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LP COHOMOLOGY OF CONES AND HORNS
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Abstract

We prove the conjecture of J. Brasselet, M. Goresky, and R. MacPherson
on the isomorphism between Lp cohomology and intersection cohomol-
ogy for a stratified space with a Riemannian metric and conical singular-
ities. We prove the extension of this conjecture to spaces with /-horn
singularities, where f{r) is any C°° nondecreasing function.

We study the Lp Stokes property which states that the minimal closed
extension of d acting on if forms coincides with the maximal one. We
prove that it implies the Borel-Moorse duality between the complexes of
Lp forms and I? forms. We also prove the converse for spaces with
/-horn singularities under the condition that the integral /0

£ f(r)~ι dr
diverges.

1. Introduction

J. Cheeger [4] discovered that the L2 cohomology of a compact strati-
fied pseudomanifold with respect to a metric which has conical singulari-
ties, is isomorphic to its upper middle-perversity itersection cohomology.
He showed that this is also the case for the singular metrics which he called
f-horns; locally they are of the form dr2 + f{r)2g where r is the radial
coordinate (i.e., the distance from the singular point), g is the metric on
the link of the point, and / is a function of r of the form f(r) = rc with
c > 1 in case c = 1 we get a cone. If L is the link, then the /-horn over
it is denoted CfL. (See Definitions 3.1.1 and 3.2.1.)

M. Nagase [7] considered the case c < 1 and showed that when L
cohomology is isomorphic to the intersection cohomology, although with
a different perversity, greater than the middle one and dependent upon the
value of c.

J. Brasselet, M. Goresky, and R. MacPherson [2] conjectured that the
Lp cohomology of a metric with conical singularities is isomorphic to the
intersection cohomology with a perversity p which corresponds to Lp

cohomology: p{k) = max{/ e Z|z < k/p} .
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Here we consider the Lp cohomology of /-horns for any p, 1 < p <
oo, and for any function / which is nondecreasing and C°° for r >
0. We introduce the (Lp, /)-perversity pervLp f to generalize ~p (see
Definition 3.1.4) and we prove the following generalization of the above
conjecture.

Theorem (See Theorems 3.1.2 and 3.3.1.). (a) Suppose that the maxi-
mal closure of the operator d in the Banach space of all Lp forms on the
link L has closed range. Then the Lp cohomology of the horn C L is
given by

Hk

P(CfL) = { H*p{L) ίfk - P e r V , / ( d i m L + !)>
L [0 ifk > perv£p ^(dimL + 1).

(b) If X is a stratified space with a metric and f-horn singularities, then

/
The idea behind this theorem is as follows. In the low degrees the

radially constant forms (the ones which are pullbacks from the link) on

the horn Cs L are Lp integrable, and this is why the Lp cohomology

of CJ L are isomorphic to the Lp cohomology of the link. In the higher

degrees the radially constant forms are no longer Lp integrable, and the

Lp cohomology of CJL are zero.
The proof uses the explicit integral homotopy operators, introduced by

Cheeger [4], which come from the two contractions: the first one contracts
the horn (which is topologically a cone) to its vertex and is used to prove
the vanishing of Lp cohomology in the higher degrees; the second one
contracts the punctured horn (with the vertex removed) to the link and is
used to prove the cohomology isomorphism in the lower degrees.

Our second result concerns the Lp Stokes property. This property can
be formulated as follows: the maximal closed extension of the operator
d in the Banach space of all Lp forms coincides with its minimal closed
extension, so that no "ideal boundary conditions" at the singularities can
be imposed. (See Definition 4.1.1.)

This property was first introduced by Cheeger [4] in case p = 2 (he

called it L Stokes theorem) for the following purpose: he showed that it

implies that the natural homomorphism from the space of L2 harmonic

forms to L2 cohomology is monomorphic.
We reformulate this property in the sheaf-theoretic language (see Defi-

nition 4.1.1) and show that it implies the duality between Lp cohomology
and Lq cohomology for 1/p + 1/tf = 1, where the duality is understood
in the Borel-Moore sense (see Theorem 4.3.1). In case p = q = 2 this
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means that the L2 Stokes property implies that L2 cohomology is dual to
itself, i.e., satisfies Poincare duality, in agreement with the results of [4].

In case p = 2 [4] it turned out that the converse is true: if the L2

cohomology is dual to itself, then the L2 Stokes property holds. More
precisely, according to the calculations of [4], the L2 cohomology is iso-
morphic to the intersection cohomology with respect to the upper middle
perversity, hence, it is dual to the intersection cohomology with respect to
the lower middle perversity; the two are the same on the sheaf theoretic
level if and only if the middle-degree L2 cohomology groups of the links
are zero (or the links are odd-dimensional, as in case of complex-analytic
spaces). According to [4], this is the condition for the L2 Stokes property
to hold. In other words, although the L2 Stokes property does not hold al-
ways, the only obstruction to it is of cohomological nature: the L Stokes
property holds if and only if there is duality in the L2 cohomology.

We generalize this statement to the case of any p and any / .

Theorem (See Theorem 4.9.1). Suppose that the integral /J f{r)~ι dr
diverges. Then the Lp Stokes property holds on a space with f-horn sin-
gularities if and only if its Lp cohomology is BoreUMoore dual to its Lq

cohomology.

The condition that the integral Jo

ε f{r)~ι dr diverges, is sharp: if it is
not satisfied, then for any space with /-horn singularities and for some p ,
the If Stokes property does not hold (see Example 5.12.1) even if there
is no cohomological obstruction to it (i.e., if the duality holds between If
cohomology and Lq cohomology).

In §2 we develop a general theory of Lp cohomology. We define the
relevant complexes of sheaves and apply them to show that the Lp coho-
mology defined by using only the smooth Lp forms is the same as the Lp

cohomology defined by using all Lp forms. We give a condition for our
sheaves to be fine ("partitions of unity with bounded differentials").

In §3 we define the horn singularities and formulate our theorems con-
cerning the isomorphism of Lp cohomology and intersection cohomology.

In §4 we define the Lp Stokes property, prove that it implies the coho-
mological duality in general, and formulate the converse in case of horns.

In §5 we prove our theorems about spaces with horn singularities.

2. Generalities on Lp cohomology

2.1. The two closures of d . Let (X, g) be any Riemannian manifold,
not necessarily compact, and let E be a unitary local system on X with
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the pairing E <g> I -+ C fixed. We shall assume that all differential forms
take values in E.

Denote by Λ Q ( Z , E ) the space of C°° λ -forms on X with com-
pact support. Let p be a real number, 1 < p < oo, and denote by
Ωk

Lp(X, g, E) the space of such fc-forms ω on X with locally summable
coefficients for which the integral fχ \ω\pdγolg converges, where \ω\ is
the pointwise norm of ω with respect to g, and d voL is the volume form

of g . This is a Banach space with the norm ||ω||Lp = (fχ \ωfdvolg)
 lP .

Denote by Ak

LP(X, g, E) the space of all C°° forms lying in Ωk

LP(X, g, E).
We shall omit X, g and E from the notation when it does not cause con-
fusion.

We denote K\P{X ,g,E) = φk Ak

LP(X), Ω\P{X, g, E) = 0 f c Ω j , ( * ) .

Let

domdl,{X, g,E) = {ωe A*LP(X)\dω e A]p(X)}9

domd[P(X, g, E) = 0 d o m ^ ( X , g, E).

All these topological vector spaces depend only on the quasi-isometry class
of g . (Two metrics g and g are said to be quasi-isometric if there exist
global constants C, C' > 0 such that C# < g < C'g .)

The operator d in Ω^ΛQ is densely defined on the subspace
domdlp(X). It has a weak closure: da = β in the weak sense if a, β 6
Ω^P (Λf) and da = β as distributions. The following proposition is well
known.

Proposition 2.1.1. 77ze weak closure of d in Ω*P(X) is also its strong
closure, and the latter is well defined.

Proof. We need to show that if da = β in the weak sense, then for
any ε > 0 we can find aε e domd^P(X) such that ||α - aε\\Lp < ε,
\\da - daε\\Lp < ε. If X is a domain in Rn with Euclidean metric, then
this statement is due to [5]; the general case follows immediately, q.e.d.

Denote the weak (= strong) closure of d in Ω*LP(X) by d, and its

domain by dom d*LP (X, g, E).
The Banach spaces Ω*LP (X, E) and Ω ^ (X, E) are dual to each other

if l/p + \/q = 1 we define the duality pairing by

ί ί
I ( -

Jx

(ω, φ)^ I (-1) ωΛφ,
J

where ω e Ω]P{X, E), 0 e Ω^(X, I ) , fc = degω.

Proposition 2.1.2. The adjoint to the operator d in Ω'L<(X, I ) is the
strong closure of d: Λ*(X) -> Aj(JT) m ίAe space ω e Ωm

Lp(X, E). In
particular, this strong closure is well defined.
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(The proof_goes by a standard argument.)

Denote by dmϊn the strong closure of d: A*0{X) -> Λj(Jr) in Q*,(JT, E),

and its domain by domd*, m i n ( ^ , g, E).

We shall consider A*(X), dom </£, (ΛΓ), domrf*P(Z), and

domrfLp m i n(X) as complexes with differentials d0, d, d, and rfmin .
2.2. The cohomological approximation theorem.
Theorem 2.2.1. The inclusion άom d*Lp{X) «-* dom J* P (Z) induces the

isomorphism of cohomology.
The proof of Theorem 2.2.1 is in §2.7.
In case p = 2 this theorem was proved by J. Cheeger [4, Appendix].

However, I chose not to follow Cheeger's ideas as I had trouble under-
standing one point in the proof there, namely, why the operator R£ =
- o R£ 2 o R£ { on page 144 of [4] is always smoothing.

My trouble is as follows. Denote the chart in Y on which the operator
Rε is constructed, by φ.: ( - 1 , 1)" ^ U. c X. This operator has the

property that for any L2 form θ on Y, the form Rε fi is smooth on

φ.(-l/4, 1/4)1' and coincides with θ outside of φ.(-l/29 1/2)". How-

ever, the operator R£ . may, in principle, destroy the smoothness proper-

ties in the region 0f.[(—1/2, l/2)"\(-l/4, 1/4)"] as it involves the integral

operator 3?. Hence, eλ̂ en if the composite operator Rp . , o o Re

is smoothing on the union of the regions ^.(-1/4, 1/4)" for j < i, the
application of Re t may destroy the smoothing property on the part of

this union which intersects with φ.[(-l/29 l/2)"\(-l/4, 1/4)"]. This is

why it is not clear to me why the operator R£ = o R£ 2 o R£ χ is

smoothing.
2.3. The sheaves.
Definition 2.3.1. A singular Riemannian space is a topological space

o

with an additional structure consisting of an open subset X c X ("the
o

top stratum") and the structure of a C°° Riemannian manifold on X.
By abuse of notation we shall often denote a singular Riemannian space

and its underlying topological space by the same symbol.
Let X be a singular Riemannian space, and let E be a unitary local

o

system on X with the pairing E ® E -• C.

We define the sheaf Ω*Lp x E in the following way: for each open set

U c X, the space of sections Γ(t7 Ω ^ x E) is the space of all forms ω
on U Π X which have the property that for every point P e U there is
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o

some neighborhood V of P in U such that ω\ o G Ω ' # Π I , E ) .

vnx L

In other words, Ω*P χ E is the sheaf of forms which are locally Lp in
a neighborhood of any point of U, regular or singular. This means that
these forms must be I? at all regular points and satisfy certain growth
condition near the singular points; there is no restriction on the growth at
the boundary of U.

The sheaves Λ ^ x E , dom d\p χ E and dom dLP x E are defined in
a similar way: a section at P of one of these sheaves is required to lie
in the space A * P ( F n I , E ) , domd]p(V n ί , E ) , o r dom d*LP (V Π X, E)
respectively, for some open neighborhood V of P. All these sheaves
are the sheaves associated to the presheaves formed by the corresponding
vector spaces of If forms.

