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HOMOGENEOUS SUBMANIFOLDS
OF HIGHER RANK

AND PARALLEL MEAN CURVATURE

CARLOS OLMOS

Abstract

Let Mn , n > 2 , be an orbit of a representation of a compact Lie group
which is irreducible and full as a submanifold of the ambient space. We
prove that if M admits a nontrivial (i.e., not a multiple of the position
vector) locally defined parallel normal vector field, then M is (also) an
orbit of the isotropy representation of a simple symmetric space. So,
in particular, compact homogeneous irreducible submanifolds of the Eu-
cildean space with parallel mean curvature (not minimal in a sphere) are
characterized (and classified). The proof is geometric and related to the
normal holonomy groups and the theorem of Thorbergsson.

0. Introduction

Riemannian manifolds of nonpositive curvature and submanifolds of
the Euclidean space seem to be related. There are several theorems for
the fist class of spaces that have a (formal) analogous result in the con-
text of submanifolds. Their proofs seem also to have some similarities,
though the concepts involved are of a quite different nature (e.g., holon-
omy groups of the tangent or normal connection). In the first case a very
important role is played by the symmetric spaces. In the case of subman-
ifolds this role is played by all the orbits of the isotropy representation
of semisimple symmetric spaces (^-representations) (see [14]). For man-
ifolds of nonpositive curvature with finite volume and higher rank one
has the theorem of Ballmann/Burns-Spatzier [1], [2], which asserts that
they are locally symmetric. On the other hand, for compact isoparamet-
ric submanifolds of higher rank one has the theorem of Thorbergsson [17]
which assets that they are orbits of ^-representations. The proofs of Burns-
Spatzier and Thorbergsson rely on the topological Tits buildings. There
is also another proof of the result of Thorbergsson in [12] which does not
use Tits buildings and is related to the normal holonomy groups. (For any
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submanifold of the Eucildean space the normal holonomy representation is
an ^-representation by [11]. This is also the case for the tangent holonomy
of spaces of nonpositive curvature.)

Recently, J. Heber [5] proved that an irreducible homogeneous manifold
of nonpositive curvature and higher rank is locally symmetric. One could
wonder if there is some theorem of this kind in the context of compact
homogeneous submanifolds. An answer to this question is given by

Theorem A. Let Mn, n > 2, be a compact homogeneous irreducible
full submanifold of the Euclidean space with rank(Λ/")>2. Then Mn is
an orbit of the isotropy representation of a simple symmetric space.

Let us say that the rank of a submanifold is defined to be the maximal
number of linearly independent (locally defined) parallel normal vector
fields (see §1). Observe that for n = 1 Theorem A does not hold since
any (homogeneous) curve has flat normal bundle.

This theorem has an immediate corollary, which provides an answer to
a classical problem, namely,

Theorem B. Let Mn be a compact homogeneous irreducible submani-
fold of the Eucildean space with parallel mean curvature vector which is not
minimal in a sphere. Then Mn is an orbit of the isotropy representation of
a simple symmetric space.

Since any representation of a compact Lie group has a minimal orbit in
the sphere, Theorem B cannot be improved (see [8]).

We shall give now some ideas of the proof of Theorem A; a fundamental
tool is

Theorem C. Let Mn = K.υ, n > 2, be a compact homogeneous irre-
ducible full submanifold of RN and let k e K, p e M. Then there exists
c: [0, 1] —• M piecewise differentiate with c(0) = p, c(l) = k.p such
that

where τ1" denotes the Vx-parallel transport.
By means of this theorem we are able to produce submersions π jr: M —•

Mξ (i = 1, , g) onto focal parallel orbits with the property that TM =

0f= 1 ker(rfπ ), and {n~ι(πi{q))}q is homogeneous under the normal ho-
lonomy group of Mξ at π(q) for all q e M. It is not hard to prove
now that M is a submanifold with constant principal curvatures (see [7]).
But there exists orbits which are submanifolds with constant principal
curvatures and such that the corresponding isoparametric submanifold is
inhomogeneous (see [4]). So, in the last step we have to use the theorem
of Thorbergsson [17] in order to conclude our result.
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It is easy to see that Theorem A (and hence B) also holds if Mn is
not compact but contained in a sphere. Moreover, it is proved in [13]
that a homogeneous irreducible full submanifold Mn , n > 2, of a Eu-
clidean space with rank(Λf) > 1 is always contained in a sphere. This
solves completely the problem of classifying, up to minimal immersions,
homogeneous submanifolds with parallel mean curvature.

1. Preliminaries and notation

Let Mn be a Riemannian manifold and let i: M -+RN be an isometric

injective immersion. We say that M is a reducible submanifold of RN

if M = Mχ x M2 (Riemannian product) where Mχ, M2 are nontrivial

factors and i = i{x i2 where iχ: Mχ —• R^1 , i2: M2 —> RNl are isometric

immersions and N = Nχ+N2. If M is not reducible as a submanifold of

R^, then it is said to be irreducible. Assume now that M is a compact

homogeneous submanifold of R^, i.e., M = K.v , where v e RN and K

is a compact connected Lie subgroup of I(RN). Without loss of generality

we may assume that K c SO(N). If M is a reducible submanifold, then

each factor is also a homogeneous submanifold of the corresponding Eu-

clidean space. So, any compact homogeneous submanifold can be written

(uniquely, up to a permutation of the factors) as a product of compact

irreducible homogeneous submanifolds.

From [10, Lemma] and the fact that homogeneous Riemannian subman-

ifolds are analytic submanifolds, it is not hard to derive the following.

Lemma 1.1. Let Mn be a compact homogeneous submanifold of RN.

Assume that there exist an open subset U of M and a nontrivial parallel

distribution 9) on U such that a(X, Y) — 0 if X lies in £j and Y lies

in $)±, where a is the second fundamental form of M. Then M is a

reducible submanifold of RN.

Let now /: M -> RN be an immersed full Riemannian submanifold

(i.e., not contained in an affine hyperplane) and let v[M) — {{p, w): p e

λf, w G (T M)±} be its normal bundle. Decompose i/(Af) = vo(M) Θ

i/j(Af), where vo(M) is the maximal V^-parallel subbundle of v(M)

which is flat and vs{M) = (^(M))1-, namely, vQ(M)p = {ξ e v(M)p: Φ*

ξ = ξ} for all p e M, where Φ* denotes the restricted normal holonomy

group.

Definition 1.2. The dimension (over M) of i/0(Aί) is called the rank
of (Af, /) and is denoted by rank(Λf, /).
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We shall often write, when there is no possible confusion, rank(M)
instead of rank(M, /).

