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Abstract

It is shown that, for each pair {k{(u), k2(v)} of smooth functions on
R with some conditions, there exists a family of complete nonruled de-
formable hypersurfaces M(λ, kx, k2), - ^ < λ < \ , in Euclidean space

R4 with rank p = 2 almost everywhere. This is an answer to one of the
problems in [3].

1. Introduction and statement of results

It is an interesting problem to determine the deformability of an isomet-
ric immersion / of a connected Riemannian manifold Mn into Euclidean
(n+ l)-space Rn+{, n > 3. Let p be the rank of the second fundamental
form of / . It is known (see [2]) that / is rigid (i.e., not deformable)
if p > 3 by the Beez-Killing Theorem, and highly deformable if p < 1.
The situation for constant rank p = 2 is quite complicated. Sbrana and
Cartan divided this situation into three different types, and looked into it
by a detailed local analysis (see [1], [4]).

It has been shown by Dajczer and Gromoll [3] that for n > 3 a complete
hypersurface Mn in Rn+{ whose set of all the geodesic points does not
disconnect Mn , is rigid unless it contains either an open subset L 3 x Rn~3

with L 3 unbounded or a complete ruled strip. But the three-dimensional
case of this result remains an open problem.

In this paper, we construct a one-parameter family of complete nonruled
deformable hypersurfaces in R4 with rank p = 2 almost everywhere de-
pending on two functions on the real line R with some conditions.

Theorem. Let kj(x), j = 1,2, be smooth functions on R satisfying

that - f < f*kj{x)dx < f, = 1, 2, Vx e R and that k{(u) > 0,

k2(v) < 0 at all points u, v except for isolated ones. For each constant
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λ, -\ < λ < j , there exists an immersion f(λ, kχ, k2) of R3 into R4

satisfying the following conditions:

1. The induced metric ds2(λ, kχ, k2) on R3 through f(λ, kχ, k2) is
complete.

2. For any two constants λy μ in ( - 5 , \) the Riemannian manifolds
(R3, ds2(λ, kχ, k2)) and {R3, ds2{μ, kχ, k2)) are isometric.

3. For any two pairs of functions {kχ(x), k2(x)} and {kχ(x), k2(x)}
and for two constants λ, μ in (-j, j) the isometric immersions
f(λ,kl9k2):_(R\ds2(λ,k{,k2)) -> R4 and f(μ,Έχ,k2):
(R3, ds2(μ, kχ, k2)) -> R4 are congruent if and only if kj(x) =
k {z x + aj) for Vx € R, where ε ; = ±1 and aj9j= 1,2 are
constants.

4. The rank p(λ, kχ, k2) of the second fundamental form of the im-
mersion f(λ, kχ, k2) at each point (u,v,t) of R3 is 2 (resp.
< 1) when kχ(u)k2{υ)<0 (resp. kχ(u)k2(v) = 0).

We are in the C°° category and refer the readers to [2] for the terminol-

ogy.

2. Preliminaries

First, we will recall some basic definitions. Let / : Mn —• Rn+ι be an
isometric immersion of a connected ^-dimensional Riemannian manifold
Mn into the Euclidean space Rn+ι. The isometric immersion / is said
to be rigid if, for any other isometric immersion h: Mn —• Rn+ι, there
exists a motion τ of Rn+ι such that h = T O / . The isometric immersion
/: Mn —• Rn*1 which is not rigid is said to be deformable.

Let kj(x), j = 1, 2, be functions as in the Theorem. We define the
two functions θ(u) and φ(u) by

θ(u)= Γkx(x)dx, φ(v)= [\(x)dx
Jo Jo

for u, υ e R. For each constant λ in ( - 5 , 5 ) we define the functions
θ(u,λ), φ(υ,λ), kχ(u,λ), k2(v,λ) by

(2.1) θ{u, λ) = arcsin |sin θ{u)/\/\ - λ} , w€i ϊ,

(2.2) φ(υ , A) = arcsin jsin φ(υ)/y/l +λ\ , v € i?,



(2.3)

(2.4)
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kJu,λ) = 4-Φ(v,λ), veR.

D e n o t e by cx (u, X), ex (u,λ), e2(u, λ) (resp. c2{v ,λ),ei(υ,λ), e4(v, λ))

the curve in R2 x {(0, 0)} (resp. { ( 0 , 0 ) } x Λ 2 ) c R4 and its Frenet frame

with curvature k^u^) (resp. k^υ, λ)) and initial conditions:

c,(0,λ) = (0, , 0 ) , <?,(0,λ) = ( l , 0 , 0 , 0 ) , e2(O,λ) = (O, 1 , 0 , 0 ) ,

(resp. c 2 (0, λ) = (0, • • •, 0 ) , c3(0, A) = (0, 0, 1, 0) , c4(0, Λ) = (0, 0, 0, 1)).