The sheaves Λ! Y F and domrf*P . γ F must be defined somewhat
U, Λ , Mi L , min, X , E

more carefully: a section at P must coincide with some element of the

space Λ O (FΠX,E) or domdLp m i n ( F Π l , E ) in a smaller neighborhood
V1 of P. The reason is that the elements of the spaces Λ j ( Γ Π l ) and

Φ o

domdLp min(V Π X) satisfy certain vanishing conditions at the outside
boundary of V which we do not impose on the sections of the sheaves0,*,E ^/,min,*,E

All these sheaves are graded by the degree of the forms so that

Λk

k

Θ Ak

jk

jαomr
k

domdm

τp γ F = ff)domdk

τp γ F ,

domdrp γ F = ffidomrfrp F . ,

A:

^O,AΓ,E = V l 7 ^ 0 , ^ , E '

As before, we shall drop E, and even X, from the notation when it
does not cause confusion.
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o

Note that Λ* χ = j,A'p o where j : X <-> X is the imbedding map.

We also define the sheaf

by the formula άom d*Lp 0 x = j}άomd*LP °χ\ this is the subsheaf of
φ O

dom dLp χ consisting of all forms whose support does not intersect X\X.

The differentials d, d, dQ, dmin , and dQ make dom d\p, dom d* P,

Λj , dom dLp m i n , and dom dLp 0 complexes of sheaves.
If X is compact, then

^ ^ x),

άomd'Lp(X) = T(X\ ^

; domd*Lp

We shall sometimes write domrf^W and domd\P{X) instead of

• ° — °
dom dLp (X) and dom dLp (X), respectively.

2.4. Collars and cubes. Consider the open segment (0,1) with the
Euclidean metric dt2 , and the product (0, 1) x X with the direct product
metric and with the local system pulled back from X. By [0, 1), (0, 1],
and [0,1] we shall denote the segment containing one or both of its
endpoints.

Theorem 2.4.1. The homomorphisms of complexes
pr*: άomd]p(X) -> domrf^((0, 1) x X)

and
pr*: άomTLp{X) -> d o m ^ ( ( 0 , 1) x X)

defined by the projection pr: (0, 1) x X -> X, induce cohomology isomor-

phisms.
For p = 2, E = C, this is Theorem 2.1 of [4]. The proof given there

extends to the general case without any changes whatsoever.
Corollary 2.4.2. For any local system E on X as above, the homomor-

phisms
άomd*Lp(X) -+ domdlP((P, l)n x X)

and
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domTLP(X) - domίζ,((0, 1)" x X)

induce cohomology isomorphisms.
Consider the case X = (0, l)n with the Euclidean metric. Of course,

in this case the local system E has to be trivial, say, E has to be trivial,
say, E = C.

Corollary 2.4.3. The complexes d o m ^ ( ( 0 , 1)", C) and

dom^p((0, l) n , C) are resolutions of the trivial local system C.
Both corollaries are obvious.
Let us turn to the "sheaf-theoretic" analogues of these results. Let X be

a singular Riemannian space. We shall consider (0, l]x X as a singular
Riemannian space in the following straightforward way: its top stratum is

o

(0, 1) x X and the metric is the direct product. As before, we assume the
o

local system is pulled back from X. A homomorphism of complexes of
sheaves is called a quasi-isomorphism if it induces isomorphisms on the
stalk cohomology.

Corollary 2.4.4. The homomorphisms of complexes of sheaves
pr άovadjj χ <—» dovadLp ,0 ^xX and pr dova dLp χ <-+ dom dLP /
are quasi-isomorphisms.

Proof This follows immediately from Theorem 2.4.1.
Theorem 2.4.5. The homomorphisms of complexes

pr*: Γ ( Z ; domd[p x) -> Γ((0, \ ) n x X ;

and

pr*: Γ(Z; domd%

LP x) -> Γ((0, 1)" x X\ d o m ζ , ( 0 x

induce cohomology isomorphisms.
Proof The statement is similar to Theorem 2.4.1 and Corollary 2.4.2.

The same homotopy operators (see §3 of [4] or the proof of Lemma 5.2.3)
work equally well in this case.

Theorem 2.4.6. For any smooth contractible Riemannian manifold Y,
the homomorphisms of complexes

pr*: T(X\ άomd'Lp χ) -> T(Y x X\ domd^ YxX)

and
pr : T(X\ άomdLp χ) -+ T{Y x X\ άomdLp YxX)

induce cohomology isomorphisms, where pr denotes the projection YxX ^
X.

Proof Denote by p r r the projection Y x X -> Y. It follows from
Theorem 2.4.5 that the complex of sheaves pr y ^domd^p YxX on Y
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is quasi-isomorphic to the complex of constant sheaves on Y given by
Y ( X \ ά o m d m

L P χ ) .
Since Y is contractible, the hypercohomology of any complex of sheaves

&* on Y (which is a quasi-isomorphism invariant) is isomorphic to the
cohomology of the complex of global sections Γ(Γ; IF*), which is, con-
sequently, also a quasi-isomorphism invariant.

Hence, the cohomology of the complex T(X\ dom d]p x) is isomorphic

to the cohomology of Γ( 7 ; pr y ^ d o m ^ YxX) = Γ(YxX; domd^p YxX).
This is the first statement of our theorem, and the second statement is

proved similarly, q.e.d.
Consider the imbedding j : (0, l ) x l ^ ( θ , 1] x X.
Corollary 2.4.7. The imbeddings of complexes of sheaves

and

are quasi-isomorphisms.
Proof By Corollary 2.4.4 and Theorem 2.4.5, both complexes of

sheaves are quasi-isomorphic to pr* dom d\p χ .

2.5. U cohomology of compact manifold with boundary. Let X be a
compact Riemannian manifold with boundary dX. We shall consider it

o

a singular Riemannian space with the top stratum X = X\dX.
o

Note that a section of the sheaf dom dm

LP χ is a C°° form on X which

is Lp near dX. Because of this, we shall use (both here and in §2.6) the

following convention: a C°° form on X means that it is C°° only on
o

X it does not mean C°° through the boundary dX.
Proposition 2.5.1. The inclusion domd^ χ ^ dom d*Lp x induces a

quasi-isomorphism of complexes of sheaves.
Proof The statement is local on X. At any point of X there is a

fundamental system of neighborhoods which have the property that each
of them is diffeomorphic to a cube and the restriction of the metric on it is
quasi-isometric to the standard metric on the cube (0, 1)" . Consequently,
the quasi-isomorphism follows from the results on the cubes (Corollary
2.4.3).

Lemma 2.5.2. In this case both dom <ΓLP x and dom d'LP χ are com-

plexes of fine sheaves.
(Obvious.)
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Corollary 2.5.3. In this case

(1) H*(domdlP(X)) £ H\domd[P(X)) £ //#(X; E).

(Obvious.)

2.6. Strong approximation on compact manifold with boundary. Let
X be a compact Riemannian manifold with boundary dX. We shall
assume that the boundary is a union of two disjoint (possibly empty) parts,
dX = dχX Ud2X. Let U{ and U2 be some neighborhoods of dχX and
d2X, respectively.

Proposition 2.6.1. Suppose that ω is an Lp form on X, wΛ/cΛ zs C°°
in U{ and such that dω is a C°° form everywhere in X. Then for any
ε > 0 we can find ψε e domd'LP(X) such that \\ψε\\LP < ε, \\dφe\\Lp <
ε,ω + dψε is C°° on X\U2 and Suppy/ε does not intersect dX. (In
other words, ψε is supported outside some neighborhood of dX, possibly
smaller than UχUU2.)

Proof Case 1: ω is an exact form, ω = dφ with φ an Lp form.
By the definition of the strong closure of d, for any ε > 0 _we can find
φε> e domd^p(X) such that \\φe, - φ\\Lp < ε and \\dφε> - dφ\\Lp < ε .
Choose a C°° truncation function / which is equal to 1 on X\{U{ U U2)
and 0 in a neighborhood of dX, and take ^ ε = f(φε>-φ). Then ω+dψε

is C°° in X\£/2 . If ε' is small enough, then ||yε | |LP < ε, ||rf^β||Lp < ε
Case 2: ω is a closed form, i.e., dω = 0. Using the cohomology

isomorphism (1), we can find a C°° form ω e d o m d ^ W which is
cohomological to ω, i.e., ω = ω +dφ where φ e domd*LP(X) in partic-
ular, dφ is C°° in C/j. Applying the argument of Case 1 above to dφ,
we get ψε € domd'Lp(X), such that | |^JLJ> < ε, ||rf^e||Lι» < ε, dφ + dψε

is C°° in X\U29 and Supp^ ε does not intersect dX. As dφ + dψε is
C°° in X\C/2,ω + ̂ ^ ε = ω/ + rf(/) + rfv/e is also C°° in X\U2.

Case 3: ω is any form in dom d'LP(X) which is C°° in C/j and such
that dω is C°° everywhere. As dω is C°° , we can use the cohomology
isomorphism (1) to find φ e domD*LP{X), such that dφ = dω. Then
d(ω -φ) = 0,ω-φe dimd*LP(X), and ω - φ is C°° in C/j . The
argument of Case 2 above yields ψε e domd\P{X) such that ||ye||Li> < ε,

Lp < ε, ω-φ+dψε is C°° in Λf\£/2,and Supp^ ε does not intersect

dX. As ω-φ + dψε is C°° in ^\ί7 2 and (/> is C°° everywhere, ω + dψε

is C°° in X\U2.
2.7. Strong approximation on smooth noncompact manifold.
Theorem 2.7.1. Let X be any Riemannian manifold. Suppose that

ω is an if form on X whose differential is C°° in other words, ω e
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dom dLp(X), dω e domd^P(X). Then for any ε > 0 we can find ψε €

domd'Lp(X) satisfying \\ψe\\Lp <ε, \\dψe\\LP < ε , and ω + dψε is C°°.
Proof. Take a C°° exhaustion function / : X —• R such that

/ " ((—oo, c]) is compact for any c € R. The set of critical values
of / is closed in R and is of measure zero; hence, its complement is
open and dense in R. We can choose an increasing unbounded sequence
cγ, c2, ••• e R in this complement. Then f~x{c^) is a smooth compact
submanifold in X for any i.

For ι = l , 2 , 3 , — , let Yt = f~\[ci_2, ci+ι]) it is a compact smooth

manifold with boundary dYt = /~1(c._2) U f~ι(cM) (we assume c0 =
" 1

c_χ = -oc and / " (-00) = 0 ) . Let Y. = Yi\dYi = Γ ((c^, ci±})).

We shall construct ψε as ψε = χι+χ1+χlf-\— where χ. e domdLP(X),

Supp/ c Yi, ||χz | |L, < εz, | | ^ | | L P < εz, and Σ ^ < ε . The forms χ. are
constructed inductively in such way that Φ( = co+d(χ{-\-χ2-\ \~χ.) is C°°

on /~ ((—oo, cj) (for / = 0 this is trivially satisfied as / " ((—oo, c0])
is empty). In other words, we need to construct χi+χ so that φ.+ι =

Φi + dχM is C°° on Γ\(-oo,cM]).
Apply Proposition 2.6.1 for the compact manifold Yi+ι , whose bound-

ary dYi+ι consists of two parts, i.e., dYi+ι = dxYi+l U d2Yi+1, where

dJM = Γ\ct_x) and d2YM = r ! (c / + 2 ) . Let C/, = Γ^c^c,))

Let f/z = φt\γ this form is C°° on C/j and dr\i is C°° everywhere

on Yi+ι. Proposition 2.6.1 yields a form ψε e domd*Lp(Yi+ι) such

that H^JI < β/+1,||rf^+iH < *M,ηi + dψe2 is C°° on γ;.+1\£/2 =

f~l([Ci-ι' c/+ i l) ' a n d S u PP ΨeM

 € / " ^ ( ^ - l > c/+2)) τ h e l a t t e r Property
shows that ψε can be extended by zero to the entire X let χi+ι be this

extension. Then χM e domdm

Lp{X), \\χM\\ = | | ^ J | < ε / + 1, ||rf^/+1|| =

H^e II "̂  ε/+i Finally, φi + dχi+ι coincides with 0z on some neighbor-

hood of f~\{-oc, c^j]), and with ni

Jtdψε^ on 7/+1 hence, φ(+dχM

is C°° on / " ^ ( - o o , ^ ] ) . q.e.d.
Proof of Theorem 2.2.1 (The cohomological approximation theorem).

