REMARKS ON COMPLETE DEFORMABLE HYPERSURFACES IN R^{4}

HIROSHI MORI

Dedicated to Professor T. Otsuki on his 75th birthday and to Professor S. Ishihara on his 70th birthday

Abstract

It is shown that, for each pair $\left\{k_{1}(u), k_{2}(v)\right\}$ of smooth functions on \boldsymbol{R} with some conditions, there exists a family of complete nonruled deformable hypersurfaces $M\left(\lambda, k_{1}, k_{2}\right),-\frac{1}{2}<\lambda<\frac{1}{2}$, in Euclidean space R^{4} with rank $\rho=2$ almost everywhere. This is an answer to one of the problems in [3].

1. Introduction and statement of results

It is an interesting problem to determine the deformability of an isometric immersion f of a connected Riemannian manifold M^{n} into Euclidean $(n+1)$-space $R^{n+1}, n \geq 3$. Let ρ be the rank of the second fundamental form of f. It is known (see [2]) that f is rigid (i.e., not deformable) if $\rho \geq 3$ by the Beez-Killing Theorem, and highly deformable if $\rho \leq 1$. The situation for constant rank $\rho=2$ is quite complicated. Sbrana and Cartan divided this situation into three different types, and looked into it by a detailed local analysis (see [1], [4]).

It has been shown by Dajczer and Gromoll [3] that for $n \geq 3$ a complete hypersurface M^{n} in R^{n+1} whose set of all the geodesic points does not disconnect M^{n}, is rigid unless it contains either an open subset $L^{3} \times R^{n-3}$ with L^{3} unbounded or a complete ruled strip. But the three-dimensional case of this result remains an open problem.

In this paper, we construct a one-parameter family of complete nonruled deformable hypersurfaces in R^{4} with rank $\rho=2$ almost everywhere depending on two functions on the real line R with some conditions.

Theorem. Let $k_{j}(x), j=1,2$, be smooth functions on R satisfying that $-\frac{\pi}{4}<\int_{0}^{x} k_{j}(x) d x<\frac{\pi}{4}, j=1,2, \forall x \in R$ and that $k_{1}(u)>0$, $k_{2}(v)<0$ at all points u, v except for isolated ones. For each constant

[^0]$\lambda,-\frac{1}{2}<\lambda<\frac{1}{2}$, there exists an immersion $f\left(\lambda, k_{1}, k_{2}\right)$ of R^{3} into R^{4} satisfying the following conditions:

1. The induced metric $d s^{2}\left(\lambda, k_{1}, k_{2}\right)$ on R^{3} through $f\left(\lambda, k_{1}, k_{2}\right)$ is complete.
2. For any two constants λ, μ in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ the Riemannian manifolds $\left(R^{3}, d s^{2}\left(\lambda, k_{1}, k_{2}\right)\right)$ and $\left(R^{3}, d s^{2}\left(\mu, k_{1}, k_{2}\right)\right)$ are isometric.
3. For any two pairs of functions $\left\{k_{1}(x), k_{2}(x)\right\}$ and $\left\{\bar{k}_{1}(x), \bar{k}_{2}(x)\right\}$ and for two constants λ, μ in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ the isometric immersions $f\left(\lambda, k_{1}, k_{2}\right):\left(R^{3}, d s^{2}\left(\lambda, k_{1}, k_{2}\right)\right) \rightarrow R^{4}$ and $f\left(\mu, \bar{k}_{1}, \bar{k}_{2}\right):$ $\left(R^{3}, d s^{2}\left(\mu, \bar{k}_{1}, \bar{k}_{2}\right)\right) \rightarrow R^{4}$ are congruent if and only if $\bar{k}_{j}(x)=$ $k_{j}\left(\varepsilon_{j} x+a_{j}\right)$ for $\forall x \in R$, where $\varepsilon_{j}= \pm 1$ and $a_{j}, j=1,2$ are constants.
4. The rank $\rho\left(\lambda, k_{1}, k_{2}\right)$ of the second fundamental form of the immersion $f\left(\lambda, k_{1}, k_{2}\right)$ at each point (u, v, t) of R^{3} is 2 (resp. ≤ 1) when $k_{1}(u) k_{2}(v)<0$ (resp. $k_{1}(u) k_{2}(v)=0$).
We are in the C^{∞} category and refer the readers to [2] for the terminology.