Observe that if Mn is a compact homogeneous submanifold of RN,
then M is contained in a sphere and hence rank(M) > 1.

Remark 1.3. If M is an isoparametric full submanifold, then rank(M)
coincides with the usual notion of rank, i.e., the codimension. If, in ad-
dition, M is homogeneous, then M is the orbit of an ^-representation,
and rank(M) is equal to the rank of the corresponding symmetric space.

From here up to the end of this paper, unless otherwise stated, Mn =
K v will denote a compact homogeneous submanifold of RN with
rank(M) > 2, where AT is a connected compact Lie subgroup of SO(N)
and v e RN. By U we will denote an arbitrary open subset of M,
which is contractible (in order to make any vector bundle over U trivializ-
able). Since M is an analytic submanifold of RN , we get that rank(M) =
rank(C/). So, we can find ξχ, , ξr e C°°(U, vo(U)) linearly indepen-
dent such that ({ξl9 ~ ,{,}> = i/0(£/) and V±ξχ = ... = v \ = 0,
where r = rank(M). For q e U, the shape operators {Aξ: ξ e vo(M)q}
are simultaneously diagonalizable and determine, as in the isoparametric
case, eigendistributions Eχ, , E in U and different nχ, , ng e

C°°(U, i>0(E/)) (which are not in general Vx-parallel) such that TU =

EX(B. ΘEg and A^Xt) = k^)Xt = {n,, ξ)X., for all ξ e C°°(U, uo(U)),
X{ G C°°(ί7, E.). We denote the set {1, , g} by I, and observe that,
due to the homogeneity, (n/, n) is constant on U if /, j e I.

2. On the autoparallelity of the eigendistributions

We keep the assumptions and notation of §1. The aim of §§2-5 is to
prove Theorem C (or equivalently Theorem 5.1).

Lemma 2.1. Let qeU, ioel and let ξ e C°°(U, uo(U)) be parallel.

Assume that the function λ( (ζ) = {ni , ζ) has a local maximum at q and

that λt (ξ)(q) φ λ{{ζ\q) for all i €°/ \{/0}. Then E{ is an autoparallel
distribution.

Proof. Let T be the tensor on U, defined by T = A* - λ, (f)Id.

Since λt (ζ) achieves a local maximum at q , we have that wq(λi (ξ)) = 0

Vwq e TqU. From the fact that Aξ satisfies the Codazzi identity, it follows

that T also satisfies the identity at q, i.e., ((V^ T)qX2, X3) is symmetric

in all three variables V Xχ, X2, X3 e TqU. Moreover, the hypothesis

implies easily that ker(Γ) = E. near q. Let X, Y e C°°(U, E.), Z e

8?{U). Then it is not hard to check that ((VZT)X, Y) = 0. Then, by
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the Codazzi identity, 0 = ({S7γT){X), Z)q = -(Tq{(VγX)q), Zq). Since
Z is arbitrary, {VγX)q e ker(T)q. Thus Et is autoparallel at q, and
therefore is autoparallel by homogeneity.

Lemma 2.2. Let iQ e / such that Et is autoparallel If (Ei )"L is

integrable, and {ni , n.) Φ (n., n.) for all i e I\{i0}, then (Ei )"L is also

autoparallel and M — K.v is reducible.
Proof W e h a v e t o s h o w t h a t V χ Y l i e s i n ( £ , - ) X i f X , Y €, )

Case a. X, Y e C°°(U, Et) for some / e I\{iQ]. Let q e U and
let ξ. e C°°(U, uo(U)) be parallel with ξ.(q) = n^q). Then λfa) =

(Λpίy) < llΛ/ll llί/ll = ll«, l|2 = ^M), and λfo) has a maximum at
q. Thus, as in the proof of Lemma 2.1, Γ* = Aξ - ^.(f^Id satisfies

the Codazzi identity at #. (Observe that, in general, ker(Γ') does not
define a distribution near q if λ^ξ^q) — λ.{ξ^){q) for some j ψ i.)

Let Z e ^ ( t / ) . . Then {Tι{VγX), Z)q = 0 (see the proof of Lemma

2.1). Since Z is arbitrary and ker(Γ') c (£z ) by the assumptions we

conclude that (VγX)q e {Ei )^ .

Case b. X e C°°(t/, JE.)°, Y e C°°(U, Ej), / φ j : . Let q e U and
let { e C°°{U, uQ{U)) be parallel with X^){q) φ λj(ζ)(q). A direct
computation, using the Codazzi identity (VχA)ξ(Y) = (Vrv4)^(X), shows
that

and therefore

Since (£ z )"L is integrable and invariant under Aξ, {^χY)q G (£ z )
X .

Thus we have shown that (E.)± is autoparallel. It is an easy fact that two
'0

orthogonally complementary autoparallel distributions are actually paral-
lel. Hence, by Lemma 1.1, M = K.v is reducible.

Lemma 2.3. Let i e I. Then the following hold:

(i) Ei is autoparallel if and only if Vλ

zni = 0 VZ € C°°(ί7, {E^).

(ii) For dim(£'z.) > 2, E{ is autoparallel if and only if V±ni = 0.
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Proof. Let q e U, X, Y e C°°{U, £,) , Z e C°°(C7, (f,.)-1), and let
ξ e C°°(ί/, i/0(t/)) be parallel such that k^){q) φ λβ){q) V; e 7\{i}.
Then we have

((VχA)ζY, Z) = X(k^)){Y, Z) + λtfWxY, Z)

-(Aζ(VχY),Z)

iφi

which implies that ((VχA)ζ(Y),Z)q - 0 V Z e C°°(ί/, (E,)"1) if and
only if (VχY) € E^q). Thus, by the Codazzi identity, Ei is autoparallel
at q if and only if

0 = ((VzA)ξ(X), Y)q = Z(Xtf)){q)(X, Y)q + ktf)(q)(VZX, Y)q

-(Aξ(VzX),Y)q

= Z{λi(ξ)){q)(X,Y)q,

Le.,ifandonlyif 0 = Z(A|.({))(i) = ( V ^ | . , O i . Since {^€i/0(t/)ff: Af.(^)
^ ^ ;(^) V7 G / , j ; / /} is open and dense in vo{U)q , we conclude part

(i)
Now let ΛΓ, Y, W G C°°([/, £.). It is easy to check that

If dim(£z.) > 2, then we can choose X,Y,W such that Y=W, \\X\\q =
\\Y\\q = 1, and X^ _L Y . Using the Codazzi identity again we get that
X(k^)){q) = 0. Part (ii) thus follows easily from part (i).