Our argument in Cases 2 and 3 in the proof of Proposition 2.6.1 shows
that the cohomology isomorphism between the complexes dom^(^) and
dom d\P (X) implies the "strong approximation" of the kind asserted in
Proposition 2.6.1 and Theorem 2.7.1. It is not hard to see that this
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argument can be reversed to show that the "strong approximation" of
Theorem 2.7.1 implies the cohomology isomorphism of Theorem 2.2.1.
q.e.d.

Corollary 2.7.2. For any singular Riemannian space X and any local
system E, the imbedding homomorphism dom d\p χ E «̂-> dom dL? χ E is
a quasi-isomorphism of complexes of sheaves.

(Obvious.)
Definition 2.7.3. For a Riemannian manifold X, its Lp cohomology

H]p{X\ E) is the cohomology of the complex άom d]p(X\ E ) 0Γ> equiv-
alently, dom dLP {X E). For a singular Riemannian space X, its If

o

cohomology H\p (X E) is the if cohomology of its nonsingular part X.
Clearly, if X is compact, then

(2) H*LP(X; Έ)^H*(Γ(X; domd^ χ E)) * H*(Γ(X; d o m 3 ^ ^ ) ) .

2.8. Partitions of unity with bounded differentials. Let X be a locally
compact singular Riemannian space.

Definition 2.8.1. We say that X has partitions of unity with bounded
differentials if for any point P e X and any neighborhood U c X of
P we can find a continuous function / : X —• R which is equal to 1 in
some smaller neighborhood of P, has compact support inside U, is C°°

o

on X and such that the pointwise norm of its differential \df\ is globally
bounded.

The reason for the name is that if this condition is satisfied, then for any
open covering X = \J Ui we can find a locally finite refinement X = \J [/'
(so that each U[ lies inside some [/.) and a partition of unity 1 = J2f(

o

where each f. is continuous on X, is C°° on X, Supp ft c Ut and there
exist some bounds \dft\ < C..

Proposition 2.8.2. If X has partitions of unity with bounded differen-
tials, then the sheaves domd^ χ> domdLp χ and άom dLp m i n x are fine.

Proof Using the partition of unity 1 = Σ.// > w e c a n decompose any
form ω as ω = Σffi* where each summand is bounded in the graph
norm as ||rfC/)ω)||L, < ||yjrfω||Lp + ||έ//)Λω||LP and ||rf/)Λω||Lp < Cz | |ω| |Lp.
The rest of the argument is standard, q.e.d.

We shall see (Proposition 3.2.2) that cones and horns have such par-
titions of unity. Also, any singular Riemannian space X which can be
embedded in a smooth Riemannian manifold in such way that the met-
ric on X is locally quasi-isometric to the restriction of the metric on the
ambient manifold, has such partitions of unity; they can be obtained by
restricting onto X the partitions of unity that exist on the ambient man-
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ifold. An example of this kind is given by a complex projective variety
with Fubini-Study metric.

Example 2.8.3. Let X be the blowup of the complex plane C2 cen-

tered at the origin, and let the Riemannian metric gχ be the pullback

to X of the standard metric on C2 . Then the sheaves dom d\p χ and

άom dLp χ are not soft. Indeed, take two noninterecting closed subsets
of the exceptional divisor, and take a germ of functions on their union
which is equal to 0 in a neighborhood of one of the subsets, and to 1 in
a neighborhood of the other. This is a germ of sections of each of these
sheaves which cannot be extended to a section on X. This shows that
both sheaves are not soft, and consequently, not fine; X does not have
partitions of unity with bounded differentials.

Moreover, if p < 4, this germ of functions can be approximated (in
the graph sense) by functions supported away from the exceptional divi-
sor. (To see this, note that a neighborhood of our closed set in X cor-
responds to a union of two disjoint conical parts of a small ball in C2.)
Hence, for p < 4 this germ of functions is a germ of sections of the sheaf
dom d\p m i n χ which is, consequently, not soft either.

3. Cones and Horns

3.1. Metric horns and their if cohomology.
Definition 3.1.1 (Cf. [4]). Let (X, gx) be a singular Riemannian

space. The metric f-horn C*X is the cone [0, 1) x X/0 x X with

the structure of a singular Riemannian space given by the top stratum

CfX = ( 0 , l ) x l c CfX and the metric dr2 + f{rfgχ on it, where r is
the coordinate on (0, 1) and / is a C°° positive nondecreasing function
on (0, 1].

In case f(r) •++ 0 as r -» 0, the horn metric is quasi-isometric to the
product ("collar") metric which has been studied above (see §2.4). All the
theorems about the horns formulated below, hold in this trivial case too;
nevertheless, we shall leave to the reader to check this and shall always
assume that /(r) -> 0 as r -• 0.

Cheeger [4] required that f(r) = O(r) as r —> 0 we do not need this
requirement.

o

Consider the natural projection pr: (0, 1) x X -+ X. If X is equipped
Or O

with a local system E, then the top stratum of the horn CJ H = (0, 1) x X
is equipped with its pullback pr* E we shall always assume this implicitly.

Let m = dimR X.
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Theorem 3.1.2. (a) If the integer k is such that /J f(r)m~pk dr is con-

vergent, then the operator pr*: Ωk

LP(X) —> Ωk

LP(CfX) is bounded and in-

duces a cohomology isomorphism H^P(X) -^ H^P(C^X).

(b) If the integer k is such that /J f{r)m~pk dr is divergent, then

Hk

P(CfX) = 0,

provided that either k > mjp+ 1 or Im{d: domdLp (X) —• domdLp(X)}

is closed in Ωk

LP{X).

For example, if / = rc, then part (a) of this theorem covers all k <
m/p + l/pc, and part (b)—all k > m/p + l/pc.

Generally, let e = inf{α: e R| j j f{r)~a dr = oo} . Note that the "bor-

derline" integral /J f(r)~e dr may either converge or diverge.
Part (a) of our theorem covers all k < I, and part (b)—all k > I, where

{ max{fc|/c < (m + e)/p} if the integral /J /(r)~ e rfr diverges,

max{A:|/c < (m + ^)/p} if /Q f{r)~e dr converges.

This integer / depends on /?, / and m = dim X.
The proof of Theorem 3.12 is in §5.
Remark 3.1.3. We shall see later that the condition k > m/p + l in the

part (b) of the theorem can be somewhat weakened. The actual property
that we shall use in the proof is too cumbersome to formulate here. It is
formulated precisely in Remark 5.9.1.

Definition 3.1.4. We shall write / = pervLp y(m+l) . We shall consider

pervL/, j a function of m + 1 and call it the (Lp , f)-perversity.

Clearly, e > 0 always and / = pervLp Jm+l) > [m/p]. Moreover, the

(Lp, /)-perversity is linear: for some real (or rational) number e > -1

we have perv£P f(s) — [(s + e')/p].

In case f{r) = r (the conical metric) we have

pervLp r(s) = max{fc e TL\k < s/p}.

This perversity was introduced in [2], and Theorem 3.1.2 in case f(r) = r
was conjectured there.

3.2. Metric with /-horn singularities. Let X = Xn D Xn_χ = Xn_2 D
- D Xχ D Xo be a stratified pseudomanifold of dimension n. This
means the following: X is a topological space, each closed stratum Xk is

o

a closed subset of X, each open stratum Xk = Xk\Xk_χ is a smooth k-
o

manifold, and each point P e Xk has a neighborhood U c X, a compact
stratified pseudomanifold L^ of dimension « - /c - 1 ("the link") and a
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o

strata-preserving homeomorphism φ: (UnXk)xCLp ^ U which induces
a difFeomorphism on each stratum; here CLp = [0, 1) x Lp/0 x Lp is
the cone over Lp with the obvious stratification. Note that X is locally
compact since each link Lp is compact.

o o

Keeping in line with our previous notation, we denote X = Xn .
o

Definition 3.2.1 [4]. Let g be a Riemannian metric on X, and let /
be as in Definition 3.1.1. We say that g has f-horn singularities if the
homeomorphisms φ above can be chosen in such way that φ*g is quasi-

o ,

isometric to the product metric on (U Π Xk) x C Lp . We shall also say
that (X, g) is a singular Riemannian space with f-horn singularities.

Proposition 3.2.2. If X is a singular Riemannian space with f-horn
singularities, then X has partitions of unity with bounded differentials.
In particular, the sheaves dom d\p χ , dom dLp χ, and dom dL? m i n χ are
fine.

Proof Indeed, any point P has a neighborhood U of the form U ~
o ,

(Uf)Xk)xCJ Lp where the metrics on both sides are quasi-isometric. It is
O r-

fairly obvious that on (U ΠXk) x CJ Lp we can find continuous functions
with bounded differentials which are equal to 1 in a neighborhood of P
and vanish outside a somewhat larger neighborhood, q.e.d.

3.3. The isomorphism with intersection cohomology. For a perversity
p , we denote by J*££ χ E the complex of intersection chain sheaves with
coefficients in E, and by IHj(X; E) the intersection cohomology of X
with coefficients in E with respect to perversity ~p. Indexing notation: we
denote by J^^x what is denoted by IC*" 2 " in [6].

Theorem 3.3.1. Let X be a singular Riemannian space with f-horn
singularities. Then there is a canonical isomorphism in the derived category
of sheaves

domd% γ w =J& γ F

L , X , E perv^p /•, X , E

If X is compact then, in addition, there is a canonical cohomology isomor-
phism H*L,{X9 E) -

Proof Take any P £ X, say, P e Xm, and take U c X and Lp as
above; we may choose U in such way that UΓ\Xm is contractible. Using
induction by n — dimX, we may assume that H*Lp(Lp) = ///*erv p (Lp).

As Lp is compact, IH*eτv p (Lp) is finite dimensional, and so is H^P(Lp).

By the Open Mapping Theorem, Imd is closed in Ω*Lp(Lp). By Theorem
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3.1.2,

Hk (CfL ) = { ^^^ ifk~ VervLp,An ~ m ) '
L P \ 0 if k > pervLp f(n - m).

is compact,

Hk

P{Lp) ^ Hk(Γ(Lp; d o m ^ , L ))•

By Lemma 3.3.2,

Hk

LP(CfLp) * Hk(T(CfLp; domd*LP cfLp)).

As ί7 ~ ((7 Π Zm) x CfLp , it follows from Theorem 2.4.6 that

Similarly,

Hk(Γ(U\Xm d o π n ζ , ^ ) ) = Hk(Γ(CfLp\P; ^

As the metric on CfLp\P is locally—at every point of C^Lp\P—quasi-
isometric to the product metric on (0, 1) x Lp , we have

Hk(Γ{CfLp\P; domd*LpcfLp)) £ i/*

Putting all this together, we get

^ ί H*(Γ(C/\JΓW d o m ^ , χ ) ) if * < pervL^//i - m),

[ 0 if /: > perv£P ^(« - m).

The first statement of the theorem now immediately follows from the the-
orem on the uniqueness of the intersection cohomology [6]; the second
one—from (2).

