J. DIFFERENTIAL GEOMETRY 40 (1994) 1-6

REMARKS ON COMPLETE DEFORMABLE HYPERSURFACES IN R⁴

HIROSHI MORI

Dedicated to Professor T. Otsuki on his 75th birthday and to Professor S. Ishihara on his 70th birthday

Abstract

It is shown that, for each pair $\{k_1(u), k_2(v)\}$ of smooth functions on R with some conditions, there exists a family of complete nonruled deformable hypersurfaces $M(\lambda, k_1, k_2), -\frac{1}{2} < \lambda < \frac{1}{2}$, in Euclidean space R^4 with rank $\rho = 2$ almost everywhere. This is an answer to one of the problems in [3].

1. Introduction and statement of results

It is an interesting problem to determine the deformability of an isometric immersion f of a connected Riemannian manifold M^n into Euclidean (n+1)-space R^{n+1} , $n \ge 3$. Let ρ be the rank of the second fundamental form of f. It is known (see [2]) that f is rigid (i.e., not deformable) if $\rho \ge 3$ by the Beez-Killing Theorem, and highly deformable if $\rho \le 1$. The situation for constant rank $\rho = 2$ is quite complicated. Sbrana and Cartan divided this situation into three different types, and looked into it by a detailed local analysis (see [1], [4]).

It has been shown by Dajczer and Gromoll [3] that for $n \ge 3$ a complete hypersurface M^n in R^{n+1} whose set of all the geodesic points does not disconnect M^n , is rigid unless it contains either an open subset $L^3 \times R^{n-3}$ with L^3 unbounded or a complete ruled strip. But the three-dimensional case of this result remains an open problem.

In this paper, we construct a one-parameter family of complete nonruled deformable hypersurfaces in R^4 with rank $\rho = 2$ almost everywhere depending on two functions on the real line R with some conditions.

Theorem. Let $k_j(x)$, j = 1, 2, be smooth functions on R satisfying that $-\frac{\pi}{4} < \int_0^x k_j(x) dx < \frac{\pi}{4}$, j = 1, 2, $\forall x \in R$ and that $k_1(u) > 0$, $k_2(v) < 0$ at all points u, v except for isolated ones. For each constant

Received November 3, 1992.

HIROSHI MORI

 λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$, there exists an immersion $f(\lambda, k_1, k_2)$ of \mathbb{R}^3 into \mathbb{R}^4 satisfying the following conditions:

- 1. The induced metric $ds^2(\lambda, k_1, k_2)$ on R^3 through $f(\lambda, k_1, k_2)$ is complete.
- 2. For any two constants λ , μ in $(-\frac{1}{2}, \frac{1}{2})$ the Riemannian manifolds $(\mathbb{R}^3, ds^2(\lambda, k_1, k_2))$ and $(\mathbb{R}^3, ds^2(\mu, k_1, k_2))$ are isometric.
- 3. For any two pairs of functions $\{k_1(x), k_2(x)\}$ and $\{\overline{k}_1(x), \overline{k}_2(x)\}$ and for two constants λ, μ in $(-\frac{1}{2}, \frac{1}{2})$ the isometric immersions $f(\lambda, k_1, k_2)$: $(\mathbb{R}^3, ds^2(\lambda, k_1, k_2)) \rightarrow \mathbb{R}^4$ and $f(\mu, \overline{k}_1, \overline{k}_2)$: $(\mathbb{R}^3, ds^2(\mu, \overline{k}_1, \overline{k}_2)) \rightarrow \mathbb{R}^4$ are congruent if and only if $\overline{k}_j(x) = k_j(\varepsilon_j x + a_j)$ for $\forall x \in \mathbb{R}$, where $\varepsilon_j = \pm 1$ and $a_j, j = 1, 2$ are constants.
- 4. The rank $\rho(\lambda, k_1, k_2)$ of the second fundamental form of the immersion $f(\lambda, k_1, k_2)$ at each point (u, v, t) of \mathbb{R}^3 is 2 (resp. ≤ 1) when $k_1(u)k_2(v) < 0$ (resp. $k_1(u)k_2(v) = 0$).

We are in the C^{∞} category and refer the readers to [2] for the terminology.

