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KAEHLER STRUCTURES ON TORIC VARIETIES

VICTOR GUILLEMIN

1. Let (X, ω) be a compact connected 2w-dimensional manifold, and
let

(1.1) τ: Tn -+Όifί(X, ω)

be an effective Hamiltonian action of the standard w-torus. Let φ: X —>
Rn be its moment map. The image, Δ, of φ is a convex polytope, called
the moment polytope. Delzant showed in [5] that the triple (X, ω, τ) is
determined up to isomorphism by this polytope, and also that X has an
intrinsic Tn -invariant complex structure which is compatible with ω and
makes X into a toric variety. The purpose of this note is to show that is
not only the symplectic geometry of X determined by Δ, but also, to a
certain extent, the Kaehler geometry of X. By [5], Δ can be described by
a set of inequalities of the form

(1.2) (x ,W; )>V ι = l , . . . ,</;

the u. 's being primitive elements of the lattice, Zn , and d the number
of (n - l)-dimensional faces of Δ. Let /,: Rn —> R be the map

and let Δ° be the interior of Δ. Then x e Δ° if and only if /f.(jc) > 0
for all i. Let

7 = 1

Our main result is the following formula for the restriction of ω to
l

(1.3) ω = yΓϊddπ* ΓΓ^ίLog/,.) + lA .

This we will derive as a corollary of another result which I will now de-
scribe: By [5] there is an intrinsic involution γ: X —• X which reverses
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the complex structure and maps ω to -ω. Let Xr be the fixed point set
of γ. The restriction of φ to Xr is a ramifed cover

(1.4) ψ:Xr-^A

which breaks into 2n connected components over Δ°. These components
are mapped diffeomorphically onto Δ° by ψ, and each of them has a
Riemannian metric (as a submanifold of the Kaehler manifold, X). We
will show that (1.3) is a consequence of the following:

Theorem. Let Xε

r, e = ( ± 1 , ••• , ± 1 ) , be one of the 2n connected

components of ψ~x(ίf). Then the metric on Xε

r described above is the

pull-back to ψ of the metric

1=1 '

on Δ°.

The submanifold of X defined by l^φ = 0 is a complex submanifold

of codimension 2. Let c{ be the cohomology class in H2(X, Z) dual to

this manifold. As a corollary of (1.3) we will show that

(1.6) ~[ω] =
ί = l

Now let ωFS be the standard SΊ/(iV+l)-invariant Kaehler form on CPN,

normalized so that [ωFS]/(2π) is the oriented generator of H2(CPN, Z).

It is known that there exist, for some N, a linear representation, p: Tn —•

SU(N -hi) , and a projective embedding i: X —• C P ^ which intertwines

the action of Tn on X with the action of Tn induced by p. Moreover,

if the λi 's are integers,1 one can require this embedding to satisfy

(1.7) ι*[ωFS] = [ω],

which implies, by a thoerem of Banyaga, that ω and ι*ωFS are Tn-
equivariantly symplectomorphic. In §5 we will prove the following refined
version of (1.7):

(1.8) ι*ωFS = ω-

P being the polynomial

d

(1.9) Yk ~
a i=\

!Or alternatively, if the vertices of Δ are in
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Here nia = lt{a), and ka is a nonnegative constant which depends on the
embedding, i, and can be fairly arbitrary. However, we will show that for
all embeddings, kQ has to be positive if a is a vertex of Δ. (This turns
out to be a necessary and sufficient condition for P to be positive on Δ
and hence for (1.7) to be well-defined.)

The following is a summary of the contents of this article: §2 contains
a brief sketch of the theory of toric varieties in the spirit of [2, Chapter
VI]. The above theorem will be proved in §3, which will be used to derive
formula (1.3). In §5 we will make some general comments about projective
embeddings of X and prove (1.7)—(1.8). Finally in §6 we will derive
(1.6), and also give two applications of (1.6). The first application is a
new proof of the "combinatorial Riemann-Roch" formula of Khovanskii
and Pukhlikov [11], and the second a generalization of a well-known result
on the topology of toric surfaces: As above let Xt be the codimension-2
submanifold of X defined by l^φ = 0. If dimΛf = 4, the intersection
numbers #(X( Π Xj) are given by a simple formula involving the angles of
the moment polygon. (See, for instance [2, p. 176].) We will describe in
§6 what the analogous formula is in n dimensions.

We would like to thank Shlomo Sternberg for convincing us of the im-
portance of getting a closed form expression for the above Kaehler metric,
and also to thank Jean-Michel Kantor for several helpful discussions about
the Khovanskii-Pukhlikov results (and some very exciting generalizations
of those results by Khovanskii and himself which are described in [10]).

2. Let Δ be a convex polytope in Rn defined by a system of inequal-
ities of the form

(2.1) ( x , ! ! , . ) ^ . , i = l,-.. ,d,

where ui is the inward-pointing normal vector to the /th (n - ^-dimen-
sional face of Δ, and d is the number of the (n - l)-dimensional faces.
We will assume that these normal vectors are rational, in which case we can
normalize ut by requiring it to be a primitive element of the integer lattice,
Zn . We will say that Δ is n-valent if these are exactly n edges intersecting
in each vertex, p, and that Δ is nonsingular at p if there exists a basis,
{w{, , wn}, of Zn such that the n edges meeting at p lie on the rays,
p + twn 0 < t < oo. If Δ is nonsingular at all vertices, we will simply
say that Δ is nonsingular. Let Δ be a polytope with this property. Our
goal in this section is to show that there exist a compact 2w-dimensional
Kaehler manifold (X, ω) and a Hamiltonian action τ: Tn -> Diff(Z, ω)
for which Δ is the moment polytope. Here are the details.
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I. Let (ex, - , ed) be the standard basis vectors of Rd and let

(2.ZJ p . K —> K

be the mapping which maps e{ onto ut. Let n be the kernel of β . It is
clear from the hypotheses on Δ that β is surjective; so one gets an exact
sequence:

(2.3) O-.«ΛE^l"-.O,

and by duality an exact sequence:

(2.4) 0 -> Rn £ Rd -C rC - 0.