Lemma 3.3.2. Let L be a compact singular Riemannian space. Then

Hk

P(CfL) s* Hk(Γ(CfL; d o m r f ^ ^ ) ) .

Proof. The difficulty here is that the horn C^L—which is topologically

an open cone, Cf L = [0, 1) x L/0 x L—is not compact.

We first define the compactification CfL of CfL as ~CfL = [0, 1] x

L/0 x L with the same metric on the top stratum; let j denote the imbed-

ding i

ness,

ding map CfL ^ CfL. Clearly, Hk

P{CfL) = Hk

P{CfL) by compact-

Hk

P(CfL)*Hk(Γ(CfL;
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On the other hand, note that the imbedding dom dm

p ^/ «-• j^ dom d\p C/L

of complexes of sheaves on C L is a cohomology isomorphism: this is
trivial on CfL and follows from Corollary 2.4.7 on the "outside bound-
ary" 1 x L. As both complexes consist of fine sheaves, this implies the
cohomology isomorphism on the complexes of global sections:

Hk(T(CfL; domdl,^)) * Hk(Γ(CfL'J^

Here

Hk(Γ(CfL; j^domd[P cfL)) = Hk(Γ(CfL;

and we finally get

Hk

P(CfL) £ Hk(Γ(CfL;domd*LP cfL)).

Remark 3.3.3. Choosing different functions / for different strata, we
also get intersection cohomology, but with other perversities, not neces-
sarily linear, and any perversity can be obtained this way; this has already
been shown by Nagase [7]. For large enough p , we have the bottom (zero)
perversity; choosing either small p or choosing a function / with a large
value of e (e.g., / = rc with small c > 0), we get the top perversity
1, l(s) = s - 2, and even 1 + 1 (the latter perversity yields the intersec-
tion cohomology which is not a topological invariant of X but is rather

o

isomorphic to the cohomology of X see [1]).

4. Lp Stokes property

4.1. Lp Stokes property via sheaves. Let X be a singular Riemannian
o

space and E a unitary local system on X with a pairing E x E - > C as
above.

The sheaf dom dLp m i n χ E is always a subsheaf of dom dLp x E .

Definition 4.1.1. We say that X and E satisfy Lp Stokes property

at a point P e X if the stalk at P of the sheaf dom d\P m i n x E co-

incides with the stalk of dom dLί> x E . We say that X and E satisfy

Lp Stokes property everywhere if they satisfy it for every P e X, i.e.,

Remark 4.1.2. Suppose that X is compact. If Lp Stokes property

is satisfied everywhere on X, then domdLP min(X) = dom dLp(X) (both

spaces are subspaces of Ωm

Lp(X)). The converse is also true (again, in case

X is compact), provided that the sheaves domdLp x E and
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dom d*Lp m i n χ E are soft, e.g., if X has partitions of unity with bounded
differentials.

For p = 2, this notion was introduced (in the global form only) by
Cheeger [4]; he showed that it implies that the homomorphism from the
space of L closed and coclosed forms into the L cohomology has no
kernel. Let \jp + l/q = 1 we shall show that this property (for any
p) implies the Borel-Moore duality between the complexes of sheaves
dom dLq x g and dom dLp χ E , and, in case X is compact, the duality
between if cohomology and Lq cohomology.

4.2. Borel-Moore duality. Recall that for a bounded below complex of
osoft sheaves of vector spaces, say, ^ = {0 -> &k -> ̂ k + ι -* } , its
Borel-Moore dual [3] is defined as

χ 0},

~ is the sheaf whose sections on an ope
given by
where &~ is the sheaf whose sections on an open subset U c X are

Then by Verdier duality Dχ^
m is isomorphic in derived category to

RβlΌm'^* , Ώχ) where Ώχ is the dualizing complex on X, Ώχ = f 'C,
/ being the map from X to the one-point space.

As usual, for a complex ^"* we shall denote by ^'[k] the same com-
plex with the grading shifted by k degrees, k e Z, (^[k])1 = ^ M .
According to our conventions, on a smooth oriented manifold M of (real)
dimension n , DMCM * CM[m], or DM(CM[m]) * (DMCM)[-m] * CM .

4.3. Lp Stokes implies duality. Let X be a stratified pseudomanifold
of dimension n which also has the structure of a singular Riemannian

o o

space given by a Riemannian metric on X = Xn .
We say that a complex of sheaves on X has constructible cohomology

with respect to the given stratification if the restriction of its cohomology
sheaves onto the open strata are local systems on these strata.

Theorem 4.3.1. If the complexes of sheaves άom dLp m i n χ E and
dom dLq χ g are c-soft, and dom d\q χ E has constructible cohomology
{with respect to the given stratification on X), then there is a canonical
isomorphism in the derived category

Dχdomd[P min χ E^ domd[q x Έ[n],

Corollary 4.3.2. Suppose that Lp Stokes property is satisfied everywhere
on X, X has partitions of unity with bounded differentials, and one of
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the complexes of sheaves dom dLp x E and dom d\ q χ E has constructible
cohomology. Then these complexes of sheaves are Borel-Moore dual to each
other, i.e., Dχ dom dLP x E = dom dLq χ E[/ι], α/w/ v/ce versa.

/£ in addition, X is compact, then there is Poincare duality between
Hk

P(X,Έ) and H^k(X,Έ).
(Obvious.)
4.4. Proof of Theorem 4.3.1. We shall construct a quasi-isomorphism

of complexes of sheaves

d o m ζ , xtΈ - (Dχdomd[P m i n χ E)[-n].

For that purpose, we shall construct the quasi-isomorphisms

(4) ΓiU domT^ χΈ)^Γ(U]DχdomTLP minXE)[-n]

for all open neighborhoods U of any point P e X, which have the form
o o

U ĉ  (U Π Xk) x CLp , where U ΠXk is diffeomoφhic to an open ball.
With U chosen this way, the cohomology of the left-hand side of (4)

is finite dimensional as the complex of sheaves dom dLq χ E has con-
structible cohomology.

The right-hand side in (4) is, by the definition of the duality functor Dχ ,
the space (or, more precisely, the complex) of all (not only continuous in
any sense) linear functional on Γc(ί7; dom dLP m i n χ E)[n]:

minXM)[-n] = Hom(Γc(C/; domd[P m i n χ E)[n], C).

The homomoφhism (4) comes from the pairing

(5) ΓC(U; domd[P m i n χ E) x Γ(U\ domd[gχΈ) -+ C[-n]

given by

(6) (ω9φ)~ [ (-\fk+l)/2ωΛφ,
J

where ω £ TC(U\ domrf*P m i n χ E ) , φ e Γ(C7; domd%

Lq χ E) and k =
deg ω . The integral is well-defined since Supp ω is a compact subset of
U, φ is Lq on Supp ω and we can use a version of Holder's inequality
for forms. The homomorphism (4) thus constructed, commutes with the
differential by Proposition 2.1.2. Note that the integral is nonzero only if
degω + degφ = n which accounts for the shift [-n] in (5).

Let us see that (4) is a quasi-isomorphism. Note that Γ(C/; dom d^q χ E)

is the domain of the maximal closure d of the operator d in the space
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Γ((7; Ω ^ x E) with the topoloogy given by the family of seminorms
|| \Lq κ where K can be any compact subset in U,

O f \

f oN^vol
KΠX /The topological dual to this space (i.e., the space of all continuous lin-

ear functional on it) is ΓC(Ϊ7; Ω ^ χ E) we are not concerned with the
topology on this vector space.

The adjoint to the (unbounded) operator d in Γ(C7; Ω ^ x g) is the

operator dmin in Γc(U\Ω'Lp x E ) . This implies that the orthogonal

complement to subspace lmd c Γ ( C / ; Ω * ί χ E ) is the subspace

Kerrfmin c Γc((7 Ω ^ x E ) , and the orthogonal complement to Kerrf c

Γ(C7; Ω,'Lg x E) contains the subspace I m d m i n c Γc(t/; Ω ^ x E ) .

Claim. The orthogonal complement to the subspace Kerrf in
Γ(C7; Ω*g ^ E coincides with the subspace I m ^ m i n in Γc(ί7; Ω ^ χ E ) .

Note that the factorspace Kevd/lmd is the cohomology of the left-
hand side of (4), and we have already seen that it is finite dimensional; by
the Open Mapping Theorem, the subspace lmd is closed in Γ(U; Ω*« χ ψ).

Proof of the Claim. The operator d yields a continuous linear operator

(7) — L >X>E)

Kerrf

where Imrf c Γ((7; Ω ^ ^ E ) , and Γ(C/; domί/L9 χ E) is understood in
the graph topology; the operator (7) is one-to-one. As lmd is closed in
Γ(ί7 Ω*Lq χ E ) , we can apply the Open Mapping Theorem which shows
that the operator (7) has a bounded inverse. Hence, there is a bounded
operator

Kera?

Consequently, for any continuous linear functional φ on Γ(f/; Ω ^ x E)

which vanishes on Kerd (i.e., an element of Γc(t/; Ω ^ ^ E) orthogo-

nal to Kerd), we have a continuous linear functional (d )*φ on lmd c

Γ(C7; Ω ^ z E ) . Choosing some continuous linear extension ^ of (d )*φ

on the entire Γ(C/; Ω ^ ^ E ) , we get ^ G Γc(ί7; Ω*P χ E ) , dminψ = φ.

q.e.d. _ _
It follows that the subfactor Kcrd/lmd in Γ(C/; Ω*« ^ g) (or in

m i n χ E)) is the topological dual to the subfactor
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Yjsτd/lmd in Γ(C/; Ω ^ ^ g ) ( 0 Γ i n Γ(u> d o m ^ , z , i ) ) with respect
to the pairing (5). As Kerd/Imd is finite dimensional, the topology is
unique and Kerrf m i n /Imd m i n is finite dimensional too.

The right-hand side of (4) is H o r n e t / domd*, m i n χ E )[n], C). Its

cohomology is dual to the cohomology of ΓC(U domrf^p m i n χ E)[n], i.e.,

to Kera?m i n/Imi/m i n , and consequently, is isomorphic to Ker^/Imrf.
This shows that the homomorphism (4), indeed, induces a cohomology

isomorphism.
Finally, it is clear that the homomorphisms (4) for different open subsets

U c X commute with restrictions. This completes the proof of Theorem
4.3.1.

4.5. When Lp Stokes is satisfied on cones and horns. Theorem 4.3.1
implies the following corollary.

Corollary 4.5.1. Let X be a singular Riemannian space with f-horn

singularities. If if Stokes property holds on X, then there is an isomor-

phism in derived category J^^ p (X) = -^\-vtτw q {X) where 1 is the

top perversity, Ί(k) = k - 2.
Proof. Indeed, for any perversity p, DχJ*£^ = <J*S^_p[n], n = dim X.

q.e.d.
Let us see when the isomorphism

is possible. The equality pervL/> v =7-pervL<7 y,i.e., perv£P j (k) =Ί(k)~
pervL<7 Λk) for all integers k > 0, would always imply this isomorphism;
it can be rewritten as

(9) perv.p Jk) +ρerv M Λk) = k-2.

However, (8) may hold even if (9) does not.

Remark 4.5.2. Let p and q be any perversities. If p Φ q, then the

isomorphism JWj = J?£ί is equivalent to the following cohomology van-

ishing: for every k and every P e Xk, IHlj{Lp) = 0 for all integers /

satisfying either p(k) < I < q{k) or q(k) < I < p(k), where Lp is the

link of P.

It follows that if (9) is not satisfied, then the isomorphism (8) is equiv-
alent to the cohomology vanishing

for any k, any P e Xk and any / satisfying either

(9a) pervLPf(k) <l<k-2- pervLgj (k)



580 BORIS YOUSSIN

or

(9b) k-2- ρervL, f(k) < I < pervLPf{k).