We define a mapping fλ: R3 —> R4 by
(2.5)

fλ(u,υ, t) = cι(u,λ)

l^^inθ(u, λ)eχ(u, λ) + cosθ(u, λ)e2(u, λ)},

c2(v, λ)

ΪTT
{sinφ(v, λ)e3(v, X) + cosφ(v, A)^4(ί;, λ)},

for u,v, t eR. Using (2.1)-(2.4) we can show that

-Jl-fλ(u9υ,t) = eι{u9λ)9 £-fλ(u9v,t) = e3(v,λ),

-Q-tfλ{u, v,t) =

{si (t;, λ)e3(v, λ) + cosφ(v, λ)e4(υ, A)},

and that

ξλ{u, v) = {cos2 θ(u) + cos2 Φ(υ))}~i/2

• {\Zl+λcosφ(υ,λ)e2(u,λ) - \Λ -λcosθ(u, λ)eΛ(υ, λ)}

is a field of unit normals along fλ. From this observation together with
(2.1)-(2.4) it follows that

(2.6)

so that
(2.7)

= kι{u)cosθ(u)
\

cos φ(υ) + λ

θ(u) - θ(u) φ(v))
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7 / \ ±ι x c o s 2 0 ( w ) - A

= -k2(v)cosφ(υ)> v '

(29)

3. Proof of Theorem

We will maintain the notation as in the previous section. We will prove
the first assertion. First, we see that, for each constantA, -\ < A < \
the mapping fλ given by (2.5) is an immersion by virtue of (2.6) and

(3.1) -π/4 < θ(u),φ(υ) < π/4, Vu,υ £ R.

Set g = fχ dscjιn, and denote by gtj the components of g with respect
to the global coordinates xχ := u, x2 := v and x3 := t on R. Then
the solutions of the equation in p: det(/?<J/7 - g..) = 0 are p = 1, 1 ±

{[sin2 θ(u) + sin2 φ(υ)]/2}ι/2 . Using (3.1) we have

for all tangent vectors X in i? 3 , where # c a n is the canonical Riemannian

metric on R , and a and b are positive constants satisfying that a2 =

1 - l/λ/2, 62 = 1 + 1/Λ/2. Thus (3.2) implies that the first assertion is

true.

The second assertion is valid because of (2.6).

The third assertion is proved as follows. Let ~θ(u, A), ~φ(υ, A), k{ (u, A),

k2(v,_λ), Cj(w,A), ? f(K,A), / = 1,2, c2(v,A), ? f(t;,A), / = 3 ,4 ,

and / λ be the corresponding functions, curves, Frenet frames and the

mappings as in the previous section for 7cχ(u), Έ2(v), and μ.

Suppose that there exist a diffeomorphism ψ of i?3 onto itself and an
isometry p of (R4, ύfa2

an) such that

(3.3) P°fλ(u,υ,ή = fμoψ(u,υ, t).

We can show that, for each fixed A, - ^ < A < ^ , a curve u = u(σ),

v = v (σ), ί = ί(σ), σ eR defines a geodesic in (R3, ^) and (R4, rf^)

if and only if u(σ) = const, υ(σ) = const, and ί(σ) = ±σ + const, pro-

vided that kχ{u{σ0))k2{v{σ())) < 0 for some σ0. Notice that, for each
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fixed u, υ e R, the mapping t £ R —• fλ{u, υ, ί) (resp. / ^ ( M , υ 9 t))

defines a geodesic in (i?4, ds2^ , and that for almost all (w, v) in Λ 2,

/^((^(w, v , 0))A:2(^2(w, v , 0)) < 0, where ψ (u, t;, 0) is the/th compo-

nent of ψ(u, υ,0) eR3.

From these observations, we may assume, by adding constants to the
parameters and rotating fλ(R3) around the origin if necessary, that

p = identity,

(3.4) ψ(0, 0, 0) = (0, 0, 0), ^ ( 0 , 0, 0) = (1, 0, 0),

ψυ(0, 0, 0) = ( 0 , 1 , 0 ) , ψt(u,v , 0 = (0, 0, 1),

Vw, v, t e R, where ψu, ψv, and ψt are the partial derivatives of ψ
with respect to u, v , and t respectively. From this we find that

(3.5) ψ(u, v, t) = (JC(W , v), y{u, v), t) Vu9υ, t eR,

where JC(W, υ), y(w, v) are functions of u and v .

On the other hand, for each fixed t e R, the mapping ι(t): R2 -•

i ? 3 , (w, υ) h-> (u9υ 9t) is an isometric imbedding of (R , g c a n) into

(R3, ^* rf52

an), where g c a n is the Euclidean metric on R2 . Combining this

fact with (2.5), (3.5) shows that the mapping (u9υ)*-+ (x{u, υ), y{u, υ))

is an isometry of (R2, g c a n ) . Thus by this remark and (3.4),

(3.6) ψ ( u , v , t ) = ( u , v , ή V u 9 υ 9 t e R .

From (3.3), (3.4), and (3.6) it follows that

;.(x) = /̂ .(βjjc + α ), ε , a{\ constants, with ε. = ± 1 ,
(3.7)

{ μ = λ

for each x e R.
Conversely, it can be easily shown that if (3.7) is satisfied, then we have

(3.3) for some diffeomorphism («, v, t) h-> ψ{u9 v, t). This completes
the proof of the third assertion.

The fourth assertion follows easily from (2.7)-(2.9).
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