Let
£ n n and τ£ = d d

The map (2.2) extends to a map βc: Cd —> Cn which maps 2π/Zί/ onto
2π/Zπ and hence induces a mapping

(2.5) βc:τ£^τ£.
Let 7VC be the kernel of this mapping. Then, corresponding to (2.3), one
has an exact sequence of complex groups:

(2.6) 0 -> Nc - 7^ -> Γ^ -^ 0.

II. Now let K: : 7^ -^ GL(ί/, C) be the linear action of Td on Cd

defined by

(2.7) κ(w)z = ((cxpwχ)zl9 ••• , (expu ^ z ^ ) ,

and let κχ be the restriction of K to N. The space, X, which we are
after, is roughly speaking the quotient of C^ by the action, κχ, or, in
other words, the set of Nc-orbits in Cd . However, for this orbit space to
be nonsingular, we will have to delete from it the "unstable" iVc-orbits.
This is done as follows: For every multi-index

let

(2.8) c ; = { ( z 1 5 . . . ,zd), z^Oiffiel}.

It is clear that (2.8) is a 7^ orbit, and also that every T£ orbit is of this
type; so (2.8) sets up a one-one correspondence between τ£ orbits in C
and multi-indices. Now let F be a face of Δ of codimension r. Then, by
(2.1), F is defined by a system of equalities, (JC , ut) = λιf, / e I, where
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/ is a multi-index of length r. We will define: Cd

F = Cd . (For instance,

if F is the open face of Δ, then Cd

F = {{zχ, , zd) zi Φ 0 for all /}.

In other words, Cd

F is the open τ£ orbit in Cd.) Now let

(2.9) <
F

If Cd is «0ί in the union, (2.9), then, by (2.8), the Td-orbits in the clo-

sure of Cd also are not in this union; so (2.9) is an open subset of Cd.

Moreover, since it is a union of τ£ orbits, it is stable under the action of
Nc . For the following see [2].

Theorem 2.1. Nc acts freely and properly on C^, and the orbit space

(2.10) CdJNc

is a compact manifold.
We will denote this orbit space by X. It has, by definition, a natural

complex structure. Moreover, by the exact sequence (2.6),

so there is a natural action of T£ on I , and the orbits of this action are

the images of the orbits of τ£ in C^ . However, by (2.9) these orbits are

the sets, Cd

F so their images are

(2.11) &F/NC.

Thus the T£ orbits in X are in one-one correspondence with the faces of
Δ. The orbit corresponding to the open face is the only open orbit and on
this orbit T£ acts freely.

III. Let σ: Cd -> Cd be the involution sending z t o z . Then by (2.7),

so σ maps the Nc orbit through z into the Nc orbit through σ{z), and
hence induces an involution

(2.12) γ' X^X,

on the orbit space X. We will denote by Xr the fixed point set of γ and
refer to Xr from now on as the real part of X.

IV. We will now give an alternative description of X due to Atiyah [1]

and Delzant [5]: Let Td, Tn and N be the maximal compact subgroups

of τ£9 T£ , and iVc respectively. From (2.6) one gets an exact sequence

(2.13) O^N^T^-^T^O,



290 VICTOR GUILLEMIN

and from (2.7) an action of Ί4 on C^ which preserves the symplectic
form:

(2.14) LΣdzkAdτk.
k=\

This action is Hamiltonian, and its moment map is the map

(2.15) h{z) = \γί\zk\
1ek + c,

k=\

c being an arbitrary constant. Following [5] we will set c equal to

(2.16)

the λk 's being the λk 's in (2.1). Restricting to N one gets a Hamiltonian

action d

(2.17)

action of N on Cd with moment map

k=\

where ak = ι*ek and λ = ̂ λkak. (See (2.4).) We will denote the zero
level set of this moment map by Z , noting that, by (2.17), Z is defined
by the quadratic equation:

(2.18) 5 Σ l z * | 2 * * = - A

In [5] Delzant proves:

Theorem 2.2. Z is a compact submanifold of C , and the action of N
on Z is free. Hence the quotient space

(2.19) X = Z/N

is a compact manifold.
Let

(2.20) π:Z^X

be the projection of Z onto X and let

(2.21) i.Z -+Cd

be the inclusion map. Then, by [13], there is a canonical symplectic form,
ω , o n l with the property:

(2.22) ττ*ω = i*((//2) £ d z k Λ <^*)
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Moreover, the action of Ί4 on Cd leaves invariant the map, (2.15), and
hence Z by (2.18). Thus, by (2.19) there is an induced action of the
quotient group, Tn = T^/N, on X. It is easy to see, by staring at (2.22),
that this has to be a Hamiltonian action. To see what its moment map is,
we note that by (2.4) and (2.18):

(2.23) hoι = β*og,

i being the inclusion mapping, (2.21), β* the transpose of (2.2), and g a
mapping of Z into Rn. Since h is 7^-invariant, g has to be iV-invariant
by (2.23); so there exists a mapping

(2.24) φ: X ^Rn

satisfying

(2.25) φoπ = g,

and we claim that this is the moment map associated with the Hamiltonian
action of Tn on X. (We will not, however, bother to prove this.) For the
following see [5].