Lemma 2.4. Let J = {i e I: E. is autoparallel}. Then J Φ 0 . More-
over, if J Φ I, then there exists j Q e J, so that for simplicity we may
assume j Q = 1, such that

(i) dim(£1) = l ,

(ii) V^nx = 0 if and only if W e C°°(U, (E^) (or, equivalently,

nχ is not parallel),

(iii) (E^ is integrable.

Proof Choose q e U and / e I such that H/iJI = max{||/ij|: k € /} .
Then, by the Cauchy-Schwarz inequality, (ni9 nt) Φ (nn nk) for all k e
I\{i} . Let ξ G C°°(f/, i/0(C/)) be parallel with <f(?) = nt(q). Then A.(<̂ )
achieves a maximum at # . Applying Lemma 2.1 we get that i e J and
hence J Φ0. Assume now that J φ I and that V±nJ - 0 for all j e J.

We shall derive a contradiction. Let VQ{U) be the (parallel) subbundle
of vo(U) generated by {nj\ j e J} and consider the complementary
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subbundle (i/^t/))"1 of i/0(C7). It is clear that (^(U))1- is (locally)
invariant under the action of K. For each I e L = I\J let hι = pr(Azz),
where pr denotes the orthogonal projection to {VQ{U))± . Because of the
invariance of {VQ{U))± under the action of the Lie group K we get that
(hn nzι) is constant for /, /' e L. If / e L then nι Φ 0; otherwise nι

would be parallel (since (rij, n^ is constant for all j e J) and hence, by
Lemma 2.3, Eι would be autoparallel. Let /0 e L be such that \\hι \\ =

maxfll/ijll: I e L} and /0, ••• , /s be the different elements of L such
that fy = ••• = hι (observe that i *-+ ni9 i e I, is injective but / H-*
hn I e L, is not necessarily injective). If / € L\{l0, , ls} then, due
to the Cauchy-Schwarz inequality, (ή, , h,) Φ (n, , h,). Let now £ e

^0 0 0

C°°((7, I/Q(C/)) be parallel and such that ({, /i^), ••• , (ξ, nt) are all

different (observe that ni - pr{n^) is parallel for all i e I ) . We can

find such a ζ because nι , , nι are all different. Let q e U and let

r\ e C°°(U, (^(U)^) be parallel'with η(q) = n^q). Let { = ί + fj.

If Hill is small, then (ξ, Π1Q)Q φ (ξ, n^ for all ie I\{l0}. Moreover,

λ, (ξ) = (ξ, Πj) achieves its maximum at q . In fact, A, ({) = c + (η, ή,)
'o ^ ' o o 'o

where c = (ξ, n, -pr(n,)) is constant. We can now apply Lemma 2.1 to

conclude that Eι is autoparallel. This contradicts the fact that /0 0 / .
Thus there exists j 0 e J such that V n Φ 0. By Lemma 2.3(ii) we hence

obtain parts (i) and (ii) of this lemma. Let now Zχ, Z 2 e C°°(U, (is. )±).

Then

Z l Z 2 ^0 Z 2 Z l -̂ 0 LZi>Z2J ^0 X 2 -̂ 0

b e c a u s e vo{U) is flat. But, b y p a r t (ii), V ^ w. = 0 = V ^ n . ' , w h i c h

impl ie s t h a t Vr"i 7λni = 0 . H e n c e , again by p a r t (ii), [Z.,ZΛ e

C°°{U, {Ei ) ± ) , w h i c h p r o v e s p a r t (i i).

3. Constructing a family of orbits of higher rank

We keep the notation and assumptions of §2. Assume that I φ J = {i e

I: E{ is autoparallel}. Then, by Lemma 2.4, we may assume that 1 e J

and the following:

(i) dim(Eι)=U
(ii) VLnχφQ,

(iii) (EΛ1- is integrable.
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Let now q G U and let ξ G C°°(U, i/0(t/)) be parallel with ξ(q) = nχ(q).
Then, due to the Cauchy-Schwarz inequality, λχ{ξ) = (ζ, nχ) achieves
its maximum at q. Using Lemma 2.2 we conclude that M = K.v is
reducible, provided the following condition holds:

(1) K , * , ) ^ <*!,*,) V i € / , i > 2 .

Unfortunately, the generic condition (1) cannot be "a priori" guaranteed
and we need to consider other orbits which are close to M = K.v , namely,
Ma = K.(v + aa(Xχ, Xχ)v), where α € R, Λ\ € C°°(U, Eχ) with μ r j =
1, and a denotes the second fundamental form of M. But now the
situation is much more involved than in the case where K acts polar. One
must show that the family {Ma} has also higher rank, namely, rank(MJ =
rank(Λf) if a G R is small. This fact depends strongly on dim(Eχ) = 1
and on the nontrivial

Lemma 3.1. Using the above notation and assumptions we have:

(i) a(Xχ,Xχ) G C°°(U,vo{U)), where Xχ e C°°(U,Eχ) and \\Xχ\\ =
1.

(ii) nχ=a(Xχ,Xχ).

Proof. If q e U, ξq G u{M)q9 and Z e C°°(U, (E^), using the

Ricci identity and the flatness of vQ(U), we get that Aξ (Eχ(q)) c Eχ(q).

Moreover, it is easy to check that Aξ (Xχ(q)) = {a(Xχ, Xχ)q , ξq > Xχ(q).

Choose ξ e C°°{U, u{U)) with ξ(q) = ζq such that {V±ξ)q = 0. Since
Th b h C dq q

Eχ is autoparallel, ((V^ A)ξXχ, Z) = 0. Then, by the Codazzi identity,

{{VzA)ξXχ, Xχ)q = 0. It is now easy to see that ( ( V ^ α ^ , Xχ))q, ξq) =

0. Since q and ξ are arbitrary, we conclude that V^a(Xχ, Xχ) = 0

V Z e C°°(U, (E^). We have seen that Eχ (and hence (E^) is

preserved by all the shape operators of U. Thus, by the Ricci identity,

R±(Xχ, Z) = 0 VZ G C°°{U, {Eχf). It is not hard to see now that

given q e U, c: [0, 1] -> 1/ piecewise differentiate with c(0) = c(l) =

^, there exist q , c 2 : [0, 1] -• C/ piecewise differentiable such that (a)

cχ(0) = cχ(l) = q = c2(0) = c 2 ( l) , (b) c[(t) G ( ^ ) C i ( i ) , ^( ί) G ( ^ ) ^ ( 0

Vί G [0, 1], (c) τf = τf o τf , where τ1" denotes the V^-parallel trans-

port. (For a proof of this fact see [12, appendix].) Since d i m ^ ) = 1,

we have τf = id^ ( ( / ) which, together with V^a(Xχ, Xχ) = 0 VZ G

C°°(U, (Eχf), implies that τf(a(Xχ, XJ^) = α ( ^ , Xχ)q . Therefore

Φ^ a(Xχ, Xχ)q = αίA'j, Xχ)q , where Φ^7 denotes the normal holonomy



HOMOGENEOUS SUBMANIFOLDS 613

group of U at q. Hence part (i) is proved. Part (ii) is an easy conse-
quence of (i). q.e.d.

