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COMPUTING SPECTRAL FLOW VIA CUP PRODUCTS

PAUL KIRK & ERIC KLASSEN

1. Introduction

In this paper we investigate the spectral flow of the "Dirac" operator
DA = *dA -dA* acting on 0 + 2 forms on a 3-manifold M as A varies
in the connections in an SU(2)-b\mdle P over M. This operator arises
as the tangential operator (in the sense of [1]) for the signature and self-
duality operators on a 4-manifold, and as a stabilization of the Hessian of
the Chern-Simons function on the space of gauge equivalence classes of
connections on P . In the case where A is flat, it is a square root of the
(twisted) Laplacian AA acting on even forms.

Our main contribution to the calculation of the spectral flow of these
operators is as follows. If At is a path of flat connections on a manifold M
which either has boundary (Theorem 4.8) or is closed (Theorem 5.1), then
we show that computation of the "local contribution to spectral flow at time
/ = 0 " (i.e., the slopes of the eigenvalues that are crossing 0 at t = 0) can
be reduced to a cup product computation in the cohomology of M with
twisted coefficients. Later in the paper, we carry out these computations
using group cohomology and use the results to compute spectral flow for
various arcs of connections of torus bundles over the circle Sι.

The spectral flow of DA as A varies along a path of connections arises in
several ways in topology: If M is a homology 3-sphere, it gives the grading
of a flat connection on M, viewed as a generator for the chain complex
defining Floer homology. It gives the dimension (mod 8) of the moduli
space of those self-dual connections on M x E with certain prescribed
limiting values. It also enters in the stationary phase "approximation" of
Witten's 3-manifold invariants; the stationary phase formula states that
for large k Witten's invariant Zk = f^ekιcs is dominated by the sum
over the flat connections of terms involving various invariants of the flat
connection, in particular the spectral flow to the trivial connection.

Our aim is to give a description of the spectral flow between two flat
connections on M when M is cut along a surface Σ c M in terms
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of the representation variety R(M) = Hom(π 1 M, 5ί7(2))/conj and the
representation varieties of the pieces X and Y where MX UΣ Y. Our
main tool is the splitting theorem of [5] and [19], which shows how to
decompose the spectral flow into a sum of three terms, one involving only
the restriction of DA to X, one involving only the restriction of DA to
Y, and a third term involving the interaction at the boundary.

We now outline the contents of this paper. Section 2 is a review of
the results of [4] and [5]. We show how to construct selfadjoint operators
on a manifold with boundary in terms of a Lagrangian subspace of the
harmonic forms for the "tangential operator". We state the main theorem
of [5] which expresses the spectral flow of a path of operators on a closed
manifold M = Mχ UΣM2 decomposed along a surface Σ as a sum of three
terms: the spectral flow with respect to a path of Lagrangians Sfχ o n M p

the spectral flow with respect to a path of Lagrangians Jz^ on M2, and
the Maslov index γ(£[, S?2).

In §3 we discuss the properties of the specific family of operators which
we are concerned with, namely the operators

DA: Ω°(M su{2)) θ Ω l ( ¥ ; su{2)) -> Ω°(M 'su(2)) θ Ω1 (M su{2))

on a 3-manifold M and the corresponding tangential operator

D~: Ω°(Σ; su(2)) e Ω ! (Σ; su(2)) θ Ω 2(Σ; su(2))

-> Ω°(Σ; su{2)) θ Ω*(Σ; SU{2)) θ Ω 2(Σ; su{2))

on Σ = 9 M . We compute the kernels of these operators and compute the
eigenvectors of D^ in terms of the eigenvectors of the Laplacian Δ^ on
Σ.

In §4 we state and prove our main theorem, Theorem 4.8. This theorem
expresses the spectral flow of a path DA , when At is a path of flat connec-
tions on a manifold X with boundary such that kerD Λ = 0 for t Φ 0,
in terms of the eigenvalues of a bilinear form B, namely the composition
of the cup product

[ , ]: Hι(X, dX\ 3dpt) x Hι(X, dX; ad/?,) -> H2(X, dX\ ad/?,)

and the cup product

-a: H2(X, dX;zdpt) -> H3(X, dX, R) = R,

where a denotes the 1-dimensional cohomology class defined by the deriva-
tive of pt at t = 0, and pt denotes the holonomy representation of the
flat connection Ar Our approach goes as follows: if A is a flat con-
nection on a manifold X with boundary, then the kernel of DA (with
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suitable boundary conditions) can be identified with the cohomology of X
with coefficients in the flat bundle determined by the holonomy of A . In
particular, if A( is a path of flat connections, one can tell by computing
cohomology when DΛ has kernel. Theorem 4.8 states that the deriva-
tives of the eigenvalues moving through zero are the eigenvalues of B
on Hι(X, dX; ad/?,). In particular, if these eigenvalues are all nonzero,
then the spectral flow equals the signature of this form. Eigenvectors and
eigenvalues are studied using the results of analytic perturbation theory

[9].
In §5 we prove the analogous theorem for a closed manifold, Theorem

5.1. We show that if At is a path of flat connections on a closed manifold,
then there is a bilinear form G defined similarly whose eigenvalues are the
derivatives of the eigenvalues of DΛ which pass through zero at t = 0.

Theorem 4.8 concerns the computation of spectral flow along an arc of
flat connections on a manifold with boundary X. In order to understand
the spectral flow between two flat connections on a closed manifold de-
composed as M = X U Y, we need to understand the spectral flow along
a path of non-flat connections on Y, and the interaction term (Maslov
index) in the formula of [5]. The approach we take is that the sum of
these two terms should define an integer-valued function on the space of
paths of representations of Σ whose endpoints are representations which
extend to Y, and in particular the spectral flow should define a homotopy
invariant of such paths. Our main interest is in Dehn fillings and surgery
on knots, and in §6 we carry this out for Y = Sι x D2 . Theorem 6.4 gives
an explicit formula for the sum of the spectral flow on Y and the Maslov
index in terms of a 1-dimensional cohomology class on (a cover of) the
space of representations of nχT'; this formula was implicit in Yoshida's
work [20], and we give a more direct proof of a more general version of
this formula.

A technical point which arises both in Theorem 4.8 and Theorem 6.3
has to do with reparameterizing the domains of the operators DΛ on a
manifold with boundary. In contrast to the closed case, the domains vary
as the connection varies. In Theorem 4.8 a smoothly varying basis of
eigenvectors is needed as the path passes through the singularity of R(X).
In Theorem 6.4 we need to know that a family of operators parameterized
by the representation space of Σ forms a continuous family of closed,
self adjoint operators. In Definition 4.5 we say that an analytic path of
representations is fine essentially if the domains of the operators can be
parameterized nicely. In Theorem 4.8 we assume that the path of flat
connections on X is fine.
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We deal with these issues for the torus in Appendix B. Theorem B.I
shows that analytic paths on the torus are fine. Lemma 6.1 stating that the
families of operators DA vary continuously with the connection on D2xSι

is also proven in Appendix B; essentially the same ideas are involved in
the proof of Lemma 6.1 as in the proof that analytic paths on the torus
are fine. Our applications are to Dehn fillings for which the results for the
torus suffice. In a later paper we will address these problems for a general
surface.

We finish §6 with an example which shows that the limiting values of
extended L -harmonic forms (in the sense of [1]) need not vary continu-
ously along a continuous path of operators, even when the harmonic forms
on the boundary vary continuously.

In §7 we present applications of these results to torus bundles over Sι.
The question which motivated this paper is a conjecture of L. Jeffrey [8]
about the spectral flow between two flat connections on a torus bundle.
This conjecture arises in trying to reconcile the two main methods of in-
terpreting Witten's 3-manifold invariants, namely the axiomatic TQFT
approach and the stationary phase approximation, as we now explain.

In [8], Jeffrey computes the Witten invariants Zk for torus bundles via
the TQFT axioms, and then uses the stationary phase formula to compute
the "leading term" in the asymptotic expansion as k -> oo. This leading
term is a sum, over the gauge-equivalence classes of flat connections on
M, of an expression in the Chern-Simons invariants, Reidemeister torsion,
and spectral flow. By computing the Chern-Simons invariants and the
Reidemeister torsion, Jeffrey gives an formula involving the spectral flow
which must hold if the two interpretations of Witten's invariant are to be
consistent. This formula implies that the spectral flow between any two
nonabelian flat 5ί7(2)-connections on a torus bundle is congruent to 0
mod 4.

In Theorem 7.4 we show that under mild restrictions this is indeed the
case, and we use this theorem to compute several examples. The beginning
observation is Corollary 7.2, which states that given any two irreducible
SU(2) representations p0, pχ of a torus bundle M over Sι, there exist
a knot K in M and a path of representations pt of πx(M - K) joining
p0 to pχ . By computing group cohomology one sees when the kernel
jumps up, i.e., when an eigenvalue crosses zero. Applying Theorem 4.8 and
Lemma 6.4 reduces the computation of SF(p0, px M) to computing the
signature of a bilinear form on cohomology induced by the cup products.
We then use Theorem 5.1 to compute the spectral flow between certain
abelian representations of torus bundles.
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We list in §8 some questions which we were unable to resolve. These are
mostly of a technical nature, and their solutions would allow us to remove
some of the hypotheses for Theorem 4.8, Lemma 6.4, and Definition 7.4.

We would like to thank D. Hoff for helpful conversations.

2. Spectral flow on a 3-manifold split along a surface

Let M be a smooth closed oriented 3-manifold, with Σ c ¥ a smooth
embedded separating surface. Let Mχ and M2 be the closures of the com-
plementary components of M - Σ, so M = Mχ UΣ M2 . Fix an embedding
/: Σ x [—1, 1] —> M such that i(σ, 0) = σ for σ e Σ. Put a Riemannian
metric g on M such that / is an isometry for some metric on Σ. Using
i, identify Σ x [— 1, 1] with its image in M. Let π : Σ x [ — 1, 1] —• Σ be
projection.

Let E —» M be a real vector bundle with a fiberwise inner product
x y. Assume we are given an identification of £ | ( Σ x [ - l , 1]) with
π*(E), where E —• Σ is a real vector bundle. Assume this identification
is compatible with a fiberwise inner product on E, which we also denote
by x y. These inner products give rise to inner products on T(E) and
T(E) defined by

/ [.gdvol.* = / /-Sdvol,. (f,g)Σ= [f

The words "selfadjoint" will always refer to these inner products.
Let σ: E -> E be a bundle automorphism, and let π*σ be its pull-

back to E\(Σ x [-1, 1]). Let D: Γ{E) -> Γ(£) be a first order selfadjoint
elliptic operator. Assume that

• = (π σ) o —

over Σ x [-1, 1], where D is a first-order selfadjoint elliptic operator on
Γ(E) (called the tangential operator), and s is the coordinate on [-1, 1].
From the above (Proposition 2.A of [4]) we have the following:

(i) σ* = — σ and σD = —Dσ on Σ.

(ii) There is a nondegenerate symplectic pairing on L2(E) given by

{f,g} = (f,σg)Σ.

(iii) Let %? = kerί) . The restriction to %? of the symplectic pairing
in (ii) is a nondegenerate symplectic pairing.
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Let {ak} c Γ(E) be a complete orthonormal basis of L2(E) with

Dak = vkak for each k,

with all vk 's real. Define

P+= L - closure of {θίk\vk > 0},

P_ = L - closure of {ak\vk < 0}.

By (i) above, σ(P+) = P_ and σ(P_) = P+ . Also, L2(E) = P+ΘP_ θ / .

Define E. = E\M.. Let Dι = D\Γ(E.), for / = 1, 2. If V is a subspace

of L (E), define ^ ( ^ V) to be the Sobolev L{-completion of those

smooth sections φ of E. satisfying φ\Σe V.

Let .5^ c 2f be a Lagrangian. Define 3* to be the restriction of D to
the image of L\{EJ -,P++5?) in L 2 (£' y ). Then by Proposition 2.D, [4],

3J is a selfadjoint elliptic operator.
We note here that the operators D and Sfj both are Fredholm and have

compact resolvents. In the case of D, these are well-known properties of
an elliptic operator on a closed manifold. The fact that 3ίj is Fredholm
is proven in [1, p. 55]. The fact that 2fj has compact resolvent follows
because its Green's operator from L2(E.) to L*(E. P+ +&) is bounded

and the inclusion L2

{(Ej) -> L2(Ej) is compact (see [15, p. 168]).
We will also need the following stretched versions of M. Let

M{r) = M j U ( Σ x [-r, r]) U M2,

M1(r) = M 1 U ( Σ x [ - r , 0 ] ) ,

M2(r) = ( Σ x [ 0 , r ] ) U M 2 .

We extend our bundle E to E(r) over M(r), Eχ{r) over M{(r),E2(r)
over M2(r), and define inner products on these extended bundles using
the pullback of E by π:Σx [-r, r] —• Σ.

We extend our operator D to sections of these bundles by keeping it the
same over Mχ and M2 and defining it over Σx[-r,r] by the formula

D = π σ o (••*•£)•
Our main tool will be the splitting theorem for spectral flow. There are
various versions of this theorem; see [5], [19], [14], and [13].

Suppose we are given one-parameter families Dt and Dt, t e [0, 1],
of first-order selfadjoint elliptic operators related to each^other for each t
by the formula above. In addition, suppose &(t) = kerZ), has dimension
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independent of /, and hence forms a symplectic vector bundle over the
interval t e [0, 1].

Let <£[(t) and -2^(0 be continuous families of Lagrangians in the sym-
plectic spaces <%*(t).

We need to assume some nondegeneracy conditions at the endpoints
of the interval. We first assume that there are no nonzero L2 solutions
to the equations Dι

Qφ = 0 and D\φ = 0, / = 1, 2, on the manifolds
obtained by adding an infinite cylinder Σ x [0, oo) to Mi9 for / = 1,2.
Equivalently, the operators Dι

Q and D[, i = 1, 2, have no solutions with
P+ boundary conditions in the sense of [1]. This nondegeneracy condition
is called nonresonance in [14].

Recall also from [1] that there are natural Lagrangian subspaces Lι

Q c
^ ( 0 ) and L\ C ^ ( 1 ) , namely the limiting values of extended L2 so-
lutions. We will require that -S*(0) = σLι

Q and -S?(l) = σL\. In other
words, we assume that the families of Lagrangians -2?(0 start and end at
the complementary Lagrangians to the natural Lagrangians. We will say
that the paths -2?(ί) of Lagrangians are admissible if they satisfy these
properties.

Let
3ft

J(r) = DJL^Ejir) P+(t)+&j{t)).

Notice that the conditions of the preceding paragraphs imply that the ker-
nels of 3f/(r) are zero at the endpoints. Then the following is a version
of the main theorem of [5] (see also [19], [14], and [13]).

