((r/2)Xn) € W+, because Xn is on the
left side of A for all n . Therefore exp((r/2)/X0) is in the closure of W+

which implies Xo = X* .
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Lemma 4.4. Let A be an arc in C(p). Then A = V u S where S is
a closed set with <%*ι(S) = 0, and V, which is relatively open in A, forms
a smooth one-dimensional submanifold of M.

Proof This follows immediately from Proposition 2.1 upon setting S
to be the intersection of A with the set of noncleave points of C(p) and
V to be the intersection of A with the set of cleave points in C(p).

Let q e C(p). A midpoint of one of the component intervals of Sg\Ag

will be called a C{p)-tangent vector at q. In the special case when q is
a cleave point, Λ^ consists of two vectors, and by Proposition 2.1, there
exists a tree neighborhood of q in C(p) which is a smoothly embedded
arc passing through q. Because the two vectors in Λ^ make the same
angle with this arc but on opposite sides, the C(/?)-tangent vectors at q
are just the two unit tangent vectors to this smooth arc considered as a
submanifold.

Now let A be an oriented arc in C(p) starting at q0 and ending at
qχ. For each q e A, q Φ qχ, let A(q) denote the subarc of A starting
at q and ending at qx. Define Y(q) to be the C(/?)-tangent vector at q
which is the midpoint of the component interval of Sq\Ag determined by
A(q). The resulting function Y: A\{qχ} -> TM will be called the field of
forward pointing C(p)-tangent vectors along A.

Lemma 4.5. Let A be an oriented arc in C(p) starting at qQ and
ending at qx, and let Y: ^4\{̂ 1} -> TM be the field of forward pointing
C(p)-tangent vectors along A. Then whenever q is in the smooth set V
of Lemma 4.4, Y(q) is just the oriented unit tangent vector to V at q.
Furthermore,

\imY(q) = Y(q0).

Proof The first statement follows immediately from the fact men-
tioned earlier that the two C(/?)-tangent vectors at a cleave point are tan-
gent to the submanifold of cleave points.

Let qn be a sequence in A converging to q0 . We must show

Let r > 0 be less than both the diameter of A and the injectivity radius
of M at qQ . Let / be the component interval of S \Λ determined by

A , and let X+ and X~ be the left and right link vectors at q0 determined
by A . Without loss of generality we may assume

:XeJ, 0<t<r}

for all n . The right and left link vectors X* and X~ at qn of the subarcan
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A(qn) of A from qn to qχ can be chosen consistently so that X* is on

the left and X~ is on the right side of A for all n . By Lemma 4.3, X*

converges to X+ , and X~ converges to X~ .

If lim Y(qn) φ Y(q0), then we can find a subsequence of Y{qn) that

converges to some tangent vector Yo Φ Y(q0). Hence we can assume that

lim Y(qn) = YQ. Now by definition, Y{qn) is the midpoint of an interval

in Sq whose endpoints are X* and X~ . Thus in the limit, Yo is a

midpoint of an interval in Sq whose endpoints are X+ and X" . This

implies that Yo = ±Y(q0) because by definition Y(q0) is such a midpoint.

But clearly, for all n sufficiently large, i.e. when p(qn, qQ) < r/2, then

Qxp((r/2)Y(qn)) e W. On taking limits, exp((r/2)yo) lies in the closure

of W. Thus YQ = Y(q0) which is a contradiction. This completes the

proof.
Corollary 4.6. Let A be an oriented arc in C(p) starting at q0 . There

is a subarc AQ of A containing q0 that has finite length.
Proof. Let Y: A\{q{} -• TM be the field of forward pointing C o -

tangent vectors along A. Let r > 0 be less than both the diameter of
A and the injectivity radius of M at q0. Choose a normal coordinate
system (x, y) centered at qQ in the disk D(qQ r) such that

d_

&x (0,0)

Write

Y { q ) = a { q ) d ϊ q

for q e A nD(qQ\ r). By Lemma 4.5, a(q) —> a(q0) = 1 and b(q) —•
b(qQ) = 0 as q -+ q0, q e An D(q0 r). Therefore, we may assume
a(q) > 0 and \b(q)/a(q)\ < 1 for all q e AnD(q0; r) by taking r to be
sufficiently small.