Using the assumptions of this section, choose Xχ e C°°(U, Eχ) with

HΛΓJI = 1 (observe that ({Xχ}) = Eχ). For k G NU{0} let n[k) be defined
by

(i) n ? = n l 9

^lij nx = v χ nx

Then, by homogeneity, we get that (n[k\ n.) and {n[k\ nψ) are constant

(i e I, j , k G N U {0}). Let !/<}([/) be the subbundle of ι/Q(U) defined

by

vo{U)q = ({n\ \q): k > 0}), q e U.

Then we have the following lemma.
Lemma 3.2. By the same notation and assumptions of this section,

(i) Vzn\k) = 0 v z e C°°(U, (E^), k>0,

(ii) I/Q (U) is a parallel subbundle of vo(U).

Proof (i) By induction on k. If k = 0 it is true by Lemma 2.3(i). Be-

fore continuing with the induction let us observe that [Xχ, Z] G

C°°(U, (£ 1 ) ± ) if Z G C°°(U, (E^). In fact, if V is the Levi-Civita

connection in U, then {VzXχ, Xχ) = 0 since \\Xχ\\ = 1, and (Vχ Z , Xχ)

= -(Z,VχXχ) = 0 since £ j is autoparallel. Thus [Xχ, Z] = VχZ -

V7X. G C°°(C7, ( £ 1 ) ± ) . Now assume that v i n ί Λ ) = 0. Then

__L (Jt+1) _ 'ry-L^T-L (fc) _ ^JL ^__L (k) _ ± (it) _ π

by the inductive hypothesis and R = 0 on uo(U). Hence, part (i) is
proved. Part (ii) is an immediate consequence of (i). q.e.d.

Using Lemma 3.2(i) for k = 0, it is not hard to prove the following.

Lemma 3.3. Let a G R and let fa: U -* RN be defined by fa{q) =
q + anχ(q). Then:

(ii) dfa(Xχ) = (l-aλχ(nχ))Xχ+an[ι)

a χ

(iii) 3 ε > 0 .swcΛ that \a\ < ε =^ fa is an embedding and fa(U) is an
open subset of Ma = K.(υ + anχ(υ)).

Notation. E* = df^E,), Ua = fa(U).
Lemma 3.4. In the notation of Lemma 3.3, if aeR is small, then Eχ

defines an autoparallel (one-dimensional) foliation in Ua which is invariant

under all the shape operators of Ua.
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Proof. For q e U let cq: (-δq, δq) »-> U be the integral curve of Xχ

with c(0) = #. Since E{ is autoparallel, cq is a geodesic in U. Let

us show that the curve fa° cq, which defines an integral manifold of the

foliation E" of Ua , is also a geodesic in Ua . At first, we have

Due to homogeneity, \\n[l^\\ is constant, and therefore | |^°^ | | is constant.

Since, by Lemma 3.1, d2cq(t)/dt2 = nx o c^(ί), using Lemma 3.3 it is
straightforwarded to show that

which implies that fa ° cq is a geodesic in Ua, so that E\ is an au-
toparallel distribution. Regard now c (t) as a submanifold of £/, and

{Eι)f(t) as its normal bundle. Let D±/dt be the covariant derivative op-

erator on (E{)\t) induced by the Levi-Civita connection of U. Let v e

(Eθt(θ) a n d l e t ϋ b e i t s Parallel transport along cq , i.e., ϋ(t) £ (E{)f{t),

D±ϋ(t)/dt = 0, 0(0) = υ, Vί e ( - ^ , ̂ ) . Since ĉ  is a totally geodesic

submanifold of U, it is easy to see that dϋ(t)/dt = a(cq(t), ϋ(t)) = 0,

because Eχ (and hence (E^) is preserved by all the shape operators of

U (see the proof of Lemma 3.1 (i)). Thus ϋ(t) is constant. By Lemma

3.3, we get that ϋ(t) can also be regarded as a normal vector field, in Ua ,

to the geodesic fa o cq(t). Since ϋ(t) is constant, it follows easily that

aa((faocq)'(0), v) = 0, where aa is the second fundamental form of Ua .

Hence (E\)ffq\ is preserved by all the shape operators of Ua at fa(q).

Lemma 3.5. Let i,j e /\{1} and let X. e C°°(U9E.)$ Y. e

C°°(U, Ej). Then the following hold:

(i) (VxXl9Xj) = 0 ifiφj.

(ii) Assume that i = j . Then (VχX{, Y.) = 0 if (X., Y.) = 0.

(iii) (V-SΓj)̂  ^ : £,-(?) -> £ f (?) w proportional to the identity map.

Proof Assume that iφ j . Then (VXXX, ΛΓ.) = -(Xj, V^ ΛΓ.). Since

(EJ1' is integrable, using the Codazzi identity (as in the proof of Lemma
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2.2) yields that VxX- e C°°(U, (E^) and hence part (i). Assume now

that i = j and that (X., Y.) = 0. Let ξ e C°°(U, uQ(U)) be parallel.

It is easy to check that ((Vχ A)ξXt, 3̂ .) = 0. By the Codazzi identity we

obtain that

Xi, ξ I ' 1 I 1 Λi I 1

Part (ii) now follows easily. Part (iii) is an easy consequence of parts (i)

and (ii).

4. The rank of the family Ua and explicit computations

Use the assumptions and notation of §3, let {n[^}± be the subbundle of

u(U) which is orthogonal to n[ι), and let (f~l)*({n[ι)}±) be its pullback

over f~ι, where a e E is small and fixed. If (q, ξ) e {n[ι^}± then,

due to Lemma 3.3, (fa(q), ξ) e v{Ua)f{q). So, we shall always regard

as a codimension-1 subbundle of v(Ua), and write

where Wα = ({wa}), and wa e C°°(Ua, v{Ua)) is defined by

wa{fa{q)) = n(;\q)-prΊ{n{!\q)),

pr\ denoting the orthogonal projection to the subspace

(recall that ({Xι}) = Eι, | | ^ | | = 1).
Remark 4.1. By homogeneity there exist βx{a), β2(a) e K such that

Consider now the subbundle

of ι/0(U). Then there exist linearly independent hχ, , hs e C°°(U,
such that {{hx, , hs}) = W and

(1) vjAf. = 0 V Z e Π t / , ^ 1 ) , ί = l , . . . , j ,

(see Lemma 3.2 and its preceding paragraph). Thus {f~l)*(^) c ^(C/fl)

is a trivializable subbundle, namely, {Λz ° f~
λ'. 1 < / < s} provides a

trivialization of this subbundle. Hence {wa , ht o f~ι: 1 < / < s} gives
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a trivialization of Wα Θ (/ α " ' )*(^) . (Observe that W° e (^"1)*

Lemma 4.2. Wα θ (/α"1)*({n(

1

1)}± n v*(U)) is a subbundle of vo{Ua).