Theorem 2.1. Assume Dι

Q and D\ for i = 1, 2 are nonresonant, the

paths J%(t) are admissible, and Lι

QnLl = 0 = L\n L2

χ. Then, for large

enough r,

SF(Dt) = SF(Sft\r)) + SF(^2(r)) + γ(J?{(t), &2{t)),

where SF is spectral flow of a family of selfadjoint operators, and γ is the
Maslov index of two paths of Lagrangians in the family %?{t) of symplectic
spaces.

(We remind the reader that the spectral flow SF(Dt) of a path of self-
adjoint operators is the integer which counts the number of eigenvalues
crossing from negative to positive minus the number crossing from posi-
tive to negative. See [1].)

This theorem has been used to compute the spectral flow in certain

cases where SF{β}) = 0 (see [19], [20]). Theorem 4.8 gives a method for

computing SF{βx

t ) in certain cases when it is not 0, thereby considerably

increasing the usefulness of this theorem.
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3. The Hessian of the Chern-Simons function

We now focus our attention on a particular class of bundles and oper-
ators which arise in the computation of Floer homology [7], and in the
stationary phase approximation of Witten's invariants [18], namely the
Hessian of the Chern-Simons functions on the space of gauge equivalence
classes of connections (actually the operators we consider are stabiliza-
tions of the Hessian; i.e., the direct sum of the Hessian with an operator
with symmetric spectrum.) These operators were treated extensively by
Yoshidain[19].

In this section, Σ and M are as in §2. Define the bundles E —• M
and E —> Σ by

E = (Λ°Γ*M θ Λ1 T*M) <g> su(2)

and
E = (Λ° θ Λ1 θ Λ2)Γ*Σ <g> su(2).

Thus

T(E) = Ω°(M $κ(2)) Θ Ω1 (M su{2)) = (Ω° Θ Ω1 ){M su(2))

and
Γ(E) = (Ω° θ Ω1 Θ Ω 2)(£ su(2)).

W e i d e n t i f y Eσ w i t h E{σ ^ ) b y (a, β , γ ) *-* (a, β + (*γ) Λ ds) w h e r e

* acts as the usual Hodge star operator AιT*Σ —> A2~ιT*Σ and by the
identity on su{2). It is clear that this map is an isomorphism on each
fiber; we take it to give an identification of E\(Σ x [-1, 1] = π*E.

Let A be a connection on M x SU(2), which we think of as an element
of Ω ! ( M ; su{2)). We will always assume that on Σ x [-1, 1], A = π*A,
where A is a connection (i.e., 1-form) on Σ x 5(7(2). These connections
give rise to exterior derivatives

dA: Ω*(M; su{2)) - Ω*+ 1(M; su{2))

and

Also, dAodA = 0 (respectively, d-od-= 0) if and only if A (respectively

A) is flat.
Define D~: Γ(E) -+ Γ{E) as follows:

D2{a ,β,γ) = {*dtf ,-*d~a-dz*γ, d~* β).

Define DA: Γ(E)^ Γ{E) by

DA(σ, τ) = (dAτ, dΛσ + *dAτ).
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We adopt the sign conventions of Warner [17]: d*: Ω?(Mn) -> ΩF~ι(Mn)
is defined by

on Ώ?(Mn). Also Ap = d*d + dd\ o j
Our bundle automorphism σ: E —> E is defined by σ(α, β, 7) = (— *

y, */?, *α) . Using these operators, we have:

(1) DA = π*σo(d/ds + π*D:ϊ) on Σ x [ - 1 , 1].

(2) (ίλj)2 = Δ ^ θ Δ ~ θ Δ j if A is flat, and (Z),)2 = Δ ^ θ Δ ^ if A is
flat.

(3) D~ and 23^ are first-order elliptic selfadjoint operators; in fact
they are operators of Dirac type.

We explain the context in which this operator arises, following Taubes

[16]. If A is a connection on a closed 3-manifold M, and KA =

ker d*A: Ω1 (Af) <8> JM(2) -> Ω°(Af) 0 5M(2) , then the Hessian of the Chern-

Simons function at A is the operator HA = proj^ *dA (note that all pro-

jections are with respect to the L2 norm). Decompose Ω°(M) <g> su(2) θ

Ω^Af) 0 JM(2) as Ω°(M) ® su(2) θKAΘKA. Let BA be the operator

on Ω°(Λf) o 5^(2) φ AΓ̂  . Then BA is selfadjoint and has a symmetric
spectrum. Moreover, BAΘHA equals DA when 4̂ is flat, and is a compact
perturbation of DA in general. Thus if At is a path of connections with AQ

and A, flat, the spectral flow of HA equals the spectral flow of HΔ θ 5 A ,
1 Λt Λt Λt

which in turn equals the spectral flow of DΔ .
Assume from now on that the connection A on Σx5ί7(2) is flat. Then

X = kerD-jp^ fiJ(Σ) θ H~(Σ) θ ^ ( Σ )

by Hodge theory. (The cohomology groups come from the complex
Ω*(Σ; su(2)) using the differential d^.) By abuse of notation, we will

often use Hι~(Σ) to denote these harmonic /-forms. Using the DeRham

theorem these groups are also equal to Hι(Σ; ad/J~), where p^' πχΣ —•

SU(2) denotes the holonomy representation of the flat connection A,
and ad p* is shorthand for the local coefficients given by the action of
πχΣ on the Lie algebra su{2) via the adjoint representation ad: SU(2) —>
AxA(su(2)).
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The inner product on E (and E) is given by x y = — tr(x Λ *y)/(dvol)

for x, y e (AιT*M)p . Hence the inner product on T(E) is given by

(x J y) \Λ — — I tr(.x Λ *y),lM
 JM

and similarly for Σ.
It follows that the symplectic inner product on Γ(E) is given by

{x5 y\ = / tr(x Λy) if (dim c, dimy) = (0, 2) or (1, 1),
./Σ

{x,y}= - [ tr{xΛy) if (dim c, dimy) = (2, 0),
./Σ

{x5 y} = 0 if dim c + dimy ^ 2.

We will need some facts about the eigenfunctions of D^ on T(E). Let

H°(Σ) denote the harmonic 0-forms. Because Δ - is a nonnegative self ad-

joint operator, we may write L2(Ω°(Σ; su(2))) = H^(Σ) θ s p a n ί ^ j ^ j ,

where Δ~φk = μkφk, μk > 0 for each k . We also assume that \φk\ = 1

for all k . Using the φk , we will explicitly construct the eigenfunctions of

ΐ>2 on Γ{E).

For each k, define the following four elements of Γ(i?):

Proposition 3.1.

L2{E) = (i/jθ i/}θ /

wΛere ^ α«rf ^ are y/μ^-eigenvectors of D~, ξk and ψk are -y

eigenvectors of D~, \ξk\ = \ξ~\ = \ψk\ = \ψ~\ = yfϊ; and all of these

eigenvectors are mutually orthogonal.
Proof Everything is a straightforward computation except (perhaps!)

completeness. To see this, note

+ ξk}k θ //J(Σ) = L2(Ω°(Σ)),
+ + ψ-}k e Hfe) = L2(Ω2(Σ)),

^ + - ξ~}k = im(rf ) C L2(Ωl(Σ)),

^ - ψ~}k = im(d) c L2(Ω.ι(Σ)).

By Hodge theory, L2(Ωι{Σ)) = im(rf*) θ im(rf) θ H~(Σ).
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4. Spectral flow along arcs of flat connections
on a 3-manifold with boundary

In this section we state and prove our main theorem. It really only
involves Mχ to avoid subscripts we change notation as follows:

Let X be a compact oriented 3-manifold with d X = Σ. Assume X has
a Riemannian metric such that a collar of Σ is isometric to (and identified
with) Σ x [-1,0] , with Σx{0} = dX. Let

X(oo) = X U ( Σ x [ 0 , o c ) ) ,

X(r) = XU(Σx[0,r]), r e % 0 .

As before let E(r) -+ X(r) be the bundle (A°T* ®AιT*)(X(r))®su(2)
and let E -* Σ be as defined in the previous section. In this section we
will always assume that A is aflat connection on X(oo) x SU(2), and that
on Σ x [-1, oo), A = π*A where A is a flat connection on Σ x SU(2).
We then define the operators DA and D~ on Γ(2s(oo)) and Γ(E) as in
§3.

Let L2

 loc(E(oo)) denote those sections of E(oo) which are locally L2 .

Definition 4.1 [1]. Let φ e L2

χXoc(E(oo)). We say φ is an extended

l}-section if there is a section η e L2(E) such that (φ\Σx[Q, oo))-π*(η) e

L2(Σ x [0, oo)). In this case, we say η is the limiting value of φ .

We denote the set of extended iΛsections of i?(oo) which are also in

L\Λocbyl\{oo)).

Denote by {ak} an orthonormal basis of L2(E) with D~ak = vkak

for all k. It is clear that if φ e L2

χ l o c Woo)) and DAφ = 0, then
φ\(Σ x [0, oo)) is of the form

oo

cke
 kak.

k=\

It follows that if DAφ = 0, then

(i) φ e L2

χ(E(oo)) &ck = 0 whenever vk < 0,

(ii) φ € L2(E(oo)) <=> ck = 0 whenever vk < 0.

Define

V = ker(DA\L2

χ(E(oo)) and V = keτ(DA\L2

χ(E(oo))).

We now have the following important facts: for all r > 0,

V s ker(DA\L2

χ(E(r) P+)) and V s kcτ(DA\L2(E(r) P+ + &)),

where these isomorphisms are obtained by restricting sections.
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Suppose φ € V then on Σ x [0, oo) we write

cke
 k ak,

uk>0

where a e kerZλ- = %f. In this expression a is the limiting value of φ .
Proposition 4.2. Let

(x,y)eVc L2

{(Q0ΘQι)(X(oo)',su(2)).

Then dAx = dAy = dAy = 0 (i.e., x and y are harmonic).
Proof. By definition of DA, we know *dAy = — dAx which implies

that dA dAx = 0. On Σ x [0, oo), we can write

ke (α. , ak , α . ) ,

where a = (a0, a1, a2) is a harmonic (0 + 1 + 2)-form, and ak =

(a°k , α[ , a2

k) is a ^-eigenvector of D^. In particular,

o v-^ -v.s o
V̂ — Cc ~γ / l"ir*Z m-lr

We claim ί/̂ x decays exponentially as 5 —• oo. To see this, use the

fact that dA = d~+ d( )/ds Λ ds on Ω°(X(oo), su(2)) to write

which clearly decays exponentially in s.
Compute:

= Hm | ^ x | ^ ( r ) = Um((x, dAdAx)χ{r) + (x, ^ > Σ x { r } ) = 0,

where the first equality is by the monotone convergence theorem, the sec-
ond is by Stokes' theorem, and the third is because x is bounded and
dAx decays exponentially as s —> oo. Therefore, dAx = 0 and the other
assertions follow immediately, q.e.d.

Define p: V -> SIT by p(φ) = l im 5 ^ o o ( ί7 | Σ x { 5 } ) , in other words, p{φ)

is defined to be the limiting value of φ . (Equivalently, we could define
p(φ) = Pjp{φ\Σxfs\) for any s > 0, where p%,\ L2(Σ) ̂  ^ is orthogonal

projection.) Notice that H~(Σ) = 0 = /^j<Σ) i f ^ i s i r r e d u c i b l e ( τ h e

second equality follows from the Poincare duality.)
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Proposition 4.3.

(I) If A and A are both irreducible, then

(II) If A is irreducible and A is reducible, then

p(V) = im(Hl

A(X) -> i/}(Σ)) θ J/}

(Ill) If A and A are both reducible, then

p(V) = flJ(Σ) Θ im(Hl

A(X) }

Proof Let (x, y) e V. On Σ x [0, oo) we write

(x, y) = (a°, a1, a2) £

Then
p(x, y) = (a°, α 1 , α2) G j >

Let /: Σ x {0} «-> -3Γ(oo) be the inclusion. Since d/̂ x = 0, we know

d^(i*x) = 0 so Z*JC is harmonic. But /*x = a0 -f ^a^φk Since the

^ are orthogonal to the harmonic 0-forms, % = 0 for all k. Thus

(x,y) = (a0, a1, α2) + ΣΓ=i V ^ V ^ on Σ x [-1, oo). Since Γy =

^ ^ , a ! = i » in //}(Σ).

Suppose ,4 and ^ are both irreducible. Then H~(Σ) = H~(Σ) = 0,

so α° = a2 = 0. Thus p(jc,y) = α1 = i*y G im{Hι

A(X) - . i/}(Σ)).

Since dim/?(F) = ^dimi/}(Σ) (by Proposition 2.C in [4]; see also [19]),

dimp{V) = im{Hι

AX - i/}Σ).

Suppose A and ^ί are both reducible but non-central. Then HA(X) =

H~Σ = H\Σ = R. Thus p(V) D H%Σ, (since every covariantly constant
A A A

section of Σ x su(2) extends to one of X x su(2).

It follows that p(V) c //jΣ θ i/jΣ because p(K) is a Lagrangian.

Finally, since p(x, y) - (α°, α 1 , 0) and we know ax e im(HAX —• //jΣ),

p(V) = Y~Σ θ im(Hι

7X -^ HςΣ) by a dimension argument.

Finally, suppose A is irreducible but /I is reducible. Because dAx - 0,

x = 0 so α° = 0. It follows that p(V) c H~Σ φ H\Σ. Since p(x,y) =

(0, a1, a2) and α1 e in^/ii-X -» //jΣ), a dimension argument shows

/>( V) = im(Hl

AX - i/}Σ) 0 7/j-Σ. q.e.d.
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Observe that ker(p) = L2 harmonic (0+ l)-forms on ΛΓ(oo). It follows
from Proposition 4.9 of [1] that

ker/? = im(Hl

A(X, Σ) -> HX

ΛX) Θ im(i/°(X, Σ) -> i/°X)

since the second summand is always 0, we have ker(p) = im(HA(X, Σ) —•

H\X). Let & c & be a Lagrangian with 5?np(V) = 0. Then

j = ker(p) = im(i/](X(r), Σ) - # > ( r ) ) .

We will now consider 1-parameter families ^ and ^ of connections
related to each other as above for each t. In order to insure that the
eigenvectors corresponding to our operators vary smoothly in ί,we shall
restrict ourselves to the case where At and At are analytic in t. We now
define these notions more precisely.

Definition 4.4. A path At of connections on X x 517(2) is analytic if

, u]

for all u e Ω*(X su(2)), where α(ί) = aχ t + α 2ί 2 H — is an analytic path

in Ωι(X su(2)) which converges in the Cr-norm for all r > 0.