Theorem 2.3, The image of φ is A. Hence Δ is the moment polytope
associated with the action of Tn on X.

V. We now have two definitons of X, namely (2.10) and (2.19). That
these two definitions are consistent follows from the following result of
Audin:

Theorem 2.4. Z is contained in C^, and every Nc-orbit in Cd

L inter-
sects Z in an N-orbit.

See [2, Chapter 6, Proposition 3.1]. Audin proves Theorem 2.4 by
deducing it from a fairly deep result of Kirwan. For an elementary proof
see the appendix to [7].

Finally we claim:
Theorem 2.5. The symplectic structure on X is compatible with its com-

plex structure. In other words, the form defined by (2.22) is Kaehler.
Proof See ([8], Theorem 3.5).
3. Theorem 2.5 implies that X has an intrinsic Kaehler metric, and

our goal is to show that the restriction of this Kaehler metric to the open
T£ orbit in X is given by (1.3). As an intermediate step in the proof of
(1.3) we will show that this Kaehler metric induces a Riemannian metric
on the real part, Xr, of X which can be explicitly computed in terms
of "moment" data. Let σ: Cd —• Cd be the involution, σ{z) = z . By
(2.18) the set Z is stable under σ. Let ZΓ be the fixed point set of the
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restriction of σ to Z . From (2.20) one gets a map:

(3.1) π.Z Γ ->Λ Γ ,

with the following properties (whose verification we will leave as an exer-
cise):

Theorem 3.1. The map (3.1) is a 2d~n-fold covering map, its group of
deck transformations being the group

(3.2) {aeN, a = 1}.

A point, z = x + iy, of Cd is a fixed point of σ if and only if y = 0.
Therefore, by (2.18), Zr is the subset of Rd defined by the quadratic
equation

(3.3)
ι = l

We will equip Zr with a Riemannian metric by restricting to (3.3) the

standard Euclidean metric on Rd (or, alternatively, the standard Kaehler

metric on Cd). Similarly we wil equip Xr with a Riemannian metric by

restricting to it the Kaehler metric on X.
Theorem 3.2. The covering map (3.1) is an isometry with respect to

these two metrics.

Proof Let p be an arbitrary point of Zr and let q be its image in

Xr. Let Tp

eτt be the tangent space to the Nc orbit in Cd containing p

and let Tp

oτ be its orthocomplement with respect to the Kaehler metric

on Ί' Cd . The following are easy to check:

1. Tp

oτ is tangent to Z at p.

2. dσp maps the spaces, Tp

eτt and Tp

oτ, into themselves. (Since dσd

preserves the Kaehler metric on TpC
d , it suffices to check this for Tp

en .
But since σ(p) = p , σ maps the Nc orbit through p into itself.)

3. The map dπp: TpZ -> TqX maps Tp

oτ bijectively onto TqX.
4. The tangent space to Zr at p is the fixed point set of the map:

I . rphOT rphOT

P' P ~* P '

5. dπp maps TpZr bijectively onto TqX.

Identify TpC
d with Cd and let Jp: TpC

d -+ TpC
d be the mapping,

"multiplication by \/-T."

6. Jp maps 7^0Γ and Tp

eτt into themselves. (Since / preserves the

Kaehler metric on TpC
d it suffices to check this for Tp

eτt. But Tp

eτt is
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the tangent space to a complex submanifold of Cd.)
7. The bijective map:

(3.4) dπ

intertwines / with a mapping, Jq , of TqX into itself; and this mapping
is the defining mapping for the complex structure on I at ί .

8. TpOT is a symplectic subspace of TpC
d, and (3.4) is a symplectic

mapping.
From items 6-8 one concludes:
9. The map (3.4) maps the Kaehler metric on Tp

oτ onto the Kaehler
metric on TqX.

Finally by item 9 and items 2-5, it is clear that (3.1) is an isometry at
p. q.e.d.

Now let us restrict the Euclidean metric
d

(3.5) Σ(dxf

to one of the 2d open orthants:

(3.6) εxxx > 0 , ••• ,εdxd>0, ε( = ±l.

If one makes the coordinate change

(3.7) *f- = *?/2, i = l , - 9d,

then, on the set (3.6), the metric (3.5) becomes

(3.8) ~ ,

Let Zr

ε be the intersection of ZΓ with the set (3.6). In the ^-coordinates
ZΓ

δ is just the intersection of the positive orthant sχ > 0, , sd > 0 with
the linear space

(3.9) Σ J i α ι = - λ

in view of (3.3). Moreover, the moment map (2.15) becomes a linear
mapping

(3.10) s-

in the ^-coordinates. Let h = h(s) be the restriction of this mapping to
Zε

r . We will prove that h maps Zε

r diffeomorphically onto a subset of
R which can be naturally identified with the interior of Δ: By (2.4) one
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has an exact sequence 0 -> Rn ^ Rd -U n -• 0. Moreover, αz = ι*ei by
definition; so by (3.9) and (3.10), ι*h(s) = 0 for all s e Zε. Hence, by
this exact sequence: h(s) = β*x for some x eRn. However, by (3.10),