Proof. We shall show that wa, h^f'1 e C°°(Ua, vo{Ua)) (i = 1, ,
s). The proof is similar to that of Lemma 3.1 after having shown the fol-
lowing:

(a) (Raf{X, Y) = 0 if X e C°°(Ua,E
a

x), Y e C°°(Ua, (£?) x ) ,

where (/?")""" is the normal curvature tensor of Ua .
(b) vJ«; β = 0 = v j A / o J 7 1 = 0 V Z e C 0 0 ^ , ^ ) , i = l , , ί .
(a) follows from Lemma 3.4 and the Ricci identity. By Lemma 3.3, as

subspaces of K we have

Thus (1) yields the second equality of part (b). Let q e U, v € (E^ ,

let c: [0, 1] -» U be C°° with c'(0) = v, and let cα = /β o c. Then

wa(ca(q)) = β{(a)Xχ{φ)) + β2{a)n^{c{t)), where j8,(fl),jί2(fl)€R (see
Remark 4.1). Since \\X{\\ is constant and α(Z,(^),υ)

= 0, we have that dldt\ϋXχ{c{t)) e {Ex ̂ (q), and also that d/dt\on
{

x

i}(c(t))

= -An\%)υ e (£i)ί = (£f)ί(ί?)
 T h u s ^/^ί|o^fl(^W) G {Ea

χtm . Since
^ is arbitrary and dfa((Eχ)

±) = (Ex)
± , part (b) is proved.

Lemma 4.3. uo{Ua) = Wa θ (/~1)*({«(

1

1)}± n uo(U)).

Proof. We shall regard (>7 1)*((J/ 0

1(C/))'L) as a subbundle of v(Ua).

Let p , ̂  € U, and let c: [0, 1] ->• ί/ be C°° such that c(0) = p

and c(l) = 9 . Let {, € (^(l /))^ and let ί e C°°([0, 1], c'(i/0(C/)))

be parallel to ξ(0) - ξq. (Observe that since ί/J(C/) is parallel, ξ(t) e

( ^ o ( < ) V ί € [ O , l ] . ) Then

^ξ{t) = -Amc\t) = -(ξ(t), «, o c(t))[c'(t)]1 - Am[c'(t)]2,

where c'(t) = [c'(t)]1+ [c'(t)]2 , [c'(t)γ e ( ^ ) c ( ί ) , [c'2(ή]2 e (Eχ)f{t). From

(ξ(t), nχ o C(ί)> Ξ 0 it follows that j-tξ(t) € (Eχ)f{ή = (Ea

χ)jMή). Thus

ξ(t) can also be regarded as a parallel section in (f~ι)*{(ifQ(U))±) along
the curve faoc(t). This shows that, for all q e ί/,

where (Φa)* denotes the restricted normal holonomy group of Ua, and
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i"i(V))j = (f7l)*^o(u))\(q)
 a s subspaces of RN . The proof of this

lemma follows now easily from Lemma 4.2.
Lemma 4.4. Under the assumptions of this section if a is small, then

Ea

χ = dfa(E{), ••• , Ea

g = dfa{Eg) are the different eigendistributions of

{Aa

ζ:ξeC°°(Ua, vo(Ua))} where Aa denotes the shape operator of Ua .

Proof. We shall prove first that each E" (i e I) is contained in an

eigendistribution of the shape operators {A^: ξ e C°°{vQ(Ua))} . If i = 1,

this is true by Lemma 3.4. Let i € I, i >2, q € U, and let υi e Et{q).

Let c,.: [0, 1] -» U be C°° such that c\{t) e {E^ for all t e [0, 1] and

c|(0) = vi. Define ci = fa o c,. and ϋ, = {dfa)q{v.) = (1 - a(«,, «.))t;(..

a. Let ξ e C°°(U,

d_

dt

\ιY n uo{U)) and let ξ = ξ o /a

(see Lemma 4.3). Then

"rfί

~x

(by Lemma 3.4)

b. Let w e C°°(ί/α, vo(Ua)) be defined as at the beginning of
this section (see also Lemma 4.3). Using Remark 4.1 we have

d_
dt

d_
dt

(by Lemma 3.2,

β2(a)(ni(q), n[1\q))vi = k(a

= 0)

(see Lemma 3.5).

Thus we have shown that each E\ is contained in some eigendistri-
bution, so that the number of different eigendistributions of {Aς: ξ €
C°°(Ua, vo(Ua))} is less than or equal to g = #( /) . Since a continuity ar-
gument shows that the number of different eigendistributions, for a small,
cannot be less than g, we get the lemma.
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Lemma 4.5. In the assumptions of this section. Let a e R be small

enough that Eχ, ••• , Ea

g be the different eigendistributions of {Aξ: ξ €
C°°(Ua, vo(Ua))}. Let {n": i e 1} be the corresponding curvature normals

(i.e., A^Y,) = (n%ζ)Yi if Y. G C°°(Ua, Ef)). If μ(a) =

{\ - a\\n{\\2)2 + a2\\n^\\2

 f the following hold:

(i) a ιfa = (μ(a)yι[(l-a\\nχ\\2)nχ+an{2)].

Γ 2
(iϊ) (n n)

(iii) « , <> = PW + φ -a(nχ, πz.)Γ2 for i>2, where cx e R > 0,
and P.(a) is a rational function on a with P.(ά) > 0 V e R. Moreover, if
c = 0, then {nx, nt) = 0.

Proof (i) Let # € U and let y: (-ε, ε) —• ί7 be the integral curve of
Zj with y(0) = ̂  . Then γ(t) = γ(t) + anχ(γ{ή) is the integral curve of
Eχ through fa(q). Moreover, since by Lemma 3.4 Eχ is autoparallel, γ
is a geodesic in C7fl . Then, using Lemma 3.1, we get that

We also have that

dt2 o

V(0) - aAn>)
/(0)

= (l-a\\nιf)n1(q) + anY\q),

(observe that ^π_1<.)( )/(0) = 0 because of (wj1', n{) = 0).