We will assume that At and At are analytic families of connections
on ΛΓ(oo) x SU(2) and Σ x 517(2) (respectively) such that for each t,
At is related to At as above. Also assume that either case (I), (II) or
(III) (as defined in Proposition 4.3) holds for At and At for all t in a
neighborhood of 0 (i.e., the case does not jump or change as t passes
through 0).

It follows that the dimension of &(t) = kerD^ is constant, and that,
Λt

from [9, Theorem VII.3.9], there is an orthonormal basis for βf{t) which
varies analytically in / for t near 0.

By [9, Theorem VII.3.9] we have a family {aft)} of orthonormal

Hubert bases of L2(E) and corresponding families {μft)} of eigenvalues

such that for each i, D7aft) = μ.(t)a.(t). By the same theorem, these

families are all holomorphic. We now define a family of unitary operators

Ut:L
2(E)^L2{E) by Ut(a.(0)) = aft) for all /.

Definition 4.5. The path At is fine if there exists a family {aft)} of

analytic paths of eigenvectors so that Ut is a bounded holomorphic path

of operators on L2(E) and also restricts to a bounded holomorphic path

of operators on the Sobolev space L2

ι/2(E), i.e., if Ut = Σn

 u

nt
n , where

each Un is bounded with respect to both the L2 and the L2

2 norms, and
the series converges with respect to both of these norms.



COMPUTING SPECTRAL FLOW VIA CUP PRODUCTS 519

Let

V(t) = kcv(DA\L2

{(E(oc))), V(t) = \

Let £?(t) be a holomorphic path of Lagrangians in βΓ(t) such that J?(0)Π
p(V(0)) = 0.

Theorem 4.6. If A( is a fine path, then

is holomorphic in t in the "general sense" {see [9, p. 366]).
The proof of Theorem 4.6 is in Appendix A. (The essence of this proof is

to show that the varying domain of 3ft{r) can be analytically parametrized
by a constant Banach space in such a way that the composition of 3ft{r)
with the parameterization is an analytic family of operators on this con-
stant Banach space.)

Recall that for each t, 3ft{r) is a self adjoint operator. (The proof of
this fact is the same as the proof of Theorem 2.C in [4].) In addition,
3f((r) has compact resolvent, as discussed in §2. As a result we have the
following important corollary.

Corollary 4.7. If Af is a fine path, then the eigenvalues and eigenvectors
of 3ft{r) are analytic functions of t.

This follows from [9, p. 386].
Because of the assumptions on <2?(0),

r)) = ker(p) = im(//^(^, Σ) - H^X).

As t varies, the spectrum of 3Jt(r) changes. The following theorem
gives the signs of the derivatives of the eigenvalues of 3ft{r) which pass
through 0 at time t = 0 (for large values of r). The number of such
eigenvalues (with multiplicity) is

dimkeri^0(r) = dimim(//^ (X, Σ) -> H\ X).

Theorem 4.8. Let At and At be analytic paths of flat connections on

X{ρo) and Σ related to each other as above. Assume that At is a fine path.

Let a e Ωι{X(oo); su{2)) be the derivative of the path At at t = 0. In

other words, to first order in t,

dΔ (ω) = d4 ω + t[a, ω] + o(t2)
t 0

for ω G Ω.*(X{oo) su(2)). Let W = im(;* :H\(X,Σ)-> H\ X). There

is a symmetric bilinear form B: W x W —• E defined by:

B(j*χ,j*y) = [χ,y] ae H\X, Σ ; R) = E.
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The eigenvalues of B are the limits, as r -> oo, of the derivatives (with
respect to t) of those eigenvalues of 3t{τ) which are passing through 0 at
t = 0. In other words, if B is nondegenerate, then "the signature of B
gives the contribution at t = 0 to SF{βt{r))."

Remark. In Appendix B we prove that a holomorphic path of con-
nections on a torus in "standard form" is fine. This is sufficient for our
applications to Dehn surgery. We have recently shown that Theorem 4.8
continues to hold for any analytic path of flat connections, so that one can
drop the assumption that At is fine [11].

This theorem reduces the computation of the "local" contribution to the
spectral flow of Sir) to a cup product computation in H* (X, Σ) .

Notation. The symbol [x, y] refers to the cup product

Hι

A(X9Σ9 su(2)) x Hι

Λ{X 9 Σ ; su(2)) -> H2

A(X, Σ ; su(2))

defined using the Lie bracket on su(2). Likewise u a is a cup product,
defined using the standard inner product on su(2), which takes values in
cohomology with trivial coefficients in R.

Proof The symmetry of B follows because the skew-symmetry of the
Lie bracket cancels the skew-symmetry of the wedge product of 1-forms.
To see that B(j*x, j*y) depends on j*x instead of on x, note that the
following diagram commutes by naturality:

Hι(X,σ) <8> Hι(X9Σ)m

H\X) ® Hι{X9Σ)

Fix r > 0. Let n = dim W. By Corollary 4.7, we know that there is
a path of orthonormal sets {yχ(ή, , J>Π(O} i n L](E(r) ^ + ( 0 + ^ ( 0 )
such that for each ί near 0,

D A ι ( y i { t ) ) = λ i { t ) y i ( t ) a n d A f . ( 0 ) = 0 f o r i = 1 , . , « .

Renormalize {ĵ  ίO} s o that {yz(0)} are of unit size, where yz(0) is

the canonical extension of y^O) to L2(E(oo)). Let rχ < r2 < be an
unbounded sequence of positive reals. For each 7 , fix r — r. and construct
{yx{rj9t)9 -" ,yn{rj, t)} a n d {λx{rj9 t ) , •• , λn(rj9 t)} a s a b o v e . F o r

each i, define λfc) = a(Af.(r;., t))/dt\t=0 .
To first order, write

for t near 0, using the fact that yt(r.9 0) is a pure !-form. Note that for

each i and j , y((r. ,0)eSn(V), the unit π-sphere in V. By compact-
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ness, replace {r.} by a subsequence such that for each i = 1, , n, the

sequence {F/ί^ > 0)} converges in Sn(V). Let c°° = lim . ^ ^ c^rj).

Differentiating the expression

with respect to t at ί = 0 yields

Let (09x)eV be a fixed 1-form. Compute, using DA (0, JC) = 0,

0 = {DAΰ(0,x),(ei(rj),fi(rj)))χ{rj)

= <(0, x) , D^iefc), fi(rj))){rj) ± ((0, x) , <7(<?,.(ry), / i i ^ ) ) ) ^ ^ , .

By (*), this gives

(xΛwψj))^ - (x, *[a, cfa)])^
= ±((0,x),σ(ei(rj),fi(rJ)))mrj).

Lemma 4.9. l i m ^ o o ( ( 0 , x ) , σ(e.(ry.), /-(ry)))w(f., = 0.

Proo/ To prove this lemma, we need to take a closer look at the bound-

ary conditions satisfied by y^r^, t).
In the notation of the previous section, recall that

L2{E) = H}(Σ) Θ #}(Σ) φ H2

Z(Σ) φ span{<£(0, £ ( / ) , ψ^{t), ^"(f)}.
' ' ' /*,^0

Recall that ^ ( 0 and ψ^{t) are ^//^TJ-eigenvectors of D- , and {^"(ί)

and !^Γ(0 are -^//^TJ-eigenvectors of Z>- . Since ^.(r^, /) e Jϊf[ (E(r)

P+(t) + ̂ ( 0 ) , we may write

yfc, t)\dX(rj) = hi{rj , ί) (

where Λ.(ry, ί) G 3t{fy . We know that h^r., 0) = 0 = Ai

k(rj, 0) for all

/, j , k, because y.(r , 0) e LJ(£"(OO)) and hence has no harmonic part

on the collar, and the 0-form part of y.(rj, 0) is harmonic by Proposition

4.2.
Compute
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where

Qx = Af (ry , 0) + YJ{Ai

k{rj, 0)£(0) + B[{rj

and Q2 = ΣkBi(rj
It is clear that ((0, x), σQχ)dχ{rj) = 0, because (0, x)\dX{rj) € P+(0)

and βj G P+(0) + ̂ " (0) . Hence we need to consider limJ._>oo((0, x) ,
σQi)dx(r)' B e c a u s e (Q>χ)\dx(r) decays exponentially in r., it would

suffice to show that Q2 is bounded in r.. In fact, we will show that β 2

also decays exponentially in r.. First, note that each element of Sn(V)

has an expression of the form

k=\

on the collar Σ x [0, oo). Since each j;.(/\, 0) € 5"(F), we may write

Blirj, 0) = e~^r'bk{v) for t; = yt(rj, 0) € Sn(V).
Consider the function g: S"(V) —> R defined by

Σ.

Note that g is the composition of the following maps:
(1) The restriction map

L]{E{oo)) D S"(V) - L2

ι/2(E\Σ x {r}) 3ί L\/2{E).

• 2 ^ 2 Λ * + • +

(2) The map [/: Lχ,2(E) —• Lχ,2(E) given by t / ( ^ ) = Ψk -
(3) The L2-norm map on L2

{,2(E).
The first and third of these are well known to be continuous, and the

second is continuous because At is assumed to be a fine path. It follows
that g is continuous.

Because Sn(V) is compact g(υ) is bounded in R by a positive number,

say N. Then it is clear that \Q2\ < e~vμι^ΓjN, where μ{(0) is the

smallest nonzero eigenvalue of Δ7 on Ω°(σ ^ ( 2 ) ) . This completes the

proof of Lemma 4.9.
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By the above lemma, we know that for all x e V,

= / tr(*Λ[fl,C?°])=.
JX{oo)

= [x,ct ] a = B(xici ).

Substituting c°° for JC , we see

B(c°°, c°°) = lim(c°°, hr.)c(r.))γ( λ =

so this limit exists. Substituting c£° for x, kφ i, gives

, c,°°) = lim (c^°, λArλcArλ) Y(r λ
1 —oo κ ι J ι J ΛVj>

= l i m ( c . ( r . ) , λ ( r ) c ( r ) ) y , \ = 0 .
y-+oo ^ ι J ι J Λ\rj)

It follows that the form B is diagonal with respect to the basis {c^°}i

with eigenvalues {lim.^^λ i{r.)} i. Hence for large enough values of j ,

the signs of {λi{rj)}i are precisely the signs of the eigenvalues of the form
B.

5. Spectral flow along arcs of flat connections on a closed 3-manifold

In this section we prove a theorem analogous to Theorem 4.8 which
holds in the case of a closed 3-manifold M. This theorem gives the spec-
tral flow of a path of operators DA on M, where At is an analytic path
of flat connections on M. The analysis involved is considerably easier
since there are no boundary conditions to worry about.

Throughout this section, M will denote a closed orientable 3-manifold
with a fixed Riemannian metric. Let Af e Ωι(M\ su(2)) be an analytic
path of flat connections, defined for t e (-ε, ε). Define the vector bundle
E —• M and the operator DA just as in §3. Note that the domain of DA

is constant as t varies; it is the image of the L2

χ -sections in L2 . It follows
from [9, Theorem VII.3.9] that the (orthornormal) eigenvectors {a.(t)}.
and corresponding eigenvalues {λ (t)} of DA are analytic functions of
t.

Let W = kerZ)^ £ H\{M)®H\(M), where HA(M) denotes the
DeRham cohomology of M with coefficients in su(2) using the flat con-
nection A . If n = dim W, then there are exactly n eigenvalues (counted
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with multiplicity) of D Λ passing through 0 at t - 0. After reordering,

assume λ{(0) = λ2(0) = = λn(0) = 0, so {o:.(0)}"==1 is an orthonormal
basis for W. The following theorem gives the signs of the derivatives

! f. = rf/ΛUW f o r ι = l , - - 9 n .
Theorem 5.1. Lei α e Q*(M; sκ(2)) te the derivative d/dt\t=0At. Zte-

yϊ«e a symmetric bilinear form G on W as follows: G(x, y) = (x, Ay)
where A: W -* Γ(E) is defined by

A(y0 > y i ) = ( - * [ * * > y j >[*> y0] + *[a, yj).

•
Then the eigenvalues of G (as a set with multiplicity) are {λ{, , λn}.

Note. If we choose the form a to be harmonic (e.g., by applying a
path of gauge transformations to {At}), then we may write G(x, y) in
terms of cup products as we did in Theorem 4.8:

G({xo,xx), (yQ,yx)) = ([xo,yx]- [xx ,.

Because a is harmonic, *α e H2(M\ su(2)) so this formula can be in-
terpreted in terms of the two types of cup products discussed following
Theorem 4.8.

Proof During this proof, we will always assume i e {1, ••• , n}.
Let ai = d/dή^a^t). Let A: Γ(E) -> Γ(E) be defined by Au =
d/dt\ί=QDA u. Explicitly, A is given by

A(u0, uχ) = (- * [α, *w0], [α, w0] + *[α, wj).

(While comparing this formula with the definition of A given in the state-
ment of the theorem, note that [*<z, uQ] = [a, *w0].) Differentiating the
equation DA a^t) = λ (t)a.(t) at t = 0 gives

Let x G W ,̂ so D^ JC = 0. Then by selfadjointness,

0 = (DAx, a.) - (x, Z ) ^ ) = (x, 1.^.(0) - ^ ( 0 ) > .

Hence for all / e {1, , n},

Because this equation holds on the basis {^^(0)} of W, the theorem
follows.
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6. Dehn fillings

In this section we return to our overall project of calculating the spectral
flow of the path DΛ of operators along the path At of connections on a

Λ t ι

manifold M = XUΣY where, for each t, At is assumed to be flat on X.
Recall that according to Theorem 2.1, we have the formula

SF(DA) = SF(Dχ(ή) + SF(Dγ(ή) + γ(Lχ(t), Lγ(ή).

In §4, Theorem 4.8, we gave a method of calculating the first term,
SF(Dχ(t)). We needed several assumptions to make this computation;
an important one was that Lχ(t) should be chosen to be transverse to the
Lagrangian p(V(t)) at each time t.

We will now turn to the computation of the sum of the other two terms
in Theorem 2.1, namely

SF{Dγ{t)) + γ(Lχ{t),Lγ{t)).

Though much of this section could be adapted to apply to an arbitrary
3-manifold Y with boundary, we will restrict ourselves in this section
to the case in which 7 = S ι x f l 2 . We make this restriction because it
greatly simplifies the technicalities, and also because this case is adequate
for the applications which we have in mind (see §7). We will at times
make remarks indicating how one might generalize to other choices of Y.

We will observe that the sum of these two terms is independent of any
information about X\ in fact it depends only on the path At\Σ of flat
connections on Σ and on the path Lχ(t) of Lagrangians. In an important
sense we will see that it depends only on the homotopy classes of these
paths (see Lemma 6.2).

