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CHERN-SIMONS PERTURBATION THEORY. II

SCOTT AXELROD & I. M. SINGER

Abstract

In a previous paper [2], we used superspace techniques to prove that
perturbation theory (around a classical solution with no zero modes) for
Chern-Simons quantum field theory on a general 3-manifold M is finite.
We conjectured (and proved for the case of 2-loops) that, after adding
counterterms of the expected form, the terms in the perturbation theory
defined topological invariants. In this paper we prove this conjecture.
Our proof uses a geometric compactification of the region on which the
Feynman integrand of Feynman diagrams is smooth as well as an exten-
sion of the basic propagator of the theory.

1. Introduction

In a previous paper [2], we considered the perturbative expansion for
three-dimensional Chern-Simons quantum field theory about a solution Ao

to the equations of motion. We defined what we meant by the perturbative
expansion and showed perturbation theory was finite. We showed that
the first term in the perturbative expansion beyond the semiclassical limit
defines a geometric invariant precisely in the manner one would expect
based on Witten's exact solution [10]. We conjectured and gave strong
evidence that the higher terms in the expansion were geometric invariants
of the same type. In this paper we prove this conjecture.

More specifically, we take Ao to be a flat connection on a principal
bundle P with a compact structure group G and a closed, oriented, three-
dimensional base M. We also assume that Ao has no zero modes, i.e.,
that the cohomology of the exterior derivative operator D: Ω*(M, g) -•
Ω*+1(Λf, g), coupled to the adjoint bundle g of P and Ao, vanishes.
By rewriting the Lorentz gauge fixed theory as a superspace theory in [2],
we were able to obtain Feynman rules that could be translated succinctly
into the language of differential forms. To define the gauge fixing it was
necessary to choose a Riemannian metric g on M. For / > 2, the
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/th-order term It(M, AQ, g) in the perturbative expansion is a multiple
integral over Mv, with V = 2(1 - 1), of a top form depending on g.
This top form, the "Feynman integrand", is smooth on the open subman-
ifold Aίζ c Mv consisting of the points away from all diagonals, but
is singular near the diagonals. It is constructed from products of the ba-
sic "propagator" L, the integral kernel for the "Hodge theory inverse"
to D. We showed that, despite the singularities, the integral defining
It(M, Ao, g) is finite. Also, we gave a "formal proof of metric indepen-
dence" of It(M, Ao, g) (ignoring the problem of products of singulari-
ties). The only dependence on the metric is therefore due to quantum field
theoretic "anomalies", which arise because of the behavior of the integrand
near Mv\Mζ.

The quantity Iχ decomposes as a sum of "Feynman amplitudes" for
trivalent graphs with V vertices. The nature of the anomalies is most
simply stated in terms of the piece I™nn of It which comes from the sum
over connected graphs. We conjectured, and proved for 1 = 2, that the
dependence on the metric could be cancelled by subtracting a multiple of
the Chern-Simons invariant for the metric connection. This conjecture is
proved for all / in the present paper.

We analyzed the variation of I2 with respect to a metric in [2] by
using Stokes theorem on the differential geometric blowup of M2\Δ along
the diagonal Δ. That space Bl(M2, Δ) (see §2) has a boundary which
can be identified with the tangent sphere bundle over M. To extend the
argument and prove the theorem we will use a "geometric blowup" of
Mv along Mv\Mζ . This blowup M[V] is a manifold with corners and
is a compactification of Mζ to which the Feynman integrand extends
smoothly. Our results can also be proved without introducing M[V] by
using power counting arguments of the form found in [2], but the use
of M[V] is more geometrical. As we will explain below, M[V] is the
differential geometric analog of the algebraic geometric compactification
defined in [5] and [3]. Other compactifications besides M[V] may also be
employed to the same end, but it would take us too far afield to explain
this here. In a private discussion, Kontsevich explained his use of M[V]
in his work on Chern-Simons perturbation theory [8]. The appearance of
[5] and [3] convinced us that this approach would be the simplest.

We will also introduce an "extended propagator" L, a vector-bundle-
valued form on (M2\Δ) x Met, where Met is the space of Riemannian
metrics on M. Readers worried about infinite-dimensional spaces may
take Met to be any finite-dimensional submanifold of the space of
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metrics. Actually, for the proof of our main theorem, we could equally
well proceed by taking Met to be an interval in the space of metrics. How-
ever L allows, among other things, an extension of the theory to families
of manifolds of any dimension, as will be shown in [2]. This extension
gives a mathematically precise version of the "field theory limit" of the
topological open string model considered in [11]. It is also closely related
to ideas of Kontsevich [8].

L may be expanded as a sum of its pieces Ί}d>} of homogeneous degree
d on Met,

( l . i ) Z = Z ( 0 ) + Z ( 1 ) + Z ( 2 ) .

The piece L ( 0 ) is just the original propagator L, considered as a 2-form
on M2 x Met of degree 0 (i.e., an ordinary function) the Met directions.

As with M[V], our introduction of L is also not strictly necessary. One
could express our discussion entirely in terms of the separate components
Z ( 0 ) and L ( 1 ) of Met, without unifying them as part of a larger structure.
Although introducing L will allow us to be more succinct, the reader may
find it illuminating to make the occurrences of L = Z ( 0 ) and L ( 1 ) explicit.
This will give the arguments more in the language of [2], where L ( 1 ) is
called B.

Outline. Sections 2 and 3 are largely an exposition of parts of [2] with
some extensions and modifications, along with special accommodation,
we hope, to mathematicians. See [2] and references therein for more ex-
planation of the relation to the physics literature. We review the basic
propagator L and its properties in §2. In §3 we define the terms in the
perturbation expansion, namely 7Z and tfonn, and give the Feynman graph
interpretation of these multiple integrals over Mv .

The properties of the extended propagator Z needed in the proof of our
main theorem are stated in §4.1. The actual definition of L and the proof
of some of the properties are given in §4.2. The remaining properties,
relating to the fact that L extends smoothly to a covariantly closed form
on B1(M2, Δ) x Met, are proved in §4.3.

The compactification M[V] is described as a closure of Mζ in a larger
topological space in §5.1. M[V] is described explicitly as a point set in
§5.2. A stratification of M[V] is introduced in §5.3. One proof that M[V]
is a manifold with corners (such that the codimension k open strata of
the stratification are smooth open subsets of the codimension- k boundary
of M[F]) follows by directly mimicking the construction in [5] but using
differential geometric blowups rather than algebraic geometric ones. As an
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alternative to this, we give an explicit atlas of coordinates on M[V] in
§5.4.

The results of §§4 and 5 allow us to prove the main theorem in §6.
A short appendix is included to describe our use of graded tensor prod-

uct and our mathematically unusual sign conventions for push-forward
integrals (which arise naturally from the superspace formulation of the
field theory).

The presentations in §§4.3 and 5.4 are rather brief. Further elaboration,
in the context of generalizations, will be found in a future paper by the
first-named author [1].

2. Review of the basic propagator and its properties

The Feynman rules expressed in the language of differential forms use
the "Hodge theory inverse" to D. This is the operator

M g), 7 = 1,2,3.

Here D t is the adjoint of D, and Δ M = {D, D^} is the associated Lapla-
cian operator. Adjoints are defined with respect to the inner product on
Ω*(M, g) induced by a choice of bi-invariant inner product ( , >Lie(G) on
the Lie algebra Lie(G) of G, and a choice of Riemannian metric g on
M.

The operator D~ι can be written as an integral operator with kernel
L, known as the propagator. L belongs to Ω2(Mι xM2,g1<8>g2) (where
the subscripts 1 and 2 refer to distinct copies of M and the corresponding
bundles over them), and is defined by

(2.3) (ZΓV) β (*) = / Lab(x,y) Λ ψb(y) Vψ € Ω*(M, g).
JyeM2

Here we have introduced the Lie algebra indices a and b which arise

after introducing an orthonormal basis {ΓJ for Lie(G) and a local triv-

ialization of P . 1 The totally antisymmetric structure constants fabc for

G are given by [Ta, Tb] = fabcTc.

The relation between operators and their associated integral kernels used
in (2.3) is the one that arises naturally from the superspace formalism.

^ o t e that we have not used the more usual pairing fyeM Lab(x, y) Λ*ψb{y). Using the
metric on Lie(G) to identify gt ® g2 with Hom(g2, gj), L(x, y) Λ ψ(y) means to wedge
the forms and apply the linear transformation from g2 to g{ .
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This gives an unusual sign convention in push-forward integrals like the
one in (2.3). Using these sign conventions (see the appendix for more
details), the relation

(2.4) I ψa Λ (Dφ)a = ( - 1 ) W + 1 Jφa Λ (Dψ)a

for ψ, φ e Ω*(M> g) implies thatL is antisymmetric under the involu-
tion of gt <g> g2 that exchanges g1 and g2. Equivalently, (2.4) reads

(2.5) f(Ψ,DΦ)ue{G) = (-1) I H + 1 JiΦ>

General elliptic operator theory guarantees that, as a vector-bundle-
valued form on M2, L is smooth away from the diagonal A c M x M
and has singularities as one approaches Δ which are computable by an ex-
plicit local construction. Further, since all flat bundles are locally trivial,
the singularity must factor as a product of the singularity for the ordinary
exterior derivative times the identity operator on the Lie algebra.

In fact it turns out that L extends smoothly to a form, LB, on the

differential geometric blowup, B2 = BL(M2, Δ) of M2 along Δ. B2

is defined by replacing Δ by S(N(Δ)), the sphere bundle to the normal

bundle of Δ in M2 . It comes equipped with a "blowdown map" b: B2^>

M . The restriction of b to the interior of B2 is just the identity map

from M2\Δ to itself. The restriction db of b to the boundary of B2 is

the bundle projection map

(2.6) db:dB2 = S(N(A))^A.