2. Preliminaries

First, we will recall some basic definitions. Let $f: M^{n} \rightarrow R^{n+1}$ be an isometric immersion of a connected n-dimensional Riemannian manifold M^{n} into the Euclidean space R^{n+1}. The isometric immersion f is said to be rigid if, for any other isometric immersion $h: M^{n} \rightarrow R^{n+1}$, there exists a motion τ of R^{n+1} such that $h=\tau \circ f$. The isometric immersion $f: M^{n} \rightarrow R^{n+1}$ which is not rigid is said to be deformable.

Let $k_{j}(x), j=1,2$, be functions as in the Theorem. We define the two functions $\theta(u)$ and $\phi(u)$ by

$$
\theta(u)=\int_{0}^{u} k_{1}(x) d x, \quad \phi(v)=\int_{0}^{v} k_{2}(x) d x
$$

for $u, v \in R$. For each constant λ in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ we define the functions $\theta(u, \lambda), \phi(v, \lambda), k_{1}(u, \lambda), k_{2}(v, \lambda)$ by

$$
\begin{array}{ll}
\theta(u, \lambda)=\arcsin \{\sin \theta(u) / \sqrt{1-\lambda}\}, & u \in R \\
\phi(v, \lambda)=\arcsin \{\sin \phi(v) / \sqrt{1+\lambda}\}, & v \in R \tag{2.2}
\end{array}
$$

$$
\begin{array}{ll}
k_{1}(u, \lambda)=\frac{d}{d u} \theta(u, \lambda), & u \in R \\
k_{2}(u, \lambda)=\frac{d}{d v} \phi(v, \lambda), & v \in R \tag{2.4}
\end{array}
$$

Denote by $c_{1}(u, \lambda), e_{1}(u, \lambda), e_{2}(u, \lambda)\left(\right.$ resp. $\left.c_{2}(v, \lambda), e_{3}(v, \lambda), e_{4}(v, \lambda)\right)$ the curve in $R^{2} \times\{(0,0)\}$ (resp. $\left.\{(0,0)\} \times R^{2}\right) \subset R^{4}$ and its Frenet frame with curvature $k_{1}(u, \lambda)$ (resp. $\left.k_{2}(v, \lambda)\right)$ and initial conditions:
$c_{1}(0, \lambda)=(0, \cdots, 0), \quad e_{1}(0, \lambda)=(1,0,0,0), \quad e_{2}(0, \lambda)=(0,1,0,0)$, $\left(\right.$ resp. $\left.c_{2}(0, \lambda)=(0, \cdots, 0), c_{3}(0, \lambda)=(0,0,1,0), c_{4}(0, \lambda)=(0,0,0,1)\right)$.

We define a mapping $f_{\lambda}: R^{3} \rightarrow R^{4}$ by

$$
\begin{align*}
f_{\lambda}(u, v, t)= & c_{1}(u, \lambda) \tag{2.5}\\
& +t \sqrt{\frac{1-\lambda}{2}}\left\{\sin \theta(u, \lambda) e_{1}(u, \lambda)+\cos \theta(u, \lambda) e_{2}(u, \lambda)\right\} \\
& +c_{2}(v, \lambda) \\
& +t \sqrt{\frac{1+\lambda}{2}}\left\{\sin \phi(v, \lambda) e_{3}(v, \lambda)+\cos \phi(v, \lambda) e_{4}(v, \lambda)\right\}
\end{align*}
$$

for $u, v, t \in R$. Using (2.1)-(2.4) we can show that

$$
\begin{aligned}
& \frac{\partial}{\partial u} f_{\lambda}(u, v, t)=e_{1}(u, \lambda), \quad \frac{\partial}{\partial v} f_{\lambda}(u, v, t)=e_{3}(v, \lambda) \\
& \frac{\partial}{\partial t} f_{\lambda}(u, v, t)= \sqrt{\frac{1-\lambda}{2}}\left\{\sin \theta(u, \lambda) e_{1}(u, \lambda)+\cos \theta(u, \lambda) e_{2}(u, \lambda)\right\} \\
&+\sqrt{\frac{1+\lambda}{2}}\left\{\sin \phi(v, \lambda) e_{3}(v, \lambda)+\cos \phi(v, \lambda) e_{4}(v, \lambda)\right\}
\end{aligned}
$$

and that

$$
\begin{aligned}
\xi_{\lambda}(u, v)= & \left.\left\{\cos ^{2} \theta(u)+\cos ^{2} \phi(v)\right)\right\}^{-1 / 2} \\
& \cdot\left\{\sqrt{1+\lambda} \cos \phi(v, \lambda) e_{2}(u, \lambda)-\sqrt{1-\lambda} \cos \theta(u, \lambda) e_{4}(v, \lambda)\right\}
\end{aligned}
$$