(3.11) (/?**, e / ) = s / + λI > λ / ,

since s7 > 0. On the other hand,

(3.12) {β"x,ei) = {x,βei) = {x,ui)i

so (x, ut) > λt and hence, by (2.1), x is in the interior, Δ°, of Δ. Thus
we have proved the following:

Theorem 3.3. The mapping, h, is a diffeomorphism of Zε onto β*A° .
Since β* is injective, Δ° ~ β*A° so we can regard h as a diffeomor-

phism of Zε

r onto Δ° .
°Let /,

We will
metric

(3.13)

: Δ -

make Δ°

be the

into a

linear function

Riemannian manifold by equipping it with the

1 f (dlf2h ',
By (3.11) and (3.12),

(3.14) lioh = si;

so the pull-back to Xε of the metric (3.13) by h is equal to the restriction
to Xε of the Euclidean metric, (3.8).

Let Xε be the image of Zε in X with respect to the mapping (3.1),
and let ψ be the restriction to Xε of the moment mapping (2.24). Then
by (2.25) ψ o π = h and, therefore, by Theorem 3.1, one gets the follow-
ing description of the Riemannian metric induced on Xε by the Kaehler
metric on X:

Theorem 3.4. Under the moment map ψ: Xε ^ Δ°, the Riemannian
metric on Xε is mapped onto the metric (3.13).

4. For the proof of (1.3) we will need a few elementary facts about
Kaehler structures on complex tori. Let M be the complex torus Cn/2πiZn

and let Tn act on M by the action:

(4.1) TnxM-+M, (y,z)-+z

Let ω be a Kaehler form on M which is Tn -invariant.
Theorem 4.1. ω is exact <$ the action (4.1) is Hamiltonian.
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Proof. The implication " =• " is a standard result. (See [8, §26].) To
prove the implication the other way it suffices to note that if W is a Tn

orbit, the inclusion map of W into M is an isomorphism on cohomol-
ogy. However, if the action (4.1) is Hamiltonian, W is a Lagrangian
submanifold of M [8, 188], so the pull-back of ω to W vanishes.

Theorem 4.2. The invariant Dolbeault cohomology groups H°'ι(M)τn
are zero for i > 0.

Proof. An invariant Dolbeault Λ>form is of the form

summed over multi-indices, /, of length k. Let i: Rn —> M be the
inclusion map. Then

so the map ι*: ΩOyk(M)τ» -• Ωk(Rn) is bijective. It is clear, more-
over, that ι*Ί) = di* so z* induces a bijective map on cohomology:
i*: H°'k{M)τn -+ Hk(Rn). q.e.d.

We will need the following two results:
Theorem 4.3. Let ω be a Tn-invariant Kaehler form on M. Then

the action of Tn on (M, ώ) is Hamiltonian if and only if ω possesses a
Tn-invariant potential function, i.e., if and only if there exists a function,
F e C°°(Rn), with the property

(4.2) ω = 2iddF.

Proof. If the action (4.1) is Hamiltonian, there exists a Tn-invariant

one form, v , for which ω = dv . Let v = a + a where a e Ω 0 ' 1 . Then
Ί)a = da = 0 and

(4.3) ω = dv = da + ~dά.

By Lemma 2 there exists a Tn-invariant function, G, for which a = ~dG
and hence, by (4.3),

ω = ddG + dd G = 2idd(lm G). q.e.d.

Assume the action of Tn on M is Hamiltonian, and let φ: M —• Rn

be the moment map associated with this action. The other result we will
need is:

Theorem 4.4. Up to an additive constant, φ is the Legendre transform
associated with F i.e.,

n(4.4) φ(x + iy) = ΘF/dx + c, c € R .
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Proof. By definition,

dφk = -ι(d/dyk)ω.

However, by (4.2),

ω =

so

Thus φk = dF/dxk + ck , for some constant ck .

Remark. One can eliminate c by replacing F by F - ΣX=i ckxk
(which does not change the Kaehler form (4.2)).

In the application we will make use of these results. We will take M
to be the open T£ orbit in I 5 ω the restriction of the Kaehler form on
X, and φ: M —• R the restriction of the moment map associated with the
action (1.1). By Theorem 4.3, ω can be written in the form

<4 5' ί έ ^
and by Theorem 4.4 we can normalize F so that it has the property:

(4.6) φ{x + iy) = yL{xy

The real part, Xr, of X intersects M in the set Rn Θ πi{Zn/2Zn) in
particular, Rn is a connected component of this set. The restriction to Rn

of the Kaehler metric, (4.5), is the Riemannian metric

(4.7) γJL*dxdxk9

and by Theorem 3.3, this is the pull-back by φ of the metric (1.5). This
fact will enable us to obtain an explicit formula for F in terms of moment
data, and hence by (4.5) an explicit formula for ω. For this purpose we
first note that the metric (1.5) can be rewritten in the form

<«)

where

1 d

(4.9) G = ^
k=ι
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Now let Σ"=ι dx{ Λ dyt be the standard symplectic form on R2n , and let

Γ = {(JC , y) £ R2n, y = dF/dx}

be the graph of the Legendre transform

(4.10) x e Rn - dF/dx e Δ°.