By considering certain "test cases" we will determine precisely the de-
pendence on the relevant homotopy classes. This dependence was essen-
tially computed by Yoshida in [20]. However our proof is somewhat more
direct (it does not required adding handles to obtain a higher genus sur-
face), and Yoshida never states the precise form of this theorem which we
will need for our applications. Hence, in this section we will present our
own statement and proof of this theorem (Theorem 6.4).

In what follows we (continue to) identify 517(2) with the unit quater-
nions.

The space of 5C/(2)-conjugacy classes of representations of the fun-
damental group of a torus, R(T), is a singular real algebraic variety
homeomorphic to 5 with four singular points corresponding to central
representations. Let Y = D x S be a solid torus and let T = dY.
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Let μ, λ e π{(T) be a pair of generators so that μ bounds a disk in
Y. The map R2 —> R(T) sending a pair (α, β) to the representation
μ »-• e 2 π ί α , 2 »-• e2*1^ is a branched cover, with branch points the half-
integer lattice which map to the central representations. This branched
cover also determines a 2-parameter family of flat connections on the
T x 517(2), namely (a, β) corresponds to the connection with 1-form
ia dx + iβ dy. Here x and y are coordinates on the torus such that
the coordinate axes correspond to μ and λ. (We identify connections
on T x SU(2) with 1-forms by taking the trivial connection to 0.) The
conjugacy classes of representations of πχT in SU(2) form a space home-
omorphic to the gauge-equivalence classes of flat connections on T, but
using this branched cover we have a family of connections, not just gauge-
equivalence classes.

Now A = ia dx + iβ dy extends to a flat connection on Y if and
only if a is an integer. A precise formula for an extension can be found
in [10, p. 352]. Let ST(T) denote the flat connections on Γ, and let
s/'{Y) denote those connections on Y which, when restricted to the
collar T x [-1, 0] are a product of a flat connection on T and the trivial
connection on [-1, 0]. The restriction map r: s/\Y) —> &{T) is a
trivial fibration with contractible fiber

F = {ωe Ω.l

γ\ω = 0 on T x [-1, 0]}.

(A cross section can be constructed by using a slightly larger collar to cut
off the product of a flat connection with the trivial connection.)

Restrict the fibration r to {iadx + iβdy\(a, β) € R2} = R2 . Extend-
ing the connections with a e Z flatly over Y gives a (continuous) cross
section χ of r over Z x R c R2, the union of vertical lines. Since the
fiber is contractible, χ extends to a section over all of R , although the
extensions will be flat on Y only over the vertical lines. We will need
to avoid connections whose restrictions to T give central representations.
Therefore we define

So R is a family of connections on Y = D2 x Sι parameterized by the
punctured plane R2 - (\Z)2 . Write A for the restriction of A £ R to the
boundary torus. We summarize the properties of R:

1. If A € R, then on the collar A = θ x A, the product of the trivial
connection in the collar direction with the flat connection on the
torus A = iadx + iβ dy . (We say A is an standard form on the
collar.)
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2. If A e R and A = ia dx + iβ dy , then at least one of a and β
is not in \%.

3. If A e R, then A is flat if and only if A = iadx + iβdy has
α G Z .

Write

Q = {AeR\A = iadx + iβdy, a el) C R.

So elements of β are flat connections on Y.

We assume that the Riemannian metric on the torus is chosen so that
{dx, dy} form an orthonormal basis, and the metric on the solid torus is
a product metric near the boundary. The forms ω e Ω*7 ®su{2) which are
harmonic with respect to A = iadx + iβ dy (i.e., d^ω = 0 = d~ω) are
easy to compute and in fact are independent of a and β as long as these
are not both in \Z: the harmonic 0-forms are just {ia \ a e R} = R, the
harmonic 1-forms are {ia dx + ib dy \ a, b e R} = R2 , and the harmonic
2-forms are {ia dx dy | a £ R} £ R.

Over i? we have the (trivial) symplectic 4-dimensional vector bundle

of harmonic forms on the torus, %? = %? Θ %?x θ %? where

^ ° = R x {ai I a e R},

^ 7 l =i? x {aidx-\-bidy \ a, b e l } ,

and
/ 2 = ilχ {aidxdy \ a e R}.

The symplectic structure is given by <T(Q: , o: α ) = (— * α , *α , *α ), as
described in §2.

Remark. Given any continuous family of connections on any surface
so that the dimension of the kernels of the family D^ is constant, one
obtains a corresponding bundle %? over the parameter space whose fiber
over A is kerZ)^. This follows from the fact that the family D? forms a

A J A

continuous family of closed operators in the graph topology and Theorem
IV.3.16 of [9]. For our connections in standard form over the torus this
bundle is canonically trivial.

We let o2* c %? be the (trivial) Lagrangian subbundle whose fiber at
each point of R is

Jΐ?a = OφRidxΘ Ri dx dy.
The important observation for our purposes is that σ(Jϊ?) equals p(V)
along Q, and, in particular

1. p(V) forms a smooth Lagrangian subbundle of %? along Q, and

2. J ? is transverse to p(V) along Q.
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To see this, first notice that a choice of meridian and longitude gives
a canonical identification of Hι(dY; ad/?) with R2 if p is a noncentral
representation. (For example this is isomorphic to &ι.) Then Propo-
sition 4.3(111), together with the each computation that the image
im(Hι(Y ad/?)) -+ Hx{dY\ ad/?) = R2 is constant as p varies in the
noncentral representations of πχY, shows that p(V) c %* is constant
and in fact equals the restriction of σ(S?) to Q, namely Rz θ l i r f y θ O .

This choice of S? is not canonical, and one might try other choices.
A more natural choice is to take SfA = σ(p{VA)) for all A e R; this is
the choice taken in [19]. Unfortunately, this is not in general a continuous
subbundle. We will give an example, at the end of this section, of a smooth
path of flat connections on the trefoil knot complement so that p(V) is a
discontinuous subbundle of <%*. Our choice is the one which makes the
computation easiest. (In [19], Yoshida proved that the Riemannian metric
and a path of connections could be perturbed so that p(V) is continuous
along the path. His proof requires that the boundary surface have genus
greater than 1.)

For AeR, let

where DA is the operator on E = (Ω° θ Ωι)(Y su(2)) constructed in

§2, and P+(A) refers to a span of the positive eigenvalues of the operator

Notice that the equation DAφ = 0 has no L2 solutions if A e Q. The

reason is that since A is flat, the iΛsolutions equal the image of the rela-

tive cohomology in the absolute cohomology [1]. But H°(Y, T; adpA) =

0 and HX(Y, T\ nάpA) = 0. It follows that if A e Q, then 3fA{5?) has

no kernel. (There are no extended L2 solutions because of the assumption

that Sf is transverse to p(V)).
Let Lag —• R denote the fiber bundle whose fiber over A is the space

of Lagrangian subspaces of %*A .

Lemma 6.1. The map Lag —• {selfadjoint, closed operators on L2(E)}
which takes a Lagrangian L c %?A to the operator 3ίA(P+(A) + L) is
continuous in the graph topology on closed operators.

The proof of this lemma is contained in Appendix B, and works for
any manifold whose boundary is a union of tori, not just Sx x D2 . (In
a more recent paper [11] we show that Lemma 6.1 holds for any surface.
In particular, there are analogues of Theorem 6.4 for any 3-manifold with
boundary.)
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Let C°(R, Q) denote the space of all continuous paths / -> R with
endpoints in β . It follows from Lemma 6.1 that given any path q e
C°(R, Q) the spectrum of the operator 2 ,ΛS?) varies continuously in
t [9, pp. 107, 291]. Thus we can think of the spectral flow of 3fq(t)(&)

as a integer-valued function on C°(R, Q).

Lemma 6.2. The function SF(&(&)): CΌ(R, Q) -• Z is a homotopy
invariant and is additive with respect to composition of paths. In particular,
there exists a cohomology class χ e Hι(R,Q;Z) so that SF(β (&))

= *([«])•
Proof Notice that by hypothesis on J ? , the operator 3fA(&) has no

kernel if A lies in Q. In particular the spectral flow is zero for paths
lying entirely in Q. Suppose that q and q are homotopic paths in R
via a homotopy keeping their endpoints in Q. Using the homotopy one
sees that the spectral flow of 3f{&)) is the same along q and q . Now
SF(3f(2f)) is clearly additive with respect to unions of paths. These facts
guarantee that there exists a class χ with the stated properties, q.e.d.

Suppose we wish to apply Theorem 2.1 under the following conditions.
Λt is a path of connections on X UΓ2 Y such that At\X is flat for all
/, and AQ9 Aι are both flat on X UY. We will also assume that on the
collar T2 x / , we have At = π*(At)9 where At is in standard form and
has noncentral holonomy for all t e [0, 1]. In addition, we assume that
At\X is irreducible for all t. Because At is in standard form for each t, it
may be thought of as a path in R. We will denote this path by q: I —> R.
We will make the following assumptions on q (which are actually implied
assumptions on At):

(1) q: I —> R is an immersion.

(2) / n ^ 1 ( β ) = {0, i } .
(3) dq/dt is transverse to Q at q(0) and q{\).

Definition. We define Imm(i?, Q) to be the set of all smooth paths
q: I -+ R satisfying (1), (2), and (3) above.

In order to calculate SFχ(DA ) using Theorem 4.8 we will need to

choose a path 3£t of Lagrangians in & with the property that for all

t e [0, 1], Xtf)p{Vχ(t)) = 0. Thus the following lemma will be helpful.
Lemma 6.3. Assume that At and q satisfy all of the above conditions.
Then

φSpan(idxdy).
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Proof. By Proposition 4.3, we know that

(X) (Γ2)) ®span(idxdy).

So we need to show that im(j*) = span(dq/dt\t=t). Since At\X is flat

for all t,
dA,

dt
e H\ (X).

Tracing through the definitions, we see that

dAt

It
/=/„

dAt

~dt
dq_

dt

Because q is an immersion, dq/dt Φ 0 e H^ {T2). By Poincare duality,
'o

im(y*) is 1-dimensional, so imQ*) = span(dq/dt).
We then see that it is easy to choose ^ transverse to p{Vx(t)) by

setting

i j = (τ Oθspan ( - j - J espan(/dxdy) j = span(/) θspan ί * — J e θ .

Note that with this choice of 3£χ it follows that is transverse to <5̂  for
i = 0, 1 because of the transversality condition at g(0) and ^(1). Thus
to each path q e Imm(i?, Q), we have assigned a path of Lagrangians
3?t c 2P. This path is well-suited for the application of Theorems 2.1 and
4.8 in the cases where q arises from a path At of flat connections on X.

Definition. If q e Imm(i?, Q), define the writhe of q to be the Maslov
index of span(dq/dt) and the constant path of Lagrangians (idy) in the
space %fx = span(/rfx, idy). This is simply the intersection number rel
boundary of the two paths *»-•(*, span(dq/dt)) and t »-> (t, span(idy))
in / x R P 1 .

With these choices, we have
Theorem 6.4. Given α smooth immersed path q € Imm(i?, Q),

(I) the integer y(3t, S?) is the writhe of q.
(II) The mod 8 reduction of the cohomology class χ determined by

SF(β(Sf)) in Lemma 6.2 is given by intersecting a path q with
the cycle represented in Figure 1.

Remarks.

1. Given two gauge-equivalence classes of 5(7(2) connections on a
closed 3-manifold M, their spectral flow is well-defined only mod-
ulo 8. The usual proof of this fact is to lift a loop in 3§ - si 19
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to a path in s/ . This path then defines a connection on an SU(2)

bundle over M x Sι, and the spectral flow on M is identified

with the index of the self-duality operator on M x Sι. This in-

dex in turn is computed by the Atiyah-Singer index theorem to be

8A: - 3(1 - bχ(M x Sι) + b\{M x S1)) which is equal to 8A: since

the signature of M x Sx is zero.
2. Theorem 6.4 generalizes a result of Yoshida [20] which considers

only the case of smooth paths of flat connections on X, which
in this context corresponds to a situation in which the first term

in Theorem 1 vanishes.

Proof. The proof of (I) follows from the observation that if Lt, Kχ

are two paths of Lagrangians in a symplectic vector space H, and we give
R Θ H 0 R the obvious symplectic structure, then

γ(Lt ,Kt) = γ(R®Ltφ0,0ΘKtΘ R).

To prove (II), it suffices to try some test cases since any cohomology class

in Hι (R, Q Z) is the intersection with some cycle of the form described

for some choice of integers; it suffices to identify these integers. The ar-
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\π\(R(X) -> R(T))

FIGURE 2

gument is basically similar to Yoshida's: the computations of Fintushel
and Stern [6] for surgeries on the trefoil knot give us sufficiently many test
cases. For one example, consider +1 surgery on the right-handed trefoil
knot which is the Poincare homology sphere. Write this as XUTY, where
X is the trefoil complement, and Y = D2 x Sι is the solid torus glued
back in. The space of non-abelian representations of X is a smooth arc
[10]. This maps to R as shown in Figure 2.

In this figure one sees that there are two representations which send the
meridian to 1, i.e., which extend to representations of πχM. This path
intersects a single vertical line. The spectral flow on M between these
two representations has been computed in [6] to be 4 mod 8. On the
other hand, since the path between the two representations is a piece of
a smooth, 1-dimensional real algebraic variety, the Zariski tangent space
Hι(X; ad/?,) is 1-dimensional and maps injectively to Hι(dX; ad/?r).
Thus the image X1 (X, dX ad pt) -» Hι (X ad pt) is zero for all t along
this path. Therefore, the operators 3A (X) have no kernel along the entire
arc, and the spectral flow must equal zero. Thus the sum of the other two
terms in Theorem 2.1 is equal to 4 mod 8 for this path.

Other examples (e.g., +1/2 surgery on the trefoil) give paths which
intersect the horizontal lines. These paths can be used in the same way to
finish the proof, q.e.d.

We finish this section with the promised example showing that the
spaces p(V) need not form a smooth or even continuous subbundle of
%f, even when the path of connections is smooth and the bundle %? is
smooth. As remarked above, discontinuities, if there are any, arise at
points where there are L2 solutions to DAφ-0.
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Let X be the complement of the trefoil knot. Then πχX = (x, y \ x2 =

y3). A smooth path of representations is given by

ρt(x) = (cosήi + (sint)j, ρt{y) = cos- + sin-/, t e (-.1, .1).

This path is abelian for t = 0, and nonabelian for t ψ 0. The meridian

is given in these generators by μ = y2x~ι. The real part of pt(μ) is

equal to (\/3/2)cosί, and since this is not equal to ±1 in this interval,

it follows that the restriction of pt to the boundary is non-central for all

t £ ( - .1 , .1). According to Proposition 4, when t Φ 0,

p(V) = im(Hι(X; ad/?,) ->Hι{dX\ ad/?,)) φH2(dX\ ad/?,),

and when t = 0,

p(V) = H°(dX; adpo)Θim(Hl(X;adpo) - Hx(dX\ ad/>0)).