is a field of unit normals along f_{λ}. From this observation together with (2.1)-(2.4) it follows that
(2.6) $f_{\lambda}^{*} d s_{\text {can }}^{2}=d u^{2}+d v^{2}+\sqrt{2} \sin \theta(u) d u d t+\sqrt{2} \sin \phi(v) d v d t+d t^{2}$, so that

$$
\begin{equation*}
\left\langle\frac{\partial^{2} f_{\lambda}}{\partial u^{2}}, \xi_{\lambda}\right\rangle=k_{1}(u) \cos \theta(u) \sqrt{\frac{\cos ^{2} \phi(v)+\lambda}{\left(\cos ^{2} \theta(u)-\lambda\right)\left(\cos ^{2} \theta(u)+\cos ^{2} \phi(v)\right)}} \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& \left\langle\frac{\partial^{2} f_{\lambda}}{\partial v^{2}}, \xi_{\lambda}\right\rangle=-k_{2}(v) \cos \phi(v) \sqrt{\frac{\cos ^{2} \theta(u)-\lambda}{\left(\cos ^{2} \phi(v)+\lambda\left(\cos ^{2} \theta(u)+\cos ^{2} \phi(v)\right)\right.}}, \tag{2.8}\\
& \text { 2.9) }\left\langle\frac{\partial^{2} f_{\lambda}}{\partial u \partial v}, \xi_{\lambda}\right\rangle=\left\langle\frac{\partial f_{\lambda}}{\partial u \partial t}, \xi_{\lambda}\right\rangle=\left\langle\frac{\partial^{2} f_{\lambda}}{\partial v \partial t}, \xi_{\lambda}\right\rangle=\left\langle\frac{\partial^{2} f_{\lambda}}{\partial t^{2}}, \xi_{\lambda}\right\rangle=0 . \tag{2.9}
\end{align*}
$$

3. Proof of Theorem

We will maintain the notation as in the previous section. We will prove the first assertion. First, we see that, for each constant $\lambda,-\frac{1}{2}<\lambda<\frac{1}{2}$ the mapping f_{λ} given by (2.5) is an immersion by virtue of (2.6) and

$$
\begin{equation*}
-\pi / 4<\theta(u), \phi(v)<\pi / 4, \quad \forall u, v \in R . \tag{3.1}
\end{equation*}
$$

Set $g=f_{\lambda}^{*} d s_{\text {can }}^{2}$, and denote by $g_{i j}$ the components of g with respect to the global coordinates $x_{1}:=u, x_{2}:=v$ and $x_{3}:=t$ on R. Then the solutions of the equation in $\rho: \operatorname{det}\left(\rho \delta_{i j}-g_{i j}\right)=0$ are $\rho=1,1 \pm$ $\left\{\left[\sin ^{2} \theta(u)+\sin ^{2} \phi(v)\right] / 2\right\}^{1 / 2}$. Using (3.1) we have

$$
\begin{equation*}
a g_{\text {can }}(X, X) \leq g(X, X) \leq b g_{\text {can }}(X, X) \tag{3.2}
\end{equation*}
$$

for all tangent vectors X in R^{3}, where $g_{\text {can }}$ is the canonical Riemannian metric on R^{3}, and a and b are positive constants satisfying that $a^{2}=$ $1-1 / \sqrt{2}, b^{2}=1+1 / \sqrt{2}$. Thus (3.2) implies that the first assertion is true.

The second assertion is valid because of (2.6).
The third assertion is proved as follows. Let $\bar{\theta}(u, \lambda), \bar{\phi}(v, \lambda), \bar{k}_{1}(u, \lambda)$, $\bar{k}_{2}(v, \lambda), \bar{c}_{1}(u, \lambda), \bar{e}_{i}(u, \lambda), i=1,2, \bar{c}_{2}(v, \lambda), \bar{e}_{i}(v, \lambda), i=3,4$, and \bar{f}_{λ} be the corresponding functions, curves, Frenet frames and the mappings as in the previous section for $\bar{k}_{1}(u), \bar{k}_{2}(v)$, and μ.

