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DERIVATIVES OF TOPOLOGICAL ENTROPY
FOR ANOSOV AND GEODESIC FLOWS

MARK POLLICOTT

Abstract

In the first part of this article we calculate the first and second derivatives
of the topological entropy for C°° perturbations of Anosov flows. Of
particular interest is the appearance of the "variance" (familiar from Cen-
tral Limit Theorems) in our formula for the second derivative. Our proof
is based on the use of symbolic dynamics and thermodynamic methods
developed in [ 17], In the second part of this article we consider the special
case of geodesic flows, and concentrate on finding a geometric interpre-
tation of the formula. The third and final part of the paper deals with
estimates on the variance term in the formula for the second derivative.

PART ONE. ANOSOV FLOWS

Let φt: M —> M be a C°° Anosov flow on a compact manifold. Such
flows include, for example, geodesic flows associated to compact manifolds
with negative sectional curvatures. In a recent article, Katok, Knieper,
Weiss, and the present author shows that for C°° Anosov flows the topo-
logical entropy has a C°° dependence on C°° perturbations of the flow
[17]. In the present note we shall add to these results by deriving explicit
formulae for the first and second derivatives.

Consider a C°° family of Anosov flows λ t-> φ^ , λ e {-ε, e). Denote

by

χ ^ a

[λ) = 1 + λ(Doa
{λ)) + (λ2/2)(D2

0a
{λ)) +

the velocity change in the structural stability theorem (i.e., the velocity

change in φ{0) to make it topologically conjugate to φ{λ)). We denote by

A » h{λ) = 1 + λ(Doh
{λ)) + (λ2/2)(D2

0h
iλ)) +

the topological entropy h{λ) of the flow φίλ), and then our main result is

the following:
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Theorem 1. The first derivative of h{λ) {at λ = 0) is

and the second derivative of Λw (at λ = 0) is

{ Var (Doa
m) + jV>l«W) dm

- 2 J (Doa
{λ)f dm\ ,

D]h{λ) =

where m is the maximal measure for 0 ( o ) , and Var is the variance for

We remark that the formula for the first derivative appears in the article
[18], and we present an alternative derivation. However, the formula for
the second derivative is much more subtle, and it is here that our approach
shows its advantage. In particular, we are able to deal with the perplexing
problem of differentiating the maximal measures, which our method shows
gives rise to the variance term in the second derivative.

The variance is an important concept in the Central Limit Theorems
for Anosov flows. It is particularly interesting that our formula for the
second derivative should give rise to its appearance.

In § 1 we begin with some preliminaries about Anosov flows, and in §2 we
show how these lead to an easy derivation of the first derivative formula.
In §3 we introduce the machinery of symbolic dynamics which we need to
study the second derivative, and in §4 we explain the role of the variance.
Finally, in §5 we complete our derivation of the second derivative formula.

1. Anosov flows

Let M be a compact Riemannian manifold, and let φf^ \M-*M be
a C°° flow. We call the flow Anosov if there exists a continuous splitting
TM = E°®ES®EU such that

(i) E° is one-dimensional and tangent to the flow;

(ii) ΞC, λ > 0 such that \\Dφ^\ | | , \\Dφ§\ || < Ce~λt, for t > 0

(cf. [1]).

For an Anosov flow we can define the topological entropy h(φ) to be

the topological entropy of the discrete time-one map (i.e., the entropy of

the homeomorphism φ®}χ : M -> M). By the variational principal, the

topological entropy is precisely the supremum over the measure theoretic

entropies Λ(0(O), v), where v is a </>(0)-invariant probability measure.
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Anosov flows have two basic properties that we shall need to use:
(i) Openness of Anosov flows. Anosov flows are open in the space of

C°° flows, i.e., if we perturb from an Anosov flow the resulting flow is still
Anosov providing the perturbation was sufficiently small (in particular, if
0(O) is Anosov and ε > 0 sufficiently small, then </>(A) is automatically
Anosov for λ e {-ε, ε)) and

(ii) Structural stability. We formulate this as follows:

Proposition 1 (Structural Stability). If λ ^ φ{λ), for λ e (~e,e), is

a C°° family of Anosov flows, then there exist functions α(A) e Ca(M),

θw eCa(M,M) such that
( i ) α ( 0 ) Ξ l ; θ ( 0 ) Ξ / ^

(ii) Θ(A) carries φ{0) orbits to φ(λ) orbits,

(iii) α(A) is a change of speed in φ^ to make Θ(A) a conjugacy,

and, furthermore, the maps λ ̂  a{λ), Θ(A) are C°° .
Remarks, (i) In Proposition 1, a > 0 depends on the stable and un-

stable foliations for M, and Ca(M), Ca(M, M) are a Banach space and
a Banach manifold, respectively. (Cf. [17] for details and definitions.)

(ii) It is understood that we may need to reduce the size of the interval
(-ε,ε) whenever necessary.

2. The first derivative

The formula for the first derivative of topological entropy of Anosov
flows can be deduced by some simple arguments. We begin with an ele-
mentary result from calculus.

Elementary Calculus Lemma. Let A, B : ( - 1 , 1 ) -• M be two C2

functions. If A(λ) > B(λ), - 1 < λ < 1, and A(0) = B(0), then D0A =

DQB and D\A > Ό\B .

The structural stability theorem tells us that φ^λ) is topologically con-

jugate to the reparameterisation ψ{λ) = a{λ)φ{0) of the flow φ{0) (cf. [18,

Lemma 5]). In particular, we can assume that these two flows have the

same topological entropy A(A) (since topological entropy is a conjugacy

invariant).

Let β{λ) = l/α ( A ) , then the probability measure m(A) = (β{λ)/ f β{λ) dm)m

is invariant under y/A). By the variational principal we have Λ(A) >

h{ψ(λ\m(λ)).
We now recall the following formula relating the entropy of a reparam-

eterised flow to the original flow.
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Lemma 1 (Abramov).

( 2.D

(c/ [27, §l]yόr α convenient summary).

We denote Λ(λ) = h(λ) and Λ(A) = Λ(v(Λ), mw) and apply the Ele-

mentary Calculus Lemma. To calculate D0B and D^B we can substitute
the identity (2.1) into the expansion

λ ~ β W = 1 + λ ( D Q β W ) + ( λ 2 f 2 ) ( D 2

0 β W ) + •••

to get

1 + (λ J Doβ
(λ) dm + (λ2/2) / Dβw dm + )

= Λ ( 0 ) 1 -

(2.2) +(λjDoβ
wdm + £JDo

= hm(l-λJDoβ
wdm

From (2.2) we deduce that

DoB = -λίDoβ
Wdm,

(2-3) / 2

D2

0B = 2^J Doβ
WdmJ -J D2

0β
Wdm.