2. Preliminaries

First, we will recall some basic definitions. Let $f: M^n \to R^{n+1}$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into the Euclidean space R^{n+1} . The isometric immersion f is said to be *rigid* if, for any other isometric immersion $h: M^n \to R^{n+1}$, there exists a motion τ of R^{n+1} such that $h = \tau \circ f$. The isometric immersion $f: M^n \to R^{n+1}$ which is not rigid is said to be *deformable*.

Let $k_j(x)$, j = 1, 2, be functions as in the Theorem. We define the two functions $\theta(u)$ and $\phi(u)$ by

$$\theta(u) = \int_0^u k_1(x) \, dx, \qquad \phi(v) = \int_0^v k_2(x) \, dx$$

for $u, v \in R$. For each constant λ in $(-\frac{1}{2}, \frac{1}{2})$ we define the functions $\theta(u, \lambda)$, $\phi(v, \lambda)$, $k_1(u, \lambda)$, $k_2(v, \lambda)$ by

(2.1)
$$\theta(u, \lambda) = \arcsin\left\{\sin\theta(u)/\sqrt{1-\lambda}\right\}, \quad u \in \mathbb{R},$$

(2.2)
$$\phi(v, \lambda) = \arcsin\left\{\sin\phi(v)/\sqrt{1+\lambda}\right\}, \quad v \in \mathbb{R},$$

REMARKS ON COMPLETE DEFORMABLE HYPERSURFACES IN R^4

(2.3)
$$k_1(u, \lambda) = \frac{d}{du}\theta(u, \lambda), \qquad u \in R;$$

(2.4)
$$k_2(u, \lambda) = \frac{d}{dv}\phi(v, \lambda), \qquad v \in R.$$

Denote by $c_1(u, \lambda)$, $e_1(u, \lambda)$, $e_2(u, \lambda)$ (resp. $c_2(v, \lambda)$, $e_3(v, \lambda)$, $e_4(v, \lambda)$) the curve in $\mathbb{R}^2 \times \{(0, 0)\}$ (resp. $\{(0, 0)\} \times \mathbb{R}^2) \subset \mathbb{R}^4$ and its Frenet frame with curvature $k_1(u, \lambda)$ (resp. $k_2(v, \lambda)$) and initial conditions:

$$c_1(0, \lambda) = (0, \dots, 0), \quad e_1(0, \lambda) = (1, 0, 0, 0), \quad e_2(0, \lambda) = (0, 1, 0, 0),$$

(resp. $c_2(0, \lambda) = (0, \dots, 0), \quad c_2(0, \lambda) = (0, 0, 1, 0), \quad c_2(0, \lambda) = (0, 0, 0, 1)),$

(resp. $c_2(0, \lambda) = (0, \dots, 0), c_3(0, \lambda) = (0,$ We define a mapping $f_{\lambda}: R^3 \to R^4$ by (2.5) $(0, 1, 0), c_4(0, \lambda) = (0, 0, 0, 1))$

$$f_{\lambda}(u, v, t) = c_{1}(u, \lambda) + t\sqrt{\frac{1-\lambda}{2}} \{\sin \theta(u, \lambda)e_{1}(u, \lambda) + \cos \theta(u, \lambda)e_{2}(u, \lambda)\}, + c_{2}(v, \lambda) + t\sqrt{\frac{1+\lambda}{2}} \{\sin \phi(v, \lambda)e_{3}(v, \lambda) + \cos \phi(v, \lambda)e_{4}(v, \lambda)\},$$

for $u, v, t \in R$. Using (2.1)–(2.4) we can show that

$$\begin{split} \frac{\partial}{\partial u} f_{\lambda}(u, v, t) &= e_{1}(u, \lambda), \qquad \frac{\partial}{\partial v} f_{\lambda}(u, v, t) = e_{3}(v, \lambda), \\ \frac{\partial}{\partial t} f_{\lambda}(u, v, t) &= \sqrt{\frac{1-\lambda}{2}} \{\sin \theta(u, \lambda) e_{1}(u, \lambda) + \cos \theta(u, \lambda) e_{2}(u, \lambda)\} \\ &+ \sqrt{\frac{1+\lambda}{2}} \{\sin \phi(v, \lambda) e_{3}(v, \lambda) + \cos \phi(v, \lambda) e_{4}(v, \lambda)\}, \end{split}$$