Let Ao be any subarc of A containing q0 that is contained in D(q0 r).

By Lemmas 4.4 and 4.5, Corollary 3.2 can be applied to the arc Ao to prove

J?l<A0) < Cr for some constant C. Therefore Ao has finite length.
Theorem 4.7. Suppose that M is a complete two-dimensional Rieman-

nian manifold and that C(p) is the cut locus of a point p e M. Then
every arc in C(p) has finite length.

Proof Let A be an arc in C(p). Then every q0 e A has a neigh-
borhood in A which has finite length. If q0 is an endpoint of A, this
follows directly from Corollary 4.6, while if q0 is not an endpoint, then
q0 separates A into two subarcs both having qQ as an endpoint. Again



632 JAMES J. HEBDA

Corollary 4.6 produces a neighborhood of q0 in each subarc having finite
length. The union of these neighborhoods is a neighborhood of q0 in A
with finite length. Since A is compact, it follows that A is contained in
a union of finitely many subarcs of finite length. Hence A itself has finite
length.

5. The Hausdorff 1-measure of compacta in C(p)

As in the previous section, throughout this section assume that M is
a complete two-dimensional Riemannian manifold, and that C(p) is the
cut locus of a point p e M.

Define the function μ: Sp -> [0, oo] by setting μ(X), for X e Sp,
equal to the distance to the cut point along the geodesic exp(tX), t > 0,
if there is a cut point, and to oo otherwise. It is well known that μ is a
continuous function [9, p. 98]. Thus the set

& = {XeSp:μ(X)<oo}

is open, and the map w : % —> C(p) defined by w(X) = exp(μ(X)X) is
continuous. It is easy to see that both μ and w are proper maps, i.e., the
inverse image of compact sets is compact.

Define φ : Sp —> [0, oo] by setting φ(X) equal to the distance to the
first conjugate point along the geodesic exp(tX), t > 0, if there is such a
first conjugate point, and to oo otherwise. In general, μ(X) < φ(X) for
all X e Sp because the cut point along a geodesic occurs no later than the
first conjugate point. Let

T = {X e Sp : φ(X) < oo}.

It is known that *V is an open subset of Sp, and that φ is smooth on
T [12, p. 381]. Thus <V c ^ , and the map v: <V -> M defined by
υ(X) = exp(φ(X)X) is smooth. Finally, define the set

a = {X e % : μ(X) = φ(X)}.

Then β is closed, and w{β) is the set of conjugate cut points in C(p).
Let (r, θ) denote polar coordinates on TpM. We will employ the usual

interval notation to denote open and closed subintervals of the circle S
of unit tangent vectors at p. Thus [a, β] = {(r, θ) : r = 1, a < θ < β}
and (a, β) = {(r, 0) : r = 1, α < θ < β} .

Lemma 5.1. Suppose [a, β] is a subinterval of % such that w([a, β])
is contained in a subtree Γ ofC(p). Let AQ be the unique arc in Γ joining
w(a) to w(β). Then the set

A = {exp(tX) :Xe[a,β], 0<t< μ{X)}
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is a topological disk in M whose boundary consists of the arc Ao together
with the two geodesic segments

γQ(t) = exp(ία) (0 < t < μ(a))

and

γβ{t) = exp{tβ) (0<t<μ(β)).

Furthermore,
w([a,β])= ΔΠ C(p),

and the initial tangent vector of every minimizing geodesic joining p to a
cut point in the interior of A lies in (a, β). Moreover , (a, β) n @ Φ 0 ,
unless w([a, β]) = Ao.