Lemma 2. The derivatives of α W and /?(Λ) are related by

DoP = - ^ o ^ '

Proo/ This is just the chain rule applied to β{λ) = l/α ( A ) .
Using Lemma 2 we can rewrite the identities in (2.3) in terms of the

derivatives Doa
{λ) and D^a^ . Then invoking the Elementary Calculus

Lemma we get an expression for the first derivative of the topological
entropy:
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Proposition 2. For a C°° family of Anosov flows λ »-> φ{λ), λ e (-ε, ε),

with topological entropies h^ the first derivative at λ = 0 is given by

(This result was derived in [18] by a completely different method.)
The expression (2.3) and the Elementary Calculus Lemma also give a

lower bound on the second derivative D^hw of the form
(2.5)

D2

0h
W > h{0)

D2

0a
Wdm - 2 J(D0a

W)2dm

where we substitute using the identities from Lemma 2.

The reason for getting only a lower bound for D^h^ is that this simple
ad hoc argument does not appreciate the way in which the maximal mea-
sure for φ^ changes with λ. Because of this reason we have to use the
more sophisticated method of symbolic dynamics, which we introduce in
the next section.

3. Symbolic dynamics

Our approach to a more refined study of the second derivative of the
topological entropy of Anosov flows will be based on the use of Markov
sections and symbolic dynamics. We shall recall here some of the facts we
shall need.

Let A be a k x k matrix with entries 0 or 1 and define a zero-dimen-
sional compact space:

,k}\A(Xi,xi+ι) = l

with the metric

d(x,y)= g δ(χn,yn) (j)W •

For any a > 0 the space C°°(Σ^) of α-Hόlder continuous functions
f :ΣA-> R is a Banach space with the norm
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We define a homeomorphism, called the shift, σ : ΣA —• ΣA by (ox)n =

x n + 1 . Let r : ΣA -> R+ be a strictly positive Holder continuous function,

and define a one-dimensional compact space:

Σr

A = {(x ,t)eΣAxR\0<t< r(x)}/(x, r(x)) ~ (σx, 0).

We define a suspended flow σ\ \Σr

A-^Σr

A by σ[(x ,M) = (X,M + / ) , using
the identifications as appropriate. Following Bowen or Ratner, we can
associate to each Anosov flow φ^ :

(i) a suspended flow σ[w (for functions r(λ): ΣA -> E+) and

(ii) a continuous map π w : Σ^ —• M,

such that φfoπ{λ) = π{λ)oσr

t

{λ) and σr(A) has topological entropy A w (cf.
[25]). Furthermore, using structural stability, we can arrange the following:

(iii) the shift homeomorphism σ : ΣA -> Σ^ is independent of A 6
(-ε, ε) and

(iv) r(λ)(x) = /o

r(O) j 8 w o π ( 0 ) (x, ί) Λ € C°°(ΣJ
(cf. [17] for more details).

By Proposition 1 we can deduce that λ \-+ r(λ) e Ca(ΣA) is C°°, and
by (iv) we have the expansion

/ r(O) / i2 \

λ - r(λ) = yo ί 1 + A(Z)0)?
(Λ)) + y ( Z ) ^ w ) + J o π ( 0 ) (x, t) dt

(3-1) =r(0){x)+λfr (D0β
Woπi0))(x,t)dt

Jo

+ 2JO

The topological entropy Λ(Λ) has the following useful characterization at
the level of the symbolic dynamics.

Proposition 2. Let P : Ca(ΣA) —> R denote the pressure function de-
fined by

P(g) = sup I h(μ) + / gdμ\μ σ-invariant \ ,

and μ = μg the (unique) equilibrium state for g satisfying P(g) = h(μ ) +
fgdμ. Then

(a) t = Λ(λ) is the unique zero for t —> P(- tr(λ)) am/

(b) 1/ g = -Awr(A), ίAβΛ m = [πw]*(μg x l/fr{λ)dμg) is the unique

measure of maximal entropy for the flow φ{λ). (Cf [28], for example).
The importance of this characterization comes from the following re-

sults on the derivatives of the pressure function P : Ca(ΣA) -> R.
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Proposition 3. P : Ca(ΣA) -> R is real analytic as a function on a
Banach space, and the first and second derivatives at f e Ca(ΣA) are given
by

(a)

DfP(g) = jgdμf,

(b)

where we denote g^"\x) = g(x) + g(σx) H 1- g(σn~ιx).
(Cf. [19], [29]).

Corollary 3.1. Df[J g dμf] = D2

fP(f, g), for ge Ca(ΣA) fixed.

Proof. This is immediate since / g dμ^ = dP(f + tg)/dt\t=0.
Definition. We denote

where f,geCa(ΣA).

It is sometimes also convenient to have the following well-known alter-

native expression for σ'j (g).

Lemma 3. σj(g) = ΣtZo S^σn - n(f g dμ))(g - n(f g dμ)) dμf.
Proof. Assume / g dμ = 0, without loss of generality. Then

gσ gdμf= }^ / ^ σ \ Jf λs Zσ ( dfι

n=[-N/2]

= lim ί
N^+ooJ

[N/2]

n=[-N/2]
^ Σ

n=[-N/2]

(for all N > 0)

dμ

= σ}(g)

as required.
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4. The variance for Anosov flows

In this section we shall recall the definition and basic properties of the
variance. Let φf^ : M —• M be our initial Anosov flow with maximal
measure m. Let F : M —• R be any Holder continuous function with
Holder exponent a > 0. Since the measure m is known to have Lebesgue
spectrum, we can write

pf(t)= ίFφf-Fdm- U Fdm\ = Γ°°eitλdσF(λ)

(by Herglotz's theorem), where σF(λ) is a smooth density on the real line.

Definition. We call the integral f+™ pF(t) dt the variance Var(F) (rel-
ative to m) of the function F .

For completeness, we shall also give two alternative expressions. We
shall not need to make use of these other definitions in our treatment, but
sometimes they are more convenient for verifying some particular property
of the variance.

Proposition 4.
(i) Assume ^f- is continuous at λ = 0. Then

(ϋ)

Var(F) = tHn^ /" y { Γ F φ f \ x ) d μ - t ( i p d m ) j dm{x).

Proof, (i) Clearly,

Γ + OO Z + OO ( Z + OO . Λ

/ pF{t)dt= / e"λdσF(λ) \dt
J— oo ./-oo W-oo )

r+oo ( r+oo . Λ r+oo

= / / e"λdt\dσF(λ)= δ(λ)dσF(λ)
J—oo W—oo J J—oo

where δ(λ) denotes the Dirac density at zero, and the last inequality fol-
lows rigorously using Fejer kernels.