(ii) Let πa: vQ{Ua) -+ (/a~')*({« - l ( ί ) } x Π i/0(l7β)) be the orthogonal

projection (see Lemma 4.2). Let i e I, i > 2, and let c{: [0, 1] —> C/ be

C°° with c|(0) = υ, e (£, ) c ( 0 ) Let ί e C°°(U, {n^}1- Π i/0(C/)) and let

£i = fa ° ci > t = ί ° Λ"1 e (/^^'({"ί1 '}^ n i/0(l/)). Then

J £,(β)

Since ^(υ, . ) = (1 - a{nχ, ni))vj, we get π((l - a(ni, «,))"'

πa(n°(q)), π = π°. Since («,, n[η) = 0 = (wj1', n(,2)) part (i) yields

πα(«^) = n* . Part (ii) thus follows easily from (i).
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(iii) Let / > 2 and let />(*) = | | < - π > « ) | | 2 , β.(α) = | | π > * ) | | 2 .
Then (Λ? , Λ?) = /)

/(α) + β / (α), and it is clear that P., Q. are both rational
functions and Pi9 Q.: R -• E > 0 u {+00} when extended to R. Let us
compute Q. explicitly:

where c = ||7r(/if-)||2 is a constant because of the homogeneity. If cz = 0,

then π(ny) = 0, and hence nr is proportional to n[ , which is perpen-

dicular tO /ίp

Corollary 4.6. (ϋ^)"1 = i^"1 is autoparallel distribution, and hence
M = K.υ is reducible.

Proof Let i e I, i > 2. Extend i?z(α) = (fij, n?) and S.(α) =

(n^3, n?) = P (α) + β/ίfl) to rational functions defined for all a eR (see

Lemma 4.5). If (nχ, ΛJ = 0, then R.(0) φ S.(0) and hence Λ. / 5 f . If

{nx, /i,.) / 0, then c.φQ. So, /ι(α)(l - a(n{, n^S^a) -> +oo if a -+

( ( ^ i , n { ) ~ ι ) ~ . B u t μ ( a ) ( \ - a { n γ , n i ) ) R i ( a ) f o r ι e / a n d i > 2 i s l i n e a r

on a . If α is small and a Φ 0, ^(α) ^ ϋ^α) for all i e / , i > 2. Since

(E^)"1 is integrable, by Lemma 2.2 we conclude that Ma = K.(v + an{)

is reducible for α small, and a Φ 0. It is now clear that (E®)± = Ef is

autoparallel, and hence M = ΛΓ.Ϊ; is reducible, q.e.d.
Combining the results of §§2, 3 and 4 gives
Proposition 4.7. Lei Mn, n > 2, be a compact homogeneous irre-

ducible full submanifold of RN. Let U c M be a simply connected open
subset, and let nχ, , n e C°°(U, vo(U)) be the curvature normals as-
sociated to the different eigenvalues of the shape operator of M restricted
to vo(U). Then:

(i) VLnt = Q for / = 1 , . ,g,
(ii) ({/ij,.-, ,/iJ> = i/0(t/).

Observe that (ii) is a consequence of (i) and [3].
Definition 4.8. If N is a submanifold of Rm we say that N is ^0(iV>

isoparametric if the shape operator A has constant eigenvalues for any
parallel local section ζ of vQ(N).

Corollary 4.9. Let Mn , n > 2, be a compact homogeneous irreducible
submanifold of RN. Then M is v0(M)-isoparametric.
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5. Transvections of the normal connection. Proof of Theorem C

In the same way as for a connection on the tangent bundle it is useful
to study the transvections of the normal connection (cf. [9]). Let N be a
submanifold of E m , and let g e I(M.m) be such that g(N) = N. We say
that g is a transvection of N with respect to the normal connection V
if for any p e N there exists c: [0, 1] —• TV piecewise differentiable with
c(0) = p, c{l) = g(p) such that

where τ1" denotes the V± -parallel transport. The set of all transvections

of TV (with respect to V x ) will be denoted by Tr(iV, V x ) . In a similar

way we define TrQ(N, V±) (resp. Tvs(N, V"1)) by replacing condition

(A) by

(resp. by (As): dg^^ = τ j , where us(N) = f ^ ) 1 ) . Clearly,

Tτ(N, V 1 ) c Tro(ΛΓ, V±) Π Trs{N, V x ) . With the above notation Theo-
rem C can be reformulated as follows.

Theorem 5.1. Let Mn = K.v be a compact homogeneous submanifold
of RN, where K c I(RN) is connected. Then:

(i) ί c T ^
(ii) K c T r ( M , V x ) if Mn is an irreducible full submanifold of ΆN

with n>2.

For the proof of Theorem 5.1 we need the following well-known lemma.

Lemma 5.2. Let H be a connected Lie subgroup of SO(N), which acts

on RN as an s-representation, and let N(H)0 be the connected component

of the normalizator of H in SO{N). Then H = N{H)0 .

Proof of Theorem 5.1. Let k e K, and let kt be a differentiable curve

in K (t e [0, 1]) with kQ = id, k{ = k . Let p e M, and let γ(t) = kt p.

Clearly, Φ*(/) = (dkt)Φ*p(dkt)~ι, where Φ* denotes the restricted normal

holonomy group. Then

where τ^ is the Vx-parallel transport along γt = γ\[Q t], and ht =

(\)~l odkt. Hence, hχ = (τ^y1 o dk e N0(Φ*p). But, by [11], Φ;

acts on vs{M)p as an ^-representation. Then, by Lemma 5.2, there ex-

ists g = τc e Φ*, where c is a homotopically null loop at p such that
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dkls(M)p = τyoτtls(M)p

 H e n c e dkls(M)p = τtγls(M)p which proves part

(i). Since c is homotopically null, we have that τf\v ,M) = id. Assume

now, in addition, that Mn is an irreducible full submanifold. Then, from

Proposition 4.7, it follows that dk\^{M)p = τ y \ o ( M ) p = ^iγlo{M)p>
 w h i c h

proves part (ii).