Proof Note that Ao c w([a, β]) because w([a, β]) c Γ is connected.
Since Γ is a tree, the arc Ao and the restriction w\[a, β] are homotopic
in Γ keeping endpoints fixed. The loop γa (w\[a, β])'7βl is contractible
in the set Δ since it is obviously the image under exp of a contractible
loop in TpM. It follows that the simple closed curve

is contractible. Therefore, σ bounds a disk in M, which is obviously the
set Δ.

From the definitions of w and Δ, it follows immediately that w([a,β])
C Δ Π C(p). To see that Δ n C(p) cw([a, β]), let q e Δ n C(p), and let
X € S be the initial tangent vector of a minimizing geodesic segment γ
joining p to q . Then either X £ [a, β], or γ must intersect the boundary
σ of Δ at some point other than p. The latter case can occur only if γ
meets σ at q e Ao. Thus, in either case, q e w([a, β]). Note that
this argument shows that the initial tangent vector of every minimizing
geodesic from p to a cut point q in the interior of Δ lies in (α, β).

The simple connectivity of Δ implies that Δ Π C(p) is a tree (cf The-
orem 2.3). Thus unless w([a, β]) = AQ, C(p) will have an endpoint q
in the interior of Δ. The initial tangent vector to the minimizing geodesic
segment from p to q will provide an element of (α, β) Π @ since every
endpoint of C(p) is a conjugate cut point.

Lemma 5.2. Let [a, β] be a subinterval ofWtfV such that w([a, β])
is contained in a subtree Γ of C(p). Suppose that there exist an open set
U in TpM and a local coordinate system (x, y) defined throughout some
open set D in M satisfying the conditions:

(1) Γcΰ.
(2) Qxp(U)cD.
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(3) For all (r,θ)eU, (i) f(r, θ) > 0, and (ii) \g(r, θ)/f(r, θ)\ < 1
where f and g are the real-valued functions defined throughout
U by

* d r (r,β) d χ °y

(4) (r,θ)eU whenever θ e [a, β] and μ{θ) <r< φ(θ).

Let Δ be the topological disk constructed from [a, β] by Lemma 5.1, and
let q € C(p) be a cut point in the interior of A. Then we conclude:

(5) x(v(θ))>x(w(θ)) forall θe[a,β].
(6) Every C(p)-tangent vector

at q satisfies aφQ and \bja\ < 1 .
(7) There exists exactly one such C{p)-tangent vector at q satisfying

a>0.
(8) There exists a cut point q in the interior of Δ such that x(q') >

x(q).

Proof The definitions of υ and w with assumptions (3.i) and (4)
immediately imply (5).

Let Y be a C(/?)-tangent vector at q, and let X+, X~ e Aq be the

endpoints of the component interval of Sq\Aq of which Y is the mid-

point. Thus X+ and X~ lie on opposite sides of the line in TqM that

passes through the origin and is tangent to Y, unless X* = X~ , in which
case Y = -X* = -X~ . (This may happen when q is an endpoint of

Cip).)
Let (u, v) denote coordinates in TqM with respect to the ordered basis

{d/dx\q,d/dy\q}9

and let Y, X+ , and X~ have respective coordinates (a, b), (/*, g+),
and (f,g). Observe that for every X e Aq , if θ is the initial tangent
vector to the minimizing geodesic joining p to q to which X is tangent
at q, then θ e {a, β) by Lemma 5.1, since q is in the interior of Δ.
Thus

\C>r (r,θ)J
where r = μ(θ). By assumption (4), (r, θ) e U. Applying this fact to
X+ and X~ , gives f , f~ < 0 and \g+/f*\, \g~/f~\ < 1 because of
assumption (3).
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Now the line in TpM tangent to Y has the equation

bu- aυ = 0.

Thus, when X+ and X~ lie on opposite sides of the line, after inter-
changing X+ and X~ if necessary, we have the two inequalities

6/+ -ag+ >0 and bf~ - ag~ < 0.

From these we easily deduce in this case, and even more easily in the case
Y = -X+ = -X~ , that a φ 0 because f , / " < 0, and that \b/a\ < 1
because | # + / / Ί > \g'IΓ\ < 1 This proves (6).