(ii) Without loss of generality we can assume / F dm = 0. From part
(i) we can write
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+00r+00

Var(F)=/ pF(t)dt

™ {j F{φfx)F{x)dm{x)} dt

I °° {/^Γ*)*"^*)^*)} dt> VM

Thus

Var(F) =

Remarks, (i) The variance var(F) has some simple but important
properties which can be easily deduced from the alternative definitions
contained in Proposition 4. For example

Var(F) > 0 with equality if and only if there exists U e C°(M) with

ί F{φ^]x) du = t(JF dm) + ί7(^0)Jc) - U(x), for all ί € R.

Clearly, Var(F) is positive from Proposition 4(ii) since the integrand there
is positive. If F satisfies the condition above, then by Proposition 4(ii)
it is clear that var(F) = 0. The converse can be deduced by a slightly
indirect proof (for example, using symbolic dynamics, the strict convexity
of pressure and Lemma 4, below).

(ii) The term "variance" is appropriate in the statistical sense since
Var(F) arises in versions of the central limit theorem for Anosov and
hyperbolic flows (cf. [9]).

We next want to interpret the variance of the function F at the level
of the symbolic dynamics. The Holder continuous function F : M —• R
on the manifold M induces a Holder continuous function F o π : Σr

A —• R
on the symbolic space Σr

A . We can then define / e Ca(ΣA) by f(x) =
C](Foπ)(x,ήdt.

Lemma 4. (i) Var(F) = Var(F o π).
(ii) V*r(F) = σ2_hr(f)/ffdu_hr.
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Proof, (i) This follows from the definition since π : Σr

A —• M is an

isomorphism between the flows a\ :Σr

A-+Σr

A and φf]: M -> M , relative

to the measures of maximal entropy.

(ii) (Compare with [19, p. 11].) Without loss of generality we can as-
sume / F dm = 0. By Proposition 4(i) we can write

z +oo

Var(F)=/ pF{t)dt

+ OO

= 2^ J\χ)j\σ J

n=—oo

and the result follows by Lemma 3.

5. Derivatives of topological entropy

In this section we shall complete our derivation of the explicit formulae
for the first and second derivatives of the topological entropy A ̂  A(A) at
λ = 0 described in the introduction. In principle, the higher derivatives
can be similarly calculated using essentially the same method.

By Proposition 2(a) we can characterize h^ as the implicit solution
in the real variable t to P(-tr(A)) = 0. Applying the implicit function
theorem to the function in two variables

(λ, t) H+ P(-tr(λ)) 3 R, where (λ,t)e (-ε, ε) x E

gives that the map A H> A(1), λ e (-ε, ε) is C°° . This was the basis of
the argument in [20]. However, the Implicit Function Theorem also yields
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a formula for the first derivative:

( 5 1 ) dhw

 = (dP/du)(-h{λ)r{u%=λ

dλ ^ '

(compare with [19]).
We know the derivative of the pressure function by Proposition 3. In

particular, we can explicitly calculate the numerator and denominator in
(5.1) with the result that

(5.2)

where μ(A) denotes the unique equilibrium state for -h^r(λ). Substitut-
ing the identities (5.2) into (5.1) gives the following expression for the first
derivative of the topological entropy:

(5.3) Dλh
{λ) = -

j r\A)aμ

By Proposition 2(b) the measure ( μ w x /)//r(λ) dμ ( Λ ) on the symbolic

space Σr

A projects the measure of maximal entropy m for the flow 0(O)

on the manifold M, under the semi-conjugacy map π : Σr

A —> M.

Furthermore, using the identity (3.1) we can rewrite (5.3) as

(5.4) DQh{λ) =

Thus we have yet another derivation of the formula for the first derivative of
the entropy given in Proposition 1. To check that the sign in (5.4) is correct,
notice that increasing the velocity of the flow increases the topological
entropy, which is consistent with (5.4).

To calculate the second derivative D0/r ; we shall want to differenti-
ate the first derivative formula (5.3). To simplify the calculations it is
convenient to rewrite (5.3) as a logarithmic derivative:

(5.5) Dλ(logh{λ)) = -
Wfr(λ)dμ

(This simple device has the advantage that we cut down on the number
of terms we have to differentiate.) We can now differentiate (5.5), making
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particular use of Corollary 3.1. Setting λ = 0 to get

o ( g }

(We have also dropped the subscript on σ2 to avoid the notation becoming
too unwieldy.) Using the identity (3.1) and Lemma 2 we can rewrite (5.6)
as

Z)0

2(logA(A)) = - f(D2

0β
{λ)) dm + Var(Doβ

{λ))
(5.7) J

By Proposition l(i) we have that jS(0) Ξ 1. Furthermore, from the proper-
ties of the variance described in the remark in §3 we know that Var( 1) = 0,
from which we deduce that the last term in (5.7) vanishes. In particular,
we have that

(5.8) D2

0(logh{λ)) = Var(£>0/?W) " f&lfiW) dm.

To convert (5.8) back into a formula for the second derivative of the
topological entropy (rather than the logarithm of that quantity) we can
use the simple identity

D2

0(\oghW) = DlhW/h{0) - (D0h
W/h{0))2

and Lemma 2 to get the result stated in the introduction.

Theorem 1. For a C°° family of Anosov flows λ H+ φ^, λ e (-ε, ε),

with topological entropies h^

D2

0h
W = h{0) Var (Γ>oα

(λ)) + 2 ( ί DQaW dm\

Remark. Note that if Doa
W = 0, then D2

0h
{λ) = Λ(0) ${D2

oa
(λ))dm,

which is consistent with the first derivative formula. Furthermore, the last
three terms on the right-hand side of the above equality are consistent with
the ad hoc inequality which we derived in (2.5).
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Corollary 1.1. At critical points {i.e., whenever DQh ' = 0) we have

D2

0h
W = hi0) (var(i ) o α W ) + f(D2

QaW) dm - 2 f(DQaW)2 dm) .

Proof. This follows from the identification of the second term on the
right-hand side of the identity in Theorem 1 with 2(DQh{λ))2/h{λ) by using
the identity (5.4).

PART TWO. GEODESIC FLOWS

"Entropy?" repeated Mr. Tompkins. "I've heard that word
before. One of my colleagues once gave a party, and after
a few drinks, some chemistry students he'd invited started
singing—Increases, decreases. Decreases, increases. What
the hell do we care what entropy does?
to the tune of Ach du lieber Augustine" (Mr. Tompkins
in Wonderland—George Gamow)

Theorem 1 gave the formula for the second derivative of the topological

entropy at the level of generality of Anosov flows. For such general Anosov

flows there are no obvious constraints to place on the functions DQa^

and D^a^ , and thus we can say no more. However, when we restrict to

geodesic flows there is a need to reformulate this expression in geometric

quantities, which we do in this part of the notes.

