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KAEHLER STRUCTURES ON TORIC VARIETIES

VICTOR GUILLEMIN

1. Let (X, w) be acompact connected 2n-dimensional manifold, and
let

(1.1) 7: T" - Diff(X , w)

be an effective Hamiltonian action of the standard n-torus. Let ¢: X —
R” be its moment map. The image, A, of ¢ is a convex polytope, called
the moment polytope. Delzant showed in [5] that the triple (X, w, 1) is
determined up to isomorphism by this polytope, and also that X has an
intrinsic T"-invariant complex structure which is compatible with @ and
makes X into a toric variety. The purpose of this note is to show that is
not only the symplectic geometry of X determined by A, but also, to a
certain extent, the Kaehler geometry of X . By [5], A can be described by
a set of inequalities of the form

(1.2) (x,u)>A, i=1,---,d:

the u,’s being primitive elements of the lattice, Z", and d the number
of (n— 1)-dimensional faces of A. Let /;: R” — R be the map

L(x)={(x,u)—4

and let A° be the interior of A. Then x € A° if and only if L(x)>0
for all i. Let

i

d

I (x)= Z(x, u;).

i=1
Our main result is the following formula for the restriction of w to

¢~'(A%):
d
(1.3) w=v-188x1" (EA,(Logl,.) + 100) )

i=1
This we will derive as a corollary of another result which I will now de-
scribe: By [5] there is an intrinsic involution y: X — X which reverses
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the complex structure and maps @ to —w. Let X, be the fixed point set
of y. The restriction of ¢ to X, is a ramifed cover

(1.4) y:X, —A
which breaks into 2" connected components over A°. These components
are mapped diffeomorphically onto A° by w, and each of them has a
Riemannian metric (as a submanifold of the Kaehler manifold, X). We
will show that (1.3) is a consequence of the following:

Theorem. Let Xf, e = (£1,---,+1), be one of the 2" connected

components of w~'(A°). Then the metric on X; described above is the
pull-back to yw of the metric

(1.5)

(dl)?

d
>

N —

on A°.
The submanifold of X defined by /;0¢ = 0 is a complex submanifold

of codimension 2. Let c; be the cohomology class in HZ(X , Z) dual to
this manifold. As a corollary of (1.3) we will show that

d
(1.6) 2—17E[a)] == A,
i=1

Now let @, be the standard SU(N +1)-invariant Kaehler form on cpP”,
normalized so that [w[]/(27) is the oriented generator of H 2(<CPN , Z).
It is known that there exist, for some N, a linear representation, p: T" —
SU(N + 1), and a projective embedding 1: X — CP" which intertwines
the action of 7" on X with the action of T" induced by p. Moreover,
if the 4;’s are integers,l one can require this embedding to satisfy

#
(1-7) l [wps] = [w],
which implies, by a thoerem of Banyaga, that @ and 1"w ps are T"-
equivariantly symplectomorphic. In §5 we will prove the following refined
version of (1.7):
(1.8) Vwpg=w+i00¢" (-1 +LogP),
P being the polynomial

d

(1.9) Yok [, aezZ'nA

a i=1

'Or alternatively, if the vertices of A are in Z" .
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Here n,, = [,(a), and k_ is a nonnegative constant which depends on the
embedding, i, and can be fairly arbitrary. However, we will show that for
all embeddings, k, has to be positive if o is a vertex of A. (This turns
out to be a necessary and sufficient condition for P to be positive on A
and hence for (1.7) to be well-defined.)

The following is a summary of the contents of this article: §2 contains
a brief sketch of the theory of toric varieties in the spirit of [2, Chapter
VI]. The above theorem will be proved in §3, which will be used to derive
formula (1.3). In §5 we will make some general comments about projective
embeddings of X and prove (1.7)-(1.8). Finally in §6 we will derive
(1.6), and also give two applications of (1.6). The first application is a
new proof of the “combinatorial Riemann-Roch” formula of Khovanskii
and Pukhlikov [11], and the second a generalization of a well-known result
on the topology of toric surfaces: As above let X; be the codimension-2
submanifold of X defined by /;0¢ =0. If dimX = 4, the intersection
numbers #(X;NX;) are given by a simple formula involving the angles of
the moment polygon. (See, for instance [2, p. 176].) We will describe in
§6 what the analogous formula is in » dimensions.

We would like to thank Shlomo Sternberg for convincing us of the im-
portance of getting a closed form expression for the above Kaehler metric,
and also to thank Jean-Michel Kantor for several helpful discussions about
the Khovanskii-Pukhlikov results (and some very exciting generalizations
of those results by Khovanskii and himself which are described in [10]).