Γ is a Lagrangian submanifold of R2n since (4.10) is a diffeomor-
phism, the differentials dxχ, , dxn and dyχ, , dyn are indepen-
dent on Γ. Moreover, by Theorem 3.3, the restriction to Γ of the
quadratic differential

(4.11) Σdxtdyi

can be written as either

(4.12) Y c? ϊ dx dx,

or

(4.13) ^ ^iΓΊϊdyidy..
dyfiy ι J

However, setting x = x(y) we can also write the restriction of (4.11) to
Γ in the form

Hence, comparing (4.13) with (4.14) yields

2 \dyj dyj dyfiyf

However, since Γ is Lagrangian,

so
dx{ _ Θ2G

i.e.

(4.15) x ^ d G / d y t + a , , i = \ , • • - , « ,

at being a constant. Setting H = G + Σ a{yi w e conclude:

(4.16) x = dH/dy.
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In other words the Legendre transform (4.10) is the inverse of the Leg-
endre transform (4.16). Since these two Legendre transforms are inverses
of each other, F has to be the Legendre function dual to H, i.e.,

(4.17) F{x) =
i=\

evaluated at y = dF/dx. As a function of y, however, the right-hand
side of (4.17) is equal to:

or

( 4 1 9 )

since G differs from H by a function which is linear in y. Since G
\ Σ JfcOOLog'jfcϋO , the first term in (4.19) is equal to

and since lk(y) = (y, uk) - λk, this can be written as

(4.20)

where

(4.2i) ^ooiy)= (y 9u) 9 u =

Subtracting (4.9) from (4.20) we get for F:

(4.22) ^Ύ ! κ ^,»kM^,&ιk • *oo i »~2 \h
so to summarize we have proved the following:

Theorem 4.5. On the open T£ orbit in X, the Kaehler form, ω, is
equal to

Remark. If Σ u

x? = ° » t h e t e r m

5 /«,» drops out of (4.22) and one gets
the following simpler expression for ω :

(4.23)
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The condition, Σ wz = 0, has the following nice geometric interpretation:
Let N be the subgroup of the rf-dimensional torus

(4.24) Sl x x Sι (d copies)

defined by (2.13). If £ > . = 0, then by (2.3), N contains the diagonal
subgroup of (4.24). Hence, by the principle of "reduction in stages", X
is the reduced space associated with the Hamiltonian action of N/Sι on

' 1

5. Let p: Tn -• U{N+ 1) be a linear representation of Tn on C
with weights, α 0 , 9aN9 p can be extended to a linear representation

(5.1) p c : Z

and from this representation one gets an induced action

(5.2) τ c : Γ* -> PL(N + 1, C)

of 7£ on CPN . Let W be a Γ£ orbit in CPN. Our first goal in this sec-
tion will be to compute the Kaehler metric induced on W by the Fubini-
Study metric on CPN. Let p be a point of W. For simplicity we will
assume that T£ acts freely at p, and we will identify W with T£ by the
evaluation map: g e T£ —• τc(g)p. One can also identify T£ with the
linear .space, C2/2πiZn , by the exponential mapping, and by composing
these two mappings, one gets a complex embedding: i: Cn/2π/Zn -> CPN

whose image is W. Denoting by ωFS the Fubini-Study form on CPN

we will prove

(5.3) i ω F 5

the c 's being nonnegative constants.
Proof. Without loss of generality we can assume that pc is a homo-

morphism of T£ into the diagonal subgroup of GL(N + 1, C). In other
words for

Z = JC + I> eCn/2πiZn,

and α = (έi0, , α^) € C^,

(5.4) />c(expz)α =

However, by [3, p. 45],

(5.5) ωFS = iddLog\z\2.
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Hence, letting [a0, , aN] be the homogeneous coordinates of the point,
p, from (5.4) one gets

which is equal to (5.3) with ct — \at\ .
Now let X be the ^-dimensional toric variety associated with the poly-

tope (2.1), and let i: X -> CPN be a T£ equivariant embedding. If M
is the open T£ orbit in X, then its image with respect to / is a T£ orbit
in CPN, so the restriction of ι*coFS to M is still given by (5.3). Let us
compare ι*ωFS with the Kaehler form, ω, defined by (1.3). If we make
the change of coordinates dF/dx = y and dG/dy — χyF and G being
the functions (4.22) and (4.9), then from (4.9) we get .

dG

with u = Σun hence

2(α, x) = ( a , ^ = Σ > , M/)Log/. + (a, u).

By letting da = e{a'u) this gives

e2{a-x)=Φ*

However, in consequence of (4.22),

( d
I

e

so we can rewrite the former expression in the form

( d
I

e

λ:=l

where

(5.6) nka = (a,uk)-λk = lk(a).

Substituting this expression into (5.3), letting ka = cada, and summing
over a, one gets:
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with

( 5 7) p Σ a
a ι = l

Thus, from (4.2) and (5.3), it finally follows that

(5.8) ΓωFS = ω + id'dφ\-loo + Log/*).

Let [ω] and ι*[ωFS] be the DeRham cohomology classes in H2(X, E)
associated with ω and **ωF 5. As an application of (5.8) we will prove
that

(5.9) lω] = ι*[ωFS],
FS]

if and only if the following three conditions hold:

(i) The vertices of Δ are in Zn.

(5.10) ( i i )If fc α ^0, α e Δ .

(iii) If a is a vertex of Δ, kaφ0.

Proof. We will first prove a variant of Theorem 4.3.
Theorem 5.1. If (5.9) holds, there exists a smooth function, Q, on Rn

such that

(5.11) ωFS = ω + iddφ*Q.

Moreover, Q is unique up to an additive constant.
Proof X is simply connected (see, for instance, [4]); so Hι(X, E) =

0. Since X is Kaehler,

(5.12) Hι'°(X) = H°9Ϊ(X) = 0.