Let
H = {(u,v):u>0}

be the right half-plane of TqM. Since for every X e Aq, there exists
(r,θ)eU such that

(r9θ)J

it follows X £ H by (3.i). Thus there exists a component interval Jo of
Sq\Aq such that HnSqc JQ. The midpoint YQ of JQ is a C(/?)-tangent
vector at q that lies in H. This proves (7) because obviously no other
C(/?)-tangent vector at q lies in H.

Let AT be the component of T\{q} that corresponds to this Jo under
Proposition 4.1. Let A be an arc in Γ starting at q and ending at some
point qχ e K. Let Y be the field of forward pointing C(/?)-tangent vectors
along A, and set

for t e A\{qχ} . By construction Y(q) = Yo . Thus a(q) > 0. By Lemma
4.5 we have

lim a(ή = a(q),

which implies that there is a subarc A! of A joining q to some point
q e A such that a{i) > 0 for all t e Af. We may further assume Af

is contained in the interior of Δ. Thuen due to (7), \b(t)/a(t)\ < 1 for
all t e A!, and by Lemmas 4.4 and 4.5, the hypothesis of Lemma 3.1 is
satisfied by the arc A'. Therefore Lemma 3.1(1) applied to A' implies
that x{q) > x(q).

Remark 5.3. If in Lemma 5.2 we also assume w(a) = w(β), then the
coordinate projection map x restricted to the compact set C(p) ΠΔ =
w([a, β]) attains its maximum value only at the point w(a) = w(β).
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In fact, by Lemma 5.2(8), x does not attain its maximum value at any
q G C(p) ΠΔ that lies in the interior of Δ, while by Lemma 5.1, the set
Ao, which is the set of points in C(p)nA that lie in the boundary of Δ,
consists of the one point w(a) = w(β).

Lemma 5.4. Let [a, β] be a subinterval of ^nV such that w([a, β])
is contained in a subtree Γ of C(p). Suppose that there exist an open set
U in TpM and a local coordinate system {x, y) defined throughout some
open set D in M satisfying conditions (1) through (4) of Lemma 5.2.
Assume w(a) = w(β), and (a;β)Πά>φ0. Define

θ* = inf{[a, β] Π &),

and suppose θ* Φ a. Then the set A = w([a, θ*]) is an arc in C{p) with
endpoints w(a) and w(θ*), and

jrl(A)<V2\x(v(θ*))-x(v(a))\,

where ^ is defined using the Euclidean coordinates (x, y) on D.
Proof Because (a, θ*) ΐ\€ = 0 , Lemma 5.1 applied to the interval

[α, θ*] implies that A is an arc in C(p) with endpoints w(a) and w(θ*).
Let A be oriented so that it starts at q0 = w(θ*) and ends at qχ =w(a).
Let

Q Q

denote the forward pointing C(/?)-tangent vector along A at q e A\{q{} .
Let Δ be the topological disk constructed from [a, β] by Lemma 5.1. As
we saw in Remark 5.3, since w(a) = w(β) = qx, the point qχ is the only
point in C(p)ΠA that lies in the boundary of Δ. Hence every q € A\{qχ}
is contained in the interior of Δ. Therefore by Lemma 5.2(6), a(q) Φ 0
and \b{c[)\a{(ί)\ < 1 for all q e A\{qχ} . Because of Lemmas 4.4 and 4.5,
the hypothesis of Lemma 3.1 will be satisfied by the arc A with respect
to the Euclidean coordinate system (JC, y) on D once we show a(q) > 0
for all q e ^\ {^(^} .

To show this, let h : [0, 1] -> A be a parameterization of the oriented
arc A. Assume that there exists tχ e [0, 1) such that a{h{tχ)) < 0.
Were it the case that a(h(ή) < 0 for all t e [tχ, 1), then, by Lemma
3.1(1) applied to the arc h([tχ, 1]), x{h{ή) would be strictly decreasing
on [tχ, 1]. But then, in contradiction to Remark 5.3, one would have
x{h{tχ)) > *(*( ! )) = x(w{a)). Thus, let

t2 = inf{t :tχ<t<\, a{h(t)) > 0}.