2. Let A be a convex polytope in R” defined by a system of inequal-
ities of the form

(2.1 (x,u;)>2 i=1,---,d,

24
where u; is the inward-pointing normal vector to the ith (n — 1)-dimen-
sional face of A, and d is the number of the (n — 1)-dimensional faces.
We will assume that these normal vectors are rational, in which case we can
normalize u; by requiring it to be a primitive element of the integer lattice,
Z" . We will say that A is n-valent if these are exactly n edges intersecting
in each vertex, p, and that A is nonsingular at p if there exists a basis,
{wy,---,w,},of Z" such that the n edges meeting at p lie on the rays,
p+tw;, 0 <t <oo. If A is nonsingular at all vertices, we will simply
say that A is nonsingular. Let A be a polytope with this property. Our
goal in this section is to show that there exist a compact 2n-dimensional
Kaehler manifold (X, w) and a Hamiltonian action 7: T" — Diff(X , w)
for which A is the moment polytope. Here are the details.
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L Let (e, -+ , e;) be the standard basis vectors of R’ and let

(2.2) B:RY LR

be the mapping which maps e; onto u;. Let n be the kernel of f. It is
clear from the hypotheses on A that f§ is surjective; so one gets an exact
sequence:

(2.3) 0-n5RER S0,
and by duality an exact sequence:

(2.4) 0-R"ER' S0t S0,
Let

Tp =C"/27iz" and TS =C?)2qiz’.
The map (2.2) extends to a map f: c? - C" which maps 27iZ° onto
27iZ" and hence induces a mapping
(2.5) Bo: Te — T2
Let N; be the kernel of this mapping. Then, corresponding to (2.3), one
has an exact sequence of complex groups:
(2.6) 0— Ny — Tg — Tg 0.

II. Now let «: Tg — GL(d, C) be the linear action of Tg on C*
defined by
(2.7) k(w)z = ((expw,)z,, -+ , (eXPW,)Z,),
and let k, be the restriction of k¥ to N. The space, X, which we are
after, is roughly speaking the quotient of c? by the action, k,, or, in
other words, the set of Ng-orbits in . However, for this orbit space to
be nonsingular, we will have to delete from it the “unstable” N -orbits.
This is done as follows: For every multi-index

I=(ij, - ,1i), 1<ij<---<i <d,

let
(2.8) =z »2,), z;,=0iffi € I}.

It is clear that (2.8) is a Tg orbit, and also that every Tcd orbit is of this
type; so (2.8) sets up a one-one correspondence between Tg orbits in C*
and multi-indices. Now let F be a face of A of codimension r. Then, by
(2.1), F is defined by a system of equalities, (x, u;) = 4;, i € I, where
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I is a multi-index of length r. We will define: Cfr = C‘Ii. (For instance,

if F is the open face of A, then C‘; ={(z;, "+ ,2,); z; #0 for all i}.
In other words, CdF is the open Tg orbit in Cd.) Now let
(2.9) ci =Jci.

F

If C‘Ii is not in the union, (2.9), then, by (2.8), the Tg-orbits in the clo-
sure of (C‘Ii also are not in this union; so (2.9) is an open subset of c?.

Moreover, since it is a union of Tg orbits, it is stable under the action of
N, . For the following see [2].

Theorem 2.1. N, acts freely and properly on CZ, and the orbit space
(2.10) Ci/N,

is a compact manifold.
We will denote this orbit space by X . It has, by definition, a natural
complex structure. Moreover, by the exact sequence (2.6),

n d .
To ~T./Ng;
so there is a natural action of Té‘ on X, and the orbits of this action are

the images of the orbits of Tg in (CZ. However, by (2.9) these orbits are
the sets, Cf, ; so their images are

(2.11) cd /N,

Thus the T(':l orbits in X are in one-one correspondence with the faces of
A . The orbit corresponding to the open face is the only open orbit and on
this orbit 7 acts freely.

IIL Let 6: C? — C be the involution sending z to Z. Then by (2.7),

k(a)(o(z)) = a(k(a)(z)),
so ¢ maps the N orbit through z into the N orbit through 4(z), and
hence induces an involution
(2.12) y: X—-X,

on the orbit space X . We will denote by X, the fixed point set of y and
refer to X, from now on as the real part of X .

IV. We will now give an alternative description of X due to Atiyah [1]
and Delzant [5]: Let T4 , T" and N be the maximal compact subgroups
of Tg , Té’ ,and N respectively. From (2.6) one gets an exact sequence

(2.13) 0-N-T ST >0,
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and from (2.7) an action of T¢ on C? which preserves the symplectic
form:

. d
i -
(2.14) 324z AdZ,.
k=1
This action is Hamiltonian, and its moment map is the map

1 d
(2.15) h(z) = §Z|zk[2ek+c,
k=1

¢ being an arbitrary constant. Following [5] we will set ¢ equal to

d
(2.16) > e
k=1

the A, ’s being the 4, ’s in (2.1). Restricting to N one gets a Hamiltonian
action of N on C? with moment map

d
1
(2.17) f(z) = 5§:|zk|2ak+/1,
k=1

where o, =1"¢, and A =) Ao, . (See (2.4).) We will denote the zero
level set of this moment map by Z, noting that, by (2.17), Z is defined
by the quadratic equation:

1
(2.18) 52|z oy = -4,

In [5] Delzant proves:
Theorem 2.2. Z is a compact submanifold of c?, and the action of N
on Z is free. Hence the quotient space

(2.19) X=ZIN
is a compact manifold.