This bundle is naturally isomorphic to the bundle S{TM) —• M.
Abusing notation, we shall denote the bundle 6*(g/) for i = 1, 2 simply

by gt. Then LB belongs to the space Ω2(2?2, gj ® g2). Note that on
9B2, gj = g2 andgj Θ g2 - H o m ^ , g{).

We will show in §4 that the restriction of LB to dB2 takes the form

(2.7)

where: (i) p e Ω2(Δ, gj 0 g2) is smooth, and (ii) / factors as a prod-
uct of a smooth ordinary form λ e Ω*(S(TM)) times the identity in
Homίgj, g2) = g! Θ g2 .

The forms LB, p, and λ are not only smooth, but they are also closed,
as we now show. First observe that

(2.8) {D, D~1} = {£>, P f o Δ " 1 } = {Z>, D*} o Δ " 1 - Z)+ o [D9 Δ " 1 ] = 1.
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Let DMi denote the exterior covariant derivative operator on

Ω*(M2, gj, ®g2), which depends on the choice of AQ. Then the inte-

gral kernel version of (2.8) states that DMiL is the kernel for the identity

operator, and so is supported on the diagonal. So, the restriction of L

to M2\A is closed as well as smooth. Since its extension LB to B2 is

smooth, it must be closed. Hence LB^dB is closed. However, λ is also

closed, which follows from its explicit description below (4.27). Therefore,

p is closed as well.

The natural object that arises from the formulation of superspace per-

turbation theory is not the basic propagator L, but the "superpropagtor"

Ls: Ls = s(L) is the image of L under the linear map from Ω (M , gj <g>

g2) to Ω2(Λf2, Δ2(gj θ g2)) induced by the embedding

(2.9) s : g 1 ® g 2 - + Λ 2 ( g 1 θ g 2 ) ,

which takes θχ®θ2 to θ{Λθ2. Similarly, let

(2.10) /> 5 =s(/>)eΩ 2 (Δ,Λ 2 ( g l Θg 2 )).

The antisymmetry of L under the involution exchanging g{ -• Mx and

g2 —• M2 implies that Ls is symmetric under such an involution. That

is, for (xχ, x2) e M2, {jμΛ a basis of gj, and {Jm} a basis of g 2, we

have

π i n

 Ls(Xl > xl) = Lab(Xl > Xl)hl) Λ hi)

= - LbSX2 ' X\)h\) Λ J(2) = Ls(X2 > * l )

This equation implicitly defines an identification of Λ*(gj Θ g2) with

A ( g 2 e g ! ) .
The Feynman integrands are built up out of the superpropagator Ls as

we shall now see.

3. Formulation of perturbation theory

Fix an integer / > 2,and let I = 3(1 - 1) and V = 2(1 - 1). Let

M^ be the ith copy of M in the Cartesian product Mv, and gt be a

copy of g over M^ . By abuse of notation, the pullback of g. by the

projection map from Mv to M^ will also be denoted gz. A choice

of local trivialization of gt determines sections j^ of g, corresponding

under the trivialization to the orthonormal basis {Ta} chosen for Lie(G).

Elements of Mv will be written as x = (x{, , xv).
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To describe the Feynman amplitude Iχ for / loop perturbation theory,
we introduce the bundle

(3.12)

of Grassmann algebras over M . The fiber of A*v at a point is the
graded commutative algebra generated freely by the degree one genera-
tors {j?~ / = 1, , F , # = 1, , dim(G)} . The operation of interior

product with the dual basis vector to j?~ will be denoted dldf,., this is
\ι) \ι)

a graded derivation of A*v .
For i = 1, , V, let Tr z: A*v -> A*v be the map

_d_ d d_
U Ji \ Q ϊ O J(S\

where πz is the projection operator onto the subspace of A*v of homo-
geneous degree 0 element in the gi direction. The definition of ΎT. is
independent of the choice of trivializations since fabc is an invariant ten-
sor. In fact it may be described more invariantly as the linear map so
that

(3.14) Tϊ.^Λ Λό

for θx, , θn sections of g. and ω a section of Ay of degree 0 in the
g. directions.

The composition of the Tr. acting on an element of A*v produces an
element of overall degree 0, i.e., a real number. So acting on forms with
values in Ay , we have a map

(3.15) Tr ( F ) = TΓj o. . o T r F : Ω*(M F , A*v) -> Ω*(M F ).

The Feynman amplitude for /-loop perturbation theory may now be
compactly written as

/ / ^ 4 χ - \ T t \ JΓ A \ I T \Y I ί Ύ *• \

1 ' 0 ? F ' Z 7 Λ / K t o t F ' 7 2! 7(3!)FF!/!*

The "total propagator"

L t o t € Ω 2 ( M F , A2

V) c Ω*(M F , A*v)

will be defined in a moment. It makes sense to raise L t o t to a power

since it is valued in a bundle of algebras. L[QX has degree 2/ = 3 V as a

differential form, so that the integrand in (3.16) is in fact a top form on
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Mv. It and Lχoχ depend on the flat connection Ao and the metric g,
since L does.

To define Lχoχ, let

LsΛiJ} e Ω2(Mi{iJ}, Λ2(g / e g, )) for i φ j

be a copy of the superpropagator Ls defined on M^''^ rather than M2 .
The symmetry of Ls under involution means that the definition of Ls ,. .,

is independent of whether we identify M{ι'j} with M{ι}xM{j} or M{j}x

M*1*. L5 ^ .j is smooth away from the diagonal Δ .̂ ̂  c M^lt'*, and

pulls back via the projection map π, .,: ΛfF —• M^ι'j* to a form

(3.17) £.,(*,, * X 0 ΛjJ, = (*{ i.Λ) (I. l f { / f Λ ) e Ω2(Λ/K, 4 ) .
The pullback operation here is the usual pullback of differential forms

combined with the identification of the pullback of Λ*(gz Θ gβ ->• M^1'^

with a subbundle of A*(gj θ Θ gv) = A*v . Since Ls .. ~ is smooth

away from the diagonal Δ { / j} c M{ι'j}, the pullback is smooth away
from the diagonal

(3.18) AίiJ} = π-,l

J}{A{ij})cMV.

For i = j , (3.17) seems not to be well defined at any point in Mv

due to the singularity of L near the diagonal. It can nevertheless be
given a sensible interpretation because j?., Λ j,~ is antisymmetric under
the exchange of a and b, whereas the singular part of L is symmetric
in the Lie algebra indices. So we can interpret the singular piece as not
making a contribution and define

(3.19) Lab{Xi, x,.)4 Λ ̂  Ξ pab(Xi, *,.)4 Λ 4 e Ω\MV, A\).

The notation here, as in (3.17), is a useful way of summarizing a compli-
cated pullback. That is, (3.19) can also be written as (f^y)*(ps {,}) Here

ps ,~ is a copy of ps belonging to Ω2(M^, Λ2(gy 0 gf.)) rather than

Ω2(Δ, Λ2(gj <g> g2)), and f,.y is the projection map from Mv to M^ .
Finally, Lχoχ is given by

(3.20)
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Graphical interpretation. To obtain a graphical interpretation of (3.16),
we expand

7ot= Σ -' Σ

A choice of / 's and j 's in the above sum determines a labeled,2 oriented
graph G which has vertices labeled 1, , V, edges labeled 1, , / ,
and has the eth edge oriented to point from the vertex ie to the vertex j e

(1 < € < j). In fact, this establishes a one-to-one correspondence between
the set of individual terms in the above sum and the set of labeled oriented
graphs with Euler characteristic V-I = 1 - / . Since Trz vanishes on forms
with degree other than 3 in the g f, only terms corresponding to trivalent
graphs contribute to / , . Therefore we may write

G trivalent

(3.22) /(G) = /(G) = I Ίτ(V\S{G)),

We shall refer to J ^ G ) as the Feynman integrand, and /(G) as the Feyn-
man amplitude for G. In our notation for /(G) in (3.22), we dropped
the underline oft G since /(G) only depends on the topological type G
of G, and not on the labeling. Although this allows us to equate It with
a sum over topological types as is usually done, it will usually be more
convenient for us to stick with the formulation above.

To state our main theorem, we need the amplitude for connected graphs
only:

(3.23) J

G trivalent
connected, / loops

Since the graphs in the sum above are connected, the Euler characteristic
condition just means that the graphs have / loops.

2Labelings in [2] included an ordering of the edge ends incident on any vertex. It is
not necessary to include this in our labelings here, since we have not introduced explicit Lie
algebra indices in our Feynman rules. Instead, our basic vertex includes a sum over orderings
of incident edge ends.
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4. The extended propagator Z

In this section we define the extended propagator L and describe its
properties. The properties of L will be described first since that is what
is used in the proof of the main theorem in §6.

4.1. Properties of L. Let TM, gt, b and db be the bundles TM ->
M and gz (over whichever base space appropriate), and the maps b: B2^>

M and 9ft: dB2 -> Δ, all trivially crossed with Met. V will denote
the natural covariant differential on TM —• M x Met which is compatible
with the inner product on the fibers. (At (z, g) e M x Met, the inner
product is simply g(z).) See (4.28) for a more concrete description of

V f f i ,
The salient features of L are LI through L7 below. L1-L3 simply

explain what kind of object L is and how it is an extension of L. These
properties follow immediately from the definition in §4.2. Properties L4-
L7 concern the nature of the singularities of L. They are proved in §4.3.

LI. L belongs to Ω 2 (M 2 x Met, gχ <g> g 2 ).

L2. Let Z ( / ) be the piece of L of homogeneous form degree / in the
Met directions. Then L ( 0 ) equals the basic propagator L (considered as
a function on Met).

L3. L is smooth and covariantly closed away from Δ x Met.
L4. The restriction of L to [Λf2\Δ] x Met extends smoothly to a

covariantly closed form

(4.24) LB e Ω2(B2 x Met, gχ 0 g2).