6. Riemannian metrics and topological entropy

Let V be a compact manifold of dimension n with a C°° metric
gQ with strictly negative sectional curvatures. As is well-known, any C°°
Riemannian metric g on V can be interpreted as a C°° section g e
Γ(V, c5^2), in the positive cone of the bundle of symmetric 2 tensors
S?2 over V. By choosing suitable C°° local coordinates we can always
associate to such section a families of positive definite n x n matrices gχ

associated to each fiber Tχ V over a point x e V, on the manifold. Recall
that there is a natural inner product on Γ(V, S?) defined on

where (A, B)χ = traced Bτ) is just the usual inner product on matrices.
We let || || denote the associated norm for the metric g, say.
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Since we shall only be interested in metrics g close to gQ, it suffices to
consider one parameter families given by perturbation series:

gλ = So + λgW + ψ2/2)g{2) + ~ , λe(-ε,ε)

for e > 0 sufficiently small, where g{ι), g{2\ ••• e Γ(V, <9>2). (These
again correspond to the sections in the bundle of symmetric 2 tensors, but
no longer necessarily in the positive cone; cf. [18] for more details.)

Consider a fixed free homotopy class τ for the manifold V. We \ let
lλ(c) denote the length of an arbitrary closed curve c in the class τ , with
respect to the metric gλ . For each metric gλ the shortest closed curve in
τ is well known to be a unique closed geodesic, which we denote by cλ .
Therefore,
(6.1)

^cλ)<lλ(c0)^ί \\v\\

where the integral is over unit tangent vectors v to the closed geodesic cQ,

for the unperturbed metric g0 (i.e., ||w|P = 1 ) . Consider the expansion

(6.2)
.2 \ \ » / 2

Substituting the expansion (6.2) into the inequality (6.1) we get the new
inequality
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Since λ t-> lλ(cλ) is smooth (for example, by a simple application of the
implicit function theorem), we can apply the Elementary Calculus Lemma
to the inequality (1.3). We recall the statement.

Elementary Calculus Lemma. Let A, B : ( - 1 , 1) -> R be two C2

functions. If A(λ) > B{λ), - 1 < λ < 1, and A(0) = 5(0), then DQA =

D0B and D\A > D\B .

Applying this lemma to both sides of the inequality (6.3) gives

f gx(v,v)

(6.4)

The geodesic flow is a special example of an Anosov flow [1]. Thus, in

particular, it is structurally stable and we can deduce that the geodesic

flow on (V, g0) is conjugate to that on (V, gλ), after a velocity change

a{λ) : M -• R (on the unit tangent bundle M = TχV).

Writing /?(A) = l / α W we get another expression for the lengths of the
closed geodesies:

(6.5) lλ(cλ) =

Recall that by Lemma 2 the derivatives of α W and β^ are related by

(6 6) °β =~Doa >
Doβ =2{D0a ) -DQa .

(i) From (6.4), (6.5), (6.6), and the Elementary Calculus Lemma we can
first deduce that the first derivatives are equal, i.e.,

(6.7) / 8-^ψl = DQ(lλ(cλ)) = f (Z)0Λ = - / ( D / )
Jc0

 L Jc0 Jc0

for each closed geodesic cQ . In particular, comparing these two expressions
for the derivatives of lengths of closed geodesies we deduce that

/
(DQa ) = - / gχ(v , v) for each closed geodesic c0.

-o Jco

In particular, we can now apply the Livsic theorem [20] to deduce that the
integrands are the same (up to coboundary).

Lemma 5. The two functions v. -> gx{v , υ)/2 and v -> DQaW differ
by at most a coboundary.
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(ii) Secondly, we can also show, from (6.4), (6.5), (6.6), and the Ele-
mentary Calculus Lemma, that

v,υ)

(6.8)
\v,υ)γ) >

for each closed orbit c0 where we have used (6.6) to get the last line.
We recall the following result.
Proposition 5 (Sigmund). The probability measures supported on closed

orbits of Axiom A flows are dense {in the weak* topology) amongst all the
flow invariant probability measures [31].

Using Sigmund's result we can replace (6.8) by the inequality

M

(6.9)
M

M

for any flow invariant probability measure μ .
Finally, the following lemma will be of use to us later.
Lemma 6. For any ε > 0 we can choose a closed geodesic c0 such that

JM
D2

0β
{λ)dm -

Proof. By Sigmund's result we can choose for any ε > 0 a closed
geodesic c0 such that

< ε.

Furthermore, by the expansion (6.5) we see that fc D^

and the result follows.
= mλ{cλ)),

7. The derivatives of topological entropy for geodesic flows

For the Riemannian metric g0 on V we shall denote the incremental
volume element on the manifold by just d(Vol). We shall also use the
same notation for the element of Liouville measure on the unit tangent
bundle, the distinction hopefully being clear by the context.
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For an arbitrary C°° Riemannian metric g on V we can denote by
d the metric on V derived from this Riemannian metric, and let ( F , d)
be the covering space for V with the metric d induced from the lift on
the metric d on V. The following gives a nice geometric definition of
the topological entropy.

Definitions, (a) We define the {topological) entropy h(g) of the Rie-
mannian metric g to be

h(g) = lim I lσg(Vόίj{x e V\d{x, x0) < R}).

(b) For any C°° function F : SV -+ R with JsvFd(Vol) = 0 we
introduce the autocorrelation function p(t) - JsvFφt-Fd(Vol), t e R.
We define the variance of the function F by Var(F) = / + ~ /?F(0 rfί > 0.

Remark. The definition of the topological entropy is independent of
the choice of point x0 e V, and if we can consider the geodesic flow
φt : SV -» SV on the unit tangent bundle SV of ( F , g), then the
quantity h(g) is precisely the topological entropy of this flow, in the usual
sense, cf. [22], [23].

The following result was given in [17].
Proposition 6. The map λ -• h(gλ) is C°° .
By substituting the identity (6.7) into the expression for the first deriva-

tive of the topological entropy for geodesic flows we recover the following
result due to Katok, Knieper, and Weiss [18].

Proposition 7. For a C°° perturbation λ H-> g^, λ e (-e, ε), we have
that

t
JM

We would like to get an expression for the second derivative D^h(gλ).

Using Lemma 5 to replace DQaW by -g{(v , v)/2 in two of the terms in

the expression for the second derivative of the topological entropy we get

the following formula.
Theorem 2. The second derivative of the topological entropy is

M
D2

oa
Wdm-2[(Doa

Wfdm
JM

where m is the measure of the maximal entropy for the geodesic flow, and
Var( ) denotes the variance.
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Remark. If we write Doa^ = gχ (υ, v)/2+ V, where V is the cobound-
ary formed by differentiating V along the orbits of the flow, then

ί (D0a
{λ))2dm=( ί gι{V'V)dm) -f gχ(v , v) Vdm+[ (V)2dm.