Let
(2.20) n:Z—-X

be the projection of Z onto X and let
(2.21) 1:Z —¢*

be the inclusion map. Then, by [13], there is a canonical symplectic form,
w,on X with the property:

(2.22) =12 dz, AdZ)).
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Moreover, the action of T¢ on C? leaves invariant the map, (2.15), and
hence Z by (2.18). Thus, by (2.19) there is an induced action of the
quotient group, 7" = T /N ,on X. Itis easy to see, by staring at (2.22),
that this has to be a Hamiltonian action. To see what its moment map is,
we note that by (2.4) and (2.18):

(2.23) hoi=p"og,

1 being the inclusion mapping, (2.21), " the transpose of (2.2),and g a
mapping of Z into R”. Since 4 is Td-invariant, g hastobe N-invariant
by (2.23); so there exists a mapping

(2.24) ¢: X - R"
satisfying
(2.25) pom=g,

and we claim that this is the moment map associated with the Hamiltonian
action of T" on X . (We will not, however, bother to prove this.) For the
following see [5].

Theorem 2.3. The image of ¢ is A. Hence A is the moment polytope
associated with the action of T" on X .

V. We now have two definitons of X, namely (2.10) and (2.19). That
these two definitions are consistent follows from the following result of
Audin:

Theorem 2.4. Z is contained in CZ, and every N-orbit in CZ inter-
sects Z in an N-orbit.

See [2, Chapter 6, Proposition 3.1]. Audin proves Theorem 2.4 by
deducing it from a fairly deep result of Kirwan. For an elementary proof
see the appendix to [7].

Finally we claim:

Theorem 2.5. The symplectic structure on X is compatible with its com-
plex structure. In other words, the form defined by (2.22) is Kaehler.

Proof. See ([8], Theorem 3.5).

3. Theorem 2.5 implies that X has an intrinsic Kaehler metric, and
our goal is to show that the restriction of this Kaehler metric to the open
Té’ orbit in X is given by (1.3). As an intermediate step in the proof of
(1.3) we will show that this Kaehler metric induces a Riemannian metric
on the real part, X,, of X which can be explicitly computed in terms

of “moment” data. Let a: C° — C be the involution, o(z) = Z. By
(2.18) the set Z is stable under o. Let Z_ be the fixed point set of the
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restriction of ¢ to Z . From (2.20) one gets a map:
(3.1) n:Z — X,
with the following properties (whose verification we will leave as an exer-
cise):

Theorem 3.1. The map (3.1) isa 2d""-fold covering map, its group of
deck transformations being the group

(3.2) {aeN, a*=1}.

A point, z =Xx + iy, of C? is a fixed point of ¢ if and only if y =0.
Therefore, by (2.18), Z, is the subset of R? defined by the quadratic
equation

d
(3.3) Y xla;=—A.
i=1

We will equip Z, with a Riemannian metric by restricting to (3.3) the
standard Euclidean metric on R? (or, alternatively, the standard Kaehler
metric on Cd) . Similarly we wil equip X, with a Riemannian metric by
restricting to it the Kaehler metric on X .

Theorem 3.2. The covering map (3.1) is an isometry with respect to
these two metrics.

Proof. Let p be an arbitrary point of Z and let g be its image in

X, . Let T;m be the tangent space to the N orbit in c? containing p
and let T:“ be its orthocomplement with respect to the Kaehler metric
on TpCd . The following are easy to check:

1. T;mr is tangent to Z at p.

2. do, maps the spaces, T;m and T:°r, into themselves. (Since da,

preserves the Kaehler metric on TpCd , it suffices to check this for T;e" .

But since o(p) = p, o maps the N, orbit through p into itself.)

3. The map dn,: 7,Z — T, X maps T:“ bijectively onto T X .

4. The tangent space to Z at p is the fixed point set of the map:
do,: T, — T}

5. dnp maps T,Z, bijectively onto TX.

Identify ILCd with C? and let Jp: TpCd — TpCd be the mapping,
“multiplication by v/—1.”

6. J, maps T:°r and T;’m into themselves. (Since J, preserves the
Kaehler metric on TpCd it suffices to check this for Tpve“. But T;en is
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the tangent space to a complex submanifold of (Cd.)
7. The bijective map:

. ~hor
(3.4) dn,: T,” — T X

intertwines J, with a mapping, J e of TqX into itself; and this mapping
is the defining mapping for the complex structure on X at q.

8. T;"r is a symplectic subspace of TpCd , and (3.4) is a symplectic
mapping.

From items 6-8 one concludes:

9. The map (3.4) maps the Kaehler metric on T:‘”
metricon T X .

Finally by item 9 and items 2-5, it is clear that (3.1) is an isometry at

p. q.ed.
Now let us restrict the Euclidean metric

d
(3.5) Y (dx,)?
i=1

onto the Kaehler

to one of the 2° open orthants:

(3.6) gx,>0,---,8;x;,>0, g ==xl.
If one makes the coordinate change

(3.7) s, =x/2,  i=1,--,d,
then, on the set (3.6), the metric (3.5) becomes

d d ) 2
(3.8) %Z( ssf) .
i=1 i

Let Z’ be the intersection of Z, with the set (3.6). In the s-coordinates
Z° is just the intersection of the positive orthant 5,>0,---,5,>0 with

r
the linear space

(3.9) > s =—A

in view of (3.3). Moreover, the moment map (2.15) becomes a linear
mapping

(3.10) s Y (s;+24)e;

in the s-coordinates. Let & = h(s) be the restriction of this mapping to
Zf . We will prove that £ maps Zf diffeomorphically onto a subset of

R? which can be naturally identified with the interior of A: By (2.4) one
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has an exact sequence 0 — R” £LR? 5 n* = 0. Moreover, a; =1"e; by
definition; so by (3.9) and (3.10), 1"k(s) = 0 for all s € Z; . Hence, by
this exact sequence: h(s) = *x for some x € R". However, by (3.10),

(3.11) (B'x,e)=s;+4 >4,
since 5; > 0. On the other hand,
(3.12) (B'x,e)=(x, Be;)y=(x,u;),

so (x, u;) > 4,;; and hence, by (2.1), x is in the interior, A%, of A. Thus
we have proved the following:

Theorem 3.3. The mapping, h, is a diffeomorphism of Z} onto B*A°.