and that

$$\xi_{\lambda}(u, v) = \left\{ \cos^{2} \theta(u) + \cos^{2} \phi(v) \right\}^{-1/2} \\ \cdot \left\{ \sqrt{1 + \lambda} \cos \phi(v, \lambda) e_{2}(u, \lambda) - \sqrt{1 - \lambda} \cos \theta(u, \lambda) e_{4}(v, \lambda) \right\}$$

is a field of unit normals along f_{λ} . From this observation together with (2.1)-(2.4) it follows that

(2.6)
$$f_{\lambda}^* ds_{\text{can}}^2 = du^2 + dv^2 + \sqrt{2}\sin\theta(u) \, du \, dt + \sqrt{2}\sin\phi(v) \, dv \, dt + dt^2$$
,
so that

$$\left\langle \frac{\partial^2 f_{\lambda}}{\partial u^2}, \xi_{\lambda} \right\rangle = k_1(u) \cos \theta(u) \sqrt{\frac{\cos^2 \phi(v) + \lambda}{(\cos^2 \theta(u) - \lambda)(\cos^2 \theta(u) + \cos^2 \phi(v))}},$$

3

$$\left\langle \frac{\partial^2 f_{\lambda}}{\partial v^2}, \xi_{\lambda} \right\rangle = -k_2(v) \cos \phi(v) \sqrt{\frac{\cos^2 \theta(u) - \lambda}{(\cos^2 \phi(v) + \lambda(\cos^2 \theta(u) + \cos^2 \phi(v))}},$$

$$(2.9) \quad \left\langle \frac{\partial^2 f_{\lambda}}{\partial u \partial v}, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial f_{\lambda}}{\partial u \partial t}, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial^2 f_{\lambda}}{\partial v \partial t}, \xi_{\lambda} \right\rangle = \left\langle \frac{\partial^2 f_{\lambda}}{\partial t^2}, \xi_{\lambda} \right\rangle = 0.$$

3. Proof of Theorem

We will maintain the notation as in the previous section. We will prove the first assertion. First, we see that, for each constant λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$ the mapping f_{λ} given by (2.5) is an immersion by virtue of (2.6) and

$$(3.1) \qquad -\pi/4 < \theta(u), \, \phi(v) < \pi/4, \quad \forall u, v \in R$$

Set $g = f_{\lambda}^* ds_{can}^2$, and denote by g_{ij} the components of g with respect to the global coordinates $x_1 := u$, $x_2 := v$ and $x_3 := t$ on R. Then the solutions of the equation in ρ : $\det(\rho \delta_{ij} - g_{ij}) = 0$ are $\rho = 1$, $1 \pm \{[\sin^2 \theta(u) + \sin^2 \phi(v)]/2\}^{1/2}$. Using (3.1) we have

$$(3.2) ag_{can}(X, X) \le g(X, X) \le bg_{can}(X, X)$$

for all tangent vectors X in R^3 , where g_{can} is the canonical Riemannian metric on R^3 , and a and b are positive constants satisfying that $a^2 = 1 - 1/\sqrt{2}$, $b^2 = 1 + 1/\sqrt{2}$. Thus (3.2) implies that the first assertion is true.

The second assertion is valid because of (2.6).

The third assertion is proved as follows. Let $\overline{\theta}(u, \lambda)$, $\overline{\phi}(v, \lambda)$, $\overline{k}_1(u, \lambda)$, $\overline{k}_2(v, \lambda)$, $\overline{c}_1(u, \lambda)$, $\overline{e}_i(u, \lambda)$, i = 1, 2, $\overline{c}_2(v, \lambda)$, $\overline{e}_i(v, \lambda)$, i = 3, 4, and \overline{f}_{λ} be the corresponding functions, curves, Frenet frames and the mappings as in the previous section for $\overline{k}_1(u)$, $\overline{k}_2(v)$, and μ .