Then t2 < 1, and x{h(t)) is strictly decreasing on [tχ, t2] by Lemma
3.1(1) applied to the arc h([tχ, t2]). By Lemma 4.3 applied to the arc
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h{[t2, 1]), we have the one-sided limit

lima(h(ή) = a(h(t2)).
ι2

From the definition of t2 it follows that a{h{t2)) > 0, so that a(h(t2)) > 0
because a(h(t2)) Φ 0. Consequently, there exists t3 e (ί 2, 1) such that
a(h(t)) > 0 for all t e [t2, t3]. Thus x(h{ή) is strictly increasing on
[t2, t3] by Lemma 3.1(1) applied to the arc h([t2, t3]). Let q = h{t2). By
construction, the arcs h([tι, t2]) and Λ([ί2, t3]) lie in distinct components
of Γ\{q}. Since x(h(ή) is strictly decreasing on [t{, t2] and strictly
increasing on [t2, t3], both of these arcs are to the right of q in the
local coordinate system. If both arcs are oriented to start at q, then their
respective forward pointing C(/?)-tangent vectors at q will be two distinct
C(/?)-tangent vectors at q which both point to the right, contradicting
Lemma 5.2(7). Therefore a(h(ή) > 0 for all t e [0, 1).

Hence applying Lemma 3.1 to A yields x(w(a)) > x(w(θ*)) and

jrl(A) < y/2(x(w(a)) - x(w(θ*))) < y/2(x(υ(a))-x(υ(θ*))).

The second inequality follows from the two facts: x(υ(a)) > x(w(a)) by
Lemma 5.2(5), and v(θ*) = w{θ*) because θ* e & by the definition of
0* since S is a closed set.

Lemma 5.5. If Xoe%f, then there exists an interval I c % containing
{Xo in its interior such that <%*{(w(I)) < oo.

Proof. Set q0 = w(XΌ) and Yo = μ(X0)XQ .
First suppose Xo φ @. Then there exists a neighborhood U of

Yo in T M on which exp is a diffeomorphism onto an open subset
of M . By continuity of μ there exists a closed interval / contain-
ing Xo in its interior such that μ(X)X e U for all X € / . Since
w(X) = exp(μ(X)X), it is clear that w is one-to-one on / . Hence w(I)
is an arc, and βf\w(I)) < oo by Theorem 4.7.

Now suppose Xo e &. Take any metric disk D in M centered at
qQ with radius less than the injectivity radius at q0, and let Γ be a tree
neighborhood of q0 in C(p) with Γ c ΰ . Let (x, y) be a normal
coordinate system defined throughout D so that

Since exp is smooth, there exists a sufficiently small open neighborhood
U of Yo in Γ^M such that exp(ί/) c £>, and such that (i) / ( r , 0) > 0,
and (ii) |*(r, 0)//(r, 0)| < 1 for all (r, 0) G U where / and # are
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defined by

Since Xo e β, we have μ{X0)XQ = φ{XQ) Xo = YoeU. Thus by continu-
ity of μ, φ, and w , and because Ψ' Π ̂  is open, there exists a closed
interval / containing Xo in its interior such that (r, θ) e U whenever
θ e I and μ(θ) <r< φ{θ), w(I) c Γ, and / c ^ Π ̂ . It will be shown
that JT\W(I)) < o o .