Since B* is injective, A° ~ B*A°; so we can regard % as a diffeomor-
phism of Z’ onto A°.

Let /;: A° - R be the linear function

L(x)=(x,u) -4,

1

We will make A° into a Riemannian manifold by equipping it with the
metric

1 (dl)?
(3.13) EZ( 1.') )
i=1 i
By (3.11) and (3.12),
(3.14) lloh=s;;

so the pull-back to X, of the metric (3.13) by A is equal to the restriction
to X, of the Euclidean metric, (3.8).

Let Xf be the image of Zf in X with respect to the mapping (3.1),
and let ¥ be the restriction to Xf of the moment mapping (2.24). Then
by (2.25) y om = h; and, therefore, by Theorem 3.1, one gets the follow-
ing description of the Riemannian metric induced on X' f by the Kaehler
metricon X :

Theorem 3.4. Under the moment map y : Xf = A°, the Riemannian
metric on X f is mapped onto the metric (3.13).

4. For the proof of (1.3) we will need a few elementary facts about
Kaehler structures on complex tori. Let M be the complex torus C"/27iZ"
and let 7" act on M by the action:

(4.1) Tan—>M, »,z)—=z+V-1y.

Let @ be a Kaehler form on M which is T"-invariant.
Theorem 4.1. w is exact & the action (4.1) is Hamiltonian.
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Proof. The implication “=> " is a standard result. (See [8, §26].) To
prove the implication the other way it suffices to note that if W isa T”
orbit, the inclusion map of W into M is an isomorphism on cohomol-
ogy. However, if the action (4.1) is Hamiltonian, W is a Lagrangian
submanifold of M [8, 188], so the pull-back of w to W vanishes.

Theorem 4.2. The invariant Dolbeault cohomology groups H°*'(M)
are zero for i > 0.

Proof. An invariant Dolbeault k-form is of the form

w=> f,(x)dz,,  f, € CTR",

summed over multi-indices, I, of length k. Let 1: R — M be the
inclusion map. Then

‘o= fi(x)dx;

so the map 1*: Q”*(M). — Q¥(R") is bijective. It is clear, more-
over, that 1"@ = di*; so " induces a bijective map on cohomology:
" HOX(M)n » H'(RY). qed.

We will need the following two results:

Theorem 4.3. Let w be a T"-invariant Kaehler form on M. Then
the action of T" on (M, w) is Hamiltonian if and only if w possesses a
T"-invariant potential function, i.e., if and only if there exists a function,
F € C*(R"), with the property

(4.2) w = 2i09F.

Proof. If the action (4.1) is Hamiltonian, there exists a 7"-invariant
one form, v, for which w =dv. Let v = a+ @ where a € Q%'. Then
da=0a =0 and

(4.3) w =dv =0a+da.

By Lemma 2 there exists a 7"-invariant function, G, for which a = G
and hence, by (4.3),

©=0983G+39G =2idd(ImG). q.e.d.

Assume the action of 7" on M is Hamiltonian, and let ¢: ; M — R"
be the moment map associated with this action. The other result we will
need is:

Theorem 4.4. Up to an additive constant, ¢ is the Legendre transform
associated with F ; i.e.,

n

(4.4) o(x+iy)=0F/ox +c, ceR.
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Proof. By definition,
d¢* = —1(8/0y,)o.
However, by (4.2),

n 2
O°F
0= 2 w5 N

a oF
dé, = —1 (E>w=d(ﬁ>

Thus ¢, = 0F /0x, + ¢, , for some constant ¢, .

Remark. One can eliminate ¢ by replacing F by F — ZZ:I C Xy
(which does not change the Kaehler form (4.2)).

In the application we will make use of these results. We will take M
to be the open TC" orbit in X, w the restriction of the Kaehler form on
X,and ¢: M — R the restriction of the moment map associated with the
action (1.1). By Theorem 4.3, @ can be written in the form

i & O'F .
(4.5) 5 mdzj/\dzk,

SO

and by Theorem 4.4 we can normalize F so that it has the property:
. OF
(4.6) o(x +iy) = a—x—(x).