Since H°(dX; ad/?,) £ R ^ H2(dX\ ad/?,) for all t,p(V) does not form

a continuous subbundle.

Actually, the situation in this example is much worse: the subspaces

im(Hι(X; ad/?,) —• Hι(dX; ad/?,)) do not form a continuous family

even though μ and λ give a canonical identification of // (dX\ ad/?,))

with R2 for all t. So even if one attempts to "mod out" the 0- and

2-dimensional part of H*(dX) the corresponding family of Lagrangians

still does not form a continuous family. We leave the proof of this fact

to the interested reader. The basic idea is that when t Φ 0 the image

im(Hι(X; ad/?,) —> Hι(dX; ad/?,)) is tangent to the image of the irre-

ducible representations in R(dX), but at t = 0 this image is tangent to

the image of the arc of abelian representations R(dX).

7. Application to torus bundles

We will apply the results of the previous sections to compute the spec-
tral flow mod 4 between two representations of the fundamental group of
a 3-manifold M which fibers over the circle with fiber a torus. To com-
pute the spectral flow between two nonabelian representations, we will use
Theorems 4.8 and 6.4. The basic idea is to find a knot γ in M so that the
complement of γ admits a path of representations joining the two given
representations. The results of §4 will be used to evaluate the spectral flow
on M - γ, and the results of §6 will be used to compute the other two
terms in Theorem 2.1. Later in this section we will use Theorem 5.1 to
compute the spectral flow between two abelian representations.
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We first show that if p0 and pχ are nonabelian representations of a
torus bundle over the circle, M, then there exist a knot γ in M and a
"straight line" path of representations of π(M - γ) from p0 to pχ. The
construction works also for an arbitrary surface bundle over Sι, and so
we will consider this more general case. This has independent interest; in
particular the result of [10] can be applied to this path to give yet another
method for computing the Chern-Simons invariants of special representa-
tions of surface bundles (see [2]).

Let F be a closed, oriented surface, and let m: F —• F be a homeo-
morphism. Let M be the mapping torus

M = F xl/ ~

where (JC, 0) ~ (ra(jc), 1). So M is an F bundle over Sι. The funda-
mental group of M is an HNN extension:

πχM = (πχF, τ | τzτ"1 = m(z) for each z e πχF).

Let B: Hχ(F Z) -> Hχ(F' Z) be the map induced by m on homology.
Fix a generating set xχ, , x2g for πtjp forming a symplectic basis for
/ ^ ( F Z), and use this basis to identify B with a 2gx2g matrix (acting
on the left).

In [10] we called a nonabelian representation p: πχM —> SU(2) a spe-
cial representation if the restriction of /? to a fiber is abelian. One checks
that given a vector φ = (φ{, , 0 2 ) e R2g, (identifying SU(2) with

the unit quaternions) the assignment xn •-• e2π/<^ , τ ι-> y" defines a special
representation of πjM if and only if φ(B +1) e Ί?8 (Proposition 5.5 of
[10]). Furthermore, every special representation is conjugate to one of this
form. We will denote this representation by pφ. (If F is a torus, then
every nonabelian representation is conjugate to a special representation.)

Notice that replacing φ by ±φ + υ for υ e I?8 gives a conjugate
representation.

If h: F —• F is a homeomorphism, and {yk} is the new basis of

π{F defined by Λ(JC^) = yk, then />0(yfc) = e2πiφ>k where φ' = φH.

Here // is the matrix induced by h on homology (with respect to the

basis {xk}
2

k

8=\) (Invariantly, φ is an element of Hι(F; R) which satisfies

m*(φ)-φeHι(F',Z).)
Let 7 be a simple closed curve in F. Identify F with F x {0}, and

view γ as a knot in M . Then M - γ is obtained by gluing (F - y) x 0
to F x 1 using m. Therefore,

~πχ(M - y) = (TΓJF, τ | τzτ~ = m(z) for each z e πχ(F - γ)).
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Lemma 7.1. Let φ and θ be two vectors in R 8 which defines special

representations pθ and pφ of πχM. (So φ(B + I) el?8 and Θ(B +1) e

I?8.) Then there exists a simple closed curve y on F so that for each
t e [0, 1], the assignment xn ι-> e

2xm't)tn+ten), τ *-* j defines a path of
representations of M - γ from pφ to pθ .

Proof If (0 - φ)(B + /) = 0, then (t(θ - φ) + φ)(B + /) e Ί?8 for all
t, and so (1 - t)φ + tθ defines a path of representations of πχM from pφ

to />0 . Thus assume (0 - φ)(B +1) ψ 0.

Endow Z g with the standard symplectic pairing. There exists a sym-

plectic matrix H such that (0 - φ)(B + I)H = (n, 0, ,0) for some

integer n since any primitive vector in Z * is the first vector of a sym-

plectic basis. Choose a homeomorphism h: F -> F so that h^ = H in

the basis {x^} . The representations /?̂  and /^ are expressed in the ba-

sis yk = Hxk by φ1 = φH and θ' = 077. Moreover B is changed to

B' = H~ιBH. Thus

(θ'-φf)(Bf + I) = (θ-φ)(B + I)H = (n,0,-. , 0 ) .

Let y = y 2 . Then Hχ(F - γ) is generated by y2, y 3 , , y2g . Using
the remark preceding the lemma it is therefore easy to check that yk ι->

e2πi((\-t)φk+tθk) ^ τ ^ j d e f i n e s a p a t h o f representations of πχ(M - γ)
from pφ to /?0. q.e.d.

The proof shows how to find the desired curve: First, choose a sym-
plectic matrix H so that (θ -φ)(B + I)H = (n, 0, , 0). Then choose
a homeomorphism inducing H on homology, and let γ c F be a simple
closed curve representing Hx2 .

In particular, if M is a torus bundle, we have
Corollary 7.2. Let M be a torus bundle with monodromy matrix B,

and let pφ, pθ: πχM —• SU(2) be special representations corresponding to
φ = (φχ, φ2) and θ = (0,, 0 2). Then (1 - t)φ + tθ defines a path of
representations of πχ(M - γ) where γ = pxχ + qx2, (p, q) is a relatively
prime pair satisfying

(1) {φ

Moreover, (1) uniquely determines γ (as an unoriented curve) up to isotopy
in terms of θ and φ if det(5 + /) Φ 0.

Proof All but the last statement follow from the previous lemma. The
reason why (1) uniquely determines γ as an unoriented curve is that
given any vector v = (vx, v2) e Z2, there is a unique (up to sign) primi-
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tive vector w e Z2 orthogonal to v , namely (-v2, υι)/gcd(vι, υ2). So
(φ - Θ)(B + /) = n(-q, p) with gcd(p, ί ) = 1. q.e.d.

We set up some notation which will be used for the rest of this section.
We use B e 5X2(Z) to denote the monodromy and take:

B =

Given θ, φ eR2 determining special representations pθ and pφ, let γ
be the corresponding knot in M. Let X be the complement of a tubular
neighborhood of γ. Let

and let /?,: π t X —• SU(2) be the path of representations given by

The fundamental group of X is

/ Λ λ . iπiθΛt) 2πiθM)

ntXr = (x, y, τ | [x, y] = 1, T j/y f τ " 1 = /)

The meridian of X (i.e., the boundary of a disk fiber in the tubular
neighborhood of γ in M) is represented by the element

where r and s are any integers satisfying rq - ps = 1. We can take
a longitude to be any complementary curve to μ a convenient choice is
A = xpyq . Figure 3 explains these choices.

Finally let A c l 2 denote the half-integer lattice Λ = (^Z)2 .

Given a conjugacy class [p0] in R(M) of nonabelian representations,

there is a θ e R2 so that p0 is conjugate to pθ . Of course 0 is not unique,

it may be replaced by ±θ+v for any v e Z2 . Given two conjugacy classes

[p0] and [p{], a choice of 0 and 0 in E2 so that pQ ~ /^ and /?t ~ p^

determines the curve γ c T c M via (1). In general, different choices of
θ and φ will give a different curve y, and the resulting paths pt given
by (2) may have different properties.

Lemma 7.3. In the notation of the preceding paragraphs:

1. The representation pt is abelian if and only if θ(t) e Λ.

2. The restriction of pt to dXy is given by

pt(μ) = exp(2πi((r(a + 1) + sb)θχ{t) + {re + s(d + I)

and
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FIGURE 3

In particular, the restriction of pt to the boundary dXy is central if and

only if

Moreover, if pt is abelian, then the restriction of pt to the boundary is
central

Proof 1. Since pt{τ) = j , pt is abelian if and only if pt(x) and

pt(y) are both central. Since pχ(x) = e

2xi$l(t) and pt(y) = e

2πiθy{t), this

can happen only if θ(t) e Λ.
2. pt(μ) = pt(xra+sbhrc+sdτχ-ry-sτ-ι) = pt(xra+sbyrc+sdxrys). Since

x and y commute, (1) clearly holds, and (2) is obvious, q.e.d.
In order to apply the theorems of the previous sections, one needs paths

of representations of Xy so that the restriction to the boundary is not cen-
tral along the path. This is because when the path passes through a repre-
sentation whose restriction to the boundary is central, then the symplectic
space ^ jumps up in dimension from 4 to 12.

Definition 7.4. Given conjugacy classes [/>0]>[/>i] of representations
of πχM, we will say that θ, φ e R2 form a good pair for [p0], [p{] if pQ

is conjugate to pθ, px is conjugate to pφ, and the path pt defined by (2)
restricts to a path of noncentral representations of πχ Xy.
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In every example which the authors tried, it was always possible to
find a good pair given any two conjugacy classes of representations of
πχM. We do not know a proof that such a path can always be found,
but we conjecture that one always exists. Finding a good pair is a tech-
nical problem of linear algebra over Z. Proving that θ and φ can
be chosen so that pt is nonabelian for all t is easier. For example,
a fundamental domain for the (Z Θ Z) xi (Z/2) action on R2 given by
(mχ, m 2 , ±l)(θιθ2) = ±(θχ + mχ, θ2 + m2) is the set

D = ([0, 1) x (0, i)) U ([0, i ] x {0}) U ([0, i ] x {i}).

If we choose θ and φ in D, they lie in D - Λ since j ^ and pφ are
nonabelian. But then the entire path (l — t)θ + tφ lies in D — Λ, and so by
the previous lemma this determines a path of nonabelian representations.

We can now state the main result of this section. This is a computation
of the spectral flow mod 4 between two nonabelian representations of a
torus bundle over S . This theorem verifies Conjecture 5.8 of [8] for the
case G = SU(2) at least when a good pair of representatives can be found
for a pair of representations.

Theorem 7.5. Let M be a mapping torus with fiber T2 and mon-
odromy matrix B. Assume that ± 1 are not eigenvalues of B. Let [pQ],
[pχ] e R(M) be two conjugacy classes of nonabelian representations, and
assume that a good pair θ, φ e R2 for ρ0, px can be found. Then the
spectral flow of the Hessian of the Chern-Simons function between p0 and
pχ is congruent to 0 mod 4.

Before we embark on a proof of this theorem, we first do a few compu-
tations to show the reader how to find all nonabelian representations of a
torus bundle, and how to find paths which satisfy the technical restrictions
of this theorem.

We start with a simple example. Take the monodromy matrix

The determinant of B + / is 5. Since every nonabelian representation
is conjugate to a special representation p0 with θ e D - Λ (D is the
fundamental domain described above), the possible values of θ lie in
(^Z)2 Π (D - Λ). This intersection contains 12 points. One easily checks
that of these twelve points, only ( | , §) and (3,3) satisfy Θ{B + I) e Z2 .
Thus there are two conjugacy classes of nonabelian representations of M.
To apply Theorem 7.5, we must check that θ and φ form a good pair.
Let 0 = (f, §) and φ = {\, ^);then (θ-φ)(B + I) = {l,0). Therefore,
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= (O, 1). Hence:

This does not pass through Λ for t e [0, 1]. According to Lemma 7.3 this
implies that pt restricts to a noncentral representation for each t e [0, 1],
i.e., θ and φ form a good pair. Theorem 7.5 now implies that the spectral
flow from pθ to pφ is congruent to 0 mod 4.

This example has H{ (M Z) = Z, and the abelianization is generated
by τ . Therefore the space of conjugacy classes of abelian representations
is an arc. A parameterization is given by the path of representations:

Ps(τ) = eι\ p s ( x ) = ρ s ( y ) = 1 , se[0,π].

Moreover, this arc is a smooth component of R(M) except at its end-
points (a calculation similar to those of Lemma 7.7 below shows that
Hι(M;padps) = R for all s e (0, π)). Therefore, the spectral flow
between ps and ps> is - 1 mod 8 (using Floer's convention of counting
the intersections of the graph of the spectrum with a line from (0, -ε) to
(1, ε)). Computing the spectral flow to the trivial representation requires
computing the eigenvalues on the bilinear form at the trivial representa-
tion. This is done in general in Theorem 7.9 below.

As a second example we find a bad (i.e., not good) pair θ and φ. Let
M be a mapping torus with monodromy:

B -c
jM has 5 nonabelian representations, which can be found in the

same way as the first example. Among these are the representations pθ

and pφ corresponding to θ = (0, \) andφ = (5 > n ) •
With these choices of θ and φ, we see that (θ - φ)(B +1) = (-2, - 1 ) ,

and so the curve γ to be removed is γ = ( - 1 , 2). But with this choice
of 7, pθ{μ) = 1 and pθ(λ) = - 1 , as is readily checked. Thus θ and φ
do not form a good pair, and so Theorem 7.5 does not apply. However
θ can be replaced by ±θ + v for v e Z 2 , and similarly for φ without
changing their conjugacy class. We can try a different choice to see if we
get a good pair.

Indeed, with the choices θ = (1, \) = (0, ±) + (1, 0) and φ = φ =
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Thus the knot to be removed is γ = (2, - 3 ) . Arithmetic gives:

which does not pass through any central representation for t e [0, 1]. So
θ and φ form a good pair. Hence Theorem 7.5 applies to this path, and
the spectral flow from pθ to p, (which of course is independent of the
representatives θ and φ) is congruent to 0 mod 4 after all. In this example
the spectral flow between any two nonabelian representations is congruent
to 0 mod 4.

We begin the proof of Theorem 7.5 with some cohomology calculations.
We will use the usual model for group cohomology, so C (π, su(2)) =
su(2) and Cn(π, su(2)) = Maps(π", su(2)). Moreover, δ°(υ)(x) = v-
X'V for v e su(2) and δ\f){x,y) = f(x) + x f(y) - f(xy), where
x v means 2idp(x)(v). Identify su(2) with the imaginary quaternions,
and write su{2) = Ri θ C/ . The cup product is defined as follows: if a, b
are 1-cochains, and x, y e π, then

[a,b](x,y) = [a(x),χ.b(y)].

