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1. Introduction

Setting the scene. An affine crystallographic group (ACG) is a prop-
erly discontinuous group I' of affine transformations on some (finite-
dimensional) real vector space V', such that the quotient space I'\V is
compact. If T" is also torsion free, then I'\V is a compact affine space
Jorm, with fundamental group isomorphic to I'; every flat, complete, com-
pact connected differentiable manifold arises this way [24, Corollary 1.9.6].
If I' < A, where A is a given subgroup of Aff(V), the group of all affine
transformations of V', we shall call I' an ACG of type A (for example,
when A is the group of all Euclidean motions, an ACG of type A is a
Bieberbach group); and if I" is torsion free, we call I'\V' a space form
of type A (every flat, complete, compact connected pseudo-Riemannian
manifold is one of these, 4 being a suitable group of isometries; see [24,
Theorem 2.4.9]).

Bieberbach proved that every Bieberbach group is a finite extension of
its (free abelian) translation subgroup, that in each dimension there are
only the finitely many isomorphism types of the Bieberbach group, and
that isomorphic Bieberbach groups are conjugate in the affine group (see
[24, §3.2]). None of these results is true of ACGs of more general type,
but there are weaker analogues which do generalize, at least conjecturally.
We shall explore some of these.

A long-standing conjecture [16] asserts that every ACG is virtually poly-
cyclic (i.e., has a polycyclic subgroup of finite index). It has been proved
for ACGs in dimension < 3 [10], for ACGs of type 4 whenever A is an
extension of the translation group by (the real points of) a reductive alge-
braic group of real rank at most 1 (for example, the group of affine Lorentz
transformations) [13], and in some other cases (see [11], [20], [21].) In
this paper we deal exclusively with virtually polycyclic ACGs. Throughout,
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V' will denote a fixed finite-dimensional real vector space, and A a fixed
Zariski-closed subgroup of Aff(V).

Suppose O is an ACG of type 4, where A4 is the Euclidean group,
and let A be the translation subgroup of ©. The essentially geometric
part of the Bieberbach theory is that A is a full lattice in the group of
all translations, and that A is the maximal abelian subgroup of ©. The
main finiteness result, which is essentially algebraic, then states that given
such a full lattice A, there are only finitely many possibilities, up to con-
jugacy, for the crystallographic group ©. We discuss generalizations of
the “geometric” theory later; our main finiteness result is the analogue of
the second part of Bieberbach’s theory.

Recall that each virtually polycyclic group © has a unique maximal
nilpotent normal subgroup, its Fitting subgroup. We denote this by Fitt(6).

Definition. Let A < © be virtually polycyclic groups. Then O is a
strict extension of A if the index |©: A| is finite and Fitt(0) < A.

We say that © is a normal extension of A if A<©, and call |©:'A|
the index of the extension. The normalizer of A in 4 is denoted N,(A).
Theorem A. Let A be a virtually polycyclic ACG of type A. Then:

(i) the strict normal extensions of A in A lie in finitely many conjugacy
classes in N ,(A);

(ii) the strict extensions of A in A have bounded index, and they lie in
finitely many conjugacy classes in A.

The proof of Theorem A depends on finiteness properties of arithmetic
groups (analogously to the role of the Jordan-Zassenhaus Theorem in the
Bieberbach theory). Our second main result provides the means whereby
these can be exploited; here, we shall say that a Lie group K is of type
A2 if its identity component K is nilpotent and K/K|, is polycyclic.

Theorem B. Let A be a virtually polycyclic ACG of type A. Then
N ,(A) contains a closed normal subgroup K of type NP such that
N ,(A)/K is isomorphic to an arithmetic group.

These results can be phrased in geometric terms, when applied to a
torsion-free ACG A. Suppose M =6\V and N = ®\V are space forms
of type A. Let us (for convenience) define an isometry of M onto N to
be a homeomorphism &: M — N which lifts to an automorphism a of
V with a € A. Then aBa™' = ®, so M and N are isometric if and
only if ® and ® are conjugate in 4. When A4 = Aff(V'), “isometric”
simply means “affinely isomorphic”; for the pseudo-Riemannian case, see
[24, Lemma 2.5.6], which shows that our “isometries” are precisely the
isometries in the usual sense.

The group of all self-isometries of M is denoted Aut, (M); this is
exactly the image of N,(8) in the group of all self-maps of M . We shall
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show (in §6) that Aut, (M) = N,(6)/6, and hence infer from Theorem
B:

Corollary B. If M is a space form of type A with virtually polycyclic
JSundamental group, then Aut (M) is an extension of a Lie group of type
NP by an arithmetic group.

Now suppose p: L =A\V — M = 6\V is a covering map, induced by
the inclusion p*: A — © of torsion-free ACGs of type A. Call p a strict
(normal) covering if p*(A) > Fitt(8) (respectively, p*(A) 1O ; see [24, p.
35]). We say that p is equivalent to a covering g: L — N = ®\V if there
exist an isometry f: M — N and an element o € Aut,(L) such that the
following diagram commutes:

L = L

”l l"
M-t N

Theorem A can then be formulated as follows:

Corollary A. Let L be a space form of type A, with virtually polycyclic
fundamental group. Then

(i) the strict normal covering L — M of type A lie in finitely many
equivalence classes;

(ii) the strict coverings L — M of type A have bounded multiplicities,
and the corresponding space forms M lie in finitely many isometry classes.

Note that although the covering maps we consider are supposed to pre-
serve the affine structure (or “ A-structure”), the concept of strictness is
purely topological, depending as it does only on the induced mapping of
the fundamental groups.

A version of Theorem A for nilpotent groups was stated in [15] and
recently proved in [9].

Standard groups. Of course, every Bieberbach group is a strict normal
extension of its translation subgroup, so Theorem A is an honest general-
ization of what we called the “second part” of the Bieberbach theory. For
this to be of any use, however, we have to know that every ACG is a strict
extension of some well-understood kind of group, the analogue of a full
lattice in the group of all translations. Our candidate for this role is the
standard ACG.

First, some notation. Putting W = V @ R, R being the set of real
numbers, we identify Aff(¥) with the subgroup of GL(W) consisting of

matrices (§ ), where g € GL(V) and v € V' (think of V' as consisting
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of column vectors). For a subgroup H of GL(W), write

H = Zariski closure of H in GL(W)

H = identity component of H in the Zariski topology
H, = identity component of H in the Lie group topology
u(H) = maximal normal unipotent subgroup of H

Note that
(H),<, @’<, H,

where 4 <. B stands for “ 4 is a subgroup of finite index in B”. Note
also that if H is unipotent, then H is Zariski-closed in GL(W) if and
only if H is closed and connected (see [17, Chapter II]). Note finally that
if H is virtually soluble, then (ﬁ)0 is soluble, u(H) consists of all the
unipotent element sc f H, and u(H) < u((H),) = u(H), (H)°/u(H) is
abelian; these facts, which follow easily from the Lie-Kolchin Theorem
and the preceding sentence, will be used without special mention.

We shall say that H is u-connected if u(H) is connected (topological
terms will always refer to the Lie group topology induced from GL(W),
unless prefixed by “Zariski”).

An important observation is

Lemma C. If A is a virtually polycyclic ACG, then Fitt(A) = u(A).

With these preliminaries out of the way, we can make the

Definition. A subgroup I' of GL(W) is standard if T is discrete and
polycyclic, T" < (_I=)0 ,and I'/u(I") is torsion-free.

In a Bieberbach group, the translation subgroup is the unique maximal
standard subgroup. A virtually polycyclic ACG need not, in general, have
a unique maximal standard subgroup. However, for the purposes of classi-
fication, it would suffice to have a canonical way of assigning to each ACG
6 a unique standard subgroup 6 so that © is a strict normal extension
of ©"; then Theorem A reduces the classification of virtually polycyclic
ACGs of type A to (a) the classification of standard ACGs of type 4, and
(b) producing for each such standard ACG a finite list of representatives
for its strict normal extensions.