The real part, X, , of X intersects M in the set R" @ ni(Z"/2Z"); in
particular, R” is a connected component of this set. The restriction to R”
of the Kaehler metric, (4.5), is the Riemannian metric

8*F
(4.7) Z dej dxk s
and by Theorem 3.3, this is the pull-back by ¢ of the metric (1.5). This
fact will enable us to obtain an explicit formula for F in terms of moment
data, and hence by (4.5) an explicit formula for w. For this purpose we
first note that the metric (1.5) can be rewritten in the form

2’G
where
1 d
(4.9) G =5 1()Logl,(y).
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Now let Z;;l dx; Ady,; be the standard symplectic form on R*" , and let

I'={(x,y)eR”,y=0F/dx}
be the graph of the Legendre transform

(4.10) xeR" - 0F/ox e A’.
I' is a Lagrangian submanifold of R2"; since (4.10) is a diffeomor-
phism, the differentials .dx,,--- ,dx, and dy,,---, dy, are indepen-

dent on I'. Moreover, by Theorem 3.3, the restriction to I" of the
quadratic differential

(4.11) > dx,dy,
can be written as either

8’F
(4.12) 5,05, dx;dx;
or
(4.13) Yoo ay ay dy;dy

However, setting x = x(y) we can also write the restriction of (4.11) to
I' in the form

(4.14) 3 E ( ) dy, dy;.

Hence, comparing (4.13) with (4.14) yields

L (ox; , 0%\ _ 8’G
2\ay; " a9y, ‘ay,.ayj'

However, since I" is Lagrangian,

i J
9y; T oy, 0,
SO
ax;,  8°G
dy;  9y,0y
ie.
(4.15) X, =0G/dy, +a, i=1,--,n,

a; being a constant. Setting H = G+ )_a,;y; we conclude:
(4.16) x =0H/dy.
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In other words the Legendre transform (4.10) is the inverse of the Leg-
endre transform (4.16) . Since these two Legendre transforms are inverses
of each other, F has to be the Legendre function dual to H, i.e.,

(4.17) F(x) = ny H(y),

evaluated at y = 9F /0x. As a functlon of y, however, the right-hand
side of (4.17) is equal to:

(4.18) Zy,-g—f—H(y)
or l
(4.19) Zy - G),

since G differs from H by a functlon which is linear in y. Since G =
331, (v)Logl, (»), the first term in (4.19) is equal to

33 (5 (Ghoss+ 51))

and since [, (y) = (v, ) — 4, , this can be written as

(4.20) 3 (Tl + ALogl, +1,)
where
d
(4.21) L=, w; u=) u
k=1

Subtracting (4.9) from (4.20) we get for F:

d
(4.22) -;-(b* (Z A, Logl, + 1@) ;

k=1
so to summarize we have proved the following:
Theorem 4.5. On the open Té' orbit in X, the Kaehler form, w, is

equal to
d
i09¢" (Z A (Logl,) + loo) .
k=1
Remark. If > u; =0, the term, /_, drops out of (4.22) and one gets
the following simpler expression for w:

d
(4.23) i09¢" (Z lkLoglk) )

k=1
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The condition, ) u; = 0, has the following nice geometric interpretation:
Let N be the subgroup of the d-dimensional torus

(4.24) S'x---xS'  (d copies)

defined by (2.13). If } u; = 0, then by (2.3), N contains the diagonal
subgroup of (4.24). Hence, by the principle of “reduction in stages”, X
is the reduced space associated with the Hamiltonian action of N/S ! on
cpt,

5. Let p: T" — U(N + 1) be a linear representation of 7" on ch!
with weights, a,,--- , ay, p can be extended to a linear representation
(5.1) pe: Te = GL(N +1, C),

and from this representation one gets an induced action
(5.2) 1¢: To = PL(N+1,C)

of T(':' on CPY. Let W bea T(':' orbit in CPY . Our first goal in this sec-
tion will be to compute the Kaehler metric induced on W by the Fubini-
Study metric on cPV. Let p be a point of W . For simplicity we will
assume that Té’ acts freely at p, and we will identify W with Té' by the
evaluation map: g € T(':' — 7.(&)p . One can also identify Té‘ with the
linear space, c? /2miZ" , by the exponential mapping, and by composing
these two mappings, one gets a complex embedding: 1: C"/2niZ" — cpP¥
whose image is W . Denoting by @ the Fubini-Study form on cpy
we will prove

N

(5.3) ", = i00Log (Z cieza"(x)) ,
i=0

the c;’s being nonnegative constants.

Proof. Without loss of generality we can assume that p. is a homo-
morphism of T(':l into the diagonal subgroup of GL(N + 1, C). In other
words for

z=Xx+1Iy € C"/2niZ" s

and a = (q,, - ,aN)GCN,

(@ ,x+iy)a e(aN,x+iy)a

(5.4) pclexpzla = (e )

However, by [3, p. 45],

05"

(5.5) Wy = id9Log|z|".
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Hence, letting [a,, --- , ay] be the homogeneous coordinates of the point,
D, from (5.4) one gets

N
1wy = id9Log (Z |ai|2e2(""’x)) ,
i=0

which is equal to (5.3) with ¢, = |a,.

Now let X be the n-dimensional toric variety associated with the poly-
tope (2.1), and let 1: X — cP" bea Té’ equivariant embedding. If M
is the open T(':' orbit in X, then its image with respect to ¢ is a Té’ orbit

in CP", so the restriction of 1*w rs to M is still given by (5.3). Let us
compare 1"® rs With the Kaehler form, w, defined by (1.3). If we make
the change of coordinates 8 F/0x =y and 8G/dy = x, F and G being
the functions (4.22) and (4.9), then from (4.9) we get

d
G 1
5}: = 5 (gulbogl, +u)

with u =Y u,, hence

2(a,x)=< 9G

a, W> = (o, u;)Logl, + (a, u).