If c is a 0-cochain, then

[a,c](x) = [a(x)9x c].

We refer to [3] for details.

Lemma 7.6. Let M be a torus bundle over Sι, with monodromy matrix
B. Assume that -1 is not an eigenvalue of B. Let p be a nonabelian
representation. Then /ί°(M;ad/?) and Hx(M;adp) are both zero.

Proof. We continue using the notation described before Lemma 7.3.
Note that Hι(M\ ad/?) = H\πχM\ ad/>) for / = 0, 1, so we can com-
pute the cohomology of πχM instead of M. We may assume, by conju-
gating, that p = pθ for θ = (θx, θ2) e M2 .

For t, u and υ real numbers, the coboundary δ°(ti + (u + vi)j): π —•

R i θ C / sends x to (1 -e

Λxiθι)(u + υi)j, y to (1 -e*πiθl){u + vi)j, and

τ to 2fi + 2ϋΛ:. Let z be a 1-cocycle. Write z(x) = X, z(y) = 7 , and
z(τ) = T. Applying the cocycle formula to the first relation we see that

0 = X + x - Y - xyx~X X - xyx~ly~lY = (1 - y) X + (JC - 1) Y.

If θχ is not a half-integer, then by subtracting a coboundary from z we
may assume that X e Ri. But then the relation implies that x - 1 acts
trivially on Y, so that Γ is also in Ri. Similarly if θ2 is not a half-
integer, we may change z by a coboundary so that Λf and y are both
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in R/. One of the θk is not a half-integer since we are assuming that
pθ is a nonabelian representation, and so it cannot restrict to a central
representation of πγF. We can further change z by a coboundary so that
T is in C/ by subtracting 5°(α/) this does not affect X or Y.

With these simplifications, the other two relations x f lyc = τxτ~ι, JC*)^
ι= τyτ~ι imply that

= 0 and T = 0.

For example, if α, c> 0, then the relation xaycτx~ιτ — 1 implies that

0 = (1 + x + χa~l) X + χa(l + y + • • • + yc~ι) • Y
a Crr, a c — 1 v a c - 1 - 1 ^

+ xyT-xyτx X - x y τx τ T
~ι= (a + \)X + cY + {τxτ~ι - 1). Γ.

Comparing R/ coefficients gives (a + \)X + cY = 0. Comparing the C/
coefficients gives 0 = (τxτ~ι - 1) T = (JC"1 - 1) Γ = (^~47Γ/^ - 1)Γ. If j
is not a half-integer, this implies T = 0. A similar calculation works when
a and c are not both positive and for the other relation xbydτy~xτ = 1.

Since det(5 + /) Φ 0 by hypothesis, X and Y are both zero. So every
1-cocycle is cohomologous to 0 and Hι(M; ad/?) = 0. q.e.d.

We next turn to the computation of the cohomology of M - γ . As a
preliminary remark we observe that a choice of generators μ, λ of πχ T2

determines a canonical isomorphism R2 = Hx{πχT\ ad/?) for any non-
central representation p. Indeed, the isomorphism takes the pair (w, v)
to the 1-cocycle z whose value on μ is iu and whose value on λ is iv .
In particular, this identification is independent of the choice of representa-
tive of a conjugacy class. Given any 3-manifold X with boundary T2 and
any representation p whose restriction to the boundary is noncentral, the
image Hι(X; ad/>) —• Hι(dX; ad/)) is a 1-dimensional subspace (a La-
grangian with respect to the cup product), and so it makes sense to define
the slope of this image, and moreover to compare the slopes at different
representations.

In the next lemma, we continue with the usual hypotheses: M is a
torus bundle with monodromy matrix B, -1 is not an eigenvalue of B,
θ, φ e R2 are a good pair corresponding to two nonabelian special repre-
sentations, γ is a (/?, q) curve in the fiber so that (θ-φ)(B+I)(p, q)* = 0
and pt: nχXy —> SU{2) is the corresponding path of representations.

Finally μ and λ are the generators for nχdX described before Lemma
7.3. We refer to the slope with respect to these generators. With this
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notation fixed, we have:
Lemma 7.7.

1. H°{X7',3dpt) = 0.

2. Hι(Xγ;*dpt) * R ifpt(λ) φ ±1 and H\Xy\*άpt) = R3 if
pt(λ) = ±\.

3. The slope of the image Hι(Xγ ad/?,) -• Hι(dXy ad/?,) is inde-
pendent of t e [0, 1]. (Notice that this image is the differential
of the restriction map R(X ) —• R(βX ).) Using μ, λ to identify

Hι(dXγ ad/?,) with R2, this image is

{{bu + {d + l)υ , M ) G l 2 | ( α + \)u + cv = 0}.

Remarks.

1. The image

H°(Xγ9dXγ;adpt)(BHι(Xγ,dXγ'9adpt)

is zero if pt{λ) Φ ±1, and is 2-dimensional if pt(λ) — ± 1 . This

means that if At is a path of flat connections on Xy with holon-

omy pt, then the corresponding path of operators ^ constructed

in §4 has kernel only at those isolated t when pt(λ) = ±1, and

that the kernel is 2-dimensional at these points. We will use The-

orem 4.8 to compute the spectra flow of 31 t as t passes through

such a point t0 in terms of the eigenvalues of a bilinear form on

Hι(Xγ 92idpt). Notice that pt(λ) φ ±1 for t = 0 or 1.

2. The restriction of the path of representations of Xγ to the bound-

ary is linear (as a path in E2). In fact this path is given by

In particular / is an immersion, as required by Theorem 6.3. We pick
the Lagrangians for Theorem 2.1 to be

= σ(0 Θ im(Hι (Xy ad pt) -» Hι (dXy ad pt)) θ Ri dx dy)

for Mχ = Xy, and ^ = 0 θ {{υ , 0)}R/ as in §6.
Thus all the hypotheses of Theorems 4.8 and 6.4 are satisfied.
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Proof. Notice that pt is a path of nonabelian representations, since if
pt is abelian for some /n , then by Lemma 7.3 the restriction of pt to the

ιo u ιo

boundary is central, contradicting the hypothesis. Therefore H°(Xγ ad pt)
= 0.

By changing coordinates on the torus we may assume that γ is the
(1,0) curve in the fiber. Thenπ^Λ^) = (x, y, τ | τxτ~ι = xayc) and
hence μ = xbydτy~ιτ~ι and λ = x.

Let z be a 1-cocycle taking x to X, y to Y and τ to T. As in the
proof of Lemma 7.6, we may change z by a coboundary so that X and
F are in R/ and Γ is in C/. This normalization specifies z uniquely in
its cohomology class.

The cocycle formula applied to z(xaycτx~ιτ~ι) = 0 implies

Thus {a + 1)Z + cY = 0 and (^"4π^i (/) - 1)Γ = 0. This first equation
defines a 1-dimensional subspace of (/R)2 since det(5 + 7 ) ^ 0 . The
second equation implies that Γ = 0 if θ{(t) £ £ z , i.e., if /?,(λ) ^ ± 1 .
On the other hand, if pt(λ) = ±1, then this equation puts no restriction
on T, and so T can be arbitrary. This proves the second assertion.

For the last assertion, let z be a cocycle satisfying z(x) = X e /R,

z(y) = Y e I'R, and z(τ) = 0. So (α + \)X + cΓ = 0. Then one checks

that z(μ) = z(xbydτy-ιτ-1) = bX + (d+l)Y and z(λ) = z(x) = X. Use
// and λ to identify Hι(dXγ\ ad/?,) = R2 (see the paragraph preceding

this lemma). Then the image im(Hι(Xγ adpt) -> H{(dXγ ad/?r) = R2)

contains the set {(6w + (d -h l)v , ύ) e R2 | (α + \)u + cv = 0} . This set is
a 1-dimensional subspace since det(5 + /) Φ 0, and so must be the entire
image. Furthermore, it is independent of t. q.e.d.

If pt[X) = ± 1 , then the 1-cocycle z defined by z(x) = 0 = z(y) and
z{τ) = T restricts to a coboundary on dXγ. Thus these "C/" cocycles

represent the image of Hι(Xγ, dXy\ ad/?,) in H{(Xγ; ad/?,), which is

isomorphic to the space of L2 solutions to DAφ = 0.
We can now prove Theorem 7.5. The bulk of the proof is computing

the bilinear form of Theorem 4.8, using group cohomology.
Proof of Theorem 7.5. Let Y be a tubular neighborhood of γ, so

that M = XγUT Y. The path pt described by equation (2) defines an
analytic path of flat connections At on Xγ in fact this path is of the
form do + tA, where d0 is the flat connection with holonomy p0, and
A is a d0-harmonic 1-form representing the generator of Hι(Xγ ad/?0).
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Moreover, At extends to a path of connections on M which are flat when
t = 0 or t = 1.

Let / : / -• R2 be the path

So pt(μ) = e2πif^ and pt(λ) =

By hypothesis f{t) does not pass through any points of (5Z 2).
According to Theorem 2.1, the spectral flow is the sum of three terms,

SF(p0 ,Pι;M) = SF(βt Xy) + SF(βt Y) + y{&t, 3Q . Theorem 6.4
implies that the sum of the second and third terms is computed as follows:
each intersection of f(t) with a vertical line of the form x = (Ik +
l)/2, / € Z, contributes 4 and each intersection with a horizontal line
y = k/2, k e Z contributes ±2 (mod 8). There is no "writhe" term
since f(t) is a straight line, and so the sum of the second and third term
in the formula equals the sum of these contributions.

To complete the proof, then, we will show that the first term in the
formula of Theorem 2.1 is the sum of ±2, where the sum is taken over
each intersection of f(t) with one of the horizontal lines y = k/2. The
first remark after Lemma 7.7 implies that 3ft{X) has kernel only when
pt(λ) = ±1, that is, only when f(t) intersects one of these horizontal
lines, and that this kernel is 2-dimensional.

We will use Theorem 4.8 to compute the spectral flow on the manifold
X near each value of t where one of these intersections occurs. To see
that Theorem 4.8 applies, it is important to note that because the arc pt

of representations is analytic in t ,we may choose the corresponding arc of
connections to be analytic in t. Also, because the representations restrict
to abelian representations on dX' these connections may be chosen to
be in "standard form" (in the sense of Appendix B) near the boundary.
Because of this the path of connections on the boundary may be assumed
to he fine and hence we can apply Theorem 4.8.

Theorem 4.8 states that the spectral flow near any value of t is com-
puted in terms of a certain bilinear form. Precisely, if To e [0, 1 ] is a
parameter value when pt (λ) = ± 1 , let U be the image of Hι(Xv, dXv

0 ϊ ϊ

adpt ) in Hι(Xv ad/?, ). Then U is 2-dimensional and has a bilinear

form (u{, u2) »-• [u{, w2] a, where a e Hι(Xγ ad/?, ) is the derivative
of the path of connections. The spectral flow of 3ft for t e (to-ε, to + ε)
is the signature of this bilinear form. Thus we need to show that this form
is definite so that the spectral flow is ±2. Rather than compute this in the



COMPUTING SPECTRAL FLOW VIA CUP PRODUCTS 545

DeRham complex we can take the cellular complex, or, better, the group
cohomology complex (since Xγ and dXγ are K(π, l)'s).

In this context we have seen (Lemma 7.7) that U is just the "C/" part of

Hι(Xγ adp t ) . What this means is that the coefficients su(2) = Ri Θ C/

split as a π,Xv-module (via the ad/?, action), since if a e Ri,

χ a = a, y a = a, τ α = — α

and if a e C/, then

iπiθΛtΔ 2πiθJtΔ _

χ a = e ι K ° ' a , y - a = e 2 K ° ' a , τ - a = a ,

where wj = wj for w e C. Furthermore, the differentials preserve this
splitting, since the values of δz for a cochain z are the same as the values
of z. From (the proof of) Lemma 7.6 we see that a pair of generators of
U are the 1-cocycles zχ and z2 defined by

z.{χ) = 0 = z.(y), Zjίτ) = 7 , z2(τ) = k.

We will show that the bilinear form is B(z., z.) = Rδ.. with respect to
this basis, for some nonzero constant R.

In the expression [ux, u2] a, the element α is the derivative of the path
of flat connections. Translated to group cohomology, a is the derivative
of the path of representations. Since pt(x) = e

lπiθχ{t), pt{y) = e2πiθl{t),
and pt(τ) = j , it follows that a is the 1-cocycle defined by

a(x) = Aπiθfa), a(y) = 4πiθ2(t0), a(τ) = 0.

From (the proof of) Lemma 7.7 we see that a is a generator of Hι (X \ Ri).
(We hope the unfortunate choice of the letter a to denote both this coho-
mology class and an entry in the matrix B will not cause confusion.)

For notational convenience write 0z(ίo) = θi9 and change coordinates
so that λ = x, hence θλe\Ίj.

The cocycles zz are not relative cocycles; their restriction to the bound-
ary does not vanish, but is merely a coboundary. Much of the technical
work we do below is to work with explicit representatives which are rela-
tive cocycles. For the moment, choose zi to be 1-cocycles which vanish
on the boundary; then [z., zj\ € H2(Xγ, dXγ Ri). The Poincare duality,
together with the fact that the product Ri <g> Ri —• R given by r®s\-^rs
is ad/?-invariant and nondegenerate, implies that H2(Xγ, dXγ;Ri) =

Hι (Xγ Ri) ^ R. In particular,

•α: H2(Xv, dXv Ri) -+ H3(XV, OX R) ^ R
"γ J γ ' / \ γ ' y •
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is an isomorphism. Therefore, to show that the bilinear form is definite
we can choose any isomorphism a: H2(Xγ, dXγ Ri) —• R and check that
the bilinear form (wχ, w2) •-• a([wι, w2]) is definite.

The isomorphism we choose is the following: Given u e H2(Xγ, dXγ

Ri), let υu e Hι (dX Ri) be a cocycle mapping to u in the long exact se-

quence of the pair (Xγ, dXγ) (notice that H2(Xγ Ri) = 0). Then project

υu to Hι(dXγ; Ri)/Hι(Xγ', Ri) ^ R. This approach has the advantage
that we will only need to work with 1- and 2-cochains as well as the fact
that we understand all the 1-dimensional cohomology groups.

The proof is computationally intensive, and so we will omit some
straightforward but lengthy algebraic calculations.

First of all, our normalizations state that μ = xbydτy~ιτ~ι and λ — JC.
Using the 1-cocycle relation z(rs) = z(r) + r z(s), one computes

zχ(μ) = / ( l -y)j, zχ(λ) = 0, z2(μ)=yd(l-y)k, z2{λ) = 0.