Consider the conical case f(r) = r. We have already seen that perv£P >r(fc)
= max{/ eZ\i< fc/p} . In this case the equality (9) for all integers k > 0
is impossible as clearly

r/c-2 ifk/pez,
perv.p ί/c) + perv.9 ί/c) = <

^ ' r ^ ' r I A: - 1 otherwise.

Hence, the equality (9) is equivalent to k/p e Z which cannot hold for
all k as p > 1.

In other words, "usually" 1/ Stokes is not satisfied for the conical
metrics since (8) is not satisfied. The following two phenomena can cause
(8) to be satisfied.

First, it may happen that the strata of codimension k such that k/p £
Z, are simply absent in X this is the case for complex manifolds and
/? = 2;see[4].

Second, it may happen that the cohomology group IH^eTy p (Lp), where

Lp is the link at a point P and / = pervLp r(k), vanishes for every point
o

P € Xk and every k such that k/p £ Z. (This value of / is the only
one that satisfies (9a) or (9b).)

Any of these two phenomena (or their combination) may cause (8) to
be satisfied for a singular Riemannian space with conical singularities.
Otherwise, as perv£P r>~t-pervL<7 r, there is no morphism

domd*Lp χ E - > ( D χ ά o m d L q χ ^ ) [ ] ,

and consequently, there is no pairing in derived category

domdLp χ E (8) domdLq χ E -» O^[-«],

where Bχ is the dualizing complex of X.
• If f(r) = rc with c < 1, then both pervL^ f and pervL* f are larger
than in the conical case, and for (8) to hold, it may be necessary for the
cohomology groups / ^ e r v p (Lp) to vanish in some range of degrees, as
opposed to just one degree s = I in the conical case. However, as we
shall see in §5.12, in this case the Lp Stokes property does not have to be
satisfied even if (8) holds.

If f(r) = rc with c> 1, then

Pervz/\/ = m&x{/ £ Z|/ < (k - \)/p + l/pc}.
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It is easy to see that then pervL/, f + pervL<7 f is equal to either k - 2 or
k - 1, and it is trickier to distinguish these two cases explicitly. Similarly
to the conical case, the isomorphism (8) is equivalent to the cohomology
vanishing

for any k not satisfying (9), any P e Xk and / = pervL/, f(k). Theorem
4.9.1 shows that in this case the isomorphism (8) is, indeed, equivalent to
the Lp Stokes property.

4.6. Lp Stokes for collars.
Proposition 4.6.1. Let X be a singular Riemannian space satisfying Lp

Stokes property. Take a e Γ((0, l ) x l ; dom~d*LP ( 0 1 ) x / ) , β e Γ((0, l)x

X\ domdLq ( 0 1 ) x Λ r ) , such that one oj the forms α, β is supported inside
(0, 1) x K for some compact subset K in X. Then for almost all a, b e
(0, 1), a<b,

f d{aAβ)= f aΛβ.
J(a,b)xX JbxX-axX

This is a straightforward generalization of Lemma 3.1 of [4], The proof
given there, extends to our case without any changes whatsoever.

Proposition 4.6.2. Let X be a singular Riemannian space which has
partitions of unity with bounded differentials. If U Stokes property holds
on X, it also holds on (0, 1) x X with the metric of direct product. (For
the local system on (0, 1) x X we take the pullback of the local system on

x )
Proof. We know that dom dLp χ = dom dLp m i n χ , and we need to

show that domTLP {0 ι)xχ = domd[P m ^ ( 0 1 ) x X .

Take any germ of sections of dom dLP ( 0 1 ) x Λ Γ at some point P e
(0, 1) x X, say, φ; we may assume it is defined on an open subset of
the form (a, β) x U c (0, 1) x X where U is an open subset of X. We
want to show that φ is a section of dom dLp m i n ( 0 1 ) x χ 5 possibly, in a
smaller neighborhood of P.

Using partitions of unity, we may assume tht φ has compact support

inside (a, β)xU. Proposition 4.6.1 implies that for any ψ e Γ((a, β) x

U\ domd*Lq ( 0 Λ ) x X ) we have

L d(φ Λ ψ) = 0.
!(a,β)xU

In terms of the duality pairing (5), it means that for any ψ e Γ((α, β) x

U domd*Lq {0 {)xX) we have (dφ, ψ) = (φ,dψ).
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On the other hand, we know that the adjoint to the operator d in
Γ((α, β)xU; Ω , ( 0 1 ) x X ) is the operator rfmin in

Hence, φ e domdmin, i.e., φ e Tc((a,β) x U\ domrf^ m i n ( 0 Λ ) x X ) .

q.e.d.

4.7. When duality implies Lp Stokes. Let X be any singular Rieman-

nian space.

Proposition 4.7.1. Suppose that the imbedding morphism of complexes

of sheaves domrf*/, m i n χ <-> dom d'Lp x w a quasi-isomorphism, and, in

addition,

(10) ΊmdcdomTjp m i n x ,

where Imd = Im{domrf*p χ -+ domύί^ ^} . ΓΛe« Lp Stokes property

holds on X.
Proof Indeed, consider the complex of sheaves

m i n χ .

As the imbedding dom dLp m i n ^ «^ dom dLP χ is a quasi-isomorphism,
the quotient complex is acyclic. On the other hand, the property (10)
shows that the differential in the quotient complex has zero image, i.e., is
equal to zero. Hence, the quotient complex is zero, q.e.d.

Clearly, the Lp Stokes property implies the inclusion (10).
4.8. The noncohomological obstruction to Lp Stokes. Now we wish to

analyze property (10). Let X be a singular Riemannian space which has
partitions of unity with bounded differentials.

Proposition 4.8.1. Property (10) is equivalent to each of the following
properties:

(a) For any open subset U c X, if ω e Γc(ί7; domdLP χ E ) , φ e

Γ(U domdLq x g), then fv dω Λ dφ = 0.

(b) Same for ω e ΓC(C/; domdLp χ E ) , φ e Γ c([/; domdLq x g).

(c) Same for ω e ΓC(C/; domd^p χ E ) , 0 e Γc(ί7; d o m ^ x E)

Proo/ Obviously, property (10) is equivalent to Imd c Kerrfmin

where Kerrfmin = K e r { d o m ^ m i n χ E -, d o m ^ P m i n χ j E } . Using par-

titions of unity, we see that the inclusion of sheaves Imd c Kerrfmin is

equivalent to the inclusion of vector spaces

Imd = Im(d: ΓC(U; Ω ^ ) J j E ) - ΓC(U; Ω^^ > E ) }

c Kerrfmin = Ker{dm i n: Γ c([/; Ω ^ χ > E ) - Γe(U; θTL, f X > 1 )}

for each open ί7 c X .
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We know that TC(U\ Ω ^ x? E) is the topological dual space to the space

Γ(C7; Ω ^ ^ g ) , and Kerrfmin in the first space is the orthogonal comple-

ment to Imd in the second. Hence, the inclusion Imrf c Kerrf . as
# mm

subspaces of TC(U\ ΩLP x E) is equivalent to the orthogonality between
Imd c TC(U; Ω ^ x?E) and \md c Γ(C/; Ω ^ x E) which is precisely
the statement (a).

Obviously, (a) implies (b). To see the opposite, take ω and φ as in
(a), and find a truncation function / which is equal to 1 on Suppω and
has compact support inside U. Then Supp fφ is compact and

[ dωΛdφ= [ dω Λ d(fφ) = 0.
Ju Ju

Finally, (b) and (c) are equivalent because domd*, χ E and

^ χ 5 E a r e dense in domdLp χ E and dom^L<7 χ E with respect
to the graph norms.

o

Example 4.8.2. Take X = [0, 1] with Euclidean metric, so that X =
(0, 1). Properties 4.8. l(a)-(c) are satisfied on X for any p simply because
dimZ = 1 and deg(dω Λ dφ) > 2 .

On the other hand, these properties are not satisfied on (0, 1) x X =
(0, 1) x [0, 1] for any p . A counterexample to 4.8.l(a) is given by ω =
yh(x), φ = x where x is the coordinate on the first factor (0, 1), y is
the coordinate on the second factor [0, 1], and h(x) is a C°° function
on (0, 1) with compact support.

Remark 4.8.3. This shows that although Lp Stokes property on X
implies If Stokes property on (0, 1) x X, the similar assertion is not
true for the properties 4.8.1(a)-(c).

These properties are known to hold in the following cases: cones and
horns, p = 2, see the precise conditions in [4]; cones and horns, any p,
see the precise conditions in Theorem 4.9.1; complex algebraic varieties
with Fubini-Study metric, p = 2, see [8, §4, assertion P2]. In all cases
these properties follow from estimates similar to the ones used to prove
cohomology vanishing, but somewhat more delicate.

In Example 5.12.1 these properties do not hold but the imbedding
domJ% • y^domd'rp γ is a quasi-isomorphism.

i> , min, Λ Li , Λ.

4.9. The if Stokes property on the horns.

Theorem 4.9.1. Let X be a singular Riemannian space of dimension

n with f-horn singularities, and suppose that f is such that the inte-

gral /J f(r)~l dr diverges. Then the isomorphism in the derived category

DχάomcΓLp x E = domrf*ί z Έ[n] implies the Lp Stokes property on X.
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The proof of this theorem is in §5.10.

If f(r) = O(r) (this was the assumption of Cheeger [4]) then, of course,

the integral /J f(r)~ι dr diverges. In particular, the conical case f(r) = r

falls into this category. We shall see later in Example 5.12.1 that the

condition that the integral /J f(r)~ι dr diverges, is sharp as otherwise the

U Stokes property does not hold on X for at least some p , whether there

is an isomorphism DχdomdLp x E = domdLq χ ^[n] or not.

Nagase [7] considered the case f(r) = rc with c < 1 in this case the

integral / 0 f(r)~ι dr does converge.

5. Calculations on cones and horns

Here we prove Theorems 3.1.2 and 4.9.1. Our main instrument is the

two homotopy operators %? and ^ . The operator %f corresponds

to the contraction of the horn to its vertex; the explicit contraction Tε

appears in §5.6. The operator %?x corresponds to the contraction of the

horn to the link. We prove the homotopy formulas for these operators

which, first, yield the cohomology isomorphisms, and second, give certain

decompositions which we use to prove the if Stokes property.

5.1. Notation. We shall write a < b if a < Cb for some constant C,

and a ~ b if a < b and b < a.

Let X be a singular Riemannian space of dimension m, and let gχ

be its Riemannian metric. Denote by / the maximal integer k such that

Jo f(r)m~pk dr converges; then / = pervL/, f(m + 1).

The top stratum ('the regular part") of Cf X is diffeomorphic to (0, 1) x
o

X\ we shall denote the coordinate on the first factor (0, 1) by r. If ω
o

is a fc-form on (0, 1) x X, we denote its Lp norm by \\ω\\LP c/χ. For

r e (0, 1), we denote by \\ω\\Lp r the Lp norm of co\rxX with respect to

the metric gχ on r x X.

Let ω = ω(r, JC) = ωχ(r, x) + dr Λ ω 2 (r, x) where ω{ and ω 2 do

not involve dr. Then for the pointwise norms with respect to the metric

dr2 + f{rfgx on CfX we have \ωλ\ < \ω\, |ω 2 | < | ω | , |ω | 2 = | ω j 2 +

|ω2|
2, |ωf ~|ω/ + |ω/.

Let dvolχ and dvol denote the volume forms on X and C X re-
spectively. Then

dvol = f{r)mdrΛdγolχ

and
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f\\ωfLpiC

fx = / f

(11) ~ fcfχ(\ω/ + \ω/)f(r)m dr Λdvolχ

\r^~P^w uP r/ \in— p(k— 1),

'•) IK 112 + /(r) ^ ; |0

Note that (11) becomes an exact equality if either ωχ = 0 or ω 2 = 0.
5.2. Radially constant forms.