Since ί; is smooth, x o v is Lipschitz on / . Hence there exists a
constant C such that

\x{v(θι))^x(υ{θ2))\<C\θι^θ2\

for all 0 j , θ2 e I.
Since / c 2 ^ n ^ and tϋ(7) c Γ, by applying Lemma 5.1 to the interval

7, we can construct a topological disk Δo such that

Thus by Lemma 5.1, w(I) is the disjoint union of an arc Ao in the bound-
ary of Δo with the part of C(p) in the interior of Δ o . By Proposition
2.1, the part of C(p) contained in the interior of Δo is the union of a
smooth 1-dimensional manifold V of cleave points together with a set of
%?x-measure zero. Since <%"1{AO) < oo by Theorem 4.7, it suffices to show

If q e V, then there are exactly two minimizing geodesies joining p to
q since q is a cleave point. By Lemma 5.1, since q lies in the interior
of Δ o , the initial tangent vectors a and β of these two geodesies both
lie in 7. Thus [α, β] c 7 and w(a) = tu(/J) = q. lϊ q is a second
point in V, and a and /?' are the initial tangent vectors to the two
minimizing geodesies joining p to q so that [a , /?'] c 7 and w(α') •=
w(β') = q , then either [a, β] and [a , /?'] are disjoint or one of these
intervals is contained in the other. For let Δ and Δ; be the topological
disks constructed by Lemma 5.1 from [a, β] and [a , β'\ respectively.
Note that by Remark 5.3, the boundaries of Δ and Δ' meet C(p) at only
in q and q respectively. Thus either q lies in the interior of A' in which
case [a, β] c [a , β'] by Lemma 5.1, or q lies in the interior of Δ in
which case [a , /?'] c [a, β] by Lemma 5.1, or neither happens in which
case [a, β] and [a , β'] are disjoint.

Now V has at most countably many connected components Vn . Each
Vn is a smooth open arc of cleave points. If q e Vn , then the two minimiz-
ing geodesies joining q to p lie on opposite sides of V . Thus the arc V
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cuts through the boundary at q of the disk Δ of the previous paragraph.
If Qf is also in Vn , then either q e Δ or q e Δ' which implies that either
[a , βf] c [a, β] or [a, β] c [a , β'], that is, these two intervals are not
disjoint. For each n , let

an = inf{θ:θel, w(θ) e Vn}

and
βn = mp{θ:θel9 w(θ)eVn}.

Then (an, βn) is the union of all the intervals [a, β] corresponding to
the q e Vn . It follows that w(an) = w(βn). Also, by Lemma 5.1 applied
t o [an , βn] w i t h R e m a r k 5.3, (an ,βn)Π&φ0 s ince Vn c w([an , βn])
shows that ^( [α π , βn] φ {w(an)} . Thus we may define

θ*H=mf([an,βH]n*).

Clearly, θ*n / an because no q e Vn is a conjugate cut point.
Set Λrt = w([an, θ*]). Since the hypothesis of Lemma 5.4 is satisfied

by [oίn, βn] for every n , we have

*\An) < y/2\x{υ(θ*n)) - x(υ(an))\ < >ί2C\θ*n - α j

where C is the Lipschitz constant for x o u on / .
Clearly, FM c 4̂Λ for every n. Also, our previous discussion implies

that if m Φ n , then the open intervals (am , j?m) and (an , j8Λ) are either
disjoint, or one is contained in the other. Thus, by definition of 0*, if
mφn, then the intervals (am, θ*m) and (an, 0*) are either disjoint, or
one is contained in the other. Hence, if m Φ n, then the arcs Am and
An either meet in at most one point, or one is contained in the other.
Therefore, given any finite collection Aχ, A2, , AN, by discarding any
arc contained within another, there is a set of indices ]fN c {1, 2, , N}
such that

and, if m, n e fΉ with mφn, then (α w , θ*m) and (απ , 0*) are disjoint,
and Am and An meet in at most one point.

Thus, given Vχ, V2, , F^,

- «„! < Λ/2C7|Z| ,
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where |/| is the length of the interval / because the (an, 0*), n e ^ , are
disjoint subintervals of / . By letting N approach infinity (if necessary),
we obtain

n=\

Therefore βfι(w{I)) < oo.
Corollary 5.6. // E c ίί is compact, then βf\w{E)) < oo.
Proof. By Lemma 5.5, every Xo e E is contained in the interior of

some interval / such that w(I) has finite Hausdorff 1-measure. Com-
pactness implies that E is contained in a finite union of such intervals
/ . Therefore w(E) is contained in a finite union of sets w(I) of finite
Hausdorff 1-measure, and thus itself must have finite Hausdorff 1-measure.