Suppose that there exist a diffeomorphism ψ of R^{3} onto itself and an isometry ρ of $\left(R^{4}, d s_{\text {can }}^{2}\right)$ such that

$$
\begin{equation*}
\rho \circ f_{\lambda}(u, v, t)=\bar{f}_{\mu} \circ \psi(u, v, t) \tag{3.3}
\end{equation*}
$$

We can show that, for each fixed $\lambda,-\frac{1}{2}<\lambda<\frac{1}{2}$, a curve $u=u(\sigma)$, $v=v(\sigma), t=t(\sigma), \sigma \in R$ defines a geodesic in $\left(R^{3}, g\right)$ and $\left(R^{4}, d s_{\text {can }}^{2}\right)$ if and only if $u(\sigma)=$ const, $v(\sigma)=$ const, and $t(\sigma)= \pm \sigma+$ const, provided that $k_{1}\left(u\left(\sigma_{0}\right)\right) k_{2}\left(v\left(\sigma_{0}\right)\right)<0$ for some σ_{0}. Notice that, for each
fixed $u, v \in R$, the mapping $t \in R \rightarrow f_{\lambda}(u, v, t)$ (resp. $\bar{f}_{\mu}(u, v, t)$) defines a geodesic in $\left(R^{4}, d s_{\mathrm{can}}^{2}\right)$, and that for almost all (u, v) in R^{2}, $\bar{k}_{1}\left(\psi_{1}(u, v, 0)\right) \bar{k}_{2}\left(\psi_{2}(u, v, 0)\right)<0$, where $\psi_{j}(u, v, 0)$ is the j th component of $\psi(u, v, 0) \in R^{3}$.

From these observations, we may assume, by adding constants to the parameters and rotating $f_{\lambda}\left(R^{3}\right)$ around the origin if necessary, that

$$
\begin{array}{rlrl}
\rho & =\text { identity } & & \\
\psi(0,0,0) & =(0,0,0), & & \psi_{u}(0,0,0)=(1,0,0) \tag{3.4}\\
\psi_{v}(0,0,0) & =(0,1,0), & \psi_{t}(u, v, t)=(0,0,1)
\end{array}
$$

$\forall u, v, t \in R$, where ψ_{u}, ψ_{v}, and ψ_{t} are the partial derivatives of ψ with respect to u, v, and t respectively. From this we find that

$$
\begin{equation*}
\psi(u, v, t)=(x(u, v), y(u, v), t) \quad \forall u, v, t \in R \tag{3.5}
\end{equation*}
$$

where $x(u, v), y(u, v)$ are functions of u and v.
On the other hand, for each fixed $t \in R$, the mapping $l(t): R^{2} \rightarrow$ $R^{3},(u, v) \mapsto(u, v, t)$ is an isometric imbedding of $\left(R^{2}, g_{\text {can }}\right)$ into ($R^{3}, f_{\lambda}^{*} d s_{\text {can }}^{2}$), where $g_{\text {can }}$ is the Euclidean metric on R^{2}. Combining this fact with (2.5), (3.5) shows that the mapping $(u, v) \mapsto(x(u, v), y(u, v))$ is an isometry of $\left(R^{2}, g_{\text {can }}\right)$. Thus by this remark and (3.4),

$$
\begin{equation*}
\psi(u, v, t)=(u, v, t) \quad \forall u, v, t \in R . \tag{3.6}
\end{equation*}
$$

From (3.3), (3.4), and (3.6) it follows that

$$
\left\{\begin{array}{l}
\bar{k}_{i}(x)=k_{i}\left(\varepsilon_{i} x+a_{i}\right), \quad \varepsilon_{i}, a_{i}: \text { constants, with } \varepsilon_{i}= \pm 1 \tag{3.7}\\
\mu=\lambda
\end{array}\right.
$$

for each $x \in R$.
Conversely, it can be easily shown that if (3.7) is satisfied, then we have (3.3) for some diffeomorphism $(u, v, t) \mapsto \psi(u, v, t)$. This completes the proof of the third assertion.

The fourth assertion follows easily from (2.7)-(2.9).

Acknowledgment

The author would like to thank Professor M. Dajzczer for useful conversations.

References

[1] É. Cartan, La déformation des hypersurfaces dans l'espace euclidean réel à n dimensions, Bull. Soc. Math. France 44 (1916) 65-99.
[2] M. Dajczer et al., Submanifolds and isometric immersions, Publish or Perish, Houston, TX, 1990.
[3] M. Dajczer \& D. Gromoll, Rigidity of complete euclidean hypersurfaces, J. Differential Geometry 31 (1990) 404-416.
[4] V. Sbrana, Sulle varietá ad $n-1$ dimensioni deformabili nello spazio ad n dimensioni, Rend. Circ. Mat. Palermo 27 (1909) 1-45.

Joetsu University of Education Joetsu, Japan

[^0]: Received November 3, 1992.