We may proceed as follows. Let © be a virtually polycyclic ACG. Start
by defining 8' = @ (8),. Then u(®') = u(f) and 6'/u(®) is finitely
generated abelian group. Denote by m(0) the exponent of the torsion
subgroup of this abelian group, and put 6" = (Bt)m(e)u(O). It is easy to
see that ©" is standard, and Lemma C shows that © is a strict normal
extension of ©". All our requirements are thus met by this definition.
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Now we must justify the claim that the standard ACGs form a well-
understood class of groups, analogous to the full lattices in the translation
group. The place of the translation group in the Bieberbach theory will be
taken by a simply transitive group of affine transformations; we say that
a subgroup G of Aff(V) is simply transitive if G is closed in Aff(V)
and the operation of G on V is simply transitive, i.e., if the orbit map
g+— g-0 of G not V is a bijection. This map is then a homeomorphism,
so G is connected and simply connected; and it is known that G must
be soluble [1], [16]. (It has recently been shown by Benoist [2] that these
properties are not sufficient to imply that a Lie group can be realized as a
simply transitive group of affine transformations; his counterexamples are
nilpotent of dimension 11. See also [12] for more examples.)

We shall prove

Theorem D. A group is a standard ACG if and only if it is a Zariski-
dense uniform lattice in a u-connected simply transitive group of affine trans-
formations.

Here, a uniform lattice means a discrete cocompact subgroup. Theorem
D amplifies a result due to Fried and Goldman [10], as does the following
corollary, which is immediate from Theorem D and the preceding discus-
sion:

Corollary D. Every compact affine space form with virtually polycyclic
Sfundamental group has a strict normal covering by an affine solvmanifold.

Crystallographic hulls. What Fried and Goldman show in [10] is that
if A is a virtually polycyclic ACG, then there exists a simply transitive
subgroup G of Aff(V) such that GNA is a Zariski-dense uniform lattice
in G and GNA <, A. This suggests the following question: given a simply
transitive group G and a Zariski-dense uniform lattice T" in G, how much
restriction is there on the subgroups A of Aff(V') such that T <, A and
GNA =T? On attempting to answer this, one finds that here the strict
analogy with the Euclidean crystallographic case breaks down: we show by
examples in §9 that these groups A may lie in infinitely many conjugacy
classes in Aff(V'), and the indices |A: I'| may be unbounded.

However, a weaker analogy survives.

Definition. Let I' be a polycyclic subgroup of GL(W), and G a sub-
group of GL(W). Then G is a syndetic hull for ' if G is closed and
connected, I' is a Zariski-dense uniform lattice in G, and dim G = A(T') .

Here, h(I') denotes the Hirsch length (“rank” in [10]) of the polycyclic
group I'. This definition is a slight modification of one from [10]. It is
shown in [10] and §4 that if " is an ACG, then A(I') = dim ¥V ;so if T
and G are as in the previous paragraph, then G is a syndetic hull for T".
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Definition. Let A be a subgroup of GL(W), and I" a polycyclic sub-
group of A. Then A is a geometrically strict extension of T" if |A: T is
finite and there exists a syndetic hull G for I" such that GNA=T".

We shall prove

Theorem E. If T is a polycyclic ACG, then the geometrically strict ex-
tensions of T lie in finitely many isomorphism classes.

The geometric meaning of Theorem E is that given the space form I'\V',
the space forms A\V corresponding to geometrically strict extensions A
of T lie in finitely many homeomorphism classes; this follows from The-
orem E in view of [10, Theorem 1.20].

In spite of the counterexamples mentioned above, we can retrieve the
full strength of Theorem A, in the present framework, by using a more
stringent concept of hull. Let us call a syndetic hull G for I" a good hull if
u(G) is connected, i.e., if G is u-connected. Define a good geometrically
strict extension as we defined “geometrically strict extension”, replacing
“syndetic hull” with “good hull”. We shall prove

Lemma F. If I is a polycyclic ACG, then every good geometry strict
extension of T is a strict extension of T .

Thus as a special case of Theorem A we can state

Theorem G. Let T" be a virtually polycyclic ACG of type A. Then:

(i) the good geometrically strict normal extensions of T' in A lie in
finitely many conjugacy classes in N ,(I');

(ii) the good geometrically strict extensions of T’ in A have bounded
index, and they lie in finitely many conjugacy classes in A.

Arrangement of the paper. Section 2 is technical. Section 3 gives some
general conditions under which the normalizer of a polycyclic linear group
can be represented as an arithmetic group; this is a major ingredient in
the proof of Theorem B. Section 4 examines syndetic hulls in some detail,
and contains the proof of Theorem D. Section 5 gives a characterisation
of simply transitive groups in terms of unipotent simply transitive groups;
it also contains the proofs of Lemmas C and F.

Theorem B and Corollary B are proved in §6. Theorem A is proved
in §7 which also contains the proof of Theorem E, apart from a techni-
cal step which is made in §8. Section 9 gives examples of nonconjugate
geometrically strict extensions.

Notation.

g =x""gx

la,bl=a""'b""ab

(X): group generated by the set X

[4, B]=([a, bllac A, be B)
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I' =[I', T]: derived group of T

N ,(I'): normalizer of I" in 4

C, () : centralizer of I in A4

Der(I', M) : additive group of all derivations of I' in the I'-module
M

A< B: A is a normal subgroup of B

A< 1 B: A is a subgroup of finite index in B

Fitt(I') : maximal nilpotent normal subgroup of I

u(I') : maximal unipotent normal subgroup of I

x = x,x, = x.x, denotes the multiplicative Jordan decomposition of a
matrix x.

2. The “unipotent shadow” of a polycyclic group

The main results become quite easy to prove when restricted to ACGs
which are unipotent. Our strategy is to associate to each polycyclic ACG
a certain unipotent group (which will turn out also to be an ACG, though
we do not make this explicit), and then to build our arguments around
this unipotent group. The construction is explained in this preliminary
section.

In this section and the next, we work over an arbitrary field k of char-
acteristic zero; the proofs are the same as in the special case where kK =R,
and there is a genuine gain in generality.

We fix a positive integer n and a polycyclic subgroup I" of GL, (k).
We write

T = Zariski closure of T in GL,(k),
U=ul),
F=ul)=UnNT,

and assume that

eV I'<F,

which implies also that

(2) [, TI<F<U.

We write

F® = (x € U|x™ € F for some m # 0,

and for m € N put
F'"™ — (x e FQx™ € F).
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Every element of F ® has some power in F ; every finitely generated sub-
group of F Q js contained in F'/™ for some m; and for each m, the
group F m s finitely generated and satisfies |F Ym. g | < 0.

If X is a nilpotent subgroup of I, then X, ={x,|x € X} and X, =
{x,|x € X} are subgroups of T, the map X — X, xX,, x—(x,,Xx,) isa
homomorphism, and X, is abelian because [I', Il < U ; see [18, Chapter
7, Proposition 3]. It follows that X < Cp(X)).

Put Y = NGL" k)(l")

Proposition 2.1. There exist a natural number m and a nilpotent sub-
group D of F'™T such that:

( i 1 /m D= Fl/mr
(it =(F'™ D) is a finitely generated subgroup of U,

) F

) @ u
(i) Y
(iv) Q is Zariski dense in U ,

(v) |Y: FNy(D)| < |Y: FCy(Dg)| < 00,

(vi) h(Q) < h(r )-

Proof Put G = FOI'. By [18, Chapter 7, Exercise 9], G contains
a nilpotent subgroup X such that G = F ey (the exercise assumes that
G/F @ js free abelian, but this is not needed for the proof). Put Z =
Cs(X,). Then X < Z < C(X,) x X, so Z is nilpotent and X = Z_ .
It follows that Z is a maximal nilpotent supplement for F ®in G (for
if Z< T <G and T is nilpotent, then 7, < Z_ implies 7T < C,(T}) <
Cs(2,)=2).

For me N,put DIM)=ZnF mp . Since T is finitely generated
and Fr = G = F%z , there exists e such that Fler = Fl/eD(e); then
F'" = F/™D(m) and FOI = F®D(m) for every multiple m of e.
Given any such m, we see as above that D(m) = Z_, and (similarly to
the above) that D(m) is a maximal nilpotent supplement for F t/m
F'™T . Moreover,

Ny (D(m)) < Ny(D(m),) = Ny(Z)) < Ny(Cpimp(Z;)) = Ny(D(m)) ;
consequently

normalzzes Q,

in

N, (D(m)) =N,(Z)=N
say, independently of m .