JM \JM
 ι ) JM JM

However, substituting this into the expression in Theorem 2 does not seem
to lead to any further simplifications.

By means of the inequality (6.9) we can get a naive lower bound for the
last two terms in the expression in Theorem 2. In particular, use of the
inequality yields a lower bound on the second derivative of the topological
entropy of the form

Dlk(gί) = *(*) ( Var (iψl) +2(juiψlA.)'

-f ^ )
JM

M

At critical points for the topological entropy (i.e., when Doh(gλ) = 0) from
Proposition 6, it follows that the second term on the right-hand side of this
inequality vanishes, and (7.1) simplifies to

.j teo) ( ( ^ ) 1 £ψl On,
(7.2)

+7 / (gil\v,v)dm)2dm) .
4 JM )

From (7.2) we can deduce the following simple result.

Corollary 2.1. For first-order perturbations {i.e., perturbations with g ( 2 )

= 0) the topological entropy λ •-+ Λ(Λ) is (strictly) convex.

Proof. By hypothesis, the second term on the right-hand side of (7.2)
vanishes. Since the remaining two terms are positive, we deduce that
D^h(gλ) > 0. Furthermore, since the perturbation is nontrivial, g^\v, v)
is not identically zero, and thus by (7.2),

Dlh{gλ) = ̂ ψ- ί (g{1\v, v)fdm > 0.
J M

8. Axiom-preserving perturbations

For geodesic flows and the special case of perturbations arising from
changes in the Riemannian metric there is a very natural normalisation
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condition to introduce. Specifically, we can consider those perturbations
λ -> gλ in the metric for which the perturbed metrics gλ, λ e (-ε, ε),
have the same volume as the unperturbed metric g0 . A refinement of this
is to ask the perturbed metrics gλ, λ e (-ε, ε) to have the same volume
form as the unperturbed metric g0 .

These constraints introduce a relationship between the first- and second-
order terms # ( 1 ) and # ( 2 ) in the expansion of the perturbation λ —> gλ

which should be important in finding a lower bound for D^h{g^ by es-
timating from below the right-hand side of (7.2). We summarize these in
the following lemma.

Lemma 7. (a) For volume-preserving deformations gλ we have the fol-

lowing constraints on # ( 1 ) and g ( 2 ) :

(i)

and

(ϋ)

J = / [tτ(g{ι)f - i \r\g{x))]d{Yo\v).
v Jv

(b) For volume-form-preserving perturbations gλ we have the following

constraints on g ( 1 ) and g ( 2 ) :

(i) tr(g{l)) = 0,and

(ii) fv tτ(g{2)) d(Volv) = fv tr(g ( 1 )) 2 d(Volυ).
(c) The following simplifying identity always holds:

Proof For parts (a) and (b) cf. [3, pp. 65, 129]. For part (c) cf. [6].
Another interesting special case is that where we assume the unperturbed

metric g0 to be a locally symmetric metric. For a locally symmetric metric
gQ the measure of the maximal entropy m for the associated geodesic flow
is known to be just the usual Liouville measure dm = dθ x d{\olv), where
dθ is the (normalized) Haar measure on the fibers of the unit tangent
bundle (or sphere bundle) M over V, and d(volj is the (normalized)
volume on V (cf. [16]).

Furthermore, for locally symmetric metrics the value of h(g0) can be
explicitly computed (cf. [16], for example). Assume for simplicity that g0

corresponds to a compact manifold with maximal sectional curvature - 1 .
There are only four possibilities for the universal covering space:

(i) Hyperbolic space over the real numbers, where h(g0) = n-l.
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(ii) Hyperbolic space over the complex numbers, where h(gQ) = In .
(iii) Hyperbolic space over the quaternions, where h(g0) = An + 2.
(iv) Hyperbolic space over the Cayley numbers, where h(g0) = 22.
By comparing the formula for the first derivative of the topological

entropy in Proposition 6 with part (a)(i) of Lemma 7 it is easy to see that
for a volume preserving perturbation gλ of a locally symmetric metric
we have that DQh^ = 0 since the maximal measure m is equal to the
Liouville measure.

However, we have the following estimates for the second derivatives
φ w :

Theorem 3. For a volume preserving perturbation gλ of locally sym-
metric metrics we have the following:

(i) For any ε > 0 there exists a closed geodesic c0 such that

β ,D2

oh(gλ) - h(g0) (Var (iltψΓ) - _ J _ ^

(ϋ)

2 = h(g0) (var

Proof (i) By comparing Proposition 6 and Lemma 7(a)(i),
fMgx{v ,v)dm = 0, and the identity in Theorem 2 reduces to the ex-
pression

{SΛ)
= h(g0) (var

using the identity (6.6). We can then approximate the second term on the
right-hand side of (8.1) by the integral around a closed orbit c0 .

(ii) By Part (c) of Lemma 7 we can write

g(2\v, υ) rf(Vol) = ^ y j v tr(g(2)) d{Yo\v){x),

and then by applying twice part (a)(ii) of Lemma 7 we get the identity

(8.2) jM g{2\v, v) dm(v) = Hϊm-_ 1^ (tr(^ ( 1 )) 2 - i tτ2(gWή d(Yolc).
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Substituting (8.2) into the right-hand side of the inequality (7.2) completes
the derivation.

Remark. In fact, it is easy to show that for any δ > 0 there exists TQ

such that the number πQ(T) of closed geodesies c0 of length at most Γ,
which can be used in Theorem 3(i) compared with the total number π(T)
of closed geodesies of length at most Γ, satisfies \πQ(T)/π(T) - 1| < δ
for all T> Γ0;cf. [18].

Corollary 3.1. For any Teichmuller deformation gλ of a Riemann sur-
face and any ε > 0 there exists a closed geodesic c0 such that

Proof Since the topological entropy h(gλ) is constant under Teich-
muller deformations, this follows immediately from the theorem.

Corollary 3.2. In the case of surfaces {i.e., dim V = 2) where g ( 1 ) has
eigenvalues λχ, λ2 depending on v e V ,for a volume-preserving perturba-
tion gλ of locally symmetric metrics,

= h(gQ) ( v a r

Proof This follows immediately from the simple eigenvalue identity:

i t r V 1 } ) - t r (^ ( 1 ) ) 2 = \{λχ+ λ2f - {λ\ + λ\) = -\{λχ- λ2f.

Observe that the first two terms on the right-hand side of the equality in
Theorem 3(ii) are always positive. To understand the contribution from
the last two terms (when dim V > 3) we first recall some simple linear
algebra.