6. Homogeneity of the slices under the normal holonomy group.

Proof of Theorem A

Let Mn = K.v be a compact irreducible full submanifold of E^ (n >
2). If ξ e VQ(M)V , then it is not difficult to see, from Proposition 4.7 and
Theorem 5.1, that Mξ = K(v + ξ), where

Mξ = {c(l) + ξ(l) such that c: [0, 1] -> M is piecewise C°° , c(0) = υ ,

and ξ is V -parallel along c with ξ(0) - ξ}

(cf. [7]). If ξ is small, then dim(Mξ) = dim(Mn), and it is standard to
show that rank(Λ^) = rank(M). Moreover, due to (Mξ)_ξ = M, Mξ

is also an irreducible full submanfiold of RN. If #{Kvξ) is maximal,
then vo{Mξ) is globally flat (ξ small). So, by passing perhaps to a parallel
orbit, we may assume that vo(M) is globally flat. Thus there exist globally
defined autoparallel distributions Eχ, , E on M and different V"1-
parallel n{, , ng e C°°{M, vo(M)) such that TM = E{®---®Eg and
AζXi = λi{ξ)Xi = (nrξ)Xi if { G C°°(M, vo(M)), X. e C°°(M, £ . ) ,
for I G / = { 1 , ) <?} Since Λ/ is contained in a sphere, «j, , n
are all different from the zero section, namely, the position vector provides
a parallel normal vector field to M, whose shape operator is minus the
identity tensor. Hence we can find parallel ξχ, ,ξg€. C°°(M, vo{M))
such that {ni, ξ.) = 1 if and only if i = j (i, j = 1, , g).

Let Ϊ € / be fixed, and let M* be the focal parallel manifold to M

through v +ξ,(v). Then M* = K(υ+ξΛv)), and the map π,: M -^ M* ,

π(i(q)) = £ + £,•(#) is a submersion. If ^ G M , then Γ^π~ ι(π (^)) =

^.( ί ) = k e r ( I d - ^ , and Γ^^M^ = Σ^Ej(q) = (E^ (cf. [15],

[7]). Let S^q) be the connected component of π~ ι (π (<7)) containing q.
Observe that S^q) is also the integral manifold through q of the dis-
tribution ker(/ - Aξ). Clearly St(q) c i/(Af̂  )π ( 9 ) , and moreover, we
have

Lemma 6.1. For the notation and assumptions of this section, let q e M
and let Kq = {k e K: kS^q) = S^q)}. Then (Kq)0 acts transitively on
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£.(?) and {K\ = (K{q+ξi{q)))0, where K{qHm is the isotropy subgroup

of K at q + ξ.(q) e Mξ \ and ( ) 0 denotes connected component of the

identity.

Proof From the transitivity of K on M and the fact that K preserves

the foliation E(, it follows that (K9)Q acts transitively on S^q). Since

nt: M -• Mξ is Λ:-equivariant and St(q) = (π~\πi(q)))q, the lemma

follows easily, q.e.d.

Let q e M be fixed; then ξ^q) e (y(Mξ))π.{q) W e d e n o t e > a s i n

[7], by Hoi * ( ΛMξ ) the subset of the normal bundle of Mξ , one gets by

translating parallel -ξAq) along any piecewise differentiable curve in M* .

We have that ~Mt(q) = Hol_^ ,q\{Mξ ) is always an immersed submanifold

of v(Mξ ) (if Mξ is simply connected it is actually embedded). If A1 is

the shape operator of Mξ , then Aι_ξ ^ = A_ξ^(I - Aξ^)~ι, where A1

is the shape operator of M restricted to the foliation (E^ . It is easy

to check that 1 is not an eigenvalue of Aι_ξ^ . Thus f. = e x p ^ )\M.(Q)

is an immersion (cf. [7, Theorem B]). Let c: [0, 1] —• Mξ be a piecewise

differentiable curve in Mξ with c(0) = nt(q), and let c: [0, 1] -> M be

its horizontal lifting to M with c(0) = q (i.e., nχ: o c = c and c(t) G

(^ι)e(o V/ € [0, 1]). We easily see, as in [7], that if η(t) is a parallel

normal vector field to Mξ along c, then η(t) may also be regarded as

a parallel normal vector field to M along c. If η(0) = -ξ^q), then we

have η{t) = -{,.(£(*)) for all ί e [0, 1]. Thus

which shows that /.(M^q)) c M and that πz o yj = p r | ^ (^ }, where
pr: v[M) -> Λf is the projection. It follows now immediately that /j
is 1-1.

From the above facts and [7, §2] we easily get
Lemma 6.2. By the notation and assumptions of this section, we have,

for all i el, qeM,

(i) f.: Mt{q) -^RN is a l-l immersion,

(ii) ^.(ί) + Φ J Γ ί t e )(-ί J.(ϊ)) c π~r\πi(q)), where ΦKj{q) denotes the nor-

mal holonomy group of Mξ at nt{q),

(iii) T^ΪM^q)) = ( ^ ) i " θ r ! C ί t e ) Φ ; ί t e ) ( - ί . ( 9 ) ) f where Φ* denotes
the restricted normal holonomy group.
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Let i el be fixed and let, for q e M,

It is easy to see that for given k e K, Έ^k.q) = k^Έ^q)) (recall that
since M is irreducible, fc+(ί, ) = ζ due to Theorem 5.1). Thus 2?. define
a C°° distribution in M , which is AΓ-invariant.

We have the following fundamental proposition.
Proposition 6.3. By the notation and assumptions of this section, we

have, for all q e M,

(i) Et = Ei9

(iii) St{q) is an orbit of an s-representation.

Proof By decomposition, we have v(Mξ )π ^ = Vo θ \ s , where Vo is

the set of fixed points of Φ*, , and \ s = V^ . If -ξ^q) = v0 + υs, where

i; 0 GV 0 , vs e\s, then due to Theorem 5.1 (i) we have that (Kπ^)ovs C

Φ* ,Λ)S. But Lemma 6.1 and Lemma 6.2(ii) imply that Φ*.(^(v0 + υs) c

( < ) K ) h

and

Let now 60 be the Lie algebra of (Kπ^)0. Then

τ

q(
KnMM-φ)) = {X-vo + X.vs: X

Since (1) implies that

we have

Hence

(2) 71{/(9)(^j(9))o(-ί/(«)) = iX-vo- X e eo) x ί^ ^ : ^ e eo>-

Let now ^ 0 = {fc|Vo: k e (^ / ( β ) ) 0 }. ^ - j V s

: fc e ^ , ( « ) U ' a n d s e t

j
K = KoxKs. Then (Kπ((?))0(-ξ,.(<7)) C ^ ( - ^ ( ί ) ) . But, by (2), both

orbits have the same dimension. Thus

(*πl{,M-tM)) = *(-W>
Since S.(ήf) = (^ ( ( ί ))o(- ί , («))» >S

ί(^) i s a P r o d u c t of orbits. If we write
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orthogonally Ei = E{ θ E\ , then Et and E\ are both autoparallel distri-
butions of M. Let now

jei

Then TM = fyeSίf , where S)f = ~E\. Observe that S)t{q) = TJβϊ^qj).
Since M is irreducible, the proof of this lemma is now a consequence of
Lemma 1.1 and the following.