Lemma 5.2.1. The operator pr*: Ω^(ΛΓ) -» Ω^cΛjQ w bounded in

If norm if and only if the integral /J f(r)m~pk dr is convergent.

Proof Take any ω e Ωk

LP(X). Then from (11),

II Pr ω\\ P i = / f(r) " | |pr ω | | ^ rύ?A
./o

= \\a>\\PL> xflf(r)m~Pkdr. q.e.d.

We shall say that the form pr* ω is radially constant.
Remark 5.2.2. We see that the existence of a nonzero radially constant

form of degree k which is if integrable, is equivalent to the convergence
of the integral j j f{r)m~vk dr.

Denote by domc/^C^Y) the subcomplex of d o m ^ ( C X) consist-

ing of all those forms which are radially constant for 2/3 < r < 1, i.e.,

their restrictions onto (2/3, l ) x l c C^X are pullbacks of some forms

on X. Similarly, we shall denote by A ^ C 7 ^ ) and Ω]p(CfX) the sub-

spaces of A*Lp(CfX) and Ω*P(C/X) respectively, consisting of all those

forms which are radially constant for 2/3 < r < 1.

Lemma 5.2.3. The inclusion of complexes of vector spaces

άomd*Lp{CfX) ^ άomd'Lp(CfX) induces a cohomology isomorphism.
Proof By Theorem 2.4.1, there is a cohomology isomorphism

pr*: domd[P(X) -^ d o m ^ ( ( l / 2 > 1) x X) Moreover, there are explicit
homotopy operators ^ , a e (1/2, 1) which act on a form

, l)xX)

by the formula

(^ω)(r,x)= f ω2(t,x)dt,
J a

where ω = ω(r, x) = ωι(r9 x) + dr Λω2(r, x). For any
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for almost any a e (1/2, 1), they satisfy the equality (d^a + &ad)ω
= (Id-pr*P a )ω where the operator Pa\ d o m ^ ( ( l / 2

5 1) x x) ->
domd*LP(X) acts by the formula Paω = ω\axX . (See [4, §3].)

Let u{r) be a C°° truncation function which is equal to 0 for r< 1/2
and to 1 for r > 2/3.

Let %?a = u(r)%?a\ this operator preserves the subcomplex

domd]p{CfX). It satisfies (d%'J+%'Jd)ω = (ld-P'a)ω where P'a is some

operator dom d]p {Cf X) -• άom d%

Lp(CfX). Although P'a is not defined

on all forms in dom d*Lp (Cf X), for any ω e dom dlP(CfX), P'aω is de-

fined for almost all a. It is clear from this that the inclusion

domd*Lp(CfX) ^ domd]p(CfX) is a cohomology isomorphism, q.e.d.

Here is the reason we need the complex domd*LP{C X) and the spaces

λm

Lp(CfX) and ΩTLP(CfX): there is an operator P: &LP(CfX) -> Ωm

L,{X)

which acts by

Pω = ω\lxX.

The meaning of this formula is as follows: ω | ( 2 / 3 χ,χX is a pullback of

some form on X, and we take Pω to be equal to this form.

Lemma 5.2.4. The operator P: U\P{CfX) -> Ωm

Lp(X) is bounded in
Lp norm.

(Obvious.)

5.3. The homotopy operators. In order to prove Theorems 3.1.2 and

4.9.1, we introduce the two homotopy operators, %?x \ Ak

LP(C^X) —>

λk

Lp-\CfX) and ^ ° : Ωk

LP{CfX) -> Ωk

L7ι(CfX). They act on a form
α; = ω(r, x) = ωχ(r, x) + dr Λω2(r, x) by the formula

(12) (Jtraω)(r,x)= Γω2(t,x)dt
J a

for a = 0, 1 they transform any form which is radially constant for
2/3 < r < 1, into a form of the same kind.

Proposition 5.3.1. The operator %fa: Ωk

LP{CfX) -> Ωk

L7ι(CfX) where
a = 0 or a = 1, is well-defined and continuous with respect to Lp norm,
if and only if one of the following conditions is satisfied:

(a) If a = 0, then the integral

(13)

converges.
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(b) If a = 1, then the integral

•1

587

(14) / f{r)
Jo

m-p{k-\)
dt

converges.
Proof. Let h(r) = f(r){m-p{k-{))/p\\ω2\\LP r. Then by (11),

(15) \<L>,C'X ^ .c' r = f h{
J o

rf dr.

In particular, ω 2 is L p if and only if h is If .
As J^ f lω does not involve dr, by (11),

- f Waω\\P

LPJ{r)m-p{k-χ)dr.

Further,

(16)

fh{t)f{t)
J a

dt

-(m-p(k-\))lp
dt

where the equality takes place if ω2 is of the form h(r)φ(x) in particular,
for any nonnegative Lp function h the equality here does take place for
s o m e L" f o r m ω s a t i s f y i n g h{r) = f { r f m ~ p ( k ~ λ ) ) l P \ \ ω 2 \ \ L r t T . H e n c e ,

(17)
"Lp ,CfX

f h{t)f{t)-{m-p(k-χ)lp dt
Ja

f(r)
m-p(k-l)

dr,

where, as before, the equality can take place for any nonnegative Lp func-
tion h.

Comparing (15) with (17), we see that the operator <%"* is bounded if
and only if for some constant C, for any Lp function h , we have the
inequality

(18) i:\[ h{t)f{t)
-(m-p(k-\))lp dt fir)

m-p(k-\)dr

<C ί \h(r)\" dr.
Jo
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It will be helpful for us to rewrite the left-hand side of (18) as

(19)

f Γ h{t)Aty
Jθ Ja

dt f(r)
m-p(k-l)

dr

-(m-p(k-\))/p
dt dr.

Case a = 0: we need to show that the inequality (18) for all Lp func-
tions h is equivalent to the convergence of the integral (13).

If k > m/p + l, then we claim that the inequality (18) is always satisfied
and the integral (13) always converges. Indeed, in this case the exponent
-{m-p(k - l))/ρ > 0, so the integral (13) clearly converges. Let us show
that the inequality (18) is satisfied. Note that in (19) t < r as a = 0, and
consequently, f(t) < f(r) since / is nondecreasing, and so

f\fh{t)f{t)
Jo \Jo

-(m-p(k-\))lp dt fir)
m-p(k-\)

It is not hard to see that

/'I/' h(t)dt

< f\fh{t)dt
Jo \Jo

fl\h(r)\pdr;
Jo

dr.

the inequality (18) follows immediately.
If k < m/p + 1, then m -p(k - 1) > 0. If the integral (13) converges,

then the inside integral in (18) is a bounded function of r:

\ι:h(ήf(t)-{m-p{k-ι))/pdt

< ί \h(t)\f(t)-{m-p{k-ι))/pdt

\h(ή\pdt
-(m-p(k-\))/(p-\)

I-I/P

As the term f(r)m p{k x) is also bounded, the inequality (18) follows.
Conversely, suppose that inequality (18) holds for any if function h .

In particular, this means that the inside integral /J h{t)f(t)~{m~p{k~x))lp dt
in (18) converges for any Lp function h. This means that the function
/ m ~ 'p is Lq the latter property is the same as the convergence of
the integral (13).

Case a = 1: we need to show that the inequality (18) for all Lp func-
tions h is equivalent to the convergence of the integral (14).
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If k < m/p+1, then we claim that the inequality (18) is always satisfied
and the integral (14) always converges. Indeed, in this case the exponent
m -p(k - 1) > 0, so the integral (14) clearly converges. Let us show that
the inequality (18) is satisfied. In (19) t > r as a = 1, and consequently,
f{t) > f{r) since / is nondecreasing, -(m - p(k - \))/p < 0, and so
again

The same argument as above yields the inequality (18).
If k> m/p + 1, then -(m -p{k - l))/p > 0. If the integral (14) con-

verges, then the inequality (18) holds because, clearly, the inside integral
in (18) is a bounded function of r.

Conversely, suppose that the inequality (18) holds for any If func-
tion h. In particular, we can take h{r) = - 1 then for all r < 1/2 we
have $[h{t)f{ty{m-p{k-χ))lpdt > ε for some ε > 0. Hence, the conver-
gence of the left-hand side of (18) implies the convergence of the integral
Jo / 2 f{r)m~p{k~ι) dr, and the latter is equivalent to the convergence of
(14).

Remark 5.3.2. Let /0 be the minimal integer k for which the operator

•T0: Uk

Lp{CfX) -> nk

L7ι{CfX) is bounded. Then it is bounded for all
k > l0 this is due to the fact that if the integral (13) converges for some
value of k, then it converges for all larger values.

We have already seen that this integral converges for all k > m/p + 1
hence, lQ < m/p + 2.

Let /j be the maximal integer k for which the operator ^ 1 : Ak

Lp(C X)

-• λ!j7ι(CfX) is bounded. It is bounded for all k <lχ, since the integral

(14) converges for all values smaller than some value of k for which it

converges.

We have already known that this integral converges for all k < m/p+l

hence, lχ> m/p.

As ^ ° is bounded for all k > m/p + 1, and %fγ for all k < m/p + 1,

for any value of k at least one of these operators is bounded. Hence,

lx > lQ - 1. If the inequality here is strict, i.e., lχ > /0, then there are

"overlap degrees" k (satisfying lo<k <l{) in which both operators ^ F 0

and <%"1 are bounded.
We have denoted by / the maximal k for which the operator

pr*: Ωk

Lp(X) -> Ωk

Lp(CfX) is bounded, or equivalently, there exist nonzero

radially constant Lp forms of degree k. By Lemma 5.2.1, this / is
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the maximal k for which the integral /J f(r)m~pk dr converges. Clearly,

Remark 5.3.3. The "overlap case": if /0 < k < lχ and degω = k , then

both <%*°ω and ̂ ιω are defined and

- ^ V = Pr* ί ω2(t,
Jo

= pr PW ω.

5.4. The homotopy formula in degrees < /. We have seen above that
/ = lχ - l a n d s o k < I i s e q u i v a l e n t t o k <lχ.

Lemma 5.4.1. Let k <l. For ωe domdk

Lp(Cf X) we have

(20) (dJT1 + JTιd)ω = ω - pr* Pω.

In particular, d^ιω is Lp integrable.

Proof. Denote by d the operator which acts on forms on C*X by
exterior differentiation along X, i.e., by the x variables only, as opposed
to the r variable; then

dω = d(ωx(r, x) + dr Λω 2(r, JC))

o

As ω is a C°° form on (0, l ) x l , w e have

(21) (dJTιω)(r9 x) = d Γω2(t, x)dt

= dr Λω2(r, x) 4- / dω2(t,x)dt,

(^ldω)(r,x)= ί ( ι ^ X ) -dω2(t,x)) dt

= ω{(r,x)-ω{(l,x)- dω2(t,x)dt,
J 1

•f %f d)ω)(r, x) = ω(r, x) - ω{(l, x) = ω-pr* Pω.

Proof of Theorem 3.1.2(a). This follows immediately from the homo-
topy formula (20).

5.5. The operators ^ and the maps T£. Suppose we are given a fam-
ily of homeomorphisms Γe: [0, 1] -> [0, Γe(l)] depending on a parame-
ter ε > 0 and satisfying 0 < Tε(r) < r for any r e [0, 1] in particular,
0 < Γe(l) < 1. We shall assume that these homeomorphisms are actu-
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ally diffeomorphisms between (0, 1] and (0, Tε(l)], and that Γ e ( l )-+0

as ε —> 0. By abuse of notation, we shall also denote by Tε the map

CfX -+ C^Z given by (r, x)\-> (Te(r), JC) then the family Γε becomes

a contraction of the cone Cf X to its vertex.
We define the operators &z\ Ak

Lp(CfX) -> Ak

L7ι(CfX) by

= Γ
Lemma 5.5.1. If k > lQ, then %?ε is bounded in Lp norm, and for any

ωeΩk

LP(CfX) we have \\Jζω-J^°ω\\LPχfχ ^ 0 as ε-+0.