By letting d_ = '™ this gives
e = ¢ (4, TT1").
However, in consequence of (4.22),
2F LTy
k=1

so we can rewrite the former expression in the form

d
k=1
where
(5.6) n,

Substituting this expression into (5.3), letting k, = ¢ d_, and summing
over a, one gets:

= (a, uy) — 4, = (a).

a

Z Can(a,x) — e2F¢# (e_l°° P)
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with
d
(5.7) P=> "k ]
a =l
Thus, from (4.2) and (5.3), it finally follows that
(5.8) I'wpg=w+i90¢" (-1 + Log P).

Let [w] and z#[w rs] be the DeRham cohomology classes in HZ(X , R)
associated with @w and t*wFs. As an application of (5.8) we will prove
that

(5.9) [0] = o],
if and only if the following three conditions hold:

(i) The vertices of A are in Z".
(5.10) (i) Ifk, #0, a€A.
(iii) If o« is a vertex of A, k_# 0.
Proof. We will first prove a variant of Theorem 4.3.

Theorem 5.1. If (5.9) holds, there exists a smooth function, Q, on R"
such that

(5.11) Wpg=w+i90¢°Q.

Moreover, Q is unique up to an additive constant.
Proof. X is simply connected (see, for instance, [4]); so H 1(X ,R)=
0. Since X is Kaehler,

(5.12) H"x)=H""(x) =

If (5.9) holds, there is a T"-invariant one-form, u, on X satisfying
Wpg = w+du. Let u =a+a with a € QO’I(X). Since du is of
bidegree (1,1), da = 0; therefore, by (5.12) there is a T"-invariant func-
tion, G, such that a = 8G. Thus, I"wyg — @ = i89(2 ImG). Since
Im G is T"-invariant, by [12] there exists a smooth function, Q, on R"
such that 2ImG = ¢"Q.

To prove the uniqueness of Q consider the restriction of 1*w ps— @ to
the open T{ orbit in X . On this orbit

8’4’Q
szS w—4za dz NdZ;

0 ¢"Q is well-determined up to a linear function of x. However, since
#"Q is bounded, it is actually well determined up to a constant. q.e.d.
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Comparing (5.11) with (5.8), we conclude that for (5.9) to hold, Log P
must be a smooth function on A. However, it is clear from (5.7) that P is
a smooth fucntion on A if and only if it is a polynomial, i.e., if and only if
n,, is a nonnegative integer for all i, a. By (5.6), n,, is an integer if and
only if 4, is an integer, and n,, is nonnegative if and only if /,(a) > 0.
But /,(a) >0 for all i if and only if a € A.

Finally, Log P is a smooth function on A if and only if P is positive
on A. Suppose P is zero at some point, ¢ € A. Then each summand of
(5.7) has to be zero at g, and hence on the face, F, of A containing g .
Let us consider the worst case scenario: ¢ = f = a vertex of F . Suppose
the term

d
(5.13) k, []5B)™
k=1
is not zero. Let the (n — 1)-dimensional faces of A meeting at # be those
defined by the equations, /, =0, i =i, --- , i, . If (5.13) is not zero, then
n,=0fori=i,m---,i  andhence [(a)=0 for i=1i,---,i, by
(5.6);i.e., B = a. Therefore, by (5.13) a necessary and sufficient condition
for P to be positive on A is that k, be positive for every vertex, a € A.
6. Let (M, w) be a compact connected Kaehler manifold and let

(6.1) 7: S' - Diff(M)

be an effective action of S' on M by complex-analytic difftfomorphisms,
which preserves @ and is Hamiltonian; i.e., has a global moment map

(6.2) ¢: M —R.

Let Y be a connected component of the fixed point set of M . It is clear
that Y is a complex submanifold of M (since 7 acts complex analyti-
cally), and hence is also a symplectic submanifold of M . Moreover, the
restriction of ¢ to Y is equal to a constant, ¢. Suppose in addition that
Y is of complex codimension one. In this case we claim that ¢ has to be
an extremal value of ¢, i.e., either a maximum or a minimum, and that
Y =¢"Y0).

Proof. We will first prove

Theorem 6.1. Let p € Y and let L, be the fiber of the normal bundle
at p .Then the weight of the isotropy representation of T on L, is +1.

Proof. If the weight were m, m # +1, the mth roots of unity would
be in the kernel of the homomorphism, (6.1), contradicting the assumption
that 7 is effective. q.e.d.
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For simplicity we assume that the weight of the isotropy representation
is +1. Then, by the equivariant Darboux theorem (see, for instance, [8,
§22]) there exist Darboux coordinates x,,y,,-:- , x,,y, centered at p

so that in these coordinates ¢ = %(xl2 + yf) + ¢. Thus, in particular, ¢
is a local minimum of ¢. However, by the Atiyah connectivity theorem,
¢_1(c) is connected. Hence qS'l(c) =Y, and Y is the set where ¢
achieves its global minimum. q.e.d.

Next we will prove that for any p € Y there exist an S'.invaraint open
neighborhood, U, of p, and complex coordinates, z,,---, z,,on U
such that UNY is the set where z, = 0, and such that

(6.3) ‘l:;',z1 = emz1
and
(6.4) Tpz;=2z;, fori>1.

