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PROOF OF THE SOUL CONJECTURE OF
CHEEGER AND GROMOLL

G. PERELMAN

In this note we consider complete noncompact Riemannian manifolds
M of nonnegative sectional curvature. The structure of such manifolds
was discovered by Cheeger and Gromoll [2]: M contains a (not neces-
sarily unique) totally convex and totally geodesic submanifold S without
boundary, 0 < dimS < d i m M , such that M is diffeomorphic to the
total space of the normal bundle of *S in ¥ . (S is called a soul of
M.) In particular, if S is a single point, then M is diffeomorphic to a
Euclidean space. This is the case if all sectional curvatures of M are posi-
tive, according to an earlier result of Gromoll and Meyer [3]. Cheeger and
Gromoll conjectured that the same conclusion can be obtained under the
weaker assumption that M contains a point where all sectional curvatures
are positive. A contrapositive version of this conjecture expresses certain
rigidity of manifolds with souls of positive dimension. It was verified in
[2] in the cases dim S = 1 and codimS = 1, and by Marenich, Walschap,
and Strake in the case codimS = 2. Recently Marenich [4] published
an argument for analytic manifolds without dimensional restrictions. (We
were unable to get through that argument, containing over 50 pages of
computations.)

In this note we present a short proof of the Soul Conjecture in full
generality. Our argument makes use of two basic results: the Berger's
version of Rauch comparison theorem [1] and the existence of distance
nonincreasing retraction of M onto S due to Sharafutdinov [5].

Theorem. Let M be a complete noncompact Riemannian manifold of
nonnegative sectional curvature, let S be a soul of M, and let P: M —> S
be a distance nonincreasing retraction.

(A) For any x eS, v e SN(S) we have

P{expχ{tυ)) = x for all t>0,

where SN(S) denotes the unit normal bundle of S in M.
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(B) For any geodesic γ cS and any vector field v e Γ(SN(S)) paral-
lel along y, the "horizontal curves γt, γt(u) = exp ̂ (fi/), are geodesies,
filling a flat totally geodesic strip (t > 0). Moreover, if γ[uQ, ux] is mini-
mizing, then all yt[u0, uχ] are also minimizing.

(C) P is a Riemannian submersion of class C 1 . Moreover, the eigen-
values of the second fundamental forms of the fibers of P are bounded
above, in barrier sense, by injrad(5')~1.

The Soul Conjecture is an immediate consequence of(B) since the normal
exponential map N(S) —• M is surjective.

Proof We prove (A) and (B) first. Clearly it is sufficient to check that
if (A) and (B) hold for 0 < t < I for some / > 0, then they continue to
hold for 0 < t < I + ε(l), for some ε(l) > 0. In particular, we can start
from / = 0, in which case some of the details of the argument below are
redundant.

Suppose that (A) and (B) hold for 0 < t < I. For small r > 0 consider
a function f{r) = max{\xP(expχ((l + r)ι>))\\x eS, v e SNχ(S)} . Clearly
/ is a Lipschitz nonnegative function, and /(0) = 0. We are going to
prove that / = 0 (thereby establishing (A) for 0 < t < I + ε(/)) by
showing that the upper left derivative of / is nowhere positive.

Fix r > 0. Let f(r) = \x0 - xo\ where x0 = P(expx ((/ + r)uQ). Since
r is small and P is distance decreasing, we can assume that \XQX0\ <
injrad(S). Pick a point xχ e S so that xQ lies on a minimizing geodesic
between x0 and xχ\ let x0 = γ(u0), xχ = y{μx). Let v e Γ(SN(S))

be a parallel vector field along y, v\χ = v0. Then, according to our
assumption, the curves γt(u) = exp /ttj(ίi/), 0 < t < I, are minimizing
geodesies of constant length filling a flat totally geodesic rectangle. In
particular, the tangent vectors to the normal geodesies σu(t) = expγ^(tv)
form a parallel vector field along y{. Therefore, according to Berger's
comparison theorem, the arcs of yι+r are no longer than corresponding
arcs of γι, with equality only if γt, I < t < I + r, are geodesies filling a
flat totally geodesic rectangle.

Now consider the point ~xχ = P(σu (l + r)). Using the distance decreas-

ing property of P and the above observation we get

(1) \χΰχχ\ < |σWo(/ + r)σWi(/ + r)| < 1 ^ ( 0 ^ ( / ) | = |*0*il

On the other hand,

(2) \xχxx\<f{r) = \xoxo\.

Taking into account that by construction

^ 1*1*11 + 1*0*11 >
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we see that (1) and (2) must be equalities, and therefore

(3) VtlUotUj, l<t<l + r,

are minimizing geodesies filling a flat totally geodesic rectangle.
Now for δ —• 0, we obtain

f(r-δ)>\xιP(σUι(Ur-δ))\>\xoxι\-\xQP(σUι(Ur--δ))\

= \xox{\ - \xox{\ - O(δ2) = \xoxo\ - O(δ2) = f(r) - O(δ2),

where we have used the definition of x 0 and distance nonincreasing prop-
erty of P in the third inequality, and (3) in the fourth one.

Thus f[r) = 0 for 0 < r < ε(l), and (A) is proved for 0 < / < / + ε(l).
To prove (B) for such t one can repeat a part of the argument above, up to
assertion (3), taking into account that (JC0 , v0), γ, xχ can now be chosen
arbitrarily, and x 0 = x0, 'xι=xι.

Assertion (C) is an easy corollary of (A), (B) and the distance decreasing
property of P. Indeed, let x be an interior point of a minimizing geodesic
γ c S, σ be a normal geodesic starting at x. Then, according to (B), we
can construct a flat totally geodesic strip spanned by γ and σ, and, for
any point y on σ, say y = σ(t), we can define a lift γy of γ through
y as a horizontal geodesic γt of that strip. This lift is independent of σ:
if incidentally y = σ(t')9 then the corresponding lift y must coincide
with yy because otherwise |j^(tto)y (Wj)| < \y(u^)y(uλ)\, and this would
contradict (A) and the distance decreasing property of P.

Thus we have correctly defined continuous horizontal distribution. Sim-
ilar arguments show that P has a correctly defined differential—a linear
map which is isometric on horizontal distribution and identically zero on
its orthogonal complement. For example, suppose two geodesies γι, γ2 c
S are orthogonal at their intersection point x. Then their lifts yι

y , γ
2 are

orthogonal at y, because otherwise we would have |j^(wo)z| < \yι{u0)P(z)\

for some point z on γ2 close to y.

The estimate on the second fundamental form of the fiber P~ι(x) at y
follows from the inequality \P~ι(x)yy(u0)\ > |*y(tto)|, valid for all min-
imizing geodesies γ c S passing through x, and from the standard esti-
mate of the second fundamental form of a metric sphere in nonnegatively
curved manifold.
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Remarks. (1) The fibers of the submersion P are not necessarily iso-
metric to each other, and not necessarily totally geodesic (see [6]).

(2) Existence of a Riemannian submersion of M onto S was conjec-
tured some time ago by D. Gromoll.

(3) It would be interesting to find a version of our theorem for Alexan-
drov spaces (which may occur, for instance, as Gromov-Hausdorff limits
of blowups of Riemannian manifolds, collapsing with lower bound on sec-
tional curvature). We hope to address this and other rigidity problems for
Alexandrov spaces elsewhere.
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