Since w : ^ —• C(p) is a proper map, the inverse image under w of
every compact subset of C(p) is a compact subset of ^ . Hence every
compact subset K of C{p) is the image w(E) of the compact set E =
w~ι(K) of %. Therefore by Corollary 5.6, every compact subset of C(p)
has finite Hausdorff 1-measure. This completes the proof of Theorem 1.1.

REMARK 5.7. Corollary 5.6, in conjunction with [8, Proposition 5.1],
implies that μ is absolutely continuous on [a, β], and that w\[a, β] is
an absolutely continuous curve in M for every [α, β] c V.

6. The intrinsic metric

Let M be a complete two-dimensional Riemannian manifold, and let
C(p) be the cut locus of a point p e M.

Given two points ql9 q2 e C(p) that are in the same connected com-
ponent, there is at least one arc joining them contained in C{p). (If M
is compact, there are at most finitely many [14, p. 97], and otherwise at
most finitely many in any compact subset of C(p).) Define δ(q{, q2) to
be the length of the shortest arc in C(p) with endpoints qχ and q2. By
Theorem 4.7, this is finite. If qχ and q2 are not in the same component
of C(p), set δ(q{, q2) = 1. It is easily verified that δ defines a metric on
C{p). This metric δ will be called the intrinsic metric on C(p).

Theorem 6.1. Suppose that M is a complete two-dimensional Rieman-
nian manifold and that C(p) is the cut locus of a point p e M. Then the
intrinsic metric δ on C{p) induces the subspace topology on C{p).

Proof Clearly, δ(qχ, q2) > p(qχ, q2) for all qx,q2e C(p). Hence it
is enough to show that if qn is a sequence in C(p) converging to q0 e C(p)
with respect to the subspace topology, then it converges to q0 with respect
to δ , that is, δ(qn , q0) -> 0 as n —> oo .
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The subspace topology on C(p) is a locally compact metric topology
since C{p) is a closed subset of M by Proposition 2.1. Since C{p) is also
a local tree by Theorem 2.3, we can find a countable family Ym of compact
trees in C(p), which form a base for the system of neighborhoods of q0 in
C(p). We may certainly arrange that the Γm form a decreasing sequence
of sets. Since the Γm form a base for the system of neighborhoods of q0,

ΓC=iΓm = {%}- s i n c e ^\τm) < oc by Theorem 1.1, the well-known
theorem on the measure of the intersection of a decreasing sequence of
measurable sets [3, p. 2] implies that

/rι(rm) = jrι (f\rm) =^\{%}) = o.
\m=\ J

Thus given e > 0, there exists an mQ such that ^ι{Tm ) < e . Because

qn converges to q0 and Γm is a neighborhood of q0 in C(p), there exists

an N such that qn € Tm for all n> N. Since Ym is a tree containing
q0, for every n > N, there exists an arc An joining q0 to qn in Γm .

Hence

for all n > N, and 5(<7rt, #0) —• 0 as n —• oo. This completes the proof
of the theorem.

Example 6.2. Let (r, θ) denote polar coordinates on R2 . Then the
set {(r, θ) : 0 < r < 1, , θ = 0 or 0 = 2π/π, for « = 1, 2, 3, ••} is a
compact tree in R in which every arc has finite length but for which the
resulting intrinsic metric does not induce the subspace topology. This tree
clearly has infinite Hausdorff 1-measure.

The set {(r, θ) : 0 < r < l//ι, θ = 2π/n, for n = 1, 2, 3, ••} is
a compact tree with infinite Hausdorff 1-measure for which the resulting
intrinsic metric does induce the subspace topology. A set homeomorphic
to it is realizable as a cut locus [5].
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