Linear Algebra Lemma. Let A be a n x n real matrix. Then 0 <
tr2(^4) < n \x(A2) where the upper bound is realized when A is just a scalar
multiple of I, and the lower bound is realized when Xr{A) = 0.

Proof Let {A, B) — \x{A-Bτ) denote the usual inner product on the
space of n x n real matrices. Then the above inequalities are just a re-
formulation of the Cauchy-Schwartz inequality \(A, 1)| < ||Λ|| ||/|| with
/ being the identity matrix and observing that | |/| |2 = n .

To apply this lemma, we set A = # ( 1 ) on each fiber to get 0 < tr 2 (# ( 1 ) ) <

« 2 t r ( # ( 1 ) ) 2 . Then integrating over the manifold V yields
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tr(g ) d(vol) < I - tr (g ') -tτ(g ) ) rf(vol)

<^jvtr(g{l))2d(γol),

the middle expression being precisely the second term on the right-hand
side of the inequality in Theorem 3. Notice that the lower bound in (8.3)
is always strictly negative, and the upper bound is always positive (and
strictly positive if dim V > 3).

The Linear Algebra Lemma also gives us the following trivial, yet useful,
result.

Lemma 8. (a) The second inequality in (8.3) is an equality iff g ( 1 ) =
f(x) -1 for some smooth function f: V —• R.

(b) The first inequality in (8.3) is an equality iff tr(g ( 1 )) φ 0.

9. Some special cases

In the case of conformal perturbations of a metric g0 the perturbation

must take the special form gλ = fλgQ, where fλ : V —• R+ is a C°°

function with fQ = 1. If we expand / 0 = 1 + λf{ι) + ̂ / ( 2 ) + , then

we can identify # ( 1 ) = f{ι)g0 and g{2) = f(2)g0 .
Under volume-preserving conformal perturbations it is already known

that locally symmetric metrics are a minimum (cf. [14], [16]). However,
Theorem 3 gives us an explicit lower bound on the second derivative of
the topological entropy.

Proposition8. For a volume-preserving conformal perturbation gλ of a
locally symmetric metric g0,

DlKgλ) = h(gQ) (var

Proof Since # ( 1 ) = f^g0, the hypothesis of part (a) of Lemma 7
is satisfied. Substituting the corresponding identity into the inequality in
Theorem 3 yields

D2

oh(gλ) = h(g0) ίvar
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Using the identification g{ι) = f{ι)g0 we can write g{1\v , v) = / ( 1 ) | |t;| |2

and tr(# ( 1 ) ) 2 = n(f{ι))2 , where n = dim V is the dimension of the man-

ifold. Thus (9.1) becomes

which completes the proof.
The case of volume-form-preserving perturbations is somewhat more

subtle and complicated than that of volume-preserving conformal pertur-
bations.

We begin by recalling Moser's remarkable result on the generality of
volume-form-preserving perturbations: Any Riemannian metric g which
has the same volume as g has in its diffeomorphism class a Riemannian
metric with the same volume form as g.

In the space of metrics with the same volume form there is a natural class
of deformations of the special form λ —• gλ = goe

λσ , where σ e Γ(V, S?2)
is a C°° section satisfying tr(σ) = 0 (these are described as "geodesies"
in [10] and [3]). These families form a particularly useful class of volume-
form-preserving perturbations.

Example. On surfaces the condition trσ = 0 implies that σ = [ J _?β] .
Then

= g0

For volume-form-preserving perturbations part (b) of Lemma 8 applies,
and we cannot claim that the terms in the lower bound on the second
derivative in Theorem 3(ii) is positive. Furthermore, Corollary 3.1 sug-
gests that the term Dl(lλ(cλ))/l0(c0) occurring in the estimate on the sec-
ond derivative formula (in Theorem 3(i)) can be really positive. Thus
to enhance our understanding, we have to know better the other term,
involving the variance.



480 MARK POLLICOTT

PART THREE. ESTIMATES ON THE VARIANCE

The term Varίg^v , v)/2) in the second derivative of the topological
entropy is rather mysterious. In this part we begin an investigation of its
properties.

10. A problem on Lebesgue spectrum

The variance has a very simple interpretation in ergodic theory. The
geodesic flow φ is well-known to have continuous Lebesgue spectrum.
This means that in applying Bochner's theorem we can write

r +oo

e'λtdμF(λ),
— oo

where μF is a smooth measure on R with continuous density aF =
dμF/dλ : R —• R + . We recall that the value at λ = 0 is precisely the
variance Var(F), as defined in §4.

This brings us to a simple question.
Question. Consider functions F satisfying f F d(Vol) = 0 and the

normalization condition / \F\2 d(Yol) = 1, say. Given any ε > 0, can we
construct functions F such that aF(0) < ε?

We have the following strong result in the case of functions F constant
on fibers, and for the special case of geodesic flows associated to compact
three-dimensional manifolds V with all sectional curvatures equal to — 1.

Theorem 4. Given ε > 0, Var(F) < ε for all but a finite-dimensional
space in the smooth functions F : V —> R with zero integral.

Corollary 4.1. Given ε > 0, 0 < Var(g{ι\v, υ)) < ε for all but a
finite-dimensional space in the space of conformal volume preserving per-
turbations.

Proof. This follows from the discussion in §9.
The proof of this theorem requires a little preparation from representa-

tion theory, and will be given in the next section.

11. Algebraic flows

The group G = SL(2, C) has a natural action on the three-dimensional

hyperbolic space H3 = int(D3) corresponding to the action by linear frac-

tional transformations on the Riemann sphere C. There is then an ex-

plicit correspondence between G and the two-frame bundle ^ 2 ( H 3 ) on
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H (i.e., the bundle consisting of distinguished choice of unit tangent vec-

tors and a subsequent choice of a pair orthonormal vectors). For example,

we can fix (i) a reference point x = (0, 0, 0) e H3 = int(D3), and (ii) the

obvious reference frame Fχ = (v{, v2, v3) in SχW = R , and then iden-

tify each element g e G with the reference frame F e ^ 2 ( H 3 ) (above

the point y e H3) satisfying gFy, = Fχ .
Let Γ c G be a discrete subgroup with compact quotient G/T, and

consider the subgroups

B =

The flow φt : SV —• SV, ΰ ^ Γ π BstS^ on the double coset space
SV = B\B/Γ corresponds to the geodesic flow on the unit tangent bundle
of the compact three-dimensional manifold by V = K\G/Γ, where

C, |z,|2 + | z 2 | 2 = l }

is the maximal compact subgroup of G (cf. [11], [8, p. 21], for example),
and the induced metric g0 on V is hyperbolic.