According to [18, Chapter 3, Theorem 4], the maximal nilpotent supple-
ments for F/¢ in F'* lie in finitely many conjugacy classes. As D(e)”
is such a supplement for each y € Y, and |F Ve. F | is finite, it follows
that |Y: N, (D(e))F| is finite. In other words, |Y: NF]| is finite.
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Let y,, --- , y, represent the right cosets of NF in Y. By [18, Chap-
ter 7, Exercise 9] (quoted above), the maximal nilpotent supplements

for FQ in G are all conjugate. Hence for i = 1, .-, r there exists
x;eF Q such that Z* = Z* . We now choose a multiple m of e so that
{xl’ cee ’xr}gFl/m'

Put D = D(m). Then (i) holds, as clearly does (ii). Suppose y € Y.
Then y € NFy;, = Ny,F for some i, so there exists x € F with

Y VX XX
z> =272 =z

Since D = Cymp(Z,) this implies D’ = D*>* , and hence D, = D" . As
x;x € F'/™ it follows that Y normalizes Q = (F'/™
(iii).

Let O be the Zariski closure of Q in I'. Then Q«I', since @ > F >
[, I']. We may assume without loss of generality that k is algebraically
closed. Then I'/Q is an algebraic group containing the Zariski-dense sub-
group QI'/Q = 0OD,/Q. Since D, is a diagonalizable group, so is I'/Q.
It follows that U < Q; thus (iv) holds.

As for (v), we have seen that N, (D) =N, (D) = N and that |Y: NF|
is finite. Since D, is a diagonalizable group, [N, (D;): Cy(D,)| is also
finite.

Finally, we consider h(Q). Now D has a subgroup E of finite index
such that E, normalizes F 1/m [18, Chapter 7, Lemma 7]. Then E, < 7
D, and D,2D/D,D,, so

h(E,) = h(D) - h(DND,).

, D,); so we have

Also
F'"nE<F""nE <F'"nD,<Cpm(D,)=F""nD,

so h(F'/™ N E,) = h(F'™ n D). Therefore

mE ) =n(F'"™) +n(E,) -h(F'/"nE,)

=h(F/™) +n(D) - n(F'"" nD)-h(DND,)
=h(F/"D)-n(DnD,).

h(F

But FY/ ”’Eu < Q, since Q is a finitely generated nilpotent group, gen-
erated by the elements each of which has some positive power lying in
F'"E,; so h(Q) = h(F/"E,). Also T <, F'/"I' = F'/"D. Thus

u?

h(Q) <h(I).
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3. Normalizers of polycyclic subgroups

We keep the notation of §2; in addition, we fix a Zariski-closed subgroup
A of GL,(k), so that 4 = &/ (k) is the group of k-rational points of
a linear algebralc k-group & . For a subgroup H of &/, the Zariski-
closure of H in & is denoted H ;thusif H < A we have H = H(k) =
HnGL, (k).

We assume that the polycyclic group I is contained in A4, and put

Y,=N,D)=4nY, #=u.

Note that then U = Z (k). We assume further that the following hold:

(3) T is Zariski connected,
4) dim% = h(),
and

(5) Cs (T) is unipotent.

Since T'« f’A , we also have % « f’A , so the adjoint representation of f’A
restricts to a k-rational morphism p: f’A — GL(Z), where .Z is the Lie
algebra of 7 .

A subgroup A < GL(2) is arithmetic if, for some Q-structure on
Z , there exists an algebralc Q-subgroup # of GL(Z) such that A is
commensurable with #(Z). This is equivalent to the following, which
may be taken as an alternative definition: there exists a full Z-lattice A in
Z such that A is a subgroup of finite index in a Zariski-closed subgroup
of GL(A).

The aim of this section is to establish

Proposition 3.1.  p(Y,) is an arithmetic group.

This is the main step in the proof of Theorem B, which will be completed
in §6.

- Once we have defined Y, the algebraic group & plays no further role.
So to simplify notation, we may as well assume that 4 = ?A . Thus Ta/ ,
and p is defined on ./ . Note that now kerp = C_ (%).

In the following, we write stab 2( k)(A) for the set of all x € # (k) such
that p(x) fixes A.

Lemma 3.2. There exist a full Z-lattice A in & and a Zariski k-closed
subgroup # of & such that:
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(i) Cy(#)=C,I),

(i) p(Y,) stabilizes A, and putting 11 = stab g, (A),

(iii) IInY, <, II,

(iv) (INY)F<,7Y,.

Recall that F=UNT .

Before proving this, we complete the

Proof of Proposition 3.1. Fix a Z-basis for A and thereby identify
GL(<) with the algebraic matrix group GL, , where » =dim L (= h(T),
by (4)). Then

(6) (p(Y,), p(I) < GL,(2).

Now hypothesis (5), with Lemma 3.2(i), implies that p(Z (k)) = p(%)(k)
[4, Corollary 15.7]. Also p(%(k)) NGL,(Z) = p(II), by the definition of
I1. It follows that

p(Il) = p(&)(k) N GL,(2) = p(#) N GL,(Z).

Thus p(I1) is Zariski closed in GL,(Z), and so p(Il) is an arithmetic
group. With Lemma 3.2(iii) this shows that p(IINY,) is arithmetic.

The group p(F) is a unipotent subgroup of Gl,(Z), so p(F) is arith-
metic. Since F «Y,, p(IINY,) normalizes p(F). It follows that
p((IINY,)F) is arithmetic also (see Lemma 3.3). Then Lemma 3.2(iv),
with (6), shows that p(Y,) is an arithmetic group. This establishes Propo-
sition 3.1, modulo Lemma 3.2 and the following

Lemma 3.3. If ©,Y < GL,(Z) are arithmetic groups, and © normal-
izes ¥, then YO is an arithmetic group.

Proof. Let R, N be the Zariski closures in Gl, of © and ¥ re-
spectively. Then R normalizes N. Let G be the Zariski closure of
RN . Then N <G, so there exists a Q-rational epimorphism 0: G — H ,
for some algebraic Q-group H, with ker@ = N. Thus 6(R) is Zariski
closedin H, and RN = 0'10(R) is also so in G, whence G = RN, and
H = 6(R). Since O is an arithmetic subgroup of R, Borel’s theorem [6,
Theorem 6] shows that 6(6) is an arithmetic subgroup of H . Similarly,
0(G(z)) is an arithmetic subgroup of H; as © < G(Z), it follows that
6(8) <, 6(G(2)) . Therefore N® <, NG(Z), and by taking the intersec-
tion of NG(Z) with GL,(Z) we obtain N(Z)® <, N(Z)G(Z) = G(Z).
Since |[N(Z): Y| is finite, it follows that VO < P G(Z), showing that Y@
is an arithmetic subgroup of G.

Remark. Readers familiar with the Galois cohomology of alge-
braic groups will see that the hypothesis (5) could be weakened to that
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H'(k, C; () is finite. The only change in the proof is that now p(II)
has finite index in p(Z)NGL,(Z), instead of being equal to it. Note that
this weaker condition is satisfied whenever k is a local field (including the
case k =R; see [7]):

Proof of Lemma 3.2. Let Q = (F'/™, D,) be the subgroup of U given
in Proposition 2.1. We take A = ZlogQ C .%, where log denotes the in-
verse of the exponential map . — % . Since Y normalizes Q, certainly
p(Y,) stabilizes A, and (ii) holds.

Since Q is Zariski dense in % , the set logQ is Zariski dense in &,
and consequently A spans ¥ . Now Q% = exp(QlogQ) is the Mal'cev
completion of Q, and it follows from the theory of the Mal'cev corre-
spondence that dimg(QlogQ) = h(Q). Therefore A is a free Z-module
of rank h(Q). Since h(Q) < h(I') = dim.% and A spans &, this implies
that h(Q) = h(I') and that A is a full Z-lattice in & .

Next, we define % by

% =C,(D,),

where D is the subgroup of F /mp given in Proposition 2.1. Since I' <

UD, < T, it is clear that C,(#) = C_(I'), so we have (i). Since Y,

stabilizes A, it follows from the definition of IT = stab(A) that IINY, =

CYA(DS) . Hence, by Proposition 2.1(v), (IINY,)F <, Y,, giving (iv).
Finally we prove (iii). First of all, we claim that

(7) T, ] <F.