Proof The argument is similar to the one in the proof of Proposition
5.3.1.

Lemma 5.5.2. For ω e domd[P(CfX) we have {β?εd + dβ?ε)ω = ω -
T*ω\ in particular, if, in addition, T*ω is Lp, then dβζω is Lp too.

Proof This is similar to the proof of Lemma 5.4.1:

)(r, x) = dr Λ ω2(r, x) - dT£(r) Λ ω2(Tε(r), x)

+ / dω2(t,x)dt,

)(r,x)= / ^ -dωM,x)) dt

(22) • Jτ»K 9 t '

= ωι(r,x)-ω1(Te(r),x)- / dω2(t,x)dt.
JTε(r)

Adding up, we get

5.6. The definition of Tε. Take k > I + 1 so that the integral

fof(r)m~Pkdr diverges.

We make a coordinate change on CjX from (r, x) to (w, x) where

u(r) = ff(t)m-pkdt.

As r varies from 0 to 1, u varies from -oo to 0. Denote by r(ύ) the

function inverse to u(r).
We define the maps Γ£: (-oo, 0] -• (-oo, -1/ε] by Tε(u) = u-l/ε.
As w(r) identifies [-oo, 0] and [0, 1], we get the maps T£: [0, 1] ->

[0, Γe(l)] and Γε:
 7 7



592 BORIS YOUSSIN

fTake ω = ω, + dr Λ ω2 e domd'LP(CfX) and write ω = ω, + du A ώ2

where ώ = ω2/f(r)m~pk . Then by (11),

(23)

= f
J — o

where α = m - p(k - 1) +p(m-pk) - (m - pk) =p(m+ 1 - pk).
5.7. The homotopy formula in degrees > max((ra + l)/p, / + 1, / 0 ) .
Proposition 5.7.1. If k > max((m + l)/p, / + 1), //ze/2 /or αrcj; ω €

Ωk

LP(CfX) the form T*ω is Lp integrable and its norm \\T*ω\\LP cfχ -* 0
α ^ ε —• 0 .

Proof Note that the exponent a = p(m + 1 - pk) < 0 in (23) since
k > ( m + l)/p.

Clearly, Γe*ω = T^ωj + du /\ T*ώ2 , so
(24)

f
-OO

< f
J —o

because T*f(r(u))a = f(r(u - ϊ/ε))a > f(r(u))a since a < 0 and / is
nondecreasing. Performing a coordinate change in (24) yields

(25) /
J —o

As the integral (23) converges, the right-hand side in (25) is finite and
approaches zero as ε —> 0.

Corollary 5.7.2. If k > max((m + l)/p , / + 1, / 0 ) , then for any ω e
k /.

domdLp(CJX) we have

(26) {JT°d+ dJ^°)ω = ω.

In particular, d^°ω is Lp integrable.
Proof This immediately follows from Proposition 5.7.1 and Lemmas

5.5.2 and 5.5.1.
5.8. The homotopy formula in the borderline degree. Here we consider

the only case which has not been covered yet, namely, when the degree k
satisfies

(27) / < k < max((m + \)/p, / + 1, /0).
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Lemma 5.8.1. / + 1 < max((m + l)/p, / + 1, /0) < / + 2.
Proof. Obviously, max((m -f l)/p, / + 1, lQ) > I + 1.
As we have already noted in Remark 5.3.2, lχ = I + 1, lχ > m/p, and

l0 < l{ + 1. This shows that, first,

( / + 1 ) / i < = < l 5

P P * P P P

and second,

/ 0 - ( / + l ) = / 0 - / 1 < l .
Consequently, in any case max((m + l)/p, / + 1, /0) < / + 2. q.e.d.

Suppose that max((ra + l)/p, / -f 1, /0) > / + 1. This is possible only
if either

(28) (m + l ) / p > / + l

or

(29) / 0 > / + l .

(Both possibilities may hold together.)
The inequality (27) is possible only if max((m + l)/p, / + 1, /0) > / + 1

and

(30) k = l+l=lv

Since max((m + l)/p, / + 1, /0) > / + 1, one of the possibilities (28) or
(29) takes place.

It follows that k < m/p + 1. Indeed, we have either k < (m + l)/p
(28) or k < lQ (29), and /0 < m/p + 2 by Remark 5.3.2. Clearly, in both
cases k < m/p + 1.

In the assumptions of Theorem 3.1.2, we are in case (b) since k > I and

the integral /J f{r)m~pk dr is divergent; since k < m/p + 1, the subspace

lm(d: domdLp (X) -> domdLp{X)} must be closed in Ω^(ΛΓ).

The equality (30) means that if ω e άomdk

LP{Cf X), then β?xω is

defined, β?x dω is not necessarily defined as %*x is not bounded in degree

k + 1 > /j, and consequently, ^ dω is defined. If k < [m -h l)/p (28),

then possibly \Tlω\ϋχSχ * 0; if k < l0 (29), then J^°ω may be

undefined. Note that the operator pr* is defined and bounded in degree

k - 1 = / but not in degree k - I + 1.
Proposition 5.8.2. In any of these cases,

(31) l * °



594 BORIS YOUSSIN

for some ψ e domdj (X), provided that Imd is closed in Ωk

LP(X). In

particular, %? ω + pr* ψ e dom dLP {CJX).
Proof. (Cf. [4, Lemma 3.3].) Let ω = ω{+drΛω2. From (21) we

get

(dW ω)(r, x) = drΛω2(r, x)+ / dω2(t,x)dt.

As β?° dω is defined, βζdω —• ^° dω as ε —> 0. From (22) it follows
that

(32) {^εdω){r, χ) = ω{- T*ω{ - / dω2(t9 x)dt.

By (23),

«/ —CO

and, similarly to (24) and (25), we have

as ε -> 0.
Hence, we can take the limit in (32) and get

{β(? dco)(r, JC) = co{ — lim / dω2(t, JC) dt.

In particular, the limit exists here in the strong sense.
Adding up yields

pr pr

{dJ? ω + J? dω){r,x) = ω+ dωJt, x)dt - lim / dω2(t,x)dt
J\ ε-+°Jτε(r)

= ω - lim / dω2(t, x) dt.

Let

φ(r, JC) = lim / dω2(t, x) dt.

Clearly, φ is independent of r and we can write

(33) φ = φ(x) = lim dω2(t,x)dt = lim d ω2(t,x)dt.
o—•() /J? o—^0 ix

JO JO

Hence, φ lies in the closure of Im(d: Ωk

L7ι(X) -+ Ωk

LP{X)} in Ωk

LP(X).

By our assumptions, Imd is closed in Ωk

LP(X); hence, φ = dψ for some
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ψeΩk

L7ι(X)9and

dω = ω — pr* dψ

or
d(J^1 ω + pr* ψ) + JF° rfω = ω.

Remark 5.8.3. In case (28) does hold but (29) does not, the opera-

tor ^ ° is bounded in degree k, so Z ° ω is defined and the integral

Jj(o2{t,x)dt converges to P X ° ω = /J ω2(t, x)dt as δ -» 0. To-

gether with (33) this shows that PW°co = limδ_^of^ ω2(t9 x)dt lies in

άomdj {X) and we can take ψ = P^ω in (31). By Remark 5.3.3,

%? ω + pr* P%? ω — %? ω, so we can rewrite (31) as

In other words, in this case the homotopy formula (26) holds too. Alto-
gether, (26) holds in the degrees k satisfying k > max(/ + 1, / 0 ) .

5.9. Proof of Theorem 3.1.2(b). Indeed, this follows immediately from
the homotopy formulas (26) and (31).

Remark 5.9.1. In the statement of Theorem 3.1.2 we required that if k
is such that the integral /J f(r)m~pk dr is divergent (i.e., k > 14-1), then

£_i k

either k > m/p + 1 or lm{d: domdLp (X) —• domdLP(X)} is closed in
Ω.k

Lp(X). As we mentioned in Remark 3.1.3, we actually need a weaker
condition which we can formulate now: if

k = l+l = lx< max((ra + l)/p, /0)

(see (30), (27)), then lm(d: domdj7l(X) -> domdLp(X)} is closed in
k

L

5.10. Proof of Theorem 4.9.1. We assume that dimX = n , X has /-

horn singularities, /J f{r)~ι dr = oo , and there is a duality isomorphism

in the derived category DχdomdL? x E = domdLq χ ^[n]. We need

to show that the Lp Stokes property holds at every point P € X. It
follows from Proposition 4.6.2 that it is enough to show that the Lp Stokes
property holds on C^Lp where Lp is the link of P.

Since both complexes dom dLp x E and dom dLq χ E have construct-
ible cohomology, the duality isomorphism implies the local duality iso-
morphisms: for every point P e X we have P>cfL domdLp C/L E =

* cfL E[m + 1] where m = dimLp .



596 BORIS YOUSSIN

By Proposition 4.7.1, it is enough to show that

Im d c dom dLP m i n cfLp E

where
Im d = Im{dom dLP C/L E -> dom dLp (

By Proposition 4.8.1, this is equivalent to fc/L dω A dφ = 0 for ω e

d o m r f ^ ί C ^ p ) , φ e dom dig (CfLp) such that Suppω and Supp</> are

compact subsets of CfLp - [0, 1) x Lp/0 x Lp .

Using induction, we may assume that the I? Stokes property holds on
the singular Riemannian space Lp in particular, we shall use the fact that

dω Adφ = 0

for ω e domdLP(Lp), φ e domdLg(Lp). Consequently, if ω e

domd*Lp(C'Lp), φ £ domd*Lg(C^Lp), then for almost all ε we have

JεxLp

Applying Proposition 4.6.1 to (ε, 1) x Lp , we get

/ dω Adφ = lim / dω A dφ = - lim / ω Adφ
JcfLp ^J(ε,\)xLp ^~^JεxLp

= ψ lim / dω A φ,

where ε > 0 means that the limit is taken as ε goes to zero, possibly
avoiding a subset of measure zero in [0, 1). In particular, all these limits
exist.

Hence, we need to prove that for ω e domdm

Lp{CfLp), φ €

dom d*Lq (C'Lp) we have

Jεx
ω Adφ —• 0 ,

as ε • 0 .

We can assume that Supp ω and Supp φ lie in [0, 2/3) x Lp/0 x Lp c

C Lp. In particular, this means that ω and φ are radially constant for

2/3 < r < 1.

Lemma 5.10.1. (i) In the assumptions of Theorem 4.9.1, we have lχ <

lQ, i.e., the operators ^° and %?λ can be both defined in no more than

one degree. In particular, this means that / = / 1 - l < / 0 - l .
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(ii) If I <k < l Q - l , then k = I and this is possible only if lχ = lQ- 1

{"no overlap between %?* and %fx " ) .

(iii) Let ω e domdLp(C^Lp). Then we can decompose it into the sum

ω = dζχ + ζ2 + C3,

where ζχ, ζ2, ζ3 e dom d\P(C'jLp), ζ2 is radially constant, and ζ3 is as

follows:

(a) If k>lQ-l {so that ^ F 0 is defined in degree k + 1), then ζ3 =

°
( b ) / / * < / , then ζ3=JTιdω.
(c) If I < k < lQ- I {in this case k = / by part (ii)), ίλen ζ3 =

^ rfω + pr* ψ for some ψ € άomdLP{X).
Note that cases (a) and (b) do not overlap due to the part (i) of the

Lemma.

Proof Part (i): Let e be the same as in §3.1. By our assumptions,

the integral /J f{r)~λ dr diverges. Hence, e < 1, and if e = 1, then the

integral /J f{r)~e dr diverges.