Remark. More specifically, the above correspondence between G and
the two-frame bundle ^ 2 ( H 3 ) induces a correspondence between G/T
and the two-frame bundle ^2(V) over V. The maximal compact sub-
group K c G then acts by rotating the two-frames in each fiber and allow-
ing the identification V = K\G/Γ. The action of the smaller group B c K
corresponds to fixing the distinguished unit tangent vector in the two-frame
and rotating the frame about this axis, which allows the identification
K\G/T = SV. Finally, since the one-parameter group gt : G/Γ \-^ G/T
defined by #Γ t-> g gΓ corresponds to the frame flow and gtB = Bgt,
the induced flow gt on B\G/Γ is well defined and corresponds to the
geodesic flow.

It is useful to recall two standard decompositions for these groups:
Lemma 9. (i) We can write G as a product G = KAN where

} N'{[o
(i.e.y the Iwasawa decomposition).

(ii) We can write K = BΘB where

~ ί Γ cos θ i sin θ 1 Λ ^ n ^ - 1
θ = < . . Λ n : 0 < θ <2π) ,

\ [ i sin θ cos θ J ~ ~ J

(c/[13,/7. 12]).
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Remark. If we write k e K as

\e~iΦl ° 1 \cosθ i ύ n θ ] \e~iΦι

eiΦ

then the coefficients (φ1, θ, φ2) are usually called the Euler angles (cf.
[13, p. 9-12]).

We want to make use of the very explicit knowledge of the irreducible
unitary representations of SL(2, C) (cf. [26], [2], [26], [34]) to study the
variance and consequently the expression (2.3). (Compare with the work
of Fomin and Gelfand on Lebesgue spectrum [11] and work of Moore on
exponential decay of correlations [24].)

We recall a few elementary facts from the theory of unitary repre-
sentations. To each g e G we can associate a unitary operator Ug :

L2(M) —• L2(M) on the Hubert space of square integrable functions

by (Ugf)(x) = f(gx), f e L2(m), x e M. If ^ = W(L2(M)) de-
notes the group of unitary operators from L2(M) to itself, then the map

g •-> Ug e %, g e G, is the canonical representation of G.

Let L 2 (M)θC denote the orthogonal complement of the constant func-
tions C. The following basic result appears in [12, p. 18].

Lemma 10. There is an orthogonal splitting L2(M) θ C = φ^ H.
(of the orthogonal complement of the constant functions C) into invari-
ant Hubert spaces H{ and on each of which the action U , g e G, is
irreducible.

We now need to recall the different types of irreducible representation.
Proposition 9. The irreducible unitary representations of SL(2, C) are

isomorphic to one of the following two types:
(a) Principal series, p e R, neZ. H = L2(C, dxdy) and

Ug:H->H,

where

U(

g

p)f{x) = f ( g ± | ) \cz + dΓp-2(cz + df"

[* *]eSL(2,C).

In particular
(-2+i>n)ί
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(b) Complementary series, 0 < p < 2. H c L2(C, dxdy) is the
completion of continuous functions of compact support using (f, g) =
ff(z)g(z)\z\2pdxdy (where f(z) = £ ~ f{w)eizw dw is the usual
Fourier transform on C) and

Ug:H-+H,

In particular,

(cf [12], [6]).
Remark. We shall be particularly interested in principal series repre-

sentations (with n = 0). A nice geometric description occurs in [21,
pp. 114-115].

Combining this proposition with the preceding lemma we see that for
each Hi in the decomposition L2(M) θ C = 0 * ^ H. there corresponds
an irreducible representation of one of the above forms and an isometry
V : Ht^ H satisfying VU{

g

p) = UV.

We recall some basic facts about these irreducible representations.
Lemma 11. (i) The principal series with n = 0 and complementary series

are the only irreducible representations containing spherical functions, i.e.,
vectors invariant under the action of the maximal compact subgroup K =
SU(2). When normalized these are, respectively,

/ ( Z ) = - L ( | Z | + 1 ) and f(z) = - L ( | z | 2 + l Γ .

(ii) In the decomposition there are at most finitely many complementary

series and infinitely many principal series for each n, although for fixed n

and T > 0 there are only finitely many principal series with \p\ < T.

(iii) Vectors invariant under the action of B are of the form f(re2πιφ) =

f(r) for the complementary series and f(re2πιφ) = f(r)eπιn for the princi-

pal series n even.

Proof Part (i) is proved in (cf. [26, p. 386]). In fact, the vectors Fi 6

Hi whose images VF( are spherical vectors are precisely the eigenvectors

of the Laplace Beltrami operator on (V, gQ) with eigenvalues -2(/?2 + 4),

for the principal series with n = 0, or -2(-/? 2+4) for the complementary

series.
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For principal series part (ii) is proved in [12, p. 94] and for comple-
mentary series in [24, p. 178]. Part (iii) is proved in [11, p. 64].

12. Estimating the variance

We can now collect together the results in the preceding two sections to
complete the proof of Theorem 4.

Proof of Theorem 4. Any C°° function F : V -> R with fFd(Volg)

= 0 can be decomposed as F = f+™ ciFi e φ £ £ H. where F{ are the

(normalized) eigenfunctions of the Laplacian. We want to use the repre-

sentation theory to estimate the expressions Var(F.) by making use of the

identity p(t) = (Ft o φr Ft) = (U^iVF^, (VF.)), where (VF.) are the

spherical vectors in the corresponding irreducible representations.

(i) Principal series with n = 0. We begin by calculating Var(/) for

principal series representations with n = 0. These can be realized as

H = L2(C,dxdy) and U{

g

p)f(x) = f{e2tx)e{~2+p)t for peR.

We can consider the (normalized) spherical vector

(cf. [3, p. 386]) and write its autocorrelation function

Pit) = {U^f, f)

((|z | 2 + l)-{2+ip)/2)(e{-2+ip)t(e-4'\z\2 + l)-^-""")dz.

This integral is explicitly evaluated in [3, pp. 386-387] with the solution
that

(12.1) Pit) = \τpsinh(2t)'

If VF. = f, then by the above correspondence the autocorrelation func-
tions for / and F. are the same, and Var(/^) = f+™ p{t) dt. With the
formula in Proposition 3(ii) for p(t) we have a standard integral:

(12.2) Var(i<) = 1 Γ «5ίgL dt = 1 tanh (£1) .
ι P J-oo sinh(2ί) p \ 4 )

(ii) Complementary series. We can similarly calculate Var(/^ ) for com-
plementary series representations with 0 < p < 2. An analogous estimate
gives that
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(cf. [26, pp. 386-387]). As before, if VGt = f9 then Vai(F.) = f+™ Pifidt,
and substituting (12.3) we have only to evaluate the following standard
integral:

(12.4) Var(i<) = 2- Γ ^ J ί f ί *t = * tan (^
K ιJ pj-oo sinh(20 /> V 4

We can patch together these estimates with the formula Var(.F) =
2 ( c f t 3 1 ] ' although it follows directly from the defini-

tions) and note that | | F | | 2 = £ £ o |C | 2 . Finally, we observe that
(a) for the principal series the map

M-{0}->(0,π 2 /4),

P -> c.(p) = (π//?)tanh(/>π/4)

is monotonically decreasing, and
(b) for the complementary series the map

is monotonically increasing.
Taking these observations together, allows us to conclude that the con-

tribution to Var(F) to the second derivative of the topological entropy
under conformal perturbations, although always positive, tends to zero.