To see this, note that f/?/ is an algebraic torus, normal in & /% . This
implies that T'/% is central in % °/% [4, §8.10], so [, #°] < % . Then
r,y, ﬂ%o] <I'nZ =F.But Y, Nn° is Zariski dense in &° (since
we have assumed that f’A =47), so (7) follows. Next, put

Q,=(expA), M=QnF.

Then Q, is a finitely generated subgroup of QQ (this can be deduced,
for example, from [18, Chapter 6, Lemma 1]); and M is the isolator of
F in Q,, because the vector space QlogF is Zariski closed in the space
QlogQ,. Thus F <; M, and it follows that I <; MD; note that D

normalizes M , since D < F'/™T < QY implies that D normalizes Q, .
Now let x e IN#°, h € M, and g € D. Then g, € Q, and

g, =g,. Clearly Qf = Q, which together with (7) shows that »* € M
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-1 ..
and g, g, €M, giving

X x x -1
(hg) =h"-g,8, -8,8 € Mg.

Thus IIn° normalizes MD . As MD has only finitely many subgroups
of index equal to |MD: T, some subgroup of finite index in 1N 0
normalizes T, and since |IT: TIN%/°| is finite, we conclude that |I1: [INY ol
is finite, as required.

4. Hulls

Here we collect a number of results concerning syndetic hulls, and give
the proof of Theorem D.

We keep the notation of §1, so W is a real vector space, W =V &R,
and Aff(V) < GL(W). By an ACG we shall mean a discrete subgroup of
Aff(V) which is acting properly discontinuously and cocompactly on V.

Fix a standard subgroup I" of GL(W), and write F = u(l'), U = u(T).
Then T'< (T),,s0 ' < F=UNT and T =T <F<U<(T),;tosee
the first equality, note that T is Zariski closed since it is closed, connected
and unipotent.

Proposition 4.1.  There exists a syndetic hull G for T satisfying F < G .

Proof. Let n: E — (T‘)O/F_ be a universal cover of the connected
abelian Lie group (f)0 /F and put K = kern. Then E is a vector group,
and K is a discrete subgroup of E .

Now F =I'nF is discrete and cocompact in F, and dimF = h(F)
(see [17, Chapter II]). As T" is discrete in (f)0 , this implies that FF/F
is discrete in (T),/F . It follows that n~'(I'F/F) = S, say, is a discrete
subgroup of E. Since I' is standard, I'/F is a free abelian group. There-
fore so is S/K, and also so S = K & P for some subgroup P. Note that
n/p maps P isomorphically onto T'F/F .

Let P be the vector subspace of E spanned by P, and define G < (T),
by G/F = n(P). We claim that G is a syndetic hull for T".

Certainly G is closed and connected, and ' < G <T. Also dimG =
h(T'), since dim(G/F) = dim(P) = h(P) = h(['/F), as P is a discrete
subgroup of E , and dim(F) = h(F) as observed above. We have seen that
F/(I'nF) is compact; and G/(yF) is compact because it is homeomorphic
to P/P. It follows that G/T" is compact. This completes the proof.

Remark. The above construction was inspired by the work of Fried
and Goldman [10]. The reader is warned, however, that the construction
given in §1.10 of [10] does not work: the group it produces has too large a
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dimension, in general. The fault is easily repaired by using our argument
instead. For an explicit example, see §9.

Lemma 4.2. Let I" be as above and assume that Fitt(I') = w(I'). Let

G be a syndetic hull for T'. Then the following are equivalent:
(a) u(G) is connected,
(b) w(G)=F;
(c) FLG.

Proof. Since u(G) is connected if and only if it is Zariski closed, and
since F < u(G), we see that (b) = (a) = (c). Assume now that F < G.
Let L be the Lie algebra of F and put A = ZlogF C L; then A is
a full Z-lattice in L, and we identify A with 7% and L with R? by
choosing a basis for A. Write p: T — GL|(L) = GL,(R) for the adjoint
representation of I' on L. Then p(I') < GL,(Z), so the Zariski closure
H of p(I') is defined over Q, as is the group u(H). Note that p(G) < H
since G <T. Put L,=0,and for i >1 let L,/L, , be the fixed-point
space of u(H) in L/L, ;. Then 0 =L, <L, <---<L, = L for some
r, and each L; is an H-invariant subspace of L defined over Q. The
action of H on L induces a Q-rational representation

w:H- [[GLL,/L_)),
i=1
with kery = u(H); and w(H(Z)) is contained in an arithmetic sub-
group of w(H), by an elementary property of Q-rational representations.
Therefore, w(H(Z)) is discrete in y(H); as p(I') < H(Z) it follows that
u(H)p(I) =y~ 'yp(I) is closed in H .
Put X = Gnp '(u(H)). Then p(X) = p(G)Nu(H), so

p(XT) = p(G) nu(H)p(T)

by the modular law. Therefore p(XT) is closed in p(G), and so XT is
closed in G. Since G/T" is compact, so is XI'/I". Therefore X/(X NT)
is compact. But X is nilpotent, since G/F is abelian, so

XNT<Fit(N=F < XnT,
showing that X/F is compact. Now clearly
F<F<uG)<X,

and u(G) is closed in X . Therefore u(G)/F is compact, and as u(G)
is unipotent it follows that u(G) < F. Thus (c) = (b) and the proof is
complete.



AFFINE CRYSTALLOGRAPHIC GROUPS 577

Lemma 4.3. If A < Af{(V) is a virtually polycyclic ACG, then h(A) =
dim(V).

Proof. By going to a subgroup of finite index, we may assume that A
is torsion free and polycyclic. Then the cohomological dimension cd(A)
of A is equal to h(A) [3]. On the other hand, the compact manifold
A\V isa K(A, 1) (see, e.g., [8, Chapter I, §4]); this implies that cd(A) =
dim(A\V) = dim(¥) (see [8, Chapter VIII, Proposition 8.1]).

Proposition 4.4. Let I" as above be an ACG, and let G be a syndetic
hull for T'. Then G < Aff(V'), and the affine action of G on V is simply
transitive.

Proof. Let K be a maximal compact subgroup of G. According to [8,
Chapter VIII, §9, Example 4],

cd(T) = dim(G) — dim(K).

As dim(G) = h(I'), by definition, it follows that dim(K) = 0, and since
G is connected this implies that K = 1 (see for example [22, Chapter 3,
Exercises 42 and 36]). Thus G has no nontrivial compact subgroups.

Since G < T by definition, G < Aff(V). As I acts freely on V
and G/I' is compact, the stabilizer in G of each point of V' is compact.
Hence, by the previous paragraph, G acts freely on V. Lemma 4.3 shows
that dim(G) = h(I') = dim(¥") ; therefore the orbits of G in V' are open,
and as V is connected it follows that the action of G on V is transitive.

Remark. This argument is similar to one used in [10]. Fried and Gold-
man do not require that dim(G) = h(I"), merely that dim(G) < h(I') ; this
will clearly suffice for our proof also, which then implies dim(G) =h(T').

Lemma 4.5. Let S be an abelian subgroup of Aff(V) which is diago-
nalizable over C. Then S has a fixed point in V .

Proof. A(V) acts on C™! = CV x C and fixes the complex hyper-
plane CV x 1. Now S has an eigenvector (w,4) € CV x C with
A # 0. Since S < Aff(V), the point (A"'w, 1) is fixed by S. Then
U= %(A‘lw + (A"'w)) is a fixed point of S in ¥, where the bar denotes
complex conjugate.

Lemma 4.6. Let I" as above be an ACG and let G be a syndetic hull for
I'. Let N be the maximal nilpotent closed normal subgroup of G. Then
N =u(G) and N nTI =Fity(I'). Consequently, Fitt(I') = u(T’).

Proof. The group N, = {u]Ju € N} is a diagonalizable (over C)
abelian subgroup of Aff(V). By Lemma 4.5, the set T of fixed points
of n, in V is nonempty. But G fixes T and acts transitively on V', so
T =V . It follows that N, =1, s0o N is unipotent. As U(G) < N we get
N =u(G).
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As Fitt(T)«T and G <T we see that Fitt(l)NG < N. From this it is
clear that I'n N = Fity(I) .

Proof of Theorem D. 'We have to show that a standard ACG is the same
thing as a Zariski-dense uniform lattice in a simply transitive u-connected
subgroup of Aff(V).