In these formulas, the symbol uy" is used interchangeably for the element

of nχXy and the complex number e4πιθl. This is because the action of y

on Cj is (left) multiplication by e4πιθl.
We wish to subtract coboundaries δvt from zf. to obtain z. = zz - δυi

which vanish on the boundary. The correct choice is vχ = aj and υ2 =
ak , where a e C is defined as:

d,Λ

Notice that this is well defined since if e^
d+^πiθi = i } then since p. (λ) =

0

± 1, it follows that pt (μ) = ± 1, contradicting the fact that the path is
always noncentral on the boundary. A short computation shows that this
is the correct choice.

Now the cup product is bilinear, so
[z., zj] = [zt, Zj] - [z/, δvj] - [δvt, z7] + [δvt, δvj].

Suppose stj and r.j are 1-cochains with values in Ri so that δs^ =
[znzj] and δr.j = [2i,zj]. Then

δrtj = δsu + δ([Zi, Vj] - [vt, zj] + [υt, δVj])

by the Leibnitz formula. Thus we can define

(3) ru = su + [zz., Vj] - [vi, Zj] + [vi, δVj].

Notice that with this choice,

rij\dxy = sij\dxγ

 + I z i ' vj\dxy
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since the restriction of [υ., z. - δυj\ to the boundary is zero. We will
make a choice of s^ and compute its restriction to the boundary. The
restriction of the corresponding rf.. to the boundary will then represent

the lift of [zi, Zj] back to Hι(dXγ Ri) from H2(Xγ, dXγ Ri).

Since H2(X \Rϊ) = 0, there is some 1-cochain s with boundary

[z., zΛ. The 1-cocycles Zι(X , Ri) are defined by x *-> Xi9 y \-> Yi,
τι-^0 for any X, Y e R so that (α + l)X + cY = 0. Notice that c is
nonzero, since B has determinant 1, and ±1 are not eigenvalues of B.
Therefore, we can subtract a 1-cocycle u from s so that (s - u)(x) = 0.
Let Sj.. = 5 - u. A long computation based on the identity

(4) Sij(e) + e • su(f) - Sij(ef) = [z f(e), * • z.(/)]

implies that .s^y) is also equal to 0.
Now (4) easily shows that

Furthermore, [z., vMλ) = [z(, υΛ(x) = 0 and

[^ , Vj](μ) = \yd{\ -y)zi(τ),yMazj(τ)l

This choice ofs^ gives, via (3),

ru(λ) = 0

and

= (l-y-l+y-\l-y)a)zi(τ)zJ(τ)

So, when / Φ j ,

ru(μ) = 2Re((y - l)(α

and when i = j , z((τ)z7(τ) - 1 and so

One checks that

so that (on the boundary) r . = 0 if/ ^ 7, and rn(/έ) = ̂ 22(^) ^ ̂ ,
rn(A) = r22(A) = 0 . To finish the proof that the form is definite, we must
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project these to Hx(dXy\ Ri)/Hι{Xγ; Ri) ̂  R. But rχχ and r22 do not

lie in the image of Hι(Xγ Ri) in Hι(dXγ Ri). Lemma 7.7 states that a
1-cocycle e on dXγ lies in this image if and only if e(μ) = bu + (d + \)υ

and e(λ) = w, for a pair (u,v) e R2 satisfying (a + l)u + cυ — 0.

Since c Φ 0 and r..(λ) = 0, ru(μ) Φ 0. The projection of ru to

Hι (dXv Ri)/Hι(XΛί Ri) is nonzero, q.e.d.
We now present two applications of Theorem 5.1 to torus bundles. We

continue to assume that M is the T2-bundle over Sι with monodromy
matrix B e SL2(Z) given by

B =

As before, we have Π = πχM presented by

U={τ,x,y\xy = yx, τx = χaybτ, τy = χcydτ).

For s eR, define the abelian representation p : Π -> su(2) by

eιsps(τ)=eι

 s s

The adjoint representation ad/?5: Π —> Aut(5i/(2)) preserves the splitting
5w(2) = R/ Θ C7 . Via ad/?5,Π acts on Ri trivially and on Cj by

diάρs(τ){zj) = e 2 ί ί z j for z e C.

Let H?ΛM\su(2)) denote the cohomology of M with coefficients
in 5w(2) twisted by the representation ad/?5. Cohomology computa-
tions may be made either using DeRham cohomology with an appropri-
ate flat connection on M x su(2) with (holonomy representation ad/?5),
or using group cohomology as in the proof of Theorem 7.5. Both of
these chain complexes respect the splitting su(2) = Ri Θ Cj. The co-
efficients in Rί are trivial since the action of Π on Ri is trivial, so
H*(S){M\ Ri) ̂ H\M\R). We begin by proving:

Proposition 7.8.

(1) rf
(2) Hι

{s)(M; Ri) s Ri φ ker(5 - / : R2 -> R 2),

( 3 ) - t ^ , ^ , - , ^ , ^ € Z π ?

(4)
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Proof. (1) is trivial.

To calculate Hι(M; R), we use group cohomology. A 1-cocycle a: Π—•
R is determined by its values on the generators π, x, y. We need to see
what conditions are imposed on these values by the relations for Π. First
note that xy = yx imposes no condition at all.

Next, applying the cocycle condition to a(τx) = a(xaybτ) and to

a(τy) = a(xcydτ) imposes the condition

Since there is no condition on a(τ) and there are no 1-coboundaries, we
conclude (2) holds.

If s e Zπ, the Cj coefficients are also trivial (i.e., they are not twisted);

it follows that //£ }(Π; Cj) = Cj and

Hl

{s)(Π Cj) £ Cj Θ ker(B - / : C2 -> C2).

Suppose that s £ Zπ . Then for all v e Cj

<) t (τ) = (e — \)v φ 0,

so H. x(Π C7) = 0.

Suppose α: Π —• C/ is a 1-cocycle. Applying the cocycle condition to
the group relations as above yields

<*-Λ>C£»)-O.
as the only condition on a(x), a(y), and α(τ) G Cy . Hence

Zl

{s)(Π C;) £ C Θ ker(5 - e2''5/ : C2 -> C 2 ),

and since 5° is injective as seen in the proof of (3), (4) follows, q.e.d.
In what follows, let Ds = DA , where As is a flat connection on

M x su(2) with holonomy ps. We may assume that Ds preserves the

splitting E = EjΘ E..

Theorem 7.9. Assume (B - I) is nonsingular. Then ker£>0 = R 6.
For s e ( - f i , β ) c R , two of these eigenvalues are constant at 0, two are
crossing 0 with positive slope, and two are crossing 0 with negative slope.

Proof. By Proposition 7.8, ker(Z)JΓ(is.)) = R2 for all s this gives our
two eigenvalues which are constant at 0.

Next, we calculate the bilinear form G of Theorem 5.1 on H°(M;su(2))
Θ Hι (M su(2)), where the coefficients are trivial since s = 0.
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Let e = 1 e Ωυ(Λ/;
normalized so that
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R) and let a e £lx{M\ R) be a harmonic form

\a\ = a Λ *α = 1.

Let v(Af) = fM*e = volume of M. It follows that /f°(M; R) = Re,
Hι(M;R) = Rα, 7/2(Λ/;R) = R(*α), and H3(M',R) = R(*e). In

addition

*£ = v(Aί)α Λ *α in H3(M\ R).

Since our coefficients are trivial, we have

H°(M 9. = Rie Θ Θ

and
H (M JW(2)) = Ria Θ Rjα Θ Rka.

The tangent vector to our path of representations may be taken to be
a = ia, so *<z = /(*α). We then compute the matrix of G to be:

ie
ia

je
ke
jot
ka

ie

(0

0

0

0

0

Here is a sample

G(ka, je
)

ia

0

0

0

0

0

0

je

0
0
0
0
0

2/v(M)

computation

-[ka , je] /(*<

The others are similar.

ke
0
0
0
0

-2/v{M)
0

*) IΛ>./J

Because this matrix has rank 4 and is of

/

I
0 0 Oλ

0 0 C

0 C'r 0 /

ja

0
0
0

-2/v(M)
0
0

• z ( α Λ e Λ

the form

5

0 \
0

2/v(M)
0
0

J

2

where the blocks are 2 x 2, it follows that two eigenvalues are 0, two are
positive, and two are negative. Since we already know that the path Ds

has two eigenvalues which are constant at 0, our current Theorem follows
by applying Theorem 5.1.

Remark. We may use Theorem 7.9 to calculate spectral flows from
the trivial representation to certain noncentral abelian representations.
Let s0 > 0 in R, and assume that for all s with 0 < s < s0, e2ιs is
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eigenvalues

551

5 = 0

δ
s -axis

FIGURE 4

not an eigenvalue of B. Then Theorem 7.9 implies that SF(p0, ps) =

-4 (mod 8). The situation is illustrated in Figure 4.
In Figure 4, we see four eigenvalues crossing the dotted line, all in the

negative direction. The digit "2" next to a path of eigenvalues refers to
the multiplicity of the eigenvalues in that path.

We now turn to a slightly more subtle application of Theorem 5.1. As
before, assume that M is the T2-bundle over Sι with monodromy matrix
BeSL(2,Z).

Theorem 7.10. Suppose B e SL(2, Z) is a noncentral elliptic element,
i.e., suppose trace(5) e {-1, 0, 1}. Assume e2ιs° is an eigenvalue of B.
Then

and ; su(2)) £

As s passes through s0, two eigenvalues stay constant at 0, while the other
two eigenvalues passing through 0 both have nonzero slope of the same
sign. Hence SF(p0, p^) = SF(p0, ^ _ e ) ± 2 (mod 8).

Remark. This result is not inconsistent with Jeffrey's conjecture [8,
Conjecture 5.8]; see the footnote to Conjecture 5.8 and Remark 5.17 of
[8].

Proof of Theorem 7.10. Let

be an element of ker(5 - e2is°I: C2 -+ C 2 ). By the proof of Proposition

7.8, H^s)(Ώ\Cj) = RaΘRβ where a and β are 1-cocycles determined
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by

a{x) = zχj, β{x) = zχk,

a(y) = zyj, β(y) = zyk,

a(τ) = O, β(τ) = O.

Also, flj } (Π; Cj) = 0 and J ϊ J ^ Π ; Ri) = Rγ where γ(x) = γ{y) = 0

and γ(τ) = i. Finally i/° } (Π; Ri) = Ri. Hence

kerZ) ^ R i Θ R y θ R α θ R / J .

We take y as the tangent vector to our path of flat connections at the
point ps . We now compute the bilinear form G (on kerl>5) defined in
Theorem 5.1.

First, note that [ι, γ] = [ί, ι] = [γ, γ] = 0 because [ , ] vanishes on
R/. Next, note that if a e Ri + Rγ and b e Ra + Rβ , then G(a ,b) = 0
because [a, b] e Ω*(M; Cj) while γ and *y are in Ω*(M; Ri).

Hence we only need to compute G(a, β), G(a, α) , and G(β, j8). We
begin with G(α, j8). We will show that G(α, j8) = [α, )S] y = 0 in
H3(M; R) by proving that [a, β] = 0 in #(

2

5 } (Π; R/). To accomplish
this, we must construct a 1-cochain r: Π -> Ri such that 5r = [a, /?].
First define r(τ) = r(l) = 0. Then define Γ(JC) , r(y) e Rz to be the unique
solution to the equation

~ ι)Zχ'Iχ + b { b ~ x ) z y Ύ y + a b { z ; ϊ y ^ χ Z- n(r{xΛ = (a{a ~
}\r{y)) \c(c-

Because our assumptions on B imply that B - I is nonsingular, this
equation has a unique solution. By repeatedly applying the equation

r{gh) = r{g) + g.r(h)-[a,β](g,h)

(which is the meaning of the equation δr = [a, β]) we find that r satisfies
the relations of Π, i.e.,

r(xy) = r(yx), r(τx) = r{χaybτ), r{τy) = r{χcydτ).

It follows that r extends (uniquely) to a 1-cochain on Π satisfying

δr = [a,β]. Hence [α, β] = 0 = [β, a] in ̂ ( Π Ri).

We will now verify that G(α, α) = G(β, ^) / 0. Since the map

/7(

2 j(Af Rι) —• H3(M; R) defined by u ̂  u γ is an isomoφhism (by

Poincare duality), it will suffice to show that [a, a] = [β, β] φ 0 in

H*S){M\ Ri). That [a, a] = [β, β] (as 2-cocycles!) follows from the

facts that β = ia and ad ps preserves the complex structure on Cj. We
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now prove that [a, a] Φ 0 in H1, ΛM\ R/). Assume that r: Π —• C is a

1-cochain with δr = [a, a]. Then r(xy) = r(yjc) implies that

r(x) + r(y) - [α, a](x, y) = r[y) + r(*) - [α, a]{y, * ) .

Hence [α,α](jc,)>) = [α, α](y, x), which shows that [a9a](x,y) =
[a(x), a(y)] = 0. Substituting in a(x) = zχj and a(y) = zyj yields
-zχ~zy + zy~zχ = 0, i.e., z ^ € R. We conclude after multiplying (zχ, zy)

by either ~zχ or ~z that B has a nonzero eigenvector in R .
To see this is a contradiction, note that since trace(2?) € { - 1 , 0 , 1 } ,

the only possible eigenvalues of B are ±i, e±πι^ , e±lπι^ . Since none of
these are real (and since B is real), B cannot have an eigenvector in R2 .
This contradiction implies that [a, a] Φ 0 in H2(M; R/). It follows that
the two nonzero eigenvalues of G have the same sign and, by Theorem
5.1, the two nonconstant eigenvalues of Ds (which are passing through 0
at s = sQ) have the same nonzero slope, q.e.d.

8. Loose ends

There are several natural questions which are not resolved in this paper;
here is a brief list.

1. If Y is an arbitrary compact 3-manifold with boundary, then an
appropriately adapted version of Theorem 6.4 can be formulated
and proven for certain parameterized sets of flat connections on
dY. (Remark: this is proven in our recent article [11].)

2. Theorem 4.8 can be generalized in some way to cover what happens
in the case where the centralizer of the holonomy of At jumps up
in dimension at t = 0.

3. If M is a torus bundle over Sι with Hι(M; R) = R, then corre-

sponding to every pair of nonabelian representations of πχ (M) in

SU(2) there is a "good pair" in R2 (in the sense defined in §7).
4. In a future article we will show that higher-order approximations

to the spectral flow can be expressed in terms of higher-order cup
products, i.e., Massey products.

Appendix A. The analyticity of Dt(r)

In this appendix we prove Theorem 4.6.
Let A and B be Banach spaces. Let £B(A9 B) denote the Banach

space of bounded linear operators A -> B. Let T(w) e £B(A9B) for
w e W, a subdomain of C.
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Definition. T(w) is bounded holomorphic on W if for each fixed ae
A and b e B* the function (T(w)a, b) is holomorphic at all w € W.

