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Abstract

It is shown that, for each pair {k,(u), k,(v)} of smooth functions on
R with some conditions, there exists a family of complete nonruled de-
formable hypersurfaces M(4, k,, k,), —% <A< % , in Euclidean space

R* with rank p = 2 almost everywhere. This is an answer to one of the
problems in [3].

1. Introduction and statement of results

It is an interesting problem to determine the deformability of an isomet-
ricimmersion f of a connected Riemannian manifold M" into Euclidean
(n+ 1)-space R™! , n>3. Let p be the rank of the second fundamental
form of f. It is known (see [2]) that f is rigid (i.e., not deformable)
if p > 3 by the Beez-Killing Theorem, and highly deformable if p < 1.
The situation for constant rank p = 2 is quite complicated. Sbrana and
Cartan divided this situation into three different types, and looked into it
by a detailed local analysis (see [1], [4]). '

It has been shown by Dajczer and Gromoll [3] that for n > 3 a complete
hypersurface M" in R""' whose set of all the geodesic points does not
disconnect M" , is rigid unless it contains either an open subset L*xR"?
with L* unbounded or a complete ruled strip. But the three-dimensional
case of this result remains an open problem.

In this paper, we construct a one-parameter family of complete nonruled
deformable hypersurfaces in R* with rank p = 2 almost everywhere de-
pending on two functions on the real line R with some conditions.

Theorem. Let kj(x), j = 1,2, be smooth functions on R satisfying
that -% < f(fkj(x)dx <Z,j=1,2, Vx € R and that k,(u) > 0,
k,(v) < 0 at all points u,v except for isolated ones. For each constant
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A, =4 <A < L, there exists an immersion f(i, k,,k,) of R* into R*
satisfying the following conditions:

1. The induced metric dsz()., k., k,) on R through f(A, k,, k,) is
complete.

2. For any two constants A, p in (—%, 1) the Riemannian manifolds
(R, ds*(A, k., k,)) and (R, ds*(u, k,, k,)) are isometric.

3. For any two pairs of functions {k,(x), k,(x)} and {k(x), k,(x)}
and for two constants A, p in (—%, 1) the isometric immersions
f(,k, k) (R, ds*(A, k. k) — R* and f(u,k,,k,):
(R, ds*(u, k,, k,)) —» R* are congruent if and only if k(x) =
kj(ij+aj) Jor ¥x € R, where g = 1 and a;,j=1,2 are
constants.

4. The rank p(4, k,, k,) of the second fundamental form of the im-
mersion f(4, k,, k,) at each point (u,v,t) of R® is 2 (resp.
< 1) when k (u)k,(v) <0 (resp. k,(u)k,(v) =0).

We are in the C™ category and refer the readers to [2] for the terminol-
ogy.

2. Preliminaries

First, we will recall some basic definitions. Let f: M” — R™' be an
isometric immersion of a connected n-dimensional Riemannian manifold
M" into the Euclidean space R"*'. The isometric immersion f is said
to be rigid if, for any other isometric immersion 4: M" — R™"' | there
exists a motion 7 of R™" such that 4 = 7o f. The isometric immersion
f: M" — R™" which is not rigid is said to be deformable.

Let kj (x), j=1,2, be functions as in the Theorem. We define the
two functions 6(u) and ¢(u) by

6(u) = /0 “kdx, )= /o ky(x) dx

for u,v € R. For each constant A in (-3, }) we define the functions
O(u, ), ¢(v,A), ki(u,4), ky(v,4) by

(2.1) O(u, A) = arcsin {sin 0(u)/V/1— /1} .,  uER,

(2.2) ¢(v, A1) = arcsin {sin¢(v)/\/1 +l} , v ER,
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(2.3) ky(u, A) = 7-0(u,2),  ueR;

(2.4) ky(u, )= a%—d)(v , A), v € R.

Denote by c,(u, 4), e,(u, 4), e,(u, 4) (resp. ¢,(v, 4), e5(v, 1), e,(v, 4))
the curve in R x {(0, 0)} (resp. {(0, 0)} x R2) C R* and its Frenet frame
with curvature k, (u, ) (resp. k,(v, 1)) and initial conditions:

¢,(0,4)=(,---,0), ¢(0,4)=(1,0,0,0), e(0,4)=(0,1,0,0),
(resp. ¢,(0,4)=(0, ---, 0), ¢;(0,4)=(0, 0, 1, 0), ¢,(0, 4)=(0, 0, 0, 1)).
We define a mapping f;: R R by
(2.5) ,
filu,v,0)=c(u, 4)
+ t\/ 1 ;A{sin O(u, A)e,(u, A) +cos6(u, A)e,(u, A)},
+c,(v, A)

+ 1 T3 (sing(v, Dey(v, 2) + cosd(v, Deg(v, D},
for u,v,t e R. Using (2.1)-(2.4) we can show that