These estimates are directly applicable to conformal perturbations, and
help us to draw interesting conclusions about the second derivative of the
topological entropy under conformal perturbations (cf. Corollary 4.1). In
the remainder of this section we sketch how it is possible to construct
a volume-form-preserving perturbation with the same normalisation and
for which Var(#(1)(?;, υ)) < ε. We begin by recalling the following: If
trace(#(1)) = 0 then gλ = exp(λg(1)) is a volume-form-preserving pertur-
bation (cf. [3], [11]). We shall assume that our perturbations will be shown
to have the special form

Γl 0 0
(12.5) g{ι) = g ( χ ) 0 - ^ 0

β 0 -\Λ

where g : V —> R is a C°° function, and the local coordinates are un-
derstood to come from the quotient of the AN translates of the fixed
reference frame Fχ = (υx, υ2, v3). Since trace(#(1)) = 0, any perturba-
tion of this general form corresponds to the first-order term in a volume
form preserving perturbation (cf. §9).
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Rather than explicitly constructing g ( 1 ) we shall specify g{l\υ , v) e Ht

(for each H. space corresponding to a principal series for (/?, 0)) which
must correspond to a section of the form (12.5). We can identify SχV =
S2 , where Sχ V is the fiber above the reference point x with the natural
coordinates (vχ, v2, v3) coming from the reference frame Fχ . Then in
standard spherical coordinates we can write v{ = cos θ, υ2 = sin θ sin θ
and υ3 = sin θ cos φ.

Lemma 12. The vector f(re2πiφ) = (r2 - ±)(1 + r 2 ) " 2 " ^ 2 e L2(C)

in a principal series with n = 0 corresponds to a C°° function (Vf) =
g(x)(3cos2θ-l)/2 on SV.

Proof. In [7, pp. 79-81], a simple method for constructing the iden-
tification V : H. -+ H is described for the case of SL(2, R), where the
eigenvector of the Laplacian in Ht is mapped to the unique ίΓ-fixed vec-
tor in H, and then V is defined by comparing the respective (7-orbits
of this point. We shall employ a simple variant of this approach. We
let S2 c L2(C) be the (unique) five-dimensional AΓ-invariant irreducible
space with the basis Y^θ, φ)π~ι/2(\z\2 + i)~{2+ip^2 , -2<j<2, where

(a) Y2(θ, φ) are the standard basis for the eigenspace of the spherical
Laplacian on C = S2 corresponding to the eigenvalue - 2 cf. [13], [30],
[33];

(b) (θ, φ) corresponds to z e C by the stereographic projection so
that, in particular, cosθ = r(l + r 2 )~ 1 / 2 .

Note: As a representation k —• Uk € %/{H.) of the smaller compact
group K, the principal series for (p9 0) can be further decomposed into
irreducible representations for K as H. = 0 ^ o ^ / > where S} is a (2/+1)-
dimensional space (cf. [30, pp. 57-60]).

The compact group K acts on S V by rotating tangent vectors in each
fiber. Thus by expanding the image (Vf) e H( in terms of the spher-
ical harmonics on each fiber S V = S2, ye V, and a comparison of
dimensions of the orbits, we can deduce that (Vf)\S V is in the (five-
dimensional) eigenspace for the spherical Laplacian with eigenvalue - 2
up to a scalar multiple and an additive constant. Moreover, we observe
that the function (cos2 θ - l)/2 on S2 can be written, up to an additive
constant, as Y2(θ, φ) which is a zonal spherical function, i.e., indepen-
dent of φ cf. [33]. Thus, we conclude that the image Vf can be written
as %g(x)(cos2θ- 1) (cf. [15, p. 19]).

If we fix a fiber SyV, then the function (Vf)\SyV is a C°° (even
real analytic) zonal spherical function. By the correspondence U (Vf) =
V(Ugf) we translate tangent vectors into this fiber and deduce that the
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function g(x) is C°° using the function Y^(θ, φ)π~ι/2(\z\2 -^ l)~{2+ip)/2

and the action of AN are both C°° .
By means of the identification C°°(SV) = Γ(V, C°°(S2)) we can write

3 c o s 2 0 - l
= g(χ)

In particular, # ( 1 ) indeed takes the form (12.6). The following is the
promised estimate on the variance for certain volume-form-preserving per-
turbations (compare with the Appendix, [26] and [25]).

Proposition 10. For representations in the principal series with n = 0

wehavethat Var(/)//|/|2a?(Vol) = O(l/\p\) as |/>|->oo.
Proof. The proof just consists of some new explicit estimates. We

want to find an upper bound on Var(/) by making use of the identity
Var(/) = / + ~ p(t) dt. We observe that

is actually independent of p, and therefore we need not concern ourselves
further with the exact normalization constants. By definition, the autocor-
relation function takes the form

Pit) - (U^f, f)

V - 5) (e~V + lΓ2 +" / 2) rdr.

We can explicitly integrate this expression after making some changes of

variables. We begin by setting ξ = r2 , and then we get

dξ.

Substituting x = (1 -e~4')/( 1 +ξ) in the above equation and using 1 -x

(e'4' + ξ)/(l+ξ) and dξ/dx = (1 +ξ)2/(l-e~4t)) we obtain



488 MARK POLLICOTT

-41, 3JC\
M/ - ^ )-y

(12.7) 0 - * ) y° l 2 J

{ -4?x -4ί / -At 1 \ 1 ,

To estimate this integral we consider terms of the general form

r\-eAt r\

I m,Λ x-2-z>/2 , / /A xw -2—ip/2 ,

/ x ( 1 - x ) ^ dx= 4{l -w) w μι dw,
m = 0, 1,2,

by the change of variables w = 1 - x. But we can easily evaluate this last
integral as

/

I m / \ r 1

(i-w)mw-2-ip/2dw = y r ) I(12.9) *~°

y-2-ipi2dw

Finally, we see that the expression in (12.8) is of order 0(e4'/|/>|) the most
significant contribution in / coming from the term k = 0. Substituting

(12.8) and (12.9) into (12.7) we conclude that \p(t)\ < O{e~m/\p\). Inte-

grating this over t e R yields Var(/) = / + ~ p(t) dt < f+™ \p(t)\ dt < g .
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