Suppose G < Aff(V) is simply transitive and u-connected, and let A
be a Zariski-dense uniform lattice in G. As A is discrete in G, its ac-
tion on V is properly discontinuous; and A\V is compact because it is
homeomorphic to A\G. So A is an ACG. Since A < G <A and G is
connected, A < (A),. Finally,

A/u(A) = Au(G)/u(G) < G/u(G);

since G is soluble, connected and simply connected, and u(G) is con-
nected, G/u(G) is a vector group. Hence A/u(A) is torsionfree. Thus A
is standard.

For the converse, we may take I, as above, to be an ACG. By Propo-
sition 4.1, T has a syndetic hull G with F < G. Lemma 4.6 shows that
Fitt(I') = u(I') = F, and it follows from Lemma 4.2 that u(G) is con-
nected. Proposition 4.4 implies that G is a simply transitive subgroup of
Aff(V). As T is a Zariski-dense uniform lattice in G by definition, this
completes the proof.

In the course of the argument, we have more or less proved the follow-
ing:

Propesition 4.7. Let A be a polycyclic ACG.

(i) A is standard if and only if A possesses a good hull.

(i) Suppose A < G < A; then G is a syndetic hull for A if and only if
G is a simply transitive subgroup of Aff(V).

We leave it to the reader to fill in the details; note that if A has a
syndetic hull G, then G is also a syndetic hull for A*, so G is a simply
transitive subgroup of Aff(}') by Proposition 4.4.

5. Simply transitive groups

As in the introduction, 4 will denote a Zariski-closed subgroup of
Aff(V); though as far as this section is concerned, we may as well take
A= Aff(V).

LemmaS5.1. If H<Af{(V) and H acts transitively on V , then C ,(H)
is unipotent.

Proof. Suppose x € C ,(H) is semisimple. By Lemma 4.5, x has a
fixed point w, say,in V. Then h-w is fixed by x for every h € H, and
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as H is transitive on V' it follows that x = 1. Thus C,(H) contains no
nonidentity semisimple elements, and as C,(H) is Zariski closed it must
be unipotent.

Proposition 5.2. If G is a simply transitive subgroup of Aff(V'), then
u(G) is also simply transitive.

This result is due to Auslander [1]; it is included in Theorem 5.5, which
we shall prove below.

Lemma 5.3. Let G < Afl(V) be simply transitive, and let A be a vir-
tually polycyclic ACG. Then the following groups are all unipotent. C,(A),
C,(u(qd)), and C,(u(G)). .

Proof. The result for C,(u(G)) follows from Proposition 5.2 and
Lemma 5.1. Now put I' = A*. Then T is a standard ACG, so by Theorem
D we may suppose that I' < G <T. Thus

C,(8) < C, (1) =C, () <C,(G);
and as (A)° = (T)° we have
u(d) = u() > u(G),

so C A(u(Z)) < C,(u(G)) . Hence the remaining claims follow from Lemma
5.1 and the first part.

Lemma C. If A is a virtually polycyclic ACG, then Fitt(A) = u(A).

Proof. Put R =Fitt(A) andlet I' = A*. Then RNT = Fitt(I'), which
is unipotent by Lemma 4.6. Since RNTI has finite index in R, the group
R, = {x/|x € R} is finite. Since I" clearly normalizes R_, the subgroup
Cr(R,) = C, say, has a finite index in T". As T is Zariski connected,
this implies that C =T, so that R < Camr) (T), which is unipotent by
Lemma 5.3. Hence R, = 1. Therefore R < u(A), and the result follows.

Lemma F. Let I" be a polycyclic ACG. Then every good geometrically
strict extension of T is a strict extension of T".

Proof. Suppose A is a good geometrically strict extension of I". Then
I' has a good hull G such that GNA =T. Now u(G) is connected, so
Zariski closed. Therefore u(I') = u(G) Nu(A) is Zariski closed in u(A).
But u(I') has finite index in u(A), so u(I'’) = u(A) . Lemma C shows that
Fitt(A) = u(A). Thus Fitt(A) <T", and the result follows.

For technical reasons, we shall need the following stronger version of
Lemma 5.3; here, A denotes the Zariski closure of A in the algebraic
group GL(CW).

Lemma 5.4. If A is avirtually polycyclic ACG, then C Z(A) is unipotent.

Proof. We may assume, without loss of generality, that 4 = Aff(V).
Put C = C,(A) and C = C(A). Lemma 5.3 implies that C is unipotent,
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so it will suffice to show that C is Zariski dense in C.

Of course, C = C(R), so we only require the R-rational points to be
Zariski dense in the algebraic group C. That this is so follows from the
fact that C is defined by linear equations over R; namely gh = hg and
(g—NweV,where geC, heA, weW.

We conclude this section with a digression. The following theorem
shows that in order to classify simply transitive groups of affine transfor-
mations, it is sufficient, in principle, to classify the unipotent ones (this
idea is used implicitly in [13], for example). This may be seen as a con-
tribution to the problem of classifying standard ACGs.

Theorem 5.3. (i) A closed subgroup G of A is simply transitive if and
only if the following holds: there exist a simply transitive unipotent subgroup
U of A and a diagonalizable subgroup S of N (U) such that

(8) [U,S1<G, GS=US, and GnS=1.

In this case, U =u(G).
(ii) Given U and S as in (i), the closed subgroups G of A satisfying
(8) are precisely the sets of the form

(9) G={x-x0|x e U},

where 0: U — S is a continuous homomorphism with [U, S] < ker@.

(iii) The group G in (9) is u-connected if and only if ker 6 is connected.

Proof. (i) Suppose G is simply transitive. Then G is soluble, con-
nected, and simply connected. Put U = u(G), N = (UnNn G),, and let
H be a Cartan subgroup of G. Then H is nilpotent and G = NH.
Put § = H,. Then § is diagonalizable, since H is connected, and S
normalizes U because S < G. '

Now NH, is connected and unipotent, so it is Zariski closed. Since
G < NH,-S it follows that (_;/NHu is contained in a diagonalizable
algebraic group, whence u(@/NHu) = 1. This implies that U = NH,.
Thus

GS = NHH,= NH,H, = US.

Since S < H and H normalizes N, which is Zariski closed, S nor-
malizes N. So

[U,S]1=[NH,,S]=[N,S]I<N<G.

Also GNS =1 because every semisimple affine transformation has a fixed
point, by Lemma 4.5.
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Conversely, suppose G satisfies (8). By Lemma 4.5 the group S has a
fixed point w on V. Then

Gw=G6Sw=USw=Uw,

so G acts transitively on V' if and only if U does. If G is transitive,
and g € G fixes a point of V', then some conjugate 2 of g fixes w.
Now hs € U for some s € S, and hs fixes w; so if U acts freely we
have hs = 1. Therefore h € GNS =1 imply that g = 1. Thus G acts
freely on V. The same reasoning with the roles of U and G reversed
shows that if G acts freely on V', then so does U.

Since U is connected, U = U, and so U «G. We see as above that
u(G/U) = 1. This shows that u(G) = U .

(i1) An elementary calculation yields that the set G in (9) is indeed a
group satisfying (8). Using the fact that the projection mapping n: US —
S is continuous, it is also easy to verify that G is closed in 4 provided
@ is continuous.

Conversely, suppose we have a group G satisfying (8). Then for each
x € U there is a unique s € S with xs € G, and we define 6: U — S
by x6 = s. Thus ker@ = GNU > [U, S], and it follows that 0 is a
homomorphism. Since § can be written as a composition U - V - G 5
S, where U - V and V — G are homeomorphisms, we see that 6 is
continuous.

(iii) is clear, since (G) =GNU =ker§.

For an example of a group as in (9) and some further comments on the
classification of simply transitive affine groups, see §9.

6. The normalizer of an ACG

Now we are going to prove Theorem B. We shall say that a group G is
of type #PRF/ if G has a chain of normal subgroups

(10) G, <G,<G,<G,

such that G, is a connected nilpotent Lie group, G,/G, is polycyclic,
G,/@, is finite, and G/G, is isomorphic to an arithmetic group. G is
of type #ZFF (respectively, /P, /PY) if G =G, (respectively, G =
G,,G,=G,).

Lemma 6.1. Let G be a group of type /RS , and let m be a natural
number. Then the subgroups of order dividing m in G lie in finitely many
conjugacy classes.