Suppose that there exist a diffeomorphism ψ of R^3 onto itself and an isometry ρ of (R^4, ds_{can}^2) such that

(3.3)
$$\rho \circ f_{\lambda}(u, v, t) = \overline{f}_{\mu} \circ \psi(u, v, t).$$

We can show that, for each fixed λ , $-\frac{1}{2} < \lambda < \frac{1}{2}$, a curve $u = u(\sigma)$, $v = v(\sigma)$, $t = t(\sigma)$, $\sigma \in R$ defines a geodesic in (R^3, g) and (R^4, ds_{can}^2) if and only if $u(\sigma) = const$, $v(\sigma) = const$, and $t(\sigma) = \pm \sigma + const$, provided that $k_1(u(\sigma_0))k_2(v(\sigma_0)) < 0$ for some σ_0 . Notice that, for each

 (\mathbf{a}, \mathbf{o})

fixed $u, v \in R$, the mapping $t \in R \to f_{\lambda}(u, v, t)$ (resp. $\overline{f}_{\mu}(u, v, t)$) defines a geodesic in (R^4, ds_{can}^2) , and that for almost all (u, v) in R^2 , $\overline{k}_1(\psi_1(u, v, 0))\overline{k}_2(\psi_2(u, v, 0)) < 0$, where $\psi_j(u, v, 0)$ is the *j*th component of $\psi(u, v, 0) \in R^3$.

From these observations, we may assume, by adding constants to the parameters and rotating $f_{\lambda}(R^3)$ around the origin if necessary, that

$$\rho = \text{identity},$$
(3.4) $\psi(0, 0, 0) = (0, 0, 0), \quad \psi_u(0, 0, 0) = (1, 0, 0),$
 $\psi_v(0, 0, 0) = (0, 1, 0), \quad \psi_t(u, v, t) = (0, 0, 1),$

 $\forall u, v, t \in R$, where ψ_u, ψ_v , and ψ_t are the partial derivatives of ψ with respect to u, v, and t respectively. From this we find that

(3.5)
$$\psi(u, v, t) = (x(u, v), y(u, v), t) \quad \forall u, v, t \in \mathbb{R},$$

where x(u, v), y(u, v) are functions of u and v.

On the other hand, for each fixed $t \in R$, the mapping $\iota(t): \mathbb{R}^2 \to \mathbb{R}^3$, $(u, v) \mapsto (u, v, t)$ is an isometric imbedding of (\mathbb{R}^2, g_{can}) into $(\mathbb{R}^3, f_{\lambda}^* ds_{can}^2)$, where g_{can} is the Euclidean metric on \mathbb{R}^2 . Combining this fact with (2.5), (3.5) shows that the mapping $(u, v) \mapsto (x(u, v), y(u, v))$ is an isometry of (\mathbb{R}^2, g_{can}) . Thus by this remark and (3.4),

$$(3.6) \qquad \qquad \psi(u, v, t) = (u, v, t) \quad \forall u, v, t \in \mathbb{R}.$$

From (3.3), (3.4), and (3.6) it follows that

(3.7)
$$\begin{cases} \overline{k}_i(x) = k_i(\varepsilon_i x + a_i), & \varepsilon_i, a_i: \text{ constants, with } \varepsilon_i = \pm 1, \\ \mu = \lambda \end{cases}$$

for each $x \in R$.

Conversely, it can be easily shown that if (3.7) is satisfied, then we have (3.3) for some diffeomorphism $(u, v, t) \mapsto \psi(u, v, t)$. This completes the proof of the third assertion.

The fourth assertion follows easily from (2.7)-(2.9).

Acknowledgment

The author would like to thank Professor M. Dajzczer for useful conversations.

HIROSHI MORI

References

- É. Cartan, La déformation des hypersurfaces dans l'espace euclidean réel à n dimensions, Bull. Soc. Math. France 44 (1916) 65-99.
- [2] M. Dajczer et al., Submanifolds and isometric immersions, Publish or Perish, Houston, TX, 1990.
- [3] M. Dajczer & D. Gromoll, Rigidity of complete euclidean hypersurfaces, J. Differential Geometry 31 (1990) 404-416.
- [4] V. Sbrana, Sulle varietá ad n-1 dimensioni deformabili nello spazio ad n dimensioni, Rend. Circ. Mat. Palermo 27 (1909) 1-45.

Joetsu University of Education Joetsu, Japan