As /j = /+ 1 (see Remark 5.3.2), we get from (3) the following formula
for lχ:

max{k\k < m/p + 1 + e/p}

if the integral /J f{r)~e dr diverges,

max{/c|/c < m/p + 1 + e/p}

if /J f{r)~e dr converges.

Similarly,

min{/c| - (m - p{k - \))/{p - 1) > -e}

if the integral /J f{r)~e dr diverges,

min{/c| - {m-p{k - \))/{p - 1) > -e}

if /J f{r)~e dr converges,

min{k\k > m/p + 1 + e/p - e}

if the integral /J /(r)""^ <afr diverges,

> m/p -f 1 + e/p - e}

if /J /(r)~* rfr converges.

By comparing, we see that ^ - /0 < 1, i.e., lx < lQ.
Part (ii): By Remark 5.3.2, / +1 = lχ > lQ - 1. Hence, if / < k < lQ - 1,

then / < fc < / + 1, i.e., A: = /.
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Part (iii): Case k < I: we have the homotopy formula {d%fx

= ω-pr* Pω (20), where d%?xω is Lp integrable by Lemma 5.4.1;

applying the same statement to dω (this is possible since degdω = k+l <

I), we find that d^xdω is If integrable. Take ζ{ = ^xω, ζ2 = pr* Pω

and C3 = &ιdω clearly, ζ{, ζ2, ζ3 e domd[P(CfLp).

Case k > max(/ + 1, / 0 ) : we have the homotopy formula

d^°)ω = ω (26), where ~d^ω is if integrable by Corollary 5.7.2 (and

by Proposition 5.8.2 and Remark 5.8.3 in case k <(m + l)/p). Applying

Corollary 5.7.2 to dω yields d^° dω is Lp integrable. Take ζχ = Λ ,

C2 = 0, and C3 = ^°dω clearly, ^ , ζ2, C3 € domd[P(CfLp).
What is left, is the cases where I <k < max(/+1, / 0 ) . We have already

seen in Lemma 5.8.1 that max(/ + 1, /0) < / + 2 hence, we are left with
two cases: first, k = I, and second, k = / + 1 < max(/ + 1, / 0 ) , i.e.,
k = I + 1 < /0 .

Case k = I: again, we have the homotopy formula (d^1 + β^ιd)ω =

ω - pr* Pω (20), where d^ιω is Lp integrable. If k + 1 <
max((m + l)/p, / + 1, / 0 ) , then by Proposition 5.8.2, ^F 1 dω + pr * ψ e

domdLp{C^X)', otherwise, ^ dω e domdLP(C^X). In the latter case

both JT°dω and ^ dω are defined, so by Remark 5.3.3 ^ dω =

%fx dω+pr* y where ψ = PJ^° dω. Take ζχ = ̂ xω, ζ2 = pr*{Pω-ψ),

and ζ3= ^ x dω + pr* ψ . Again, it follows that ζ{, ζ3 e dom d*Lp{Cf Lp)

consequently, ζ2 e domd%

LP{C^Lp) since ω = ^ d + ζ2 4- C3 in particu-
lar, ζ2 is closed as otherwise its differential would be a nonzero radially
constant form of degree / + 1 (it is also easy to see directly that ζ2 is
closed).

Case k = /+ 1 < /0 : we have the homotopy formula d(^xω + pr* ψ) +

&°dω = ω (31), where βTιω + p r > € domlήj^c'x). By Corollary

5.7.2, ^dω £ domdk

LP(CfX). Take ζχ =#'1ω + pτ*ψ, ζ2 = 0, and

ζ3 = ̂ °βf ω clearly, ζ{, ζ 2 , ζ3 e domd\ P {C f L p ) . q.e.d.
The following is the key estimate in our proof.

Lemma 5.10.2. For any p e domdLp{CfLp), let

ifk'>l0,

/ ' 1 / ' i

where ψ is a form in domdLP (Lp) such that ζ lies in dom dLp {CfLp).
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Then for any η e dom d™q

+1~k'(CfLp) we have

ί C Λ i f - O ,
JεxLp

as ε — -> 0.
For the proof, see below.
Applying this lemma to the case p = dω and η = dφ,we find that if

C3 is as above, then

lim

Hence,

lim / ωΛdφ= lim / (dζχ + ζ2 + C3) Λ

= lim / Co Λ άφ = ± lim / dζΊ Λφ,
«—^0ΛxLp «—^ΛxLp

where C2 is radially constant, C2 ^ d o m d L , ( C 7 L p ) .
In a similar way we can decompose φ = dηι + η2+η3 where η{, τ/2, η3 e

— # f

domdLg(C Lp), /̂2 is radially constant, and τ/3 is defined in a way similar
to C3. We then have

lim / ω Λdφ = ± lim / dζΊ Λφ = ± lim / dζΊ Λ w0

ε-^0jεxLp

 Ψ ε—θJεxLp

 S 2 ^ e-^θJεxLp *2 / 2

= lim

Here C2

 a n ^ 2̂ a r e Γadially constant forms, C2

A/2 G d o m d ^ (C^Lp). If either dC2 = 0 or rf^/2 = 0, then, clearly, all
our limits are zero. Otherwise, dζ2^0 and dη2φ0 are radially constant
forms which are Lp and Lq integrable, respectively. By Lemma 5.2.1,
their degrees k+\ and m-k are such that the integrals f^ f(r)m~p{k+ι) dr
and /J f(r)

m~q{m~k) dr are convergent. By our assumptions, f^ f{r)~ι dr
is divergent, hence, m - p(k + 1) > - 1 and m - q(m - k) > - 1 . Then
k+l <(m+l)/p and m - k < (m + \)/q adding these inequalities, we
get m + 1 < (m + l)/p + (m + \)/q = m + 1, which is a contradiction.
Consequently, either dζ2 = 0 or ^ = 0 and our limits are zero. (Cf.
[4, §2].)

5.11. Proof of Lemma 5.10.2. Let us first estimate %?a p where deg/? =
k' and α = 0 if k' > l0, a = 1 if A:7 < /0 .
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Let p = pχ+dr A p2 where pχ and p2 do not involve dr. As in §5.3,

let Λ(r) = f(r){m~p{k'~l))/p\\p2\\LPfr. Then, similarly to (16),

and hence,

l-l/p

Similarly to (15), we have £ h{r)p dr = \\p2fL,ιCfχ <

(34) WX^PWL, r<\\p\\L, CfX\[rAtΓ°
\Ja

Now let us estimate ζ. We claim that in any case

(35)

LPχfx
fx , so

for r close enough to zero. Indeed, ζ = Jίfap unless k' — I -h 1 < /0,

and ζ = ffap + pr* ψ if /c' = / + 1 < /0. In the first case the inequality

(35) follows immediately from (34). In the second a — 1 and k' <

/0 the latter means that the integral /J f^y^-P^'-1^^-^ dt diverges.

Consequently, in (35) we have

0 0

as r —> 0, and the inequality (35) follows from

W ψ\\L>,r ^

~ IIAΊI//, ίf(ty
Ja

]dt

]dt

r*ψ\\L'.r

+ const

the
for r close enough to zero.

For any form χ = χχ + dr A χ2 on CfLp , denote by | | ^ | | L p f Γ x L

Lp norm of the restriction of χ onto the slice r x Lp, with respect to

the metric on the slice which is induced by the metric on Cf Lp. This
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2induced metric is clearly equal to f(r)2gL where gL is the metric on

Lp . Consequently, if degχ = s then

- IIy II f(r\(m-Ps)/P

Combining this with (11), we get

(37) UtP,cfLP

As degζ = k' - 1, (36) and (35) yield

(38)

Lp,CfLp

1-1/P

fir)
(m-p(k'-\))/p

for r close enough to zero.
Suppose that limε >0 JεχL ζ Λ η Φ 0 . Since

f CΛV<||C||L
JrxLp

the inequality (38) implies that

w\Lq ,rxLp

Γ r,t

Ja

{m-P(k'-l))lip-\)
-(\-\/p)

f(r)
-{m-p{k'-\))lp

for some ε > 0 and almost all r satisfying 0 < r < ε. Noting that
1 - l/p = 1/q, we get

- 1

IIC*.rxLp fit)
~(m-p(k' - ] dt f(r)

-(m-p(k'-

for almost all r satisfying 0 < r < ε. Similarly using (37), we obtain

~ JO Ja

Denote g(r) = ft f(t)-{m-p{k'-ιm"-l)dt; then

In case α = 0 we have k'>lQ, so the integral /„' f(t)-{m-p{k'-imp-l) dt

converges and g(r) -> 0 as r -> 0, which means that lng(r) -> -oo as

r - » 0 , a n d ||»/||i« = o o .
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Incase a=l we have k' < l0, so the integral ^ f{ty{m'p{k'~x))l{p'x) dt
diverges and \g{r)\ -* oc as r -• 0, which also means that |kllL9 C / L =
oo.

We see that in both cases η is not Lq integrable on C^Lp , which is a
contradiction.

5.12. The case where /0 f(r)~ dr converges.
Example 5.12.1. Consider a singular Riemannian space X with /-

horn singularities which also has the following properties.
First, we assume that the duality isomorphism Dχdomd^P x E =

άom dLq χ ^[n] holds on X\ this may be achieved by making sure that
the appropriate cohomology groups of the links vanish; see §4.5.

Second, we assume that for some point P e X the Lp Stokes is satisfied
on the link Lp for example, we may assume that Lp is smooth. Let
m = dim Lp .

Third, we assume that the function / is such that the integral
/Q1 f(r)~ι dr converges.

Fourth, suppose that (m + l)/p e Z.
We claim that under these assumptions, the if Stokes property, as well

as the property (10) ("the noncohomological obstruction to Lp Stokes"),
is not satisfied at P.

Indeed, let k = (m + l)/p - 1 and s = (m + l)/q - 1 = m - k - 1.
Take a /c-form ψ on Lp , which is C°° and has compact support inside
o

Lp we shall assume dψ / 0. Let ω = pr* ψ. Formula (3) shows that

Jo1 f(r)m~pk dr and JQ f{r)m~p{M) dr converge (cf. the calculations at

the end of §5.10). Hence, both ω and dω are Lp integrable on CfLp .

Let φ = pr*(*dψ) where * is taken with respect to the metric gL .

Then degφ = m — (k + \) = s, and the similar argument shows that φ

and dφ are Lq integrable on CfLp. Thus

/
dω Λ φ = / dψ Λ *dψ > 0,

_xLp i l p

which is a nonzero constant, independent of ε. As we have seen at the
beginning of §5.10,

/ dω A dφ = T liπi / dω A φ
JcfLp

 ε >°ΛxLp

consequently,

Λ Γ ' L ,
dωAdφΦ 0.
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Hence, the properties 4.8.1(a)-(c) and (10), as well as U Stokes, do not
hold at P. In this case, the failure of If Stokes has noncohomological
nature.

This example also shows that the condition /J f{r)~ι dr = oo in The-
orem 4.9.1 is sharp.

Notes added in proof.
1. After this paper was written, I found out that a different proof of

Theorem 2.2.1 appeared in the paper: V. M. Gol'dshtein, V. I. Kuz'minov
& I. A. Shvedov, A property of de Rham regularίzation operators, Sibirsk.
Mat. Z. 25 (1984) 104-111 (in Russian; English translation in Siberian
Math. J. 27 (1986) 35-44), Corollary 2. A different proof of Theorem
3.1.2 appeared in the paper: V. M. Gol'dshtein, V. I. Kuz'minov & I. A.
Shvedov, On Cheeger's theorem: extensions to L -cohomology of warped
cylinders, Siberian Advances in Math. 2 (1992) 114-122.

2. It is my pleasure to express my warm thanks to the anonymous
referee and to the editor, Professor C. C. Hsiung, for many suggestions on
improvement of the manuscript.

3. Professor Oshawa advised me recently that the arguments in [8]
contained a gap.
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