Proof. 1Tt is clear that there exists a complex coordinate system with all
these properties except, perhaps, (6.3). However, by Lemma 6.1,

T5(dz)), =’ (dz)),

for ¢ € UNY ; so if one replaces z, by (1/2x) 02" e-'(’r;z1 d@ , the above
coordinate system will have the property (6.3) as well. qg.e.d.
Replacing ¢ by ¢ —c we can assume that ¢ =0 on Y and ¢ >0 on
M —Y . We will now prove the following elementary but useful fact.
Theorem 6.2. The cohomology class of the (1, 1) form

1 -
(6.5) U= ﬁc‘)aboqu
is the dual cohomology classto Y in H 2 (M, R).

Proof. Let p €Y andlet (U, z,, -+, z,) be a coordinate system
centered at p having the proeprties (6.3)—(6.4). The Hessian of ¢ is
nonzero at all pointsof UNY ,and ¢ is S 1-invariant; s0, in terms of the
above coordinates,

(6.6) ¢=1z,I’h,

h being a smooth function in the variables, |21|2 v Zy5 295 5 Zys Zys
which is positive everywhere on U. Thus the restriction of (6.5) to U
can be written in the form

i = 2 _ 1
(6.7) u= ﬁaa(Log|zl| + Logh) = 2ﬂd(aLogh).
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Now let {U;,i=1,---, N} be agood cover of Y by open S'.invariant

subsets of M, and let (zu s Zy st s zn,i) be a system of coordinates
on U, satisfying (6.3)-(6.4).

Letting

2

(6.8) ¢ =z, h;,
from (6.7) we get
(6.9) p=da, onU,
where

a; = (i/2rn)0Logh,.
Thus, on U; N UJ. ,

1 2
(6.10) o -y = m6Loglf;,j| ,

by the identity (6.8), where
(6.11) Jij =21l 2y

Since U,NnU f is contractible, there exists a single-valued determination of
Log f;; ; so we can rewrite (6.10) in the form

1
We recall now that there is a holomorphic line bundle
(6.13) L-M

canonically associated with the hypersurface, Y . This bundle can be de-
fined either by taking its transition functions to be the functions (6.11) or
by requiring that it have the following two properties:

(i) The restriction of L to Y is the normal bundle of Y.

(i) The restriction of L to M — Y is trivial.

Moreover, it can be characterized topologially by the property that its
Chern class is the dual class in H> (M, Z) to the homology class [Y], in
h,,_»(M, Z). (For details, see [6, pp. 129-148].) However, by (6.9) and
(6.12) the Chern class of L in H*(M, R) is the cohomology class of the
form (6.5). q.e.d.

Now let X be the toric variety associated with the polytope, A, and let
u; be, as in (2.1), the normal vector to the ith face of A. Let

(6.14) {tu,, t € R/2nZ}
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be the one-parameter subgroup of 7" generated by u ;- The moment map
associated with the action of this group is /; o ¢ which, by (1.2), takes its
minimum on the set

(6.15) $ol =0.

We will denote this set by X, . It is the pre-image in X of the ith (n—1)-
dimensional face of A, and is a complex submanifold of X of codimen-
sion 1. Let ¢; be the cohomology class in H 2 (X, R) dual to the homology
class [X,] in H,, ,(X,R). By Theorem 6.2,

(6'16) ci = [:u,] >
where
(6.17) u; = (i/2n)89Log¢"l ;

and by applying this result to (1.3) one gets:
Theorem 6.3. Let w be the Kaehler form on X, and [w] its cohomol-
ogy class. Then

(6.18) [L"l=_z,1,c,

Remark. For an alternative proof of (6.18), based on the Duistermaat-
Heckman theorem, see [7, Lecture 2].

We will now discuss some applications of (6.18). In these applications
we will make use of the following:

Theorem 6.4. The symplectic volume of X, [,exp(w), is equal to
(2n)" times the Euclidean volume of A.

Proof. Let M be the open Té’ orbitin X, and, by fixing a base point
on M, let us identify M with C"/2niZ" . By (4.2) the restriction of
to M is E(aZF/axiaxj)dxi Ady;; so

" 8’F
m = det W dx A dy

Thus, by Fubini’s theorem, the integral of exp @ over X is the product of
the integral of dy over R"/2nZ" (which is just (27)") and the integral

8°F
(6.19) / det ( ax,.axj) dx.

However, by (4.4), the map
(6.20) x+iy—»0F/0x
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is the moment map (2.24), and its restriction to R” maps R" diffeomor-

phically onto the interior of A. Moreover, since F is strictly plurisub-

harmonic, det(azF /0x;0x j) > 0. Thus by the formula for the change of

coordinates in elementary calculus, (6.19) is just the volume of A. g.e.d.
Recall now that A is defined by the system of inequalities:

<x,u,‘)21,‘a i=1,"',d,

u; being the “inward-pointing” normal to the ith (n — 1)-dimensional
face. Let v, = —u,;, the “outward-pointing” normal to this face, and iet
s; = —A;. Then A can also be defined by the inequalities:

(6.21) (x,v)<s;, i=1,---,d.

Let v(s,,---,s;) be the Euclidean volume of this set. From the two
previous theorems, one gets the following corollary:

Theorem 6.5. The pairing of the cohomology class, exp(}_s;c;), with
the orientation cycle, [X], in Hz"(X ,R), is equal to the volume,
v(s,, -+ ,S;), of the set (6.21); i.e,

(6.22) (s, »5,) = exp (Zs,.ci) [X].