Lemma 6.4. (i) S)t and fyf are both autoparallel distributions {and
hence they are parallel).

(ii) a(X,Y) = 0 ifXeC^iM,^), YeC°°(M9S)f).

Proof. The fact that S)f is autoparallel has been shown. With respect
to ή 7 we get, by Lemma 6.2(iii), that it is integrable. Let q G M, and let
ζ e C°°(M, uQ(M)) be parallel such that λx(η(q)), ••• , λg{η(q)) are all
different, where λx = (n{, ), , λ = (n , ) are the different eigenval-
ues of the shape operator A restricted to vo(M). Let X( e C°°(M, Et),
Yj e C°°(M,E.) where i φ j . A similar computation involving the
Codazzi identity as in the proof of case (b) of Lemma 2.2 shows that

= -X.(λ.(η))Y. + Yj{λi{η))Xi - λWlXi, Yj] + An\X,, Y.]

which implies that Vχ Y. e C°°{M, ή 7), since ή7 is integrable and clearly

invariant under A due to the splitting of St(q). In a similar way it is

shown that VzYj e C°°(M,ίιz.) if Zk e C°°{M,Ek) for k φ i φ

j . Since Eχ, , Eιr, , 2? and £'/ are all autoparallel, we can now
conclude that S)t is autoparallel. It is an easy fact that two complementary
autoparallel distributions must be parallel. Hence we obtain part (i).

Let now η e C°°(M, vo(M)) and ψ e C°°(M, u(M)). If X, Y e

X(M), then ^(X, Y)η = 0 (due to the theorem of Ambrose-Singer).

Thus, by the Ricci identity, Aψ commutes with Aη and hence preserves

its eigenspaces at any point. Since η is arbitrary, A E. c E for all

j e I. Since fif C E., by the Gauss equation we have a(X., Y) = 0

for all X. e C°°{M, E.), j' φ /, and Y e C°°(M, fif). Let now X. e

C°°(M, ̂ .J and let a1 be the shape operator of S((q) as a submanifold

of R . Since Sf (̂ ) is a totally geodesic submanifold of M which is

invariant under the shape operator A , a(Xf, 7) = aι{Xi, Y) = 0 due to

the splitting of S^q) (see the proof of Proposition 6.3). Hence we obtain

part (ii).
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Remark 6.5. The fibers of the projection of an irreducible homoge-
neous submanifold of the Euclidean space to a parallel focal manifold are
homogeneous under the normal holonomy group of the focal manifold
(compare with the Homogeneous Slice Theorem of [7]).

Proof of Theorem A. Let Mn , n > 2, be a compact homogeneous
irreducible full submanifold of R^ with rank(M) > 2. Without loss of
generality we may assume that M = K.v , where v e RN, and K is a
connected compact Lie subgroup of SO(N). We may assume, perhaps by
considering a parallel orbit, that vo(M) is globally flat (see the beginning of
this section).We want to show first that M is a submanifold with constant
principal curvatures (see [7]). We will use the notation of this section.
Since E{, - , E are invariant under the shape operator A of M, it
suffices to prove, for any / e I, that A ,t,\E has constant eigenvalues,
where η(t) is an arbitrary parallel normal vector field to M along some
arbitrary C°° curve c: [0, 1] —> M. The property of having constant
principal curvatures is equivalent to the fact that the higher order mean
curvature tensors (in the symmetric tensor algebra of the normal bundle)
be parallel (see [16]). Then we may assume that c is either vertical or
horizontal with respect to M -4 M* (i = 1, , g).

Case a. c is vertical, i.e., c: [0, 1] —• S^q) for some q e M. Since
St(q) is a totally geodesic submanifold of M and E{ is invariant under
the shape operator A, we get that η(t) is also a parallel normal vector
field to S iq) along c and that - ^ ^ K ^ . ) = A ^ , where A is the shape

operator of S.(q) as a submanifold of RN . Since S^q) is a submanifold
with constant principal curvatures (by Proposition 6.3(iii) and [14]), then

C 0 I ^ s t a n t eigenvalues.

Case b. c is horizontal with respect to M -> Mξ . In a similar way as

[7, p. 170] we can prove that η(t) is also a parallel normal vector field to

Mξ along π^c. Let r1": v(Mξ)π{c{0)) -> v(Mξ)π{c{ι)) be the V^-parallel

transport along nioc. Then r 1 (£,.(£(()))) = 5^(1)) (see Lemma 6.2 and

Proposition 6.3) and ^(//(O)) = J/(1). Since τL is an isometry, we get

that
_L rθ , ± v - l _ 7l

where ^f°, ^ ! are the shape operators of 5z(c(0)) and 5^0(1)) respec-

tively. Thus Al,x, has the same eigenvalues as Aη^ . Since Aη^E^e^ =

i j ( e ) (β = 0, l ) ,weget(b).
Then we have shown that M has constant principal curvatures. Then,

by [7], M is either isoparametric or a focal manifold of an isoparamet-
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ric submanifold. If M is isoparametric, since it is homogeneous, M
is an orbit of an ^-representation (see [15]). If M is a focal manifold
of an isoparametric submanifold, let us say M, then cod(M) > 3 be-
cause rank(M) > 2. By the remarkable result of [17] (see also [12]),
M is an orbit of an ^-representation. Hence M is also an orbit of an
^-representation.

7. Some remarks

Remark 7.1. If M is an orbit of an irreducible ^-representation which
is not most singular, then rank(M) > 2 (see [6]).

Remark 7.2. Theorem A is also true for a homogeneous submanifold
of the sphere, which is not compact, i.e., the orbit of a Lie subgroup of
SO(N) the proof is essentially the same. Theorem C is also true if M is
not compact.

Remark 7.3. It is an open problem to determine the orbits of compact
Lie groups which are taut. It was not solved, even in the case of flat
normal bundle. For this special case Theorem A provides an answer. More
generally, if M is a homogeneous compact full submanifold of RN with
flat normal bundle, the following statements are equivalent:

(i) M is taut.
(ii) M is Dupin.

(iii) M is a submanifold with constant principal curvatures.
(iv) M is an orbit of an ^-representation.
(v) The first normal space of M coincides with the normal space.

Are the following following statements equivalent for arbitrary compact
orbits?

Theorem A could be included in a more general result as follows:
Conjecture. Let Mn , n > 2, be a homogeneous irreducible full sub-

manifold of the sphere which is not an orbit of an ^-representation. Then
the normal holonomy group acts transitively on the unit sphere of the
normal space.
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