L5. There are smooth closed forms

and

so that

L6. / factors into a "manifold piece" times a "Lie algebra piece",

(4.25) / = λ <g> l g , λe Ω2(dB2 x Met), l g e Γ(dB2 x Met, gχ <8> g2).

l g is the inverse to the invariant metric on Lie(G) made into a bundle
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section. Under the identification

( 4 26) gx ® g2\dBi = H o m ^ , g 2),

l g is the identity element on each fiber of gx\dB .

L7. Identifying dB2 -> Δ with S(TM) -+ M, λ may be viewed as

an element of Ω2(S(TM) x Met). As such, it is given by thejbllowing

local, universal formula involving the covariant differential V™ and its
curvature 2-form Ω € Ω2(M x Met, Hom(TM, TM)):

( 4 2 7 ) • k ~
x [(dyeτtύ

J)(dyenύ ) + Ω^z, g)g (z)].

In (4.27), ύ e S(TM)\Z is a vector in TzM of unit length with re-

spect to the inner product g(z). (4.27) is written using coordinates {z1}

about z e M and the components {ύ1} for ύ = ύιd/dzι. dytnύ
ι is the

projection of dύι onto the space of vertical 1-forms determined by V™.

Let {d/dz1} be the local trivialization of TM associated to the coor-

dinates {z1} . V™ is given by

(4.28) \
m dzk

for m e T Met = Γ(Sym2(TM) -> M).
o

Here {Γ^} are the Christoffel symbols for the metric connection deter-

mined by g. The vertical projection of the function uι of a vector (z, ύ)

in TM is

dyenu
j = duj + [ i l dzl + \{g-λδg)j

k]zu\

dyertύ
ι in (4.27) is the value at (z, ύ) of the pullback of dyeτtu

j by the
inclusion map S{TM) «-> Γ ¥ .

V Γ M can be described invariantly. Equip M x Met with a Riemannian
metric of the following form

(4.30) ((vχ, m,), (t/2, w 2 )) ( j C f ^ = ^(V!, v2) + Gg(m{, m 2 ) ,

for (JC, g) e M x Met, Vj, v2 € Γ ¥ χ , mx, m2 e TMetg. G is αwy

Riemannian metric on Met (not necessarily a natural one). So TM is the
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subbundle of T(M x Met) whose orthogonal complement is M x ΓMet.

Then V™ is the covariant differential on M x Met followed by the
projection operator π ~ onto TM, i.e.,

1 M.

(4.31) [ V ( , ) m ) * 5 ? ) = [ % o V Jw](x,g)9

for w a section of TM. We leave to the reader to check that this does
give the connection above and to compute the curvature formulas in the
next paragraph. ^

The curvature two-form of V™ decomposes as a sum

(4.32) Ω = Ω ( 2 ' 0 ) + Ω(1 1) + Ω ( 0 ' 2 ) ,

where Ω ( / '2~z ) has form degree i in the M directions and 2- i in the
Met directions. From(4.28), it follows that

(4.33.1) [Ω<2 < W ) f , = [ A ^ + I ^ Γ

(4.33.2) [tf'Λ*, *)]*/ =

(4.33.3) [Ω ( 0 ' 2 ) (z, g)\k

l = - \[(g'lδg)k

n Λ (g^δg)",],.

Here διa{z) anάδgml{z) are the exterior derivatives in the metric di-
rections of the functions Γ^(z) and gml(z) respectively. The covariant
derivative operator in (4.33.2) acts on the indices k and /. This comes
from the commutator of the right-hand sides of the two equation in (4.28).
Note that (4.33.1) equals the usual Riemannian curvature Ω*(z), consid-
ered as a function on Met. One check that the relative coefficients in
(4.33.2) are correct is that the sum of the two terms is antisymmetric in
k and /.

4.2. Definition of Z and proof of L1-L3. Let W be the vectorjjun-
dle Λ*(Γ*(M x Met)) <8> g over M x Met. For g e Met, let Wg =
T{M, W\MχrΛ. This may be identified with a graded tensor product

Wg = Ω*{M, g)ΘΛ*(Γ* M e t p . Wg is the fiber at g of a vector bundle

W -> Met. So Γ(Met, W) = Ω*(M x Met, g). (This may be viewed as a

definition of what is meant by sections of the bundle W whose fibers are

infinite dimensional.)

Let DMxMct be the covariant exterior derivative operator on

Ω*(Af x Met, g), and DM, Z>Met its pieces in the indicated directions.

DM can be viewed as the operator D = DM on Ω*(Λ/, g), made to act
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on the sections of W through its action on each fiber separately. The

action (DM)g = DM®lA.,τ Meί ) o n ^ w ^ be abbreviated simply by

DM. Let K: Ω*(M, g) —• Ω*(Λ/, g) be the operator Kω = (-l)pω for

ω e Ώ?{M, g). The operators D t , Hodge star *, and K determine opera-

tors D , * , and k on Ω*(Λf xMet, g) which are related by D = *DM*ic .

Define

(4.34) 0 = {DMxMQt, D*}: Ω*(M x Met, g) -> Ω*(M x Met, g).

Then

(4.35) 0 = AM + A, where A = {*0 M et' *>' &}-

Notice that A M (A M acting on Ω*(Af x Met, g)) is a second-order ellip-
tic operator in the M directions, A is a first-order operator in the M

directions, and AM and A both involve no derivatives in the Met direc-
tions. So (9 is an operator on Γ(Met, W) which acts on each fiber of W
separately. On W , it acts by the elliptic operator

(4.36) Og = AM + Ag.

Since AM is invertible and A increases form degree by 1 in the Met

directions, 0^ is also invertible. (f~ι is the operator on sections of W

coming from the action (^L)"1 on the fiber W for g e Met.

The extended propagator LGΩ*(M { XM2XMet, gj®g2) is the integral
kernel for the operator

5 f o^f"1: Ω*(M x Met, g) -> Ω*~ι(M x Met, g).

This means that

(D*oO~ly/)a(x,g)= ί Lab(x,y,g)Aψb(y,g)
(4.37) JyeM2

for ψ eΩ*(M xMet,g),

or, equivalently, that

(rf o (@γxψ)a(χ) = f Lab(x,y,g)Λ ψb(y)
(4.38)

for g e Met, ψ e Wg.

To describe L more explicitly, let (? e Ω3(Mχ xM2x Met, gt ®g2) be

the integral kernel for (f~ι, defined by

G(x,y, g)Λψ(y)
(4.39)

for g e Met,
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For fixed g e Met, G( , , g) is the integral kernel for (&g)~l The

Hadamard paramatrix construction for (9 shows that G is smooth away

from the diagonal and gives an explicit prescription for calculating its

singularities near the diagonal. The fact that G is smooth in g also

follows from the general construction. Thus,

(4.40) L(x,y,g) = -DlG(x,y,g)

is smooth in x, y, and g away from points with x = y . In (4.40), D*χ

is the operator D* acting in the directions along M{ to which the point

x belongs.

We now prove property L2 of L. Choose g e Met and ψ e Ω*(M, g),

and identify Ω*(M, g) with the subspace Ω*(M, g) <g> A°(T*Metg) of

W . Let η = (^g)"1 V and ̂  be the piece of η of degree /: in the Met
directions. Then

(4.41) ^
Δn-Agnk-χ> for*>i.

Hence f/0 = Δ ^ V > a f l d Z f̂/o equals both Z)t o Δ ^ V a n d the piece of

Z>* o (if )~ V °f degree 0 in the Met directions. This means that

ί Lm(x,y,g)Λψ(y)= f L(x,y;g)Λψ(y)
JyeM2 JyeM2

for each x e M, g e Met, and ψ e Ω*(M). The preceeding statement

states exactly that Z ( o ) equals L.
Property L3 follows by generalizing (2.8). First observe that

^ = ° a n d s o {^Λ/xMet'^"1} = ° Therefore

(4.42) {DMχMeχ, D f o^- 1 } = {

Hence ^ )

Λ / 2 x M e t L is the integral kernel for the identity operator, and so
vanishes away from Δ x Met.

4.3. The extension LB of Z . To prove the extension LB e
Ω2(B2 x Met, gj ® g2) exists and satisfies properties L4-L7, we need to
calculate the singularity near Δ x Met of L. We shall use a version of the
rescaling used by Getzler [6] in studying the heat kernel for generalized
Laplacians to prove the local index theorem. See also [4].

Our proof will be rather condensed. Further elaboration, generaliza-
tion, and discussion of the relation with heat kernels can be found in a
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forthcoming paper by the first author [2]. In particular, it will be shown
that the restriction as a form of LB to dB2 may be derived from the
equivariant Thorn class obtained as a scaling of the heat kernel singularity
in [9].

Throughout the discussion the metric g € Met will be fixed. The space
Λ*(Γ* Met ) will be abbreviated as Λ*, and we write & for ff , (7 for

the integral kernel for (9, and L for the integral kernel for D* °&~x. So
G(x,y) = G(x,y,g),L(x,y) = L(x,y,g).

Since propagator singularity calculations are local and the flat connec-
tion Ao is locally trivial, it is automatic that the singularity factorizes
into a manifold piece (independent of Ao) times the identity operator on
g. Therefore we may specialize to the case where the group G has one
element.

Coordinates, Taylor series, and singular series. To describe the singu-
larity calculation we need to describe coordinates on M\ x M2 near Δ,
several gradings of the space of A* valued forms defined near Δ, and
several ways to package generalized "Taylor" series near Δ for such forms
and operators acting on them.

Choose ε > 0 much smaller than the injectivity radius of M, and let
N = {(z, u) e TM; \\u\\ < ε} be the open ball of radius ε in TM. Let
E: N -> Mχ x M2 be the map sending (z, u) to (x, y) — E{z, ύ) =
(expz u, expz -u). E is a diffeomorphism of N onto a neighborhood of
Δ in M2. The restriction Ef ofE to N* = {(z, ύ) e N; u φ 0} is a
diffeomorphism onto E(N)\A.