We recall (see [4, Proposition 11.4) that the Chern classes of X are just
the elementary symmetric polynomials in ¢, --- , ¢, . In other words the
rth Chern class is the coefficient of ¢ in the expression

d
(6.23) [T +1c).
i=1

As a consequence of this [4, 11.7] the Todd class of X can be expressed
in terms of the ¢;’s as

(6.24) r=]] ——.

1—e "

i=1
Now suppose that w/(2n) is an integer cohomology class, or, equivalently,
that s,, --- , s, are integers. Let L, — X be the holomorphic line bundle

associated with the hypersurface, X;, and let L = L} ® --- ® ]Lf;’ . By
Lemma 6.1 the Chern class of L is:

d
(6.25) e(L) =) s, = 2—17?[“’]'
i=1
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Let .2 be the sheaf of holomorphic sections of L. Then by the Hirze-

burch-Riemann-Roch formula,
n

(6.26) S (-1’ dimH' (X, &) = 1¢(L))[X].

i=0
Substituting (6.25) in (6.26), one gets for the sum on the left-hand side of
(6.26): (exp(X_s;c;)t(cy, -+ , ¢;))[X]. Let us rewrite this as follows. Let
7(0/0s) be the constant coefficient differential operator (of infinite order)

ﬁ i (1 — exp (—i)>—l .
e 0s; 0s;

Applying this operator to v(s,, --- , 5;) (which is legitimate since v is a
polynomial) we obtain from (6.22) (exp(}_s,c;)t(c,, -+ , ¢;))[X] which
is exactly the right-hand side of (6.27). This shows that the right-hand
side of (6.27) has a simple “combinatorial” interpretation. It turns out [4,
11.12] that the same is true of the left-hand side. Namely H'(X , %) =
if i > 0 by the Kodaira vanishing theorem, and

dimH° (X, Z)=#ANnZ")
by a fairly easy computation. Thus (6.26) reduces to
(6.27) #ANZ") = 1(8/ds)v(s).
This is the Khovanskii-Pukhlikov identity which we referred to in the
introduction.

Remark. Since (6.27) is a combinatorial statement, one would expect
to be able to prove it by combinatorial means; and this, in fact, is what
Khovanskii and Pukhlikov did in [11]. We suspect, however, that this
may have been an ex post facto development, and that they may have
been led to (6.27) by arguments similar to those above. (For some recent
refinements of (6.27) see [10], [14], and [15].)

Next we will turn to the second application of (6.18) which we men-
tioned in the introduction. Let A be a polygon in the plane having the
properties described in the first paragraph of §2. (In particular let all the
vertices of A be nonsingular.) Given an edge, F;, of A let p; and p, +| be
its end points. Since p; is nonsingular, there ex1sts a basis, {wl 1> W 2>
of Z? such that the edges intersecting in p, are on the rays p, + tw;
and p, + w; 5, t 2 0. Therefore, since p; and p; +1 share a common
edge, w = —w, ,, and hence the matrix which relates {w, ,, w; ,}
to {w } has the form

0 kK
-1 m; )’

i+1, 1
i+1,1° 1+l 2
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k, and m, being integers. However, the determinant of this matrix is 1;
so k; = 1 and this matrix reduces to:

0 1
(6.28) Mi—<_l m,.>'
The matrices (6.28) cannot be completely arbitrary. Indeed, since the end
point of F, coincides with the initial point of F,, M, --- M, =1;and, in
addition, the M, ’s have to satisfy a “topological” constraint corresponding
to the fact that the frame, {w,,, w;,}, rotates once about the origin as i
goes from 1 to d . Conversely, the problem of constructing polygons with
the properties described in §2 can be more or less reduced to the problem of
finding sequences of integers, m,, i=1, --- , d, for which the matrices,
M, , have the properties above. (For details see [2, Chapter VI, §5.1].)

Now let X be the two-dimensional complex toric manifold associated
with A,andlet X,, i=1,--- , d, be the complex one-dimensional sub-
manifolds corresponding to the F;’s. Audin shows (loc. cit.) that the
numbers, m;, have the following geometric interpretation:

Theorem 6.6. —m; is the self-intersection number of X, in X .

This result completely determines the cohomology ring of X since it is
clear that the intersection number #(X, N X j) is one, if i # j, and if F
and F; are adjacent and zero otherwise.

I will now describe a generalization of this result to » dimensions. Let
X be the n-dimensional toric manifold associated with the polytope (2.1),
and let X;, i =1,---,d, be the complex hypersurfaces corresponding
to the (n — 1)-dimensional faces of this polytope. Let n,,---,n, be

nonnegative integers satisfying n = Z;Ll n; , and consider the intersection
number

(6.29) #X' NN XY,
where X is the n-fold intersection of X, with itself.

Theorem 6.7. The intersection number (6.29) is equal to
(6.30) n!---n,la

e b
nyeeny

where Qy..n is the coefficient of s;" ~--s;“ in the polynomial, v(s,, ---, $;) .
Proof. By (6.22) we have

a \™ d \™
(5) (ﬁ) (s, e s 8,) = €M ML,
1 d

Remark. We leave it as an amusing exercise to deduce Audin’s result
from Theorem 6.7!
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