0 d
af:l(uav’t):el(uyl)’ a_vf;,(u9vat)=e3(va)')a

S 0, ) = \[ T3 (sin O, Ay (u, 2) + cosO(u, Dey(as, M)}
+/ 1 ;A{sin $(v, A)es(v, 4) + cosp(v, A)ey(v, 1)},

and that
& (u,v)= {cos2 0(u) + cos’ o(v))}
{V1+Acosd(v, A)e,(u, A) — V1 —AcosO(u, Ae,(v, A)}

is a field of unit normals along f,. From this observation together with
(2.1)-(2.4) it follows that

(2.6) f; ds’, = du’ +dv’ +V2sin6(u)dudt +v2sin ¢(v) dv dt +d7*,

so that
2.7

6211 L cos? ¢p(v) + A
< fz> = k; (u) cos O(u)\l T

1/2

Y — 2)(cos® 8(u) + cos® p(v))
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(2.8)
A _ cos’ O(u) — A
<"é? ’ ¢1> = ~ky(v) cos g(v) \' (cos® ¢(v) + A(cos? B(u) + cos® p(v))

0’/ 81, 0% O o\ _
(29) <576L’U’¢}‘> =<5_uﬁ’é‘>=<6v_6lt’¢l> =<-6_12i’¢l =0.

3. Proof of Theorem

We will maintain the notation as in the previous section. We will prove
the first assertion. First, we see that, for each constant- 1, -3 <1<}
the mapping f, given by (2.5) is an immersion by virtue of (2.6) and

(3.1) -n/4<0(u), p(v)<m/4, VYu,v€ER.

Set g = f; ds;m , and denote by g, ; the components of g with respect
to the global coordinates X, '=u, x,:=v and x; :=¢ on R. Then
the solutions of the equation in p: det(pd; i~ & j) =0Qare p=1, 1+
{[sin® 6(u) + sin® $(v)]/2}/%. Using (3.1) we have

(3.2) (X, X) < g(X, X) S bg (X, X)

for all tangent vectors X in R , where g, 1is the canonical Riemannian
metric on R® ,and a and b are positive constants satisfying that a* =
1-1/v2, b* = 1+ 1/v/2. Thus (3.2) implies that the first assertion is
true.

The second assertion is valid because of (2.6).

The third assertion is proved as follows. Let 8(u, 1), ¢(v, A), Fl (u, 1),
ky(v, ), ¢ (u,A), g(u, ), i =1,2, ¢,(v,4), ¢v,4), i = 3,4,
and 71 be the corresponding functions, curves, Frenet frames and the
mappings as in the previous section for El(u) , 752(11) ,and u.

Suppose that there exist a diffeomorphism y of R? onto itself and an
isometry p of (R4, dsgan) such that

(3.3) pofiu,v,t)=f,opu,v,0.

We can show that, for each fixed 1, —§ <1 < 1, a curve u = u(o),
v=v(g), t=1t(o), g € R defines a geodesic in (R3 , &) and (R4, dsczan)
if and only if u(g) = const, v(g) = const, and ¢(g) = +0 + const, pro-
vided that k, (u(ay))k,(v(a,)) < O for some g,. Notice that, for each
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fixed u,v € R, the mapping ¢ € R — f,(u, v, ) (resp. 7ﬂ(u, v, t)
defines a geodesic in (R*, dsfan) , and that for almost all (u, v) in R?,
k(w,(u, v, 0))Ez(y/2(u, v, 0)) < 0, where Wj(u, v, 0) is the jth compo-
nent of y(u,v,0) € R,

From these observations, we may assume, by adding constants to the
parameters and rotating fx(R3) around the origin if necessary, that

p = identity,
(3.4) v(0,0,0)=(0,0,0), ,0,0,0)=(1,0,0),
¥,0,0,00=(0,1,0), w,(u,v,t)=(0,0,1),

Yu,v,t € R, where y,, y,, and y, are the partial derivatives of y
with respect to u, v, and ¢ respectively. From this we find that

(3.5) v(u,v,t)=(x(u,v),y(u,v),t) Yu,v,t€R,

where x(u, v), y(u, v) are functions of ¥ and v.

On the other hand, for each fixed ¢ € R, the mapping i(¢): R* >
R, (u,v) — (u,v,t) is an isometric imbedding of (Rz, 8ean) 10O
(R, A dsczan) , where g is the Euclidean metric on R*. Combining this

fact with (2.5), (3.5) shows that the mapping (u, v) — (x(u, v), y(u, v))
is an isometry of (R2, 8&.an) - Thus by this remark and (3.4),

(3.6) v(u,v,t)=(u,v,t) Yu,v,teR.
From (3.3), (3.4), and (3.6) it follows that

ki(x)=k(ex +a,), g;, a;. constants, with ¢, = £1,

(3.7) { i

for each x € R.

Conversely, it can be easily shown that if (3.7) is satisfied, then we have
(3.3) for some diffeomorphism (u, v, t) — w(u, v, t). This completes
the proof of the third assertion.

The fourth assertion follows easily from (2.7)-(2.9).
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