Given local coordinates {z1} on an open set U in M, define local
coordinates on N ΠTU by taking the coordinates of the point (z, u) to
be (zι, uι), where (zι) are the coordinates of z and u = uιd/dzι\z .

Let*S = uιd/duι be the vector field on TM generating dilation. In
local coordinates S?s acts on Ω*(N,Λ*) by

(4.43) ^ - j ί +euJ

Given ω e Ω*(Nf, A*), we say that ω has total degree |ω | t o t if -S

| ω | t o t ω . Similarly, we say that ω has degree \ω\u in u if uι(d/du)ω =

\ω\uω. Finally, we say that ω has degree \ω\du in du if e{duι)i(d/duι)ω

= \ω\duω, i.e., if ω has form degree \ω\du in the uι directions. Equation

(4.43) implies that the total degree of ω equals the degree in u plus the

degree in du.
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Note that the notion of u degree and du degree depend on the choice
of the coordinates zι. Properly speaking we should only talk about degree
in u and du of a form on the subset of N where the coordinates {zι, u1}
are defined. We will not introduce any special notation for this, however,
since the final results below for the propagator singularities graded by total
degree are coordinate system independent. Alternatively, we could intro-
duce covariant notions of u degree and du degree.

Suppose given smooth φ e Ω*(Mχ x Λf2\Δ,Λ*) and smooth φs e
Ωs(N',A*g) for s = s0, s0 + 1, ••• . We say that ΣZsQΦs

 i s a singular

series for φ if for any k, there is a Ko so that, whenever K > Ko,
E'*(Φ) - Σf=s Φs

 e x t e n d s k times continuously differentiably across the
zero section (i.e., to all of TV). If \φs\toX = s (resp. \φs\u = s) for all s, we
say that φs is the singularity of φ of total degree (resp. degree in u) s.
Note that the singularity of φ of a given degree is unique up to addition
of a form smooth on all of iV.

The total degree, degree in u, and degree in du of a differential op-
erator P on Ω*(N, Λ*) is the amount by which it shifts the respective
notions of degree, e.g.,

Suppose Q is an order ord(β) differential operator acting on W =

Ω*(M, Λ*) with smooth coefficients. Let Qχ be the differential operator

on Ω*(MX x M2, Λ*) so that Qx(ωχ(x) Λ ω2(y)) = {Qxωx{x)) Λ ω2(y)

for ωx e Ω*(M{, Λ*), ω2 e Ω*(M2). Qχ has a Taylor series expansion

which can be described as follows. Let E*(Qχ) be the pullback of Qχ to

a differential operator on Ω*(N, Λ*). In local coordinates
o

(4.44) ir«y- Σ *•'<*•">££.

where / = (/ p , ik) and J = (jχ, •- , jt) are multi-indices, |/| = k,

\J\ = l,d/dzI = ̂ - ^ , d / d u J = d/duj^-d/duj',2indQI^(z,u)

is a linear transformation of A*(T*(TM), 0<8>Λ* depending smoothly

on z and u. Let Q / " / (z , u),k, be the fcth order term in the Taylor

expansion of QIyJ{z, ύ) in the variable w. Set

k-\J\=p
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This vanishes unless p > - ord(β). We call Σp{Qx){p) the Taylor series
expansion of Qχ by degree in u for the following reason. If φ^ is the
singularity of φ of degree p in u, then

(4.46) < e » w = Σ (e*)«*<«)

is the singularity of Qχφ of degree n in u.
The Taylor series for Qχ may be further refined by writing

(4 4 7 ) (βΛ)

where ( G J ^ ) is the piece of ( β j ^ which shifts du degree by q. Also
define

(4-48) ( β x ) w S Σ (Qx) ( P i i ).

Then Σj(βjc)rj] ^s ^ e Taylor series expansion of Qχ by total degree; it
obeys an equation similar to (4.46) but with degree in u replaced by total
degree. In summary,

(4 49)

It is easy to see that the leading terms in the Taylor expansions of <fχ

and Dχ by total degree are (@x)[_2]
 a n ^ C^)[-2i» respectively. In other

words, (&x)ip q) and (D^)^ q) vanish for p + q < -2. Straightforward

calculation yields

(4.50.1)

(4.50.2)

where

(4.5.1)

and Ω(z, g), ^ " 1 ^ are as described in (4.33) and in what follows. The
leading singularity in the expansion of (0χ) by degree in u is

(4.52) «?χ)(_2) = (^)(_2>0) - -\siJ(^£
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Singularity of G and L. The Hadamard parametrix construction [7]

applied to the elliptic operator (9 determines a singular series Σ£l_i G{p)

for G where \G^\U = p. The series is constructed so that G^ is of

the form \\u\\~ιΨp+x, where ||u|| = gz(u, u)ι/2 a n d F p + 1 e Ω*(iV,Λ*)
depends smoothly on z and is a polynomial of degree p + 1 in its depen-
dence on u. (Hadamard's construction uses the map (z, u) »-• (z, expz w)
rather than E, but the results immediately translate into the packaging
used here.)

The leading singularity G,χ, is

( 4 5 3 ) G (- ) Ξ 2 4 ^ N | \ / d e t ( ^ ( z ) ) ε ^ d u %

G(/7) is then determined inductively in p from the fact that &χG(x, y) — 0

for (x, y) away from Δ. The singular piece of this equation of degree n

in u is Σk+ι=n(^x\k)G(i) = ° In other words

(4.54.1) (^)(-2)S(-0 = °.

(4.54.2) ( ^ ) ( _ 2 ) S ) =

- 1 </</>-1

(4.54.1) follows because G,γ) is the flat space propagator. Equation

(4.54.2) is an algebraic equation for the polynomial 7p+ι. Ellipticity of

(9 implies that this equation has a unique solution.

Let (λ r ) be the piece of G, , of degree r in du. The piece of (4.54.2)

of degree r in du is

^ ( 2 , O ) ( / 7 , r ) Σ^ Σ^xX-2+p-l,q)G(l,r-q) '
(4.55) -i^Kp-i ^

for^ > 0 , 0 < r < 3.

Now we show that G (p r ) = 0 for p + r < 2 by induction on /?. For /? =

- 1 , the result follows from (4.53). For p > 0, /?+r < 2, it suffices to show

that the right-hand side of (4.55) vanishes (since ~G, * is determined

uniquely by (4.55)). This follows since p + r < 2 implies either —2 +

p - I + q < - 2 , a n d s o ( 9 , 2 l , = 0 , o r e l s e I + r - q < 2, a n d s o

Gι r_q = 0 by the inductive hypothesis.

For a general elliptic operator, the F 's might also depend on powers of ln(||w||). No
such powers appear here because, using a covariant grading rather than the coordinate de-
pendent grading, (^-)(_!) vanishes.
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Let ~G[s] ΞΞ Σp9q.fP+q=sGfrtq) be the piece of the singularity of G of total

degree s. The result of the last paragraph yields that 7τ[s] vanishes for

s < 2. Equations (4.53) and (4.55) imply that {G[s], s > 2} is uniquely

determined by the following conditions:
Ul. G(_ l j 3), the piece of G[2] of degree 3 in du, is given by the

right-hand side of (4.53).
U2. llwHG^z, ύ) is a polynomial in its dependence on u.
U3. Away from u = 0,

(4.56.1) (^)[-?lϋra = 0

(4.56.2) ( ^ [ - A i = Σ K\-2+s-t]G[t] for s > 2.
2<t<s

We need only the explicit formula for G[2]:

Since the right-hand side obviously satisfies Ul and U2, one need only
check (4.56.1) to verify (4.57). This follows by substituting (4.57) and
(4.50.1) into (4.56.1) and calculating.

Since ΐ(x, y) = -D\G(x, y) ,T has a singular series graded by total
degree of the form Σ^0^[s], where

(4.58) L[s] = - £ (D%(G)[s-tV

-2<t<s-2

Furthermore ||w||3^[s] depends polynomially on u. This follows because

ord(Dt) = 1 and ||w||G[5] is a polynomial in u.
Using (4.50.2) and (4.57) to evaluate (4.58) for s = 0, we find

L[0] = -

( 4 ' 5 9 )

, g)glk(z)],

where ύ = u/\\u\\. This has exactly the same form as the right-hand side
of (4.27).

Extension to B2. I d e n t i f y # ' w i t h S(TM) χ ( 0 , ε ) v i a t h e m a p

(4.60) N' 3 (z, u) ~ ((z, ft), ||iι||) e S(TM) x (0, β).
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Let EB: S(TM) x [0, ε) -• 5 2 be the map

f (z, uύ)edB2, r = 0,
(4.61) ((z,ύ),r)^\ \ 2

{E{z,rύ)eM2\A = B2\dB2, R>0.

EB is a diffeomorphism onto an open neighborhood of dB2 (by definition
of the differentiate structure on B2). The restriction of EB to Nf =
S(TM) x (0, ε) agrees with £ ' ; and EB\S(TM)X{O\ is a diffeomoφhism
of S{TM)x{0} with d 5 2 .

Observe that

(4.62) τ. ' " " ι's"
Λs]

= ί ιi"ir^

where Ds and £'5_1 are polynomials in ύι and dώ' (whose coefficients

are smooth forms in z) of degree s and s - 1 respectively. So L[s]

extends smoothly to S(TM) x [0, ε) L[s]\s,TM,xr0^ vanishes for s > 0;

^[0]\S(TM)X{0}
 i s S i v e n fey t h e right-hand side of (4.27).