If (5.9) holds, there is a Γ^-invariant one-form, / i , o n I satisfying
coFS = ω + dμ. Let μ = a + a with a e Ω 0 ' ι(X). Since dμ is of
bidegree (1,1), da = 0; therefore, by (5.12) there is a ΓΛ-invariant func-
tion, G, such that a = 9G. Thus, ϊ*ωF S - ω = /M(2 ImG). Since
ImG is Tn-invariant, by [12] there exists a smooth function, β , on Rn

such that 2 Im G = φ*Q.
To prove the uniqueness of Q consider the restriction of ι*o)fS — ω to

the open T£ orbit in X. On this orbit
2

φ*/ d

2

φ*Q
- ω = - } _ _ dz. Λ dz.

4^fdxdX ι ι

so 0*Q is well-determined up to a linear function of x. However, since
φ*Q is bounded, it is actually well determined up to a constant, q.e.d.



302 VICTOR GUILLEMIN

Comparing (5.11) with (5.8), we conclude that for (5.9) to hold, LogP
must be a smooth function on Δ. However, it is clear from (5.7) that P is
a smooth fucntion on Δ if and only if it is a polynomial, i.e., if and only if
nia is a nonnegative integer for all i, a. By (5.6), nia is an integer if and
only if λ is an integer, and nia is nonnegative if and only if I .(a) > 0.
But I .{a) > 0 for all / if and only if a e A.

Finally, LogP is a smooth function on Δ if and only if P is positive
on Δ. Suppose P is zero at some point, q e Δ. Then each summand of
(5.7) has to be zero at q, and hence on the face, F, of Δ containing q .
Let us consider the worst case scenario: q = β = a vertex of F. Suppose
the term

(5.13) * .
k=\

is not zero. Let the (n - l)-dimensional faces of Δ meeting at β be those
defined by the equations, lχ. = 0, i = iχ, , in . If (5.13) is not zero, then
nia = 0 for i = J'J , m , in , and hence /z(α) = 0 for i = i{, , in by
(5.6); i.e., β = a. Therefore, by (5.13) a necessary and sufficient condition
for P to be positive on Δ is that ka be positive for every vertex, a e Δ.

6. Let (M, ω) be a compact connected Kaehler manifold and let

(6.1) τ i S 1 ^Diff(M)

be an effective action of Sι on M by complex-analytic diffeomorphisms,
which preserves ω and is Hamiltonian; i.e., has a global moment map

(6.2) φ:M->R.

Let Y be a connected component of the fixed point set of M. It is clear
that Y is a complex submanifold of M (since τ acts complex analyti-
cally), and hence is also a symplectic submanifold of M. Moreover, the
restriction of φ to Y is equal to a constant, c. Suppose in addition that
Y is of complex codimension one. In this case we claim that c has to be
an extremal value of φ, i.e., either a maximum or a minimum, and that
Y = φ-\c).

Proof. We will first prove
Theorem 6.1. Let p e Y and let hp be the fiber of the normal bundle

at p .Then the weight of the isotropy representation of τ on Lp is ±1.

Proof. If the weight were m, m Φ ± 1, the mth roots of unity would
be in the kernel of the homomorphism, (6.1), contradicting the assumption
that τ is effective, q.e.d.



KAEHLER STRUCTURES ON TORIC VARIETIES 303

For simplicity we assume that the weight of the isotropy representation
is + 1 . Then, by the equivariant Darboux theorem (see, for instance, [8,
§22]) there exist Darboux coordinates xχ, yχ, , xn, yn centered at p
so that in these coordinates φ = \(x\ + y\) + c. Thus, in particular, c
is a local minimum of φ. However, by the Atiyah connectivity theorem,
φ~l{c) is connected. Hence φ~ι(c) = 7 , and Y is the set where φ
achieves its global minimum, q.e.d.

Next we will prove that for any p eY there exist an S^invaraint open
neighborhood, U, of p, and complex coordinates, zχ, , zn, on U
such that U Π Y is the set where zχ — 0, and such that

(6.3) <zχ=eiθzχ

and

(6.4) τ*θzi = z{, for / > 1.

Proof It is clear that there exists a complex coordinate system with all
these properties except, perhaps, (6.3). However, by Lemma 6.1,

for q e UΠY so if one replaces zχ by (l/2π) /0

2π e~ιθτ*θzχ dθ, the above
coordinate system will have the property (6.3) as well, q.e.d.

Replacing φ by φ - c we can assume that φ = 0 on Y and φ > 0 on
M — Y. We will now prove the following elementary but useful fact.

Theorem 6.2. The cohomology class of the ( 1 , 1) form

(6.5) μ = -r—:dΊ)Logφ
2nι

is the dual cohomology class to Y in H2(M, R).
Proof Let p e Y and let (U, zχ, ••• , zn) be a coordinate system

centered at p having the proeprties (6.3)-(6.4). The Hessian of φ is
nonzero at all points of U Π Y, and φ is 51-invariant; so, in terms of the
above coordinates,

(6.6) φ = \zχ\
2h,

h being a smooth function in the variables, \zχ\
2, z 2 , z 2 , 9 zn,Ίn,

which is positive everywhere on £/. Thus the restriction of (6.5) to U
can be written in the form

i — 2 1
(6.7) μ = —dd(\jog\z* I + Logλ) = —d(dLogh).