Proof. Let G; (i =1,2,3) beasin (10). A theorem of Borel and
Harish-Chandra (see [5]) shows that the finite subgroups of G/G, lie in
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finitely many conjugacy classes. So it will suffice to consider the finite sub-
groups of G,, where G,/G, is some fixed finite subgroup of G/G,. Then
G,/G, is virtually polycyclic. A theorem of Mal'cev (see [18, Chapter 8,
Theorem 5]) implies that the finite subgroups of G,/G, lie in finitely many
conjugacy classes. Thus we are reduced to considering the finite subgroups
of H, where H/G, is a finite subgroup of G,/G,.

Let Z be the center of G,. Arguing by induction on the nilpotency
class of G, , we may suppose that the subgroups of H/Z of order dividing
m lie in finitely many conjugacy classes. Thus we may fix K/Z < H/Z |
with |K/Z| dividing m, and consider subgroups A of K such that |A||m
and ZA =K. Now Z is a connected abelian Lie group, so the elements
of order dividing m in Z form a finite subgroup. Hence there are only
finitely many possibilities for the group AN Z . Fixing a finite subgroup
F of Z,with F 4K, we are left with showing that the complements for
Z/F in K/F lie in {nitely many conjugacy classes. Let {: Z/F — Z/F
be the map x — x™ . The exact sequence 1 — ker{ — Z|F i Z|F -1
yields an exact sequence

H'(K/Z,kerl) — H'(K/Z,Z/F)% H'(K/Z , Z/F).

But |K/Z||m implies that {* is the zero map, so H'(K/Z, Z|F) is
finite since ker( is finite. Hence the result follows.

Lemma 6.2. Let A be an arithmetic group, G a polycyclic normal
subgroup of A, and F a finite normal subgroup of A. Let G be the
Zariski closure of G in A. Then G is polycyclic, and both A/G and A/F
are isomorphic to arithmetic groups.

Proof. F is Zariski closed in A, and G<A. That 4/G and A/F
are arithmetic follows from Borel’s theorem on homomorphic images of
arithmetic groups, [6, Theorem 6]. G is polycyclic because it is soluble
and linear over Z [18, Chapter 2, Corollary 1].

Now we recall the conventions of §1: W denotes a finite-dimen-
sional vector space, W = V @ R, and A is a Zariski-closed subgroup
of Aff(V) < GL(W).

Proposition 6.3. Let J be a closed subgroup of GL(W), T' a polycyclic
closed normal subgroup of J, and A/T" a finite subgroup of J/T'. Put
H =N, (A). Suppose there exists an R-rational homomorphism of J onto
an arithmetic group, with unipotent kernel. Then:

(1) H is of type NP/ , and contains a closed normal subgroup K of
type NP such that H/K is isomorphic to an arithmetic group;

(i) KA/A isof type /P, H/KA is isomorphic to an arithmetic group,
and H/A is of type NPV
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(iii) for each positive integer m, the finite subgroups of H/A with order
dividing m lie in finitely many conjugacy classes.

Proof. Let p be the given homomorphism of J. Put C =kerp, and
M = p~'(p(T)) where p(T) denotes the Zariski closure of p(I') in the
arithmetic group p(J). Then M is closed and normal in J. Lemma
6.2 shows that J/M is isomorphic to an arithmetic group and that M/C
is polycyclic. Also C/C, is polycyclic (see [17, Chapter II}), so M/C,I"
is polycyclic. Since C\I'/T = C,/(C,NT) is a connected nilpotent Lie
group, MA/T is a group of type S#ZPF . Lemma 6.1 now implies that
the J-conjugates of A/I" lie in finitely many conjugacy classes of MA/T".
Consequently HM has finite index in J. Thus HM/M < s J/IM is
isomorphic to an arithmetic group.

Since I' is closed in J, so also are A in H. Therefore HN C
is a closed unipotent subgroup of GL(W); as above, we conclude that
(HNM)/(HnC), is polycyclic. Now put K = HN M. Then K is
of type #Z# and H/K = HM/M, so (i) follows since the connected
nilpotent Lie group (H N C), is normal in H .

For (ii), note that KA/K is a finite normal subgroup of H/K , since
I'< HNM,so H/KA is arithmetic by Lemma 6.2. The rest is clear.

Part (iii) follows from (ii) and Lemma 6.1.

Proof of Theorem B. A is virtually polycyclic ACG, contained in 4.
Putting H = N (A), we shall show that H satisfies the conclusions of
Proposition 6.3.

Put I = A", as defined in §1, and put J = N 4() . Since, clearly,
['<«H, we have H = N,(A), so the notation is consistent with that of
Proposition 6.3. Thus the result will follow if we can exhibit an R-rational
homomorphism p of J onto an arithmetic group, such that kerp is
unipotent.

To do so, we invoke Proposition 3.1. Put U = u(T') and C =C,(U).
We must verify the statements (3), (4), and (5) of §3 which are hypotheses
for Proposition 3.1.

(3) The Zariski closure of I' in Aff(CV) is Zariski connected. This is
clear since T € (T),.

(4) This is equivalent to dim(U) = h(I"), which follows from Lemma
4.3 and Proposition 5.2.

(5) CHT') is unipotent, where J is the Zariski closure of J in Aff(CV).
This follows from Lemma 5.4.

Proposition 3.1 therefore shows that the adjoint representation p of
J on the Lie algebra of U maps J onto an arithmetic group. Clearly
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ker p = C; and Lemma 5.3 implies that C is unipotent, completing the
proof.

Now suppose that A, as above, is torsion free.

Lemma 6.4. The kernel of the natural epimorphism mn: N, (A) —
Aut (A\V) is exactly A.

Proof. Certainly A < kern. Now suppose x € kern. Then for each
v € V there exists y, € A such that x-v =y, -v. Thus V is the union
of its affine subspaces

Vi, ={veVlx-v=y-v},

as y runs over the countable group A. But a countable collection of proper
affine subspaces cannot cover V. Therefore V - ;= V for some y € A,
and then x =y € A. Thus kerm <A.

Proof of Corollary B. By Lemma 6.4 we may identify Aut,(A\V) with
H/A. We have shown that the conclusions of Proposition 6.3 hold. Thus
KA is a closed normal subgroup of H. So KA is a Lie group, and KA/A
is a Lie group of type .#Z7 . Hence H/KA is isomorphic to an arithmetic
group.

7. Strict extensions

Let Aut(A), Out(A) denote the automorphism group and outer auto-
morphism group of a group A. It is known that if A is virtually poly-
cyclic, then the finite subgroups of Aut(A) lie in finitely many conjugacy
classes [18, Chapter 8, Theorem 5]). Using the technique of Lemma 6.1,
one can show that the same is true for Out(A). However, the following
weaker result suffices for present purposes:

Lemma 7.1. If A is a virtually polycyclic group, then the finite subgroups
of Out(A) have bounded order.

Proof. A recent theorem of Wehrfritz [23] shows that Out(A) is iso-
morphic to a linear group over Z, and therefore virtually torsion free.
Hence the lemma follows.

We shall denote by g(A) the l.c.m. of the orders of all finite subgroups
of Out(A).

Lemma 7.2. Let A be a virtually polycyclic ACG. If © is a strict normal
extension of A, then |0: A]|g(A).

Proof. By definition, u(8) < A. Lemma 5.3 shows that Cg(A) <
u(8) . The result follows since ©/AC,(A) is isomorphic to a subgroup of
Out(A) . .
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Proof of Theorem A (i). Now A is a virtually polycyclic ACG of type
A ; the claim is that the strict normal extensions of A in A lie in finitely
many conjugacy classes in 4.

Proposition 6.3(iii), together with the proof of Theorem B in §6, show
that the subgroups of N ,(A)/A of order dividing g(A) lie in finitely many
conjugacy classes. Thus the result follows from Lemma 7.2.

For the second part of Theorem A, and for Theorem E, we have to
consider extensions which are not normal. We fix a standard ACG I,
and use the notation of §4, so U = u(T'). Put D = r , and recall that

D=T <U. Let _
H = Ng; (D).
Then H/U is the group of real points of a linear algebraic group [4,
Corollary 15.7], and T/U is (the group of real points of) a normal alge-
braic torus in H/U . Therefore |H: CH(T/U)| is finite [4, §8.10]. Put
s=|H: CH(T/U)| ,and r = dim(U/D), and denote by g(r) the l.c.m. of
the orders of finite subgroups of GL, (Z),so g(r) = g(Z") in our previous
notation.
Lemma 7.3. If T <, 0< GI(W) then

(i) 18: Co(T/U)]ls,
(i) |8: Co(I'/D)||sg(r).