This is not precisely the definition used in [9], but it is proven to be
equivalent to his definition in [9, Theorem IΠ.3.12, p. 152],

We now recall [9, p. 366] what it means for a family of closed but
unbounded operators to be holomorphic. Let T(w): A —> B be a family
of closed operators, where the domain of T(w) is D(w) c A, for w e W,
a subdomain of C.

Definition. T(w) is holomorphic (in the general sense) if there exist
a Banach space Z and a bounded holomorphic family Q(w): Z —• A
such that Q(w) maps Z bijectively onto D(w) and such that V(w) =
T(w) oQ(w) is a bounded holomorphic family.

It is in this general sense that we will show that 3ft{r) is holomorphic
in t.

First, we need to be very precise about domains. We define 3f t{r) to be

an operator in the Hubert space L2(E(r)) whose domain D(t) is the image

(under the natural inclusion) of L\(E{r) &+(t)+5?(t)) in L2(E(r)).

Let Z be the Banach space L2

x(E(r) ^ + ( 0 ) + -2*(θj).

Let {ak(ή} be a holomorphic family of orthonormal bases of L2(E),
and {^(0} a family of holomorphic functions such that for each t,

D^ak(t) = vk(t)ak{t).

Let {βx{t), , βm(ή} be a holomorphic family of orthonormal bases
for J?(t). It follows that {β{(ή, , βjt), σ(βχ(t)), , σ(βm(t))} is
a holomorphic family of bases for

Define Ut: L2{E)-+L2(E) as follows:

t/£(αf.(0)) = α,(ί) foriΛ(0)/0,

Ut(βi(0)) = βi(t) fori = l , ..

^ f o r / = l ,

Because of our assumption that ^ is fine, it follows that (7, is a

bounded holomorphic family of operators on the Hubert space L2,2(E).

Clearly, Ut(&>+(0) +-2*(0)) =^(ή +&{t) for small values of t.

Define R: L2(E(r)) —• Lj / 2(£) to be the restriction of sections to the
boundary. It is well-known (e.g., [15, p. 173]) that R is a bounded sur-
jective operator. It follows from the open mapping theorem that R has
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a bounded right inverse S: L2

/2(E) -+ L2

χ(E{r)). (S may be constructed

using a C°° cutoff function on Σ x [0, r].)

Now define a family of operators

Qt: L\(E{f) 4>+(0) + ^ ( 0 ) ) - L2

x{E{r))

by β,g = g+So(Ut-Id)oR(g). Since £/, is bounded holomorphic and R

and S are bounded, it follows that Qt is a bounded holomorphic family

of operators. Furthermore, the image of L2(E(r) £P+{0) + -2*(0)) under

Q, is L j (£(r ) ;^ + (0+-2^(0) > and β, is a bijection onto this image. (In

fact, one may easily write a formula for the inverse of Qt on this image.)

Finally, let Qt = koQt, where k: L2

χ(E{r)) -• L2(E(r)) is the inclusion
and is bounded (in fact compact). Then Qt(Z) = D(t), and Qt is the
bounded holomorphic family of operators required by the definition of
holomorphic family.

Finally, we need to see that St{r)oQt is a bounded holomorphic family.
To this end, write

and note that each of these two operators are bounded holomorphic, since
the first order part of &t(r) is constant in t, and the zeroth order part is
varying analytically. Hence we have shown that 2ft(r) satisfies the defini-
tion of a holomorphic family in the general sense.

Appendix B

In this section we prove that analytic paths of connections on T2 in
"standard form" are fine, and prove Lemma 6.1. The idea which underlies
both of the proofs is that the eigenspaces for the operators D~ when A

is in standard form are independent of A, though the eigenvalues are

varying.

Throughout this section we use quaternionic notation for su(2) = Ri +

Rj + Rk = Ri + Cj. We will write T2 = R 2/2πZ 2, and let x and y e R

be the corresponding coordinates on T2 .

Our Riemannian metric on T2 is inherited from the standard flat metric

on R2 . As a result, the Hodge star operates as follows:

*(l) = dxdy,

*(rfx) = dy *(dy) = -dx,

*(dxdy) = l.

Of course * acts as the identity on the coefficients.
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Definition, w e Ωι(T2\ su(2)) is in standard form if w = aidx +

bi dy where a, b e R are constant on T2 . A connection ^ί on T2xsu(2)

is in standard form if rf-w = d/w+|/u;, u] for all w € Ω*(Γ2 su(2)), where

w e Ω {T sw(2)) is in standard form.
Remark. In the above situation, we will often compress notation by

writing A = aidx + bidy. If A is in standard form, it follows that A
is flat with holonomy representation μ »-> e2πιa and λ ι-> e 2 π ί where μ
and λ are generators of nχT corresponding to the x and y coordinates.
Note the trivial connection θ is in standard form, with a = b = 0.

Theorem B.I. Let At = a(t)idx + b(t)idy be a path of connections

in standard form on T2 x SU(2), where a and b are analytic maps

(-ε, ε) -• R. For all t e (-ε, ε), assume that (a(t), b(ή) <£ \Ί?. Then

At is a fine path of connections.

: We

where
Proof We may write the vector bundle E -> T2 as a direct sum Zs =

£. = ( Ω ° Θ Ω i Θ Ω 2 ) ( Γ 2 ; R i )

and

It is easy to see that these direct summands are preserved by the op-
erators ί/7, a?7, *, Δ ^ = d?d~+ d\d^ and D~, if A is a connection in

Λ il il A A A A A ^

standard form. Because Lie brackets vanish on R/, it follows that if̂  A is
in standard form, then D^= Dθ and d~= dθ on Γ ( ^ ) . Thus if At is a
path of connections in standard form, we may take ί/JΓ(i?.) = id for all
t, which is certainly an analytic path of operators! Hence we only need to
show that Ut\T(Ej) is analytic. (The operator Ut was introduced in §4,
just before the definition of a fine path.)

Remark. A fact used repeatedly in the computations which follow is
[ia, zj] = 2ai zj where a e R and z e C As a result, note that
T(Ej) has a complex structure which is preserved by all the operators we
considering.

Define the function φmne Ω°(Γ2 Cj) by φm^(x, y) = eimx+inyj for
each m, n e Z. It is well-known that the {φm nj form an orthonormal
basis for L 2(Ω°(Γ 2; Cj)) as a complex Hubert space. For each m, n
d e f i n e Fm,« c Γ ( £ , ) b y vm,n = complex s p a n f a ^ ,<Pm,ndx, Ψ
φm n dx dy} . It follows that as a complex (or real) Hubert space, ^
®m,/i€Z Vm n . It is easy to see that all of our operators preserve these

direct summands if A is in standard form. Another easy computation
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shows that if A = aidx + bidy, then

where μm n(a, b) = (m + 2a)2 + {n + 2b)2 . Since we assume that (a, b) £

i(Z + Z), it follows that ker(Δ^Ω°(Γ2 C7')) = 0. According to §3, we

make the following definitions:

where A = aidx+bidy. B y the materia l o f §3, {ξ^ n(a, b),ζ^ n(a,b),

Ψm n(α> b)> Ψm «(a> b)) f o r m s a n orthogonal basis of Vm n as a com-
plex Hubert space. (Also, note that all of these basis elements have norm
= y/l.) To obtain a real basis we need to throw in the products of
these elements with /. Furthermore, ξ^ n{a,b) and ψ^n(a,b) are

yjμm,„(a, ^-eigenvectors of D~ and ξ~n(a,b) and ψ~n(a,b) are

' *)-eigenvectors of

Define C/; " : F w > n ^ F m ) n by

and

In what follows,we will write

fl = fl(0), b = b(O),

ά = a'(0), b = b'(O).

Also, we will write |M, υ | = v V + υ 2 . Define C^"1'" = dU™'n/dt\t=0.
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We need to estimate | Um'n | . It will suffice to estimate the norm of

\Um'n\ on each of the basis elements {ζ* n{a,b),ψ* n{a,b),iζ* n(a,b),

iψ^ n{a, b)}. These computations are all similar; we will show how it

goes for £~ n(a, b). First we compute

and

We then estimate:

1 5 ( 0 ) 1 = \m

< 2\ά, b\.

Hence

,n(a, b))\ = |5'(0)C(0) + 5(0)C'(0)| <

A similar computation for the other seven basis elements gives the same
result. Hence, we obtain

#m,«. < 32 \a, b\

7m,neτι

\m, n I

Clearly, U = φ n^V™'*1, an orthogonal direct sum. Note that

| i = O Hence |C/| < oo, and U is a bounded opera-
tor. The same argument yields that Ut is differentiable at all small real
values of t. To conclude that Ut is a bounded holomorphic family, we
need to show that Ut is differentiable for small complex values of t. To
make sense of this, first note that

Ω*(Γ2 su(2)) ®RC = Ω*(Γ2 sl2C).
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Hence using the same power series for At but allowing complex values for
t gives us a l-(complex parameter) family of 1-forms in Ω*(Γ2 sl2C).
With this modification the same formulas for all of the operators, eigen-
vectors, and eigenvalues continue to hold, and so do the estimates. As a
result we see that Ut is differentiate for small values of t e C.

To complete the proof that At is a fine arc of connections, we need to

Όve that U is also a bounded line*

To see this note the following facts:

The spac

product.

(2) On each Vm n , the L2

/2-norm is a constant multiple (the constant

is (1 + m2 + «2)1 / 4) of the iΛnorm.

Hence the L2

/2-norm of each Um'n is the same as our zΛnorm. It

follows that U is bounded on L2,2(E). This shows that Ut is a bounded

holomorphic family of operators on L 2

/ 2 , and completes the proof that

At is a fine family of connections on T2 .
We now turn to the proof of Lemma 6.1.
Proof of Lemma 6.1. We use the coordinates in R2 to label points in

prove that U is also a bounded linear function in the L2

/2-norm of Γ(E).

(1) The spaces Vm n are still orthogonal with respect to the L2

/2-inner

R. We will show that the map taking ((a,b), L) to 2$a b(Pa 6 (+) + L)
is continuous.

Let 0 € R be an open disc and let r > 0 so that dist(^\ (iZ)2) > r.

(The metric in R is taken to be the usual Euclidean metric in R c R2 .)
We will measure the distance between Lagrangians in the following way:

Fix a Lagrangian L o . The orbit map Sp(^) -> Lag(^) sending g to
g LQ is a fiber bundle. Let / bea small geodesic ball centered at Lo

in Lag(^ ) . Choose a (continuous) local section f-.Jf-* Sp(<^) sending
LQ to the identity. Then define the distance from K to L in JV to be
the distance from f(K) to f(L) in Sp(^P) c R16. We use the product
metric on (9 x Jί c Lag.

Suppose that ((a, b), L) e & x JV, and let ((ak ,bk,Lk) G ^ x #
so that ((ak, bk), Lk) converges to {(a, b), L) as /c -> CXD . Notice that
f(Lk)f(L)~ι e Sp(^) takes L to Lk.

Split the bundle E = EfiEj as before. For each k , define the isometry
2 2Uk: L2{E) -> L2(E) as follows:

1.

2.

On β,

On ϊ,
r ci- (£,).

L2(E.)

let Uk

, let U
= f(Lk)f(LΓι
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3. On L2(Ej), let Uk take £-n{a,b)τ to ζϊjak,bk)τ9 and

Ψ m , n ( a > b ) τ t 0 Ψm,n(ak>bk)τ>f0T T = l θ Γ /

We will need an extension of this construction. For each k, consider
the straight line path (ak{t), bk(ή) = {a,b) + t(ak - a, bk - b) in 0 . Let
Lk(t) be a path of Lagrangians in JV from L to L f c. For definiteness one
can choose the geodesic from L to Lk. Then for each k define a pαίλ
Uk(t) of unitary transformations in the same way that Uk was defined.
So Uk{0) = id and t/^l) = C^ .

Notice that Γ ^ ) is pointwise orthogonal to Γ(is ;), so that we have

L2

S(E) = L5

2(^.) θ L5

2(£y) for j = 0, £ . Thus

The first term is bounded by K{ dist(L, Lk) for some Kχ depending
only f\jV^ S p ( ^ ) . The second term is zero. We need to bound the
third term.

Split Γ ( ^ ) into the sum of the Vm n 's as in the previous theorem. We

will bound Uk = dUk/dt on Γ(Ej) and then integrate from 0 to 1 to

bound H t ^ - I d l l ^ .

Let B(t), C(t) be defined as before. Then

H^ΓX;,>> *)ll < 1 (̂01 IIC(OII + \B(t)\ \\c'(t)\\.

As before, we have:

S '\m + 2ak(t)9 n+2bk(t)\'

Since (ak(t), bk(t)) lies entirely in the disc ff,

\m + 2ak(t), n + 26 (̂̂ )1 > 2r.

Hence

Similar estimates apply to the other basis elements of F w n and so there
is a constant K2 depending only on <f (and in particular independent of
m, n) so that

|| £r ||<
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This can be taken in L2 or L2

ι/2 by the remark preceding the proof of

this lemma. Since Uk preserves the Vm n , we conclude that

and so

\\(Uk - id ) £ | | < f \\Uk{t)\\ < *2dist((α, b), (ak,bk)).
J J 0

Now let R: L2

χ{E) —• L2

/2(E) be the restriction to the boundary, and

S: L2

2(E) —> L2(E) a bounded right inverse, and as in appendix A define

the bounded operator Qk: L2

{(E; Pa^(+) + L) -> Lj(£"; ^ ^ ( + ) + £*)

4 'by 4(^) = g
Let Q^: L](E; pPa b{+) + L) -^ L2(E) be the composite of Qk and

the inclusion / of L2

χ(E) into L2(E). Write ^ for 2Ja^h{L) and ^
for i ^ ft (L^). So the image of Qk is the domain of 31 k, and Qk is
bounded; moreover:

< K3(dist((a, b), (ak, 6 J ) + dist(L, Lk))

for some K3 depending only on r and / . Thus lim^ \\Qk - id || = 0.

Now let Vk = 3fk o Qk . If x e L\{E Payb(+) + L), then

where | | ^ | | means the norm of 3f viewed as an operator from all of L2

χ

to L2 and similarly \\3fk -3\. But the operators DA: L2(E) -> L2{E)
all have the same first order part, and their difference is a zeroth order
operator. In particular \\DA - DB\\ varies continuously in A and B.
Thus H SjJ is bounded, and \\3fk -3f\\ goes to zero as k -+ oo. Hence

Now Lemma IV.2.29 of [9] implies that ^ -> ̂  in the graph topology,
so that !~&A{LA) defines a continuous map from Lag to the space of closed,
selfadjoint operators.
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