2ττ 27Γ
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Now let {Uιf, i = 1, , N} be a good cover of Y by open Sι-invariant
subsets of M, and let (zχ ., z2 ., , zn .) be a system of coordinates
on [/- satisfying (6.3)-(6.4).

Letting

(6.8) Φ = \zu\
2hi,

from (6.7) we get

(6.9) μ = da, onUn

where
at = (i/2π)dLoghr

Thus, on Ui Π Uj,

(6.10) α. -a. = —:dLog|/j | 2 ,

by the identity (6.8), where

(6.11) 4 = W
Since Ui Π I/, is contractible, there exists a single-valued determination of
Log./λ so we can rewrite (6.10) in the form

(6.12) α i - α J

We recall now that there is a holomorphic line bundle

(6.13) L-M

canonically associated with the hypersurface, Y. This bundle can be de-
fined either by taking its transition functions to be the functions (6.11) or
by requiring that it have the following two properties:

(i) The restriction of L to Y is the normal bundle of Y.
(ii) The restriction of L to M - Y is trivial.

Moreover, it can be characterized topologially by the property that its
Chern class is the dual class in H2(M, Z) to the homology class [Y], in
h2n_2(M, Z). (For details, see [6, pp. 129-148].) However, by (6.9) and

(6.12) the Chern class of L in H2(M, R) is the cohomology class of the
form (6.5). q.e.d.

Now let X be the toric variety associated with the polytope, Δ, and let
ut be, as in (2.1), the normal vector to the zth face of Δ. Let

(6.14) {in., ίeR/2πZ}
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be the one-parameter subgroup of Tn generated by uχ. The moment map
associated with the action of this group is l{ o φ which, by (1.2), takes its
minimum on the set

(6.15) φol. = 0.

We will denote this set by X.. It is the pre-image in X of the /th (n -1)-
dimensional face of Δ, and is a complex submanifold of X of codimen-
sion 1. Let ct be the cohomology class in H2(X, R) dual to the homology
class [Xt] in H2n_2(X,R). By Theorem 6.2,

(6.16) c.

where

(6.17) μi^(il2

and by applying this result to (1.3) one gets:

Theorem 6,3. Let ω be the Kaehler form on X, and [ω] its cohomol-
ogy class. Then

i=\

Remark. For an alternative proof of (6.18), based on the Duistermaat-
Heckman theorem, see [7, Lecture 2],

We will now discuss some applications of (6.18). In these applications
we will make use of the following:

Theorem 6.4. The symplectic volume of X, Jχ exp(ω), is equal to
(2π)n times the Euclidean volume of A.

Proof Let M be the open T£ orbit in X, and , by fixing a base point
on M, let us identify M with Cn/2πiZn . By (4.2) the restriction of ω
to M is Σ^i^F/dx^Xj) dxt Λ dy. so

v
dx Λ dy.

Thus, by Fubini's theorem, the integral of exp ω over X is the product of
the integral of dy over R/I/2πZ/I (which is just {2π)n) and the integral

However, by (4.4), the map

(6.20) * + !>-» dF/dx
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is the moment map (2.24), and its restriction to Rn maps Rn diffeomor-
phically onto the interior of Δ. Moreover, since F is strictly plurisub-
harmonic, det(d2F/dxidxj) > 0. Thus by the formula for the change of
coordinates in elementary calculus, (6.19) is just the volume of Δ. q.e.d.

Recall now that Δ is defined by the system of inequalities:

(x, ut) > λi, i = 1, , d,

ui being the "inward-pointing" normal to the ίth (n - l)-dimensional
face. Let v.-= -ut, the "outward-pointing" normal to this face, and let
s. =: -λ•. Then Δ can also be defined by the inequalities:

(6.21) < * , ^ > < ^ , Ϊ = 1 , 9d.

Let v(sx, ••• , sd) be the Euclidean volume of this set. From the two
previous theorems, one gets the following corollary:

Theorem 6.5. The pairing of the cohomology class, exp(£s.c.), with

the orientation cycle, [X], in H2n(X,R), is equal to the volume,

v(sχ, ,sd), of the set (6.21) i.e.,

(6.22) t ; ^ , . . . , ^ )

We recall (see [4, Proposition 11.4) that the Chern classes of X are just
the elementary symmetric polynomials in cx, , cd . In other words the
rth Chern class is the coefficient of tr in the expression

(6.23)
ι = l

As a consequence of this [4, 11.7] the Todd class of X can be expressed
in terms of the cz 's ascz

( 6 2 4 )

Now suppose that ω/(2π) is an integer cohomology class, or, equivalently,
that ί p , sd are integers. Let h. —> X be the holomorphic line bundle
associated with the hypersurface, X., and let L = h\ι ® <g> ifj . By
Lemma 6.1 the Chern class of L is:

(6.25)
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Let Sf be the sheaf of holomorphic sections of L. Then by the Hirze-
burch-Riemann-Roch formula,

(6.26) ^(-l/dimiϊ^X, 2?) = τc(L))[X].
i=0

Substituting (6.25) in (6.26), one gets for the sum on the left-hand side of
(6.26): (exρ(Σsici)τ(c\ > > <^))[^Ί Let u s rewrite this as follows. Let
τ(d/ds) be the constant coefficient differential operator (of infinite order)

Applying this operator to v ^ , , sd) (which is legitimate since v is a
polynomial) we obtain from (6.22) (exp(X)4s/c/)τ(c1, ••• , cd))[X] which
is exactly the right-hand side of (6.27). This shows that the right-hand
side of (6.27) has a simple "combinatorial" interpretation. It turns out [4,
11.12] that the same is true of the left-hand side. Namely H\X ,
if i > 0 by the Kodaira vanishing theorem, and

by a fairly easy computation. Thus (6.26) reduces to

(6.27) #(Δ Π Z") = τ(d/ds)υ{s).