Proof. Since T is Zariski connected, we have I' =T, whenever I'; <
I". Hence for the purposes of this proof, we may replace I" by a suitable
I', and assume that ' <®. Therefore § < H and |©: Cg(I'/U)||s. This
establishes (i). For (ii), let us write A = Ce(l—“/ U), &= Ce(l_"/D) , and
note that T <P <A.

Now Proposition 2.1 shows that U contains a Zariski-dense finitely
generated subgroup Q such that u(I') < @, Q is normalized by A, and
h(Q) <h(I). As hK(I') = dim(¥) = dim(U), by Lemma 4.3 and Proposi-
tion 5.2, Q is a uniform lattice in U. Since I"' < u(') < Q, @ND is
Zariski dense in D and D/(QN D) is compact. It follows that QD/D is
a uniform lattice in U/D =R, so that QD/D = Z'.

Let u: A — GL,(Z) denote the conjugation representation of A on
OD/D. Then u(A) is finite, since I" < ker u. Therefore |u(A)||g(r). It
follows that X = keru satisfies |©: X||sg(r), [U,Z] <D, and [T, Z] <
U. Now X/® embeds in the vector group Der(I'/U, U/D), via the map
o®— (Ux—[0o,x]D) (6€X, xeT). But T/® is finite since I' < ®;
so @ =X and (ii) follows.

Proof of Theorem A (ii). Given a virtually polycyclic ACG A of type
A, we have to show that the strict extensions of A in 4 have bounded
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index, and lie in finitely many conjugacy classes in 4.

We take I' = A* in the above discussion, and for each strict extension
© of A write 8, = Ce(f/U). Then Lemma 7.3(i) shows that |©: 6, ||s.
On the other hand,

[, 8,1<6,nU <u®)<u) = ul),

so I'«©, . Hence by Lemma 7.2 we have |©,: I'||g(I') . Thus each strict
extension © of A satisfies

1©: A|18: T|sg(T") = sg(A"),

which establishes the first claim.
Now put m = sg(I"). For each © as above we have

A™u(A) < 8Mu(A) <A,

and 6 is a strict normal extension of ©™u(A) since u(A) = u(8). As
A/A™u(A) is finite, there are only finitely many possibilities for the group
6"u(A) ; call them A, -+, A,,and for each i let 2] be the set of strict
extensions 6 of A such that © < 4 and 8"u(A) = A;. Theorem A(i)
shows that 27 consists of finitely many conjugacy classes of subgroups in
N ,(4,); the second claim thus follows.

The remainder of this section is devoted to the proof of Theorem E. We
keep the notation introduced above, and fix an ACG A such that T' = A"

Lemma 74. If © is a geometrically strict extension of A then
|8: Ng(A)| Isg(r).

Proof. By definition, there exists a syndetic hull G for A such that
®NG=A. Then G< (A)y=T), and G >A" >T'. As G isa
closed connected subgroup of the unipotent group U, it follows that G
is Zariski closed and hence that G =I" = D. Soif X = Ce(l_“/D) we
have

[A,Z]<ON[G,Z]<OND<A.
Thus X < Ng(A) and the result follows from Lemma 7.3(ii).

Let Z denote the center of A, put K = Z 1A', and let T/K be the
torsion subgroup of Z/K .

Lemma 7.5. Let © be a geometrically strict extension of A, and let
¥ = ACg(A). Let X be the center of Y. Then the following hold:

(i) Y=AX.
(i) Z <X and X/T is torsion free.

Proof. Put X, = C,(A). Then X, is unipotent, by Lemma 5.3, so
X, < U since |6: T is finite. As U <T <A it follows that ¥ = AX, <

A. Therefore X, centralizes ¥, so X; = X and (i) holds.
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Now let G be a syndetic hull for A such that 6N G = A. As we have
seen before, G' is Zariski closed; since K = ZNA' < G’ it follows that
K < G'. Hence

XNK<XNG=XNALZ.

It is clear that Z < X ; thus XNK = ZNK. As X is unipotent, this
implies that X/(Z NK) is torsion free. As Z is unipotent, ZNK =T .
Therefore we have (ii).

For the final step we make a purely group theoretic observation: given
the polycyclic group A, there are only finitely many isomorphism types of
groups ¥ which contain A as a subgroup of finite index and satisfy (i) and
(i1) of Lemma 7.5 (with X the center of ¥). Postponing the proof to the
next section, we now complete the

Proof of Theorem E. The claim is that the geometrically strict exten-
sions of A lie in finitely many isomorphism classes. By Lemma 7.5 and
the remark above, the groups ACg(A) lie in finitely many isomorphism
classes, when © ranges over all geometrically strict extensions of A. It
will suffice, therefore, to consider such groups © for which ACg(A) is
isomorphic to a fixed group W, say.

Let © be one of these groups. Then Ng(A)/ACg(A) is isomorphic to
a subgroup of Out(A), so |[Ng(A): ACg(A)||g(A). Lemma 7.4 shows that
|©: Ng(A)||sg(r). Thus © contains a subgroup isomorphic to ¥ and
of index dividing sg(r)g(A). By [18, Chapter 8, Theorem 6], the groups
O satisfying this condition lie in finitely many isomorphism classes. This
completes the proof, modulo the result of §8.

8. Finite extensions of polycyclic groups

Let Z(¥) denote the center of a group ¥. Fix a polycyclic group A,
put Z =Z(A), K = ZnA', and let T/K be the torsion subgroup of
Z/K.

Proposition 8.1. There are only finitely many isomorphism types of
groups ¥ such that

(11) A<, ¥= AZ(Y), Z(Y)/T is torsion free.

Before embarking on the proof, we make some definitions. For any
virtually polycyclic group I', define
KI)=2I)nI, T(I)/K(T) ==(Z(I")/K(T)),
P()/T'Z() = ¢([/T'Z(I)),
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where 7(A4) denotes the torsion subgroup of an abelian group 4. Put

e(I) = |P(T): T'Z(D)|-|T(T): K(T)|,
f(I) = h(Z(T)/K(T)).

Call a subgroup Q of T a coreof T if I' < Q and
/T = P)/T x Q)T

Lemma 8.2. Let " be a virtually polycyclic group. Then the following
hold:

(1) Z(I')=T(T) x A for some subgroup A, and T" possesses a core.
(ii) Let A beasin (i) andlet Q beacoreof I'. Then AQ=AxQ,
IT: A4Q| =e(), and A=7'".

Proof. For (i), note that both Z(I')/T(I") and I'/P(T") are free abelian
groups. (ii) is best verified by drawing a lattice diagram.

Lemma 8.3. Let Q be a virtually polycyclic group, and let e > 1 and
S > 0. Then the virtually polycyclic groups T such that e(T') =e, f(I') =
f,and Q isacore of T lie in finitely many isomorphism classes.

Proof. Lemma 8.2(ii) shows that each such group I' has a normal
subgroup of index e isomorphic to Z’ x Q. The result now follows from
[18, Chapter 8, Theorem 6].

Remark. Although we have quoted [18, Chapter 8, Theorem 6] twice
(see the proof of Theorem E, above), it is easy to see that it is only really
needed once.

Proof of Proposition 8.1. Let Q be a core of A. In view of Lemma 8.3,
it will suffice to show that if ¥ satisfies (11), then e(¥) = e(A), f(¥) =
f(A), and Q is acore of ¥.

Note that ¥' = A" and Z(¥)Nd = Z. Put P = P(A). Then
¥/PZ(¥)=A/P and PZ(¥)/¥Y'Z(¥) = P/A'Z . It follows that PZ(¥) =
P(¥) and that |P(¥): ¥'Z(¥)| = |P: A'Z|. We also see that

PW)NQ=PZ(¥)NQ=PnQ=A=V¥,

and
P(¥)Q = PZ(¥)Q = AZ(¥) = ¥;

thus Q is a core of V.

Since |Z(¥): Z| is finite, so also is K(¥)/K , and as Z(¥)/T is torsion
free this implies that K(¥) < T < Z. With ¥ = A’ this shows that
K(¥) = K, and hence that T(¥) = T. Thus |T(¥): K(¥)| = |T: K|;
together with what we showed above this yields e('¥) = e(A).
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Finally, we see that f(¥) = f(A), because Z(¥)/K(¥) is a finite ex-
tension of Z/K . This completes the proof.

9. An example

Here we exhibit a simply transitive subgroup G of Aff(V), where V =
R® , a Zariski-dense uniform lattice I"' in G, and a family of pairwise
nonconjugate subgroups Fq < Aff(V), q € N, such that for each ¢,
'« l"q , qui I'l=gq, Fq NG =T'. It follows from the theory (and will
anyway be visible) that h(I') = 6 = dim(G), so G is a syndetic hull for I
and hence each Fq is a geometrically strict extension of I".

We shall omit a number of routine calculations (all quite simple).

Step 1. Define a map v: V — Aff(V) by

1 0 x 0 r+lx|
1 00 y
v(r,y,Xx,z)= 10 x
1 Z
1

Here, the letters in bold type denote elements of R? , 1 denotes the 2 x 2
identity matrix, x' the transpose of x, and ||x|| = xx'. The missing
entries are zero.

Since v is a homomorphism, U = v (V') is an abelian, unipotent sub-
group of Aff(V), and clearly simply transitive. Also v: V — U is an
isomorphism.

Step 2. For r e R put

cos2nr  sin2nr
E(r = (-sinan cosan) ’

and define ¢: V — Aff(V) by
Hr,y,x,z)=diag(l,1, E(r), e ,e”, 1).

Then ¢ is a homomorphism of V onto a diagonalizable subgroup S of
Aff(}VV), and so 8 =t o v :U->Sisa (continuous) homomorphism.
Note that
(12) ker® = v(kert) = v(Z® 0 ® R").
If g=(r,y,x,z,,2) and h=(r",y",x,2"), then

g =vir,y,xE(r'), e z,, ¢ z,),

(13) . .
[g,h]=v(0,0,xEr)-—x,e” zl—zl,ey Z, — Z,).
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Thus [U, S]1<ker@. It follows that the set

g={g-0(g)lg € U} ={v(v)-t(v)lv e V'}

is a simply transitive subgroup of Aff(V'), by Theorem 5.5 (of course, this
can be seen directly). Put w(v) = v(v)-t(v) for v € V. Then y isa
homeomorphism of V' onto G.

Step 3. Suppose L is a full lattice in R4, and a € R, g € R\{0}
satisfy

E(a)
(14) L ( e ? ) =L.
eﬂ

Put
y=y(a, $,0,0,0,0).
Then (13) shows that for a subgroup of 4 of R?,

v(Ae LY =v(de L)?%%%0 - 4o L).
Hence
I,=v(A®L)y)
is a subgroup of Aff(V). For (a, b) € A& L from (12) we have
via,b)eGoaeZo0s v(a,b)=vyl(a,b),

so provided that Z&0 < A, wehave I', NG =T whereweput I'=T, .
We also have I'aI', since U is abelian and (13) implies that y normalizes
v(Z&0®L). Since v is an isomorphism, I',/I" = 4/(Z®0) . In particular,
putting A(q) = q_lZ@O and Fq =T, We have l"<11"q , |l"q: =g,
and T’ N G=T.

We claim that I" is a uniform lattice in G . To see this, note that

(@)

I'={y(m+na,nB,a)m,neZ, acl},

SO y/_l(l") isa full Z-latticein R® = v~ '(G). As ¥ is a homeomorphism,
this shows that I" is discrete and cocompact in G .

It is easy to see (if one draws the matrix of a typical element of I') that
I is Zariski dense in G if and only if (E(a)) is Zariski dense in SO,(R),
that is, if and only if a is irrational.

Step 4. Assume that « is irrational, and that L has the following
properties:

(15) (1 0 z, z,)€L forsomez,, z,;
(16) if (x z)€ L then ||x| is an algebraic integer.
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Then for positive integers p # q, l"p and I” , arenot conjugate in Aff(V).

To prove this, suppose g € Aff(}) and g_leg =1I',. Since u(l'y) =
v(A® L), this implies

(17) V(Ap o L)g= gu(Aq ® L).
Since a is irrational, the center of I', is v(4® 0); so we also have
(18) V(ApeBO)g:gy(AquO).

Denote the (i, j)-entry of g by g;.. From (18) we get
ij

p'2=¢,4"'2,
0=guq 'Z (2<i<6),
SO
(19) g, =4/p, 8y =""=8=0.

Note that the last row of g is (0---01). Suppose a € A,, be A
X,y € L satisfy

q b

via+x)g =gv(b+y).
From the first row of this equation we find that
X183+ X843 = 811V

(20) .
X834 F X2844 = 811V2>

X835+ X845 =0,

X836+ %2846 = 0.

From the last column, using (19) we find

Xy = 833Y1 + 834V + 835V3 + 836Va >

Xy = 843V T 84aV2 F 84sV3 + 84V

In view of (17), we may allow x to vary over the four-dimensional lattice
L. The vector (x,, x,) then takes two linearly independent values, and
(21) implies that

(23) 835 = 845 = 835 = 845 = 0-

From (15), we may choose (y,, y,) = (1, 0). Then (22) and (23) give
(X, X,) = (&3» &), and (20) gives [|(x,, x,)[| = &,,- Now (16) and
(19) imply that g/p is an algebraic integer. Hence p|g, and p = g by
symmetry.

Step 5. To find L, a, and B, it will suffice to find the following: an
algebraic number field k of degree 4 over Q having two real and two

(21)

(22)
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non-real complex embeddings o,,0,: k - R, u,u: k — C, and a unit
€ # +1 in the ring of integers & of k such that

o(e) =0y(8)" >0,  |lu(e) =1

For L we take the image in C® R? of & under the map T= X0, X0,,
identifying C with R’ by fixing the basis (1, /). Put

a=(1/2n)arg u(e), B = —loga,(e).

It is well known that L is then a full Z-lattice in R* , and one verifies
directly that (14) holds. Note that g # 0 since &€ # +1, and that o
is irrational because in fact ¢ has infinite order (since o,(¢), being real,
cannot be a root of unity).

Both (15) and (16) are clearly satisfied: for (1,0,1,1) =1(1) € L,
and if (x, z) = 7(c) then ||x|| = u(c)za(c).

All that remains is to exhibit a suitable &; and then take k = Q(e).
A root of the following polynomial will do; we leave it as an exercise to
verify the details: X* —4X> +4X> —4x +1.

Further remarks. (i) Since I'/u(I") is infinite cyclic, I" is a standard
ACG, so I must have a good hull. Of course G is not one, since u(G) =
viZo0a R“) is not connected; thus we have not violated Theorem G!

If we follow the proof of Proposition 4.1, we obtain a family H, (m €
Z) of a good hulls for I'; H,, is the set of all matrices

1 0 b ¢ 0 0 r
1 0 0 0 By
E((a+m)y) 0 0 X

e 0 z,

e—ﬁy z,

with (r,y,x, z,, z,) € RC.

(ii) Foreach m € Z, H,, is a good hull for each of the groups I' g which
are all isomorphic to I'". It is easy to see that H, also contains infinitely
many pairwise nonisomorphic Zariski-dense uniform lattices, which are
all “abstractly commensurable”, i.e., isomorphic up to finite index. In gen-
eral, a simply transitive affine group may contain infinitely many pairwise
abstractly noncommensurable Zariski-dense uniform lattices; for examples
of this phenomenon, see [13].
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(iii) A representation of a Lie group G as a simply transitive subgroup
of Aff(V) corresponds to a complete left-symmetric algebra structure on
the Lie algebra of G; see for example the introduction of [14]. The best
way to approach the classification or construction of simply transitive affine
groups is to linearise the problem and work with left-symmetric algebras.
It is often quite easy in practice to endow a given nilpotent Lie algebra with
a complete left-symmetric structure (although, contrary to a long-standing
conjecture, it is not always possible 2], [12]): this gives a practical method
for constructing many examples of simply transitive affine groups.

A generalization of Theorem 5.5 in the context of left-symmetric alge-
bras is given in [19].
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