That Σ ^ o ^[5] is a singular series for L means that there are forms
~pκ e Ω*(E(N), Λ*) which become arbitrarily differentiable for large K
so that

K

(4.63) (Ef)*(L) = (E')*(pκ) + ΣL[sY
5=0

This implies that ~p = ( ^ ) | Δ is independent of K and hence smooth. ~p is
the restriction (as a bundle section) of a smooth form p e Ω2(Δ x Met) to
Δ x {#} . By the results of the last paragraph, (Ef)*(L) extends smoothly
to S(TM) x [0, ε) and has restriction to dB2 = S{TM) x {0} equal to

(4.64) ti *

Using EB to identify S(TM) x [0, ε) with a neighborhood of dB2

in B2 and using the smoothness of L and L[s] in their dependence on

Met, we see that L extends to a smooth form LB e Ω2(B2 x Met) whose
restriction to dB2 x Met is λ + {db2)*(p). Since we have already shown
that L is closed and direct calculation shows λ is closed, it follows that
p and LB are closed.

We have now shown L4-L7 when the group G is a point. For general
G the only change needed in the above discussion is that all forms become
gj Θ g2 valued and the singularity ΐ[s] gets multiplied by (the pullback by
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E of) the gj <8> g2 = Hom(g2, g^-valued tensor whose value at (JC, y) e
E(N) is the parallel transport homomorphism along the short geodesic
from x to y.

5. The compactification M[V]

In this section we will define a compactification M[V] of

and describe some of its properties. As mentioned in the introduction,
M[V] is a manifold with corners. That is, it is locally modeled on the
space Cn = {(t{, , tn) e Rn f. > 0} (where n = dim(M[F]) = 3V)
with smooth overlap maps. Smooth maps between open sets in Cn are
maps that extend smoothly to open neighborhoods in Rn . We will denote
by dkM[V] the " codimension-fc boundary" of M[V], that is, the points
in M[V] with at least k coordinates vanishing. So dM[V] = dχM[V] is
the full boundary. dkM[V] is not a manifold, but dkM[V]\dMM[V]
is a disjoint union of smooth pieces, the codimension-A: open strata,
as we shall see. The reason dkM[V] is not smooth is that the closed
codimension-fc strata have common boundaries. (Think of the edges of
a cube, which are the intersections of the face; or the vertices of a cube,
which are the intersections of the edges.)

There are several equivalent definitions of M[V] which can be made
by taking the definitions in the algebrogeometric context of [5] and replac-
ing algebraic geometric blowups with differential geometric blowups, i.e.,
replacing projective spaces by spheres. We will not give a complete treat-
ment extending [5] to the differential geometric case. But we will describe
M[V] and the different strata explicitly as point sets and present coordi-
nate charts that give M[V] a structure of manifold with corners. Our goal
here will be to be explicit, rather than to provide all details in proofs since
an extension of the blowup procedure in [5] to manifolds with corners
gives a simple conceptual proof. To perform the anomaly calculation in
§6, we use Stokes theorem; for this all we really need are the coordinates
on the codimension-1 open strata.

5.1. Definition of M[ V] as a closure. For the remainder of this section,
the integer V will be fixed. In accordance with our application to Feynman
graphs, elements of the set V_ = {1, , V} will be referred to as vertices.
The set Mv is by definition Λf—, the set of maps from F to Λ/. For S
a subset of V_ containing at least two vertices, As will denote the smallest
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diagonal in Ms = Map(5, M) consisting of constant maps from S to

M. Similarly, ~AS c M— will denote the diagonal in Af— which maps

to As under the projection map from M— to Ms. As consists of maps

from F to ¥ which send all vertices in S to the same point in M.

The blowup of Ms along the diagonal Δ̂ , will be called Bl(Ms, As).

It has interior MS\AS and boundary S(N(AS c Ms)), the sphere bundle

of the normal bundle to the small diagonal in Ms. This differential geo-

metric blowup distinguishes a direction in N(AS) from its negative. Let

Bla(Ms, As) denote the algebraic geometric blowup used in [5]. There is

a natural map φs: Bl(Ms, As) —• Bla(Ms, As) which identifies two rays

in N(AS) in opposite directions.

Since the projection map πs: M— —• Ms maps Mζ to the interior of

Bl(Ms, As) for 5 c F with \S\ > 2, it determines a map πQS: Mζ ->

Bl(Ms, Δ 5 ) . Putting these maps together with the inclusion f0: Mζ -•

Λf —, we obtain an embedding

(5.65) Mζ c M- x f ] B1(MS, Δ s).

The space on the right-hand side of (5.65) will be called 38. Since 33
is a product of manifolds with boundary, it is a manifold with corners.
M[V] is defined to be the closure of the image of Mζ in 38. In the
algebrogeometric context, there is a corresponding space

(5.66) <%a = M^x l[Bla(MS,As)
\S\>2

and a continuous map φ: 33 —• 38a . The map <£ sends M[V] onto the

Fulton-Macpherson compactification Ma[V], the closure of M^ in 38a .
In [5], Ma[V] is shown to be equal to a sequence of algebrogeometric

blowups of Mv . When M is a nonsingular, the blowups are on smooth
submanifolds and hence Ma[V] is a smooth manifold, in fact a submani-
fold of 38a . This procedure carries over to the differential geometric setup
using manifolds with corners, so that M[V] is equal to a succession of
blowups of Mv along submanifolds with corners and is a submanifold
with corners of 38.

We now describe M[V] c 38 explicitly. A point in 38 is of course a

pair (x, {xB s}), where jc is an element of Af—, and Jcβ 5 is an element

of Bl(Ms, Δ) for each S c F with |5| > 2. Given such a pair, let xs be

the image of xB s under the blowdown map from B\{MS, As) to
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If xs does not lie in Δ^, xB s just equals xs. Otherwise xB s also

contains the information of a point in the fiber of S{N(AS c Ms)) at xs .
Given xs e As, let z e M be the common location of all the vertices in

S. The fiber N(AS c Ms)\, may be identified with [TzM]s/TzM, the
quotient of the set of maps from S to TzM by overall translations. The
sphere bundle is then the further quotient of the set of nonzero elements
of the normal bundle by the group R+ of dilations. Given a point ύs e
[TzM]s, its orbit under the combined actions of TzM and R+ will be
written [us]. So S(N(AS c Ms))\^ is the set of orbits [us] such that
not all of the components of us are the same. In the terminology of [5],
[us] is called a screen for S at z. Given a metric on M, screens may
be uniquely represented by vectors us chosen to have norm 1 and to be
orthogonal to As. It will be convenient to set us j. = 0 e TMχ when

j] $. S, so that now us e T-M— has norm 1 and is orthogonal to As .
5.2. Description of M[V] as a point set. Which points in 3S lie in

M[V]Ί Let W be the subset of 3S consisting of points (Jc, {xB s})
satisfying the following two conditions:

Cl: xs = x\s for S c K , \S\>2.
C2: Compatibility condition for screens. Suppose that Sf is a subset of

S with IS71 > 1, x maps all vertices in 5 to z, and the values of us

on the vertices in Sf are not all equal. Then [ϋs*] equals the restriction,
[ύs\S'], of the screen for S to a screen for S'.

We now sketch an argument showing M[V] = &. Since condition Cl
holds for points in Mζ c SB , it holds for M[V]. Since xs is determined
by x for points in M[V], we may consider M[V] to be a set of pairs
(x,{[us];x\seAs}).

Suppose x(t) is a smooth path in M— parametrized by t in R>0 (the
non-negative reals) with the property that 3c(0) = (z, z, , z) € M~
and x(t) e Mjf for t > 0. Choose local coordinates on M with the
origin centered about z. The Taylor expansion of the components of
x(t) about t = 0 takes the form

(5.67) χ.(t) = v^t + vμΫ + , for / G F.

Although it is by a coordinate-system-dependent operation, the compo-
nents of v (k) determine a vector in TzM. Let «(£*) be the smallest
integer so that v^niS)) Φ v {n{β)) for some /, j e S. Suppose now that
the path x(t) is chosen so that n(S) < oo for all S, |5 | > 1. Then the
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limit

(5.68) (xs, [us]) = Urn πos(x(ή)

exists; xs maps every vertex in S to z, and us is the map that sends
the vertex / e S to v^niS)).

The hypothesis in the compatibility condition for screens which requires
that the values of us on the vertices on S1 are not all equal is equivalent
to the condition that n{S) = n{S'). Hence {[us]} satisfies C2. So the
limit in M[V] of x(t) as t -• 0+ , which equals (x, {[us] x\s e As}),
lies in ^ .

Simple elaboration on this basic example proves that all points in ^
can be obtained this way. This shows M[V] D W. We leave the reverse
inclusion to the reader. One needs to show that a limit point in M[V]
is the limit of a curve x{t) as above using the compactness of the unit
sphere bundle in T{M).

5.3. Stratification of M[V]. Having shown that M[V] = <%, we can
now decompose it into a disjoint union of open strata,

(5.69) 0

Here & is a collection of subsets of V_, each subset containing two or
more elements, which are nested: if sets S{, *S2 belong to 5?, they are
either disjoint or else one contains the other.

The open strata M(S^)° consists of the elements (x, {xB s}) of M[V]
satisfying the following conditions:

(i) jc|5 e As exactly when S c S' for some Sf e S?.
(ii) When S is the smallest set in S? containing Sf, [us,] = [us\s>].

(iii) If S{, S2 e S? and Sχ c S2 , then us \s is a constant map.

Conditions (ii) and (iii) together imply that the screens {[ϋs] S e S*}
are independent and determine the remaining screens.

SI and S2 below should now be clear; S3 and S4 follow from our de-
scription of the manifold with corner structure on M[V] in the next sub-
section.

SI: M{S^Ϋ is a smooth (noncompact) manifold of codimension \S*\
in M[V], i.e., of dimension 3V-\S*\.

S2: The closed strata Af(«£*), the closure of M{S^f, equals
0

^^()
S3: The codimension-A: boundary to M[V] istheunionofthecodimen-

sion-A: closed strata,
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(5.70) dkM[V]= \J M{3>).

S4: dkM[V]\dk+ιM[V] is the open set in dkM[V] given by

°
For the codimension-1 strata needed in the next section, S? consists of

a single set S with \S\ > 1. Then M(S*f is the set of pairs (jc, {[us]})
for which x. = x. if and only if i, j e S and the components of us are
distinct and sum to zero.

5.4. Coordinates on M[V]. Let c ( 0 ) = (Jc(0), {[uf];S e &}) be
a point in M[V] belonging to the open strata M(S*)°. We now define
coordinates on M[V] in a neighborhood of c ( 0 ) . The definition will make
use of a choice of g e Met. The collections of all coordinate systems as
c ( 0 ) varies defines the manifold with corner structure of M[V]. This
structure is independent of the choice of g. Having fixed g, we may
choose ϊrs' to be the unique representation of its screen with norm 1 and
satisfying ΣieS uf\ = 0. Here u^\ is the value of ^ at the point
ieS.

Define a map ψ: M(&)° x [M > 0 ]^ -* Mv by

(5.71)

ψ(c,ί) = (xι(c,t), - ,Xv{c,t)),

\ C/-C . /

ts=

S'DS

where c = (X, {[us] S e <¥}) and ΣieS

 usj = °' ll^ll = ι f o r s ^ &

Lemma. ΓΛ^r^ ĴCW/ <z« o/7̂ w neighborhood U of c ( 0 ) //i M{S^Ϋ and

an open neighborhood W of 6 /Λ [ K > 0 ] ^ JO ̂ Λαί Λ̂β restriction ψ0 =

^lc/x(^\aPF) m f l ^ int0 MQ and is a diffeomorphism onto its image.

Remark. It makes sense to claim that ψ0 is a diffeomorphism since

both M{S*γ and R^0\dR^0 are smooth manifolds (without corners).

Proof By the inverse function theorem, it suffices to show that U and
W may be chosen so that the following hold:

(i) ψ0 maps into Mζ .
(ii) The derivative of ψQ is injective.

(iii) ψ0 is injective.
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We need only consider the case where V_ e S?. During the proof
we will identify a screen [iίs] at a point x = (x, , x) in the total
diagonal in Mv with its preferred representative us of norm 1 satisfying

us i- = 0 R e c a U that we set us ., = 0 for i φ S so that we may

view us as an element of ΓΛfJ . Let ( , •) denote the inner product on

TMV.
Proof of (i). By the tubular neighborhood theorem, it suffices to show

that, for suitably small U and W,

(5.72)

for / ̂  j , (jf, {i75}) G ί7, and ί e W. Let 5 0 be the smallest set in 5?
containing / and j . Since us t-us . = 0 for 5 not a subset of So, the
difference of the two sides of (5.72) is

(5.73) Vus09i ~ usojϊ + Σ ?s(Ms,i ~ usj)

Note that for S ^So, ts equals ts ts times a product of some other t 's.

Also w9 .. - wc , 7̂  0. Hence, one can choose U and ίΓ small enough

so that | ^ ( M 5 ,. - us j)\ is much smaller than \ts (us . - us . ) | , and

therefore (5.73) is nonzero.

Proof of (ii). Using the tubular neighborhood theorem again as well

as the fact that the map t >-> t from R+ to R+ is a diffeomorphism,

it suffices to show that the map {{us}, t) i-> Σ 5 € ^ ?5M5 is injective at
the tangent space level. The derivative of this map in the direction of
({δus},δί) is

(5.74)

The fact that {us} is an orthonormal set of vectors in TM implies that
(us, δϋs>) = 0 for any S, S* e <S?, and that (δus, δύs>) = 0 for S Φ Sf.
Hence, all the individual terms in (5.74) are orthogonal. Therefore (5.74)
is zero only if δt and the δύs all vanish.

Proof of (in). Using the tubular neighborhood theorem once more, it

suffices to show that if U and W are suitably small, and ((x,{Us}),t)

and ((x, {us}), f) are points in U x (W\dW) projecting to the same

point x e TMV, then Σses*tsus e Q u a l s Σse<9>TsUs only when ts =

fs and us = Us for all S e <9*. This follows because w5 and Us have

norm 1 and (us, £7^) = 0 for S φ S'.
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Theorem. The map ψ0 of the previous lemma extends continuously to

a map ψB: U x W ι-> I m ( ^ ) c M[V] so that the following hold:

Tl. ψB(c,t) eM^'f where S?1 = {S e<9>; ts = 0}.

T2. ψB(c90) = c.
T3. ψB is a homeomorphism.
T4. The set of maps ψB as c varies over M[V] is a system of coordi-

nates on M[V] giving it a structure of a manifold with corners.
T5. The manifold with corner structure on M[V] is independent of the

choice of metric g.
T6. M(S?γ is an open subset of the smooth part of the codimension

\S?\ boundary of M[V].
T7. The inclusion map of M[V] in 38 is smooth.

Outline of Proof. Choose (c, t) e U x W, c = (jf, {[us];S e

and let 3^ = {S e S?1 ts = 0} as above.

Let τ: [0, oo) -> M be the smooth curve

(5.75)

where ίε e R"ζ0 is given by

..{
Let x_ = f(0) = ψ(c, t). Observe that, when ε is a small positive number,
τ(ε) equals ψo{c, ζ) e Mζ . Therefore, if ψB exists, it must equal

(5.77.1) ψB(c9 t) = (x, {[us]; (x)\s eAs}),

where
(5.77.2)

(x\sΛis])=limπos(τ(ε)) foτScV, \S\>2, s

The limit in (5.77.2) can be calculated in terms of the Taylor series of
τ(β) in the manner introduced in §5.2. Write τ^ε) = expxXw.(e)), where

m{S)-ri
ε t u

ies

(5.78) m(S) = \{S' e ^ ; S' D 5 , ^ = 0}| = \{S* e<¥>';S' D S}\,

t's= Π '*'
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Let v.(n) be the coefficient of εn in w^ε). Then

(5.79.1) wi(ε)=Σvi(n)εn,

(5.79.2) Vi{n)= Σ ts,us,r

S'eS*;ieS' ,
m(S')=n

Observe that #, = exp̂ . (^(0)) and also that when n = 0 the terms in

the sum (5.79.2) have m(S') = 0 so ϊs, = ts,. A little thought suffices to
verify that

[x.i = ZLJ] <F> [XJ = Xj and v^O) = v .(0)] ̂  [/, j G Sf for some S' e S^\

So the limit in (5.77.2) must be calculated for S c V_ with \S\ > 2 and
S c So for some SQ e <¥'. Fix such an S until further notice.

Let z = x. for / e S, and .Fz: ΓΛ/̂  -• ΓΛ/Z be the vector space

isomorphism

(5.80) Fz(w) = ±
aK

κw) forwe TMχ.

(I.e., Fz(w) is obtained from w by transport using the Jacobi equation,
the geodesic deviation equation). Then

(5.81.1) τi(ε)

where

(5.81.2) G(a) = expχ(υi(0) + (Fz)~ι(a)) for a e TMZ.

The argument of G in (5.81.1) is the version in the present context of the
right-hand side of (5.67). Using the map G simply provides an invariant
way of identifying points near z with points in TMz . If we choose g to
be flat near xt and work in flat coordinates, G and Fz become trivial.

Set n(S) = min{n; v^n) Φ v.{n) for some i, j e S} as in the para-
graph below (5.67). Using the facts that

S' c S =• mis') > m(S)

and

m{Sf) <
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and the technique used to prove point (iii) in the previous lemma, it is not
hard to show that n(S) = m(S). Hence, as in the sentence after (5.68),

ϊ(5.82) uSi = Fz(Vi(n(S))) = £ ϊs,Fz{us, J

m(S')=m(S)

for i e S. Note that the sets S' in the sum in (5.82) need not necessarily
be contained in or contain S.

Specializing (5.82) to the case where t = 0, we obtain Ug = us \s,

where Sλ is the smallest element of S? containing S. This verifies T2.
Using (5.82) we find: if S{, S2 c SQ e &', \SX\ > 2 and S2^Sl9 then

[us \s is constant] & [353 e S?' S2 c S3 ξ S{].

This statement is equivalent to Tl .
The verification of T3, that the extension ψB of ψ0 defined by (5.77.1)

and (5.82) is a homeomorphism, is an exercise in point set topology.
To prove T4 and T5 it is necessary to show that the overlap map be-

tween coordinate charts ψB, ψ'B, associated to choices of c , c e M[V]
and g, g1 E Met, is a diffeomorphism from one manifold with corners
(an open subset of U x W) to another (an open subset of U' x W'). We
will not carry out this very tedious exercise here. It can be derived more
conceptually by using the map ψB a = φ o ψB: U x W -> Ma[V] which is
given explicitly by (5.82) together with ΨBa(c, t) = (x, {[w^]^}), where
[u^a is the orbit of % under the combined action of translation by TZM
and multiplication by R\{0} (rather than R+). One can check that ψB a

extends to a coordinate chart for Ma[V] (by allowing the ts 's to be neg-
ative). The overlap maps of the ψB 's are the restriction to nonnegative
ts 's of the overlap maps for the ψB a 's and hence are smooth.

Finally, T6 and T7 follow by inspection.

6. Main theorem

Our first basic result in [2] was that the integrals defining /(G) are
convergent despite the singularities near the union of all the diagonals in
Mv . In fact, we prove a strong version of this in [2] using power-counting
techniques of physics. We showed that the integral fMv Tτ{v)\J"(G)Ψ)
converges for any smooth Ψ € Ω*(M F , A*v) and any G (not necessarily
trivalent). In the language of quantum field theory, this says that Chern-
Simons perturbation theory is finite.
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The main result of this paper is to prove the conjecture made in [2]
that the dependence of I™nn on the arbitrary choice of g could be can-
celled by subtracting a local counterterm which is an appropriate multiple
of the "gravitational" Chern-Simons invariant CS (g,s) of the metric
connection on M, defined using a homotopy framing s of TM (see [2]).
Stated another way, we have our main theorem.

Theorem. There is a constant β{ depending only on I and the bi-
invariant inner product ( , ) L i e ( G ) on Lie(G) so that the quantity

9A0,s) = I™\M,AQ,g)- βfiS^g, s)

is independent of g. Tf°nn is therefore a topological invariant depending
on the choice of manifold M, homotopy framing s, and flat connection
A,.

When I is oddf £z = 0.
Remark 1: The naturality of our construction implies that the values of

Tf°nn agree for two choices of (M, AQ, s) which are related by a principal
bundle automorphism. (Although the automorphisms must be differen-
tiable, we use the term topological invariant since it is more standard in
this context.)

The proof of the theorem has three steps. First, we shall rewrite 7; as a
push-forward by integration over M[V] of a closed form on M[V] x Met
constructed from L. Next we shall apply Stokes theorem to write the
anomaly dUetIι as an integral over the boundary of M[V]. Then we shall
use the explicit descriptions of the propagator singularities (i.e., L\dB x M e t )
and of dM[V] to calculate dMetIι. This result will imply that

as desired.
Step 1: Rewriting 77. Shortly we will define the total propagator Lc t o t

on the compactification M[V] x Met. It belongs to Ω*(M[V] x Met, Ay).

Ay stands for the bundle Ay pulled back to either Mv x Met or, in this

case, to M[V] x Met. Lc t o t is characterized by the facts that it is smooth

on all of M[V] and that it agrees with Lχoχ (the analog of Lχoχ defined

using the extended propagator) on Aίζ x Met.

Having defined M[V] and Lc χoχ, we may rewrite I{ in terms of them:

(6.83) I,= ί Ίr(V\VCt0X).
JM[V]
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The operator Tr ( κ ) is the same as the operator Tr ( K ) defined previously
but now maps Ω*(M[V] x Met, A*v) to Q*(M[V] x Met).

The integral in (6.83) agrees with fMv Tr ( F ) (L' o t ) . Since the integrand

has degree 3V = dim(Λf ) as a differential form, the integral picks out

the piece of L[OX of degree 0 in the Met directions. This is precisely L[oX.

Thus (6.83) agrees with the previous definition of Iι.

Now we define Lc t o t . As one would expect, it is a double sum

( 6 8 4 )

of pieces Lc ,, ,, e tf(M[V] x Met, A\). Lc . ,1 smoothly extends

Lab(χi> * X > 4 l < x M e t t o a 1 1 o f MW\ x Met, as follows.

Let πBΛi j}: M[V] -» Bl (M ( 0 ' j } , A{iJ}) be the map

(6.85) πB {iJ}((x, {xBS;S c V, \S\ > 2})) = xB {i j }

and fB {j}: M[V] -» M{i} be the map

(6.86) /,,</}((*, {^,ί ^ C F , |5 | > 2})) = *..

The trivial cross product of these maps with Met will be denoted by

**,{/,;} a n d Λ,{/}
For iφj, LCΛij] is given by

(6.87) Lc { i j } = (πB>{iJ})*(LBsΛiJ}) = {LB)ab{xBΛiJ])f(i)j
b

u).

Here LBs ,( , is a copy of the "extended superpropagator" LBs = s(LB),
but for the vertices i, j rather than 1, 2. For i = j , the appropriate
definition is

(6.88) Lc{ii} = (fBΛi}f(PsΛi}) -

*(Λf{/} x Met Λ2(gps {i} here is a copy of y55 = s(p) belonging to Ω*(Λf{/} x Met, Λ2(gj <8>

82)) •
For notational convenience in (6.87), (6.88), and below, we have not

written the argument g explicitly.

Remark 2: Stokes Theorem. Let dUtχ and dM[V] be the exterior deriva-

tive operators. Since Lc t o t is covariantly closed, the integrand in (6.83)
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is closed. Hence,

(6.89) = c
V I

Remark 3: Calculation of the anomaly. Because Lc t o t is smooth,, we
are free to replace dM[V] in (6.89) by the open dense subset
dM[V]\d2M[V]. The latter is the disjoint union of the codimension-1
open strata:

(6.90) dM[V]\d2M[V] =

Furthermore, two different choices of V_ which differ only by a permuta-
tion of V_ give equal contributions. Therefore, by including a combina-
torial factor, we may restrict to the standard choices V[ — {1, , V'}
(2 < V' < V). Thus, we obtain

(6.9D dueti,=-cVJ έ {L) I ^v\rCΛot).

The term in (6.91) with a given V1 is the contribution to the anomaly
from the regions where V1 points coincide. It will be useful to introduce
names V"' = V -V' and F " = {V1 + 1, , V} for the number of and
the label set for the points not coinciding.

Recall from §5 that M({v!})° equals the set of (Jc, {[%']}) where

(i) x = (xχ, , xv) is an element of Mv with xχ through xγ, all
equal to some z in Mz (which is just a disjoint copy of M labeled by
z) and all pairs x., x. distinct otherwise; and

(ii) [ϊίyi] is an element of the fiber of the sphere bundle

S([TMZ]- / T M Z ) a t z r e p r e s e n t e d b y a v e c t o r ( u x , ••• , uv>) e [TZMZ]-
with no two components equal.
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For i Φ j , we also have

205

( 6 9 2 )

{}

((z, z),[(u,,Uj)]) € dBl(M{{iJ}, A{iJ}),

(*,., Xj) € Bl(M{iJ}, A{iJ})\dBl(M{iJ}, A{iJ})

otherwise.

As a particular case of the bottom line, πB ^ jy(x, {[iiv>]}) = (z, Xj) for

/ <Vf < j and similarly for / and j reversed.
This description of πB {j. y } on M({V!})° allows us to write

(6.93)

I [λ(z, [(«,., uj)])Sab + pab(z, z)

Thus we may decompose Lc t o t into terms coming from the explicit
propagator singularity and remaining "regular" terms,

(6.94.1)

(6.94.2)

, V' g, V" '

L s i n g > v,

, K"

(6.94.3)

Σ
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where

(6.94.4) J"= Σ far

The important properties of (6.94) which we need are the following.

PI. £ r e g ,κ" only depends on (z, J) and the {xi9j^) for i>Vr.

P2. Lύn$v, only depends on the (x., y(/)) for i <Vf, and on [uv,].

P3. Each term in the sum (6.94.2) defining Z s i n g v, factors into a

"group theory piece" (j?~ Λ f̂ O times a "manifold piece" (λ(z, [ui, Uj])).

P4. Z . vn is invariant under diagonal gauge transformations, that is,
gauge transformations that acts the same on all factors gχ, , gv>.

P4 follows from the invariance of the Lie algebra metric.
Substituting the first line of (6.94) into (6.91) and expanding by the

binomial theorem, one finds
v i

dMctIl= ~ Σ ΣCV'J'CV"J"
(6.95) v'=i /'=o

where i" = / - / ' . The domain of integration indicated gives the same
result as M(V^)° which is an open dense subset.

The next step consists of breaking the integral up into three parts: (1)
v"

an integral over (JCF#+1 , , xv) in M- , together with the Lie algebra
v"traces for j\v>+ι), , j { V ) in g- = gF/+1 Θ Θ gv (2) an integral

v'over [w] in S(TM- /TM2)\Z for fixed z, together with the contractions

over the nondiagonal directions in g- = gχ θ θ gv> and finally (3) an
integral over z in Mz together with contractions for / which belongs to

yl

the diagonal directions g ; c r .
Before proceding we explain the phrase "contraction over the diagonal

v"
directions". Write g- = h θ g,, where

(6.96) h = | c / 1 , >Jv')eir;Σ,J(i)

and gj is its orthogonal. The subspace gy is the space of diagonal direc-
tions, that is,

(6.97) g j = { { j ( ι ) , - , j \ y f ) ) e g j { r ) = j { s ) , r 9 s € £ ' } .



CHERN-SIMONS PERTURBATION THEORY 207

So

(6.98) Λ2

Contraction over the nondiagonal directions means interpreting η e

Λ27 ((p-) as a linear function acting on ω e ΩE(gj) by wedging to get

ηAω e Λ27 *E{ir ) and applying Tr(F ' , giving a real number Tr(F \ηAω)
(which vanishes unless E = 3Vf - 2If).

We may write

(6-99) dMel

We now discuss the two pieces Av> 7/ and Cvn [lt of this equation.

Cyii j» is the result of pushing forward [Lreg γn\ , considered (by PI)
2/" V" 2l" ' V"

as an element of Ω (Afz x M— x Met, Λ (g^ x g- )), by integration
V" V" 4

over M- and contraction on g- ,
(6.100) _

C yll J"\Z , J)

ί " ^

Since the integration subtracts manifold form degree 3F", and the Lie
algebra traces subtract Lie algebra form degree 3F" , ~CV,, j,, belongs to

ΩE(Mz x Met, AE(gj)), where

(6.101) E = if - W" = 3V' - 2Ϊ.

Similarly Aγ, 7/ is the push-forward of L7

ing y,, considered (by P2) as

an element of Ω 2 7 '(S{TM£/TMZ) xMet, Λ 2 7 '^ ' ) ) , by integration over
yl

the fibers of S(TM- /TMZ) —• Mz and contractions in the nondiagonal
directions, as explained above. Thus, for ω(z, /) e Λ*(g/)| z, we have
(6.102)_

(Av,j(z9J)9ω{z9J))

f'/TMz)
 Γ l ° ° Ty' S i n 8 ' K '

4In physical parlance, Cγn ^i is the untruncated Green's function with E external legs

and at order (/" — E) — V" + \ in perturbation theory, evaluated on the superspace diagonal
(meaning that all external vertices and generalized polarization tensors agree).
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The degree as a differential form of Aγ, j, is

(6.103) 2Ϊ - dim(S(TM ?/TMZ)\Z) = 2Ϊ - (3Vf -4) = 4-E,

whereas it pairs with Lie algebra forms of degree 3Vr - 2/' = E. Av, Jt

is invariant under gauge transformations, as follows from invariance of
Z s i n g v, (see P4) and the operators Trz for i < V1. Putting this together,

AyfJ, belongs to Ω4~E(MZ x Met, [Λ^(g / ) v ] i n v t , where Wv denotes the
dual of a vector space W.

One can now expand each factor of Z s i n g v, appearing in (6.102) using
(6.94.2) and rewrite the resulting sum as a sum over labeled graphs, as was
done in arriving at (3.22). By property P3 above, the contribution of each
graph factors into a manifold piece times a group theory piece. The result
is

(6.104.1) -Ay, r = -c^^^fG'^tG'),

G'

where

r ''
(6.104.2) AmM{G')= H~λ(z,[u,; , Uj]) eΩ4~E(Mz x Met),

•'{["]} e=l " 'e=l

and

A ίG'\ s T r . c . o Ύrv, o ί ] ί X , e [Λ £ (g,) v ] m v t

(6.104.3) 8PV ; i v ίJ.ι

J('e)J('e) ι ^ ; J

The sum in (6.104.1) is over all labeled graphs G; with V1 vertices and
/' edges which have no vertices of valency greater than 3 (and also no
edges connecting a vertex to itself). E is the number of external edges the
graphs have, i.e., the number of edge ends that need to be attached to any
of the G' to make it a trivalent graph. These graphs have

(6.105) ΐ = f-V'+l

loops. Note that

(6.106) K/ = 2(/ '- l ) + £ and ϊ = 3(/' - 1) + £.

Also note that the graphs may be assumed connected since the integral
(6.104.2) vanishes for G' disconnected. The vanishing follows because
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the integrand is annihilated by interior product by the nontrivial vector
field which scales the ut for / labeling one of the vertices in a connected
component of G' (see [2]).

The expression on the right of (6.104.3) is an operator that when acting
on ΛE(gj) produces a number, as in (6.102). Since it is gauge invariant
and its explicit form does not depend on z, it may be viewed as an el-
ement of the fixed space [A^(g y)

v] i l l v t s Λ^(Lie(G)v) invt. ^ ( G ' ) only
depends on the (unlabeled) graph G', the group G, and the invariant
metric ( , >Lie(G) on Lie(G). Its value remains unchanged if we replace
G by its semisimple part Gss, and ( , )L i e ( G ) by its restriction to Gss).
This follows because the structure constants (appearing in Trz) in the di-
rection of the 1/(1) factors of G vanish. With this replacement of G
by (?ss, ^gp(G') becomes an element of Λ^(Lie(Gss)

v)mvt, considered as

a subspace of Λ^(Lie(G)v) invt.
Note that AmM(Gf) is a characteristic polynomial of Ω. In other words

(6.107)

where PG> is an invariant symmetric tensor on Lie(5O(3)). This follows

because λ(z, [ut, Uj]) equals a combination of vertical forms (along the
v'

directions of the fiber S(TM- /TM2) being integrated over) and the pull-

back of Ω and because this combination is invariant under the SO(TMZ)

action on the u 's and on Ω. Since λ is universal, PG> only depends on

G'.
Now we come to the heart of the proof. Up to now, our calculation of

the anomaly would apply, with a little modification, to calculating gauge
fixing anomalies in a wide class of theories; although the particular form
for AmM and A would be different. Now we will use those particular
forms to prove that Aγ, Jt vanishes unless E = 0. To begin, Aγ, j,
must have nonnegative degree as a differential form, so E < 4. Next,
since Ω has degree 2, (6.107) implies that E must be even if Ayl Jf

is to be nonzero. This leaves only E = 2 or 4. Finally, those cases are
handled because Λ£(Lie(Gr

ss)
v) invt is isomorphic to the cohomology group

HE(GSS R). By semisimplicity, the latter group is trivial for E — 2 or 4.

When E = 0, the terms involving J in (6.94.3) for Zreg γ,, do not

contribute to ~Cγn j» . Cv>, j,, is also independent of z. In fact, changing

labeling set from {Vf +• 1, , V} to {1, , V1'} on the right side
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of (6.100), we obtain the definition of one of the original perturbative
invariants,

(6.108) Cyfjf=Ir for£ =

Putting all of the above together, we have

(6.109.1) ^ 7 , = Σ Ath>>

(6.109.2) ,, EE ί V_1)>3(/-_υ = -CysΣA^G') I J»G,(Ω),

where the sum is over labeled connected trivalent graphs with /' loops.
In (6.109), PGι is an invariant tensor on Lie(5Ό(3)) of degree 2. This

implies that it must be a multiple of the inner product. So

(6.110) PG,(Ω) = (α(G')/8π)(Ω, Ω)

for α(G') a constant which depends only on G'. But, with any choice of
framing, the variation of the Chern-Simons action of the metric connection
is given by

^ ^ g , s) = ^ / M 2 < Ω , δΓ) = i

To obtain the last equality in (6.111), recall ((4.33)) that

(6.112) Ω = Ω + δΓ - ι

ΊV(g~lδg) - \(g~lδg) Λ (g'ιδg).

The term involving Vδg vanishes by integration by parts and the Bianchi
identity.

Putting the results of the last paragraph into (6.109.2) yields

(6.113)

βγ depends only on /' and on the metric on Lie(G) (or even just its
restriction to Lie(Gss)).

The desired result
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follows from (6.109.1), (6.113), and the standard relation

(6.114) l

between sums over all graphs and connected graphs.

The only thing left now to of complete the proof is to show that βι van-

ishes for / odd. It suffices to show that the right-hand side of (6.104.2)

vanishes when /' is odd. This follows by looking at the involution [u] —•

[-u\ of the integration region S{TM^ /TMz)\z in (6.104.2). This involu-

tion is orientation reversing. Also λ is antisymmetric under the involution,

as follows from its explicit description (or the fact that L is antisymmetric

under the involution of M x M exchanging the two copies of M). Hence

the integrand in (6.104.2) is multiplied by (-1)7 ' = - ( - I ) 7 . For /' odd
the integrand is invariant, whereas the orientation is not, so the integral in
(6.104.2) vanishes.

Remark. Another way at arriving at the final result for the sum I™nn

over connected graphs G, without using (6.114), is to observe that all
of our calculations above for dMetIι apply to ^Met//Conn if we omit terms
coming from disconnected graphs G. To describe this, we need to use
the graphical interpretation of the sum (6.100) defining Cvn Jf,. We will
not elaborate on this now except to say that Cv» 7» is given by a sum
over labeled graphs G" with /" edges and with vertices labeled from the
set {z} U v!'. Since the graphs G ; summed over to yield Av* Jt are
connected anyway, the restriction that G be connected means that the
graphs G" must also be connected. When E = 0, the vertex labeled by
z is always disconnected from the rest of G", which must therefore be
empty. This means that V" equals zero. So the only terms that contribute
to the anomaly are when /" = 0 and /' = /.

Appendix. Graded tensor product and push-forward integrals

Let A* and B* be graded algebras over R with unit. The graded tensor
product A*®B* is the tensor product of the underlying vector spaces of
A* and B* equipped with the multiplication law given by

(A.115) (α, 0 bχ){a2 0 b2) = (-1)1*1' K\aχa2) 0 (b{b2)

for bχ e B^ and a2 e A^ of pure degree, and defined for all bχ, a2 by

linearity. There is a natural graded algebra isomorphism A*®B* = B*®A*
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taking a<8>b to (-l)|fl"*'&<8>0 for a,b of pure degree. We write α Θ l
as a and 1 <g> b as b, and multiplication with or without a wedge product
symbol, e.g., ( α j ® ^ ) ^ ® ^ ) = aχbγa2b2 = ̂ Λ&jΛ^Λi^ . If A* = A*(V)
and B* = Λ*(W), then there is a natural graded algebra isomorphism
A*®B* <*A*(V®W).

Suppose B* —• Y is a bundle of graded algebras over an oriented man-
ifold Y. We define multiplication of forms in Ω*(Y, B*) by identifying
this space with the graded algebra T{Y, Λ*(Γ* Y)<g>B*).

When B* = Y x B* is a trivial bundle, the algebras Ω*{Y)®B*,
Ω*(Y, 5*), and Ω*(Y, B*) are by definition all equal. Our notion of
integration over Y of such forms is defined by

(A.116) f ωΛb=(f aλbeB* for ω e Ω*{Y) and b e B*

and linearity.
Now suppose X, Y are manifolds and C* —• X is a bundle of graded

algebras. Let πx: X x Y —• X be the projection map. We may iden-
tify Ω * ( I x Γ , 7Γy(C*)) with a graded and completed tensor product
Ω*(X,C*)ΘΩ*(r). Identifying Ω*(X,C*) with the algebra B* in the
last paragraph gives a notion of integration over Y of forms in

(A.117) Ω*(X x Y, π^(C*)) S 5*<8>Ω*(y) 2 Ω*(Γ)<8)5*.

Given p e Ω*(X x Y, τr^(C*)), let ψ = Jγ p e Ω*(X, C*). Then we
write

p(x,y)eA*(T*Xχ)®Cx,

If p(x, y) = ω(x) Λ η(y), then

ψ{x)= I (ω(x)Aη(y))
Jy€Y

(A.119) = ( - l ) N I " l |

Note that this sign convention implies that

(A.120) Dχf p = (-l)dim{Y) ί Dχp,
J Y J Y

where Dχ is covariant exterior derivative operator in the X directions
associated to a connection on C*.
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