This is the Khovanskii-Pukhlikov identity which we referred to in the
introduction.

Remark. Since (6.27) is a combinatorial statement, one would expect
to be able to prove it by combinatorial means; and this, in fact, is what
Khovanskii and Pukhlikov did in [11]. We suspect, however, that this
may have been an ex post facto development, and that they may have
been led to (6.27) by arguments similar to those above. (For some recent
refinements of (6.27) see [10], [14], and [15].)

Next we will turn to the second application of (6.18) which we men-
tioned in the introduction. Let Δ be a polygon in the plane having the
properties described in the first paragraph of §2. (In particular let all the
vertices of Δ be nonsingular.) Given an edge, Fi, of Δ let pt and pM be
its end points. Since pέ is nonsingular, there exists a basis, {tί̂  {, wi 2 } ,

of Z2 such that the edges intersecting in p{ are on the rays p( + twt χ

and p. + twi 2 , t > 0. Therefore, since pt and p.+ι share a common
edge, wM j = -w. 2 , and hence the matrix which relates {wi {, wi 2}
to {wi+ι j , wi+ι 2} has the form

(0 k,
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k i and mi being integers. However, the determinant of this matrix is 1
so k; = 1 and this matrix reduces to:

I

(6.28) Mt =

The matrices (6.28) cannot be completely arbitrary. Indeed, since the end
point of Fd coincides with the initial point of Fχ, Mχ Md = I and, in
addition, the M{ 's have to satisfy a "topological" constraint corresponding
to the fact that the frame, {wn , wa}, rotates once about the origin as i
goes from 1 to d. Conversely, the problem of constructing polygons with
the properties described in §2 can be more or less reduced to the problem of
finding sequences of integers, mx, i = 1, , d, for which the matrices,
M z , have the properties above. (For details see [2, Chapter VI, §5.1].)

Now let X be the two-dimensional complex toric manifold associated
with Δ, and let Xn i = 1, , d, be the complex one-dimensional sub-
manifolds corresponding to the F( 's. Audin shows (loc. cit.) that the
numbers, mi, have the following geometric interpretation:

Theorem 6.6. — mi is the self-intersection number of X( in X.
This result completely determines the cohomology ring of X since it is

clear that the intersection number #(Λf. nX.) is one, if / Φ j , and if F.
and Fj are adjacent and zero otherwise.

I will now describe a generalization of this result to n dimensions. Let
X be the «-dimensional toric manifold associated with the polytope (2.1),
and let X.9 i = 1, , d, be the complex hypersurfaces corresponding
to the (n - l)-dimensional faces of this polytope. Let nχ, ••• , nd be
nonnegative integers satisfying n = Σd

i=x n{, and consider the intersection
number

(6.29) ^ ' Π . Π ^ ) ,

where X"' is the π^fold intersection of Xt with itself.
Theorem 6.7. The intersection number (6.29) is equal to

(6.30) V VV ^ '

where an _n is the coefficient ofsx

ι --sd

d in the polynomial, υ(sx, , sd).

Proof' By (6.22) we have

Remark. We leave it as an amusing exercise to deduce Audin's result
from Theorem 6.7!



KAEHLER STRUCTURES ON TORIC VARIETIES 309

Bibliography

[1] M. Atiyah, Angular momentum, convex polyhedra and algebraic geometry, Proc. Edin-
burgh Math. Soc. 26 (1983) 121-138.

[2] M. Audin, The topology of torus actons on symplectic manifolds, Birkhauser, Boston,
1991.

[3] S. S. Chera, Complex manifolds without potential theory, Van Nostrand Math. Studies,
No. 15, Princeton, NJ, 1967.

[4] V. I. Danilov, The geometry of tone varieites, Russian Math. Surveys 33 (1978) 97-154.
[5] T. Delzant, Hamiltoniens periodiques et image convex de I'application moment, Bull.

Soc. Math. France 116 (1988) 315-339.
[6] P, Griffiths & J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York,

1978.
[7] V. Guillemin, Notes for the autume school: Geometry of Hamiltonian systems, Wond-

schoten, to appear.
[8] V. Guillemin & S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press,

Cambridge, 1984.
[9] , Geometric quantization and multiplicities of group representations, Invent. Math.

67(1982) 515-538.
[10] J. M. Kantor & A. Khovanskii, Integral points in convex polyhedra, a combinatorial

Riemann-Roch theorem and a generalized MacLaurin formula, Inst. Hautes Etudes
Sci. Publ. Math. (1992) 932-937.

[11] A. Khovanskii & S. Pukhlikov, Theoreme de Riemann-Roch pour les intέgrales et les
sommes de quasi-polynomes sur les polyέdres virtuels, Algebra i Analiz 4 (1992)
188-216.

[12] E. Lerman, ON the centralizer of invariant functions on a Hamiltonian G-space, J. Dif-
fernetial Geometry 30 (1989) 805-815.

[13] J. Marsden & A. Weinstein, Reduction of symplectic manifolds with symmetry, Math.
Phys. 5(1974) 121-130.

[14] R. Morelli, A theory of polyhedra, Advances in Math. 97 (1993) 1-73.
[15] J. Pommeresheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295

(1993) 1-24.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY






