SUBVARIETIES OF GENERAL HYPERSURFACES IN PROJECTIVE SPACE

GENG XU

0. Introduction

We are interested in the following question: If C is an irreducible curve (possibly singular) on a generic surface of degree d in a projective 3 -space \mathbf{P}^{3}, can the geometric genus of C (the genus of the desingularization of C) be bound from below in terms of d ? Bogomolov and Mumford [14] have proved that there is a rational curve and a family of elliptic curves on every K-3 surface. Since a smooth quartic surface in \mathbf{P}^{3} is a K-3 surface, there are rational and elliptic curves on a generic quartic surface in $\mathbf{P}^{\mathbf{3}}$. On the other hand, Harris conjectured that on a generic surface of degree $d \geq 5$ in \mathbf{P}^{3} there are neither rational nor elliptic curves.

Now let C be a curve on a surface S of degree d in \mathbf{P}^{3}. By the Noether-Lefschetz Theorem, if $d \geq 4$ and S is generic, then C must be a complete intersection of S with another surface S_{1} of degree k. In this case we say that C is a type (d, k) curve on S. Clemens [4] has proved that there is no type (d, k) curve with geometric genus $g \leq \frac{1}{2} d k(d-5)$ on a generic surface of degree $d \geq 5$ in \mathbf{P}^{3}; in particular, there is no curve with geometric genus $g \leq \frac{1}{2} d(d-5)$ on a generic surface of degree $d \geq 5$ in \mathbf{P}^{3}.

Our first main result is the following.
Theorem 1. On a generic surface of degree $d \geq 5$ in \mathbf{P}^{3}, there is no curve with geometric genus $g \leq \frac{1}{2} d(d-3)-3$, and this bound is sharp. Moreover this sharp bound can be achieved only by a tritangent hyperplane section if $d \geq 6$.

We immediately conclude that the above conjecture of Harris is true. Meanwhile it is not hard to see that for a generic surface S of degree d in $\mathbf{P}^{\mathbf{3}}$, there is a tritangent hyperplane H and thus $C=H \cap S$ has three double points. Since $\pi(C)=\frac{1}{2}\left(C \cdot C+K_{S} \cdot C\right)+1=\frac{1}{2} d(d-3)+1$, and an ordinary double point drops the genus of a curve by 1 , the above bound is sharp.

[^0]Let C be a curve on a generic surface S of degree d in \mathbf{P}^{3}. The main point of the proof of Theorem 1 is to see how bad the singularities of such a curve C can be. We first study the deformation of C at the singular points of C, and obtain that if there is a type (d, k) curve C with certain geometric genus g on a generic surface S of degree d, then there are some homogeneous polynomials vanishing at the singular points of C to a certain expected order. By a Koszul type of argument, we can reduce the degree of these homogeneous polynomials. From these we get control over the singularities of C and obtain Theorem 2.1 which is just a slight improvement of Clemens' results (cf. [3], [4]). Then to prove Theorem 1 in the case $d \geq 6$, it remains only to see what kind of singularities a hyperplane section of S can afford.

We can generalize the above result in $\mathbf{P}^{\mathbf{3}}$ to higher dimensions.
Theorem 2. Let V be a generic hypersurface of degree $d \geq n+3$ in $\mathbf{P}^{n+1} \quad(n \geq 3), M \subset V$ a reduced and irreducible divisor, and $p_{g}(M)$ the geometric genus of the desingularization of M. Then

$$
\begin{equation*}
p_{g}(M) \geq \min \left\{\binom{d-2}{n+1}-\binom{d-4}{n+1}+1,\binom{d}{n+1}-\binom{d-1}{n+1}\right\} \tag{0.1}
\end{equation*}
$$

Moreover if

$$
\begin{equation*}
\binom{d-2}{n+1}-\binom{d-4}{n+1}+1 \geq\binom{ d}{n+1}-\binom{d-1}{n+1} \tag{0.2}
\end{equation*}
$$

then the bound

$$
\begin{equation*}
p_{g}(\mathbf{M}) \geq\binom{ d}{n+1}-\binom{d-1}{n+1} \tag{0.3}
\end{equation*}
$$

is sharp, and this sharp bound can be achieved only by a hyperplane section for the case where the inequality holds in (0.2).

Remark. The inequality (0.2) is true when $d \geq C(n)$. For example, $C(3)=14, C(4)=19$.

If $M \subset V$ as in Theorem 2, then it is well known that M is a complete intersection of V with another hypersurface of degree k. Ein (cf. [5], [6]) has proved that

$$
p_{g}(M) \geq\binom{ d-2}{n+1}-\binom{d-2-k}{n+1}
$$

in this case, and his results have generalized to varieties of higher codimensions. Therefore the improvement we make here is in the case $k=1$.

When $n=3$ Theorem 2 implies that $p_{g}(M) \geq 2$ if $d \geq 6$. In case $d=5$, there is a very interesting conjecture.

Clemens' Conjecture. On a generic quintic 3-fold in a projective 4space \mathbf{P}^{4}, there are only finite number of rational curves in each degree.

This assertion has been proved by Katz for degree up to 7 (cf. [7], [13], [15]). Mark Green has asked the following:

Question. Does every surface on a generic quintic 3-fold in \mathbf{P}^{4} have positive geometric genus?

If V is a generic quintic 3-fold, since any one-parameter family of rational curves on V sweeps out a surface of geometric genus 0 , an affirmative answer to Green's question will imply Clemens' conjecture.

This paper is organized as follows. We introduce a certain type of singularity in $\S 1$. In $\S 2$ we state and prove Theorem 2.1 , which will be used in the next section. In $\S 3$ we prove Theorem 1. Section 4 is devoted to the proof of Theorem 2. In the last section we outline a proof of Proposition 4 which states that a hyperplane section of a generic hypersurface can only have very mild singularities.

Throughout this paper we work over the complex number field \mathbb{C}.
I am grateful to my thesis advisor Mark Green for his advice and encouragement, and to David Gieseker, János Kollár, Shigefumi Mori and Jonathan Wahl for valuable discussions about singularities. I am also indebted to Herbert Clemens, Lawrence Ein, and Robert Lazarsfeld for their generous help and illuminating conversations, and to Lawrence Green for his careful reading of the whole paper.

1. Weak type δ singularities

In this section, we introduce a type of singularity, establish some of its elementary properties, and show its relationship with the canonical divisor.

Let V be an n-dimensional smooth variety, and $M \subset V$ be an irreducible codimension-1 singular subvariety. According to Hironaka [11], there is a desingularization of $M: V_{m+1} \xrightarrow{\pi_{m+1}} V_{m} \xrightarrow{\pi_{m}} \cdots \xrightarrow{\pi_{2}} V_{1} \xrightarrow{\pi_{1}} V_{0}=V$, so that the proper transform \widetilde{M} of M in V_{m+1} is smooth. Here $V_{j} \xrightarrow{\pi_{j}} V_{j-1}$ is the blow-up of V_{j-1} along a ν_{j-1}-dimensional submanifold X_{j-1} with $E_{j-1} \subset V_{j}$ the exceptional divisor. If X_{j-1} is a μ_{j-1}-fold singular submanifold of the proper transform of M in V_{j-1}, we say that M has a type $\mu=\left(\mu_{j}, \mathbf{X}_{j}, \mathbf{E}_{j} \mid \mathbf{j} \in\{0,1, \cdots, \mathbf{m}\}\right)$ singularity.

If $M \subset V$ has a type $\mu=\left(\mu_{j}, X_{j}, E_{j} \mid j \in \Gamma\right)$ singularity, and $\Omega \subset V$ is an open set, then we localize our definition by saying that M has a type $\mu_{\Omega}=\left(\mu_{j}, X_{j}, E_{j} \mid j \in \Gamma_{\Omega}=\left\{j \mid \exists q \in E_{j}, q\right.\right.$ is an infinitely near point of some $p \in \Omega\}$) singularity on $\boldsymbol{\Omega}$.

Given any resolution of the singularity of $M \subset V$ as above, if $Z \subset V$ is a codimension- 1 subvariety, such that

$$
\pi_{j}^{*}\left(\cdots\left(\pi_{2}^{*}\left(\pi_{1}^{*}(Z)-\delta_{0} E_{0}\right)-\delta_{1} E_{1}\right)-\cdots\right)-\delta_{j-1} E_{j-1}
$$

is an effective divisor for $j=1,2, \cdots, m+1$, then we say that Z has a weak type $\delta=\left(\delta_{j}, \mathbf{X}_{j}, \mathbf{E}_{j} \mid \mathbf{j} \in\{0,1, \cdots, m\}\right)$ singularity. It is easy to see that a type μ singularity implies a weak type μ singularity.

In terms of local coordinates, we assume that M has a type $\mu_{\Omega}=$ $\left(\mu_{j}, X_{j}, E_{j} \mid j \in \Gamma_{\Omega}=\{0,1, \cdots, m\}\right)$ singularity on Ω, and $\left\{z_{1}, \cdots, z_{n}\right\}$ are coordinates on Ω with X_{0} defined by $z_{s+1}=\cdots=z_{n}=0$. Let

$$
z_{1}^{\prime}=z_{1}, \cdots, z_{s}=z_{s}, \quad z_{s+1}^{\prime}=\frac{z_{s+1}}{z_{n}}, \cdots, z_{n-1}^{\prime}=\frac{z_{n-1}}{z_{n}}, \quad z_{n}^{\prime}=z_{n}
$$

be coordinates on the blow-up of Ω along X_{0}, and $h\left(z_{1}, \cdots, z_{n}\right)$ be a holomorphic function defined on Ω. Setting

$$
\begin{aligned}
h\left(z_{1}, \cdots, z_{n}\right) & =h\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}, z_{s+1}^{\prime} z_{n}^{\prime}, \cdots, z_{n-1}^{\prime} z_{n}^{\prime}, z_{n}^{\prime}\right) \\
& =\left(z_{n}^{\prime}\right)^{\rho} h^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right),
\end{aligned}
$$

then we say that the variety $\left\{h\left(z_{1}, \cdots, z_{n}\right)=0\right\}$ on Ω has a weak type $\delta_{\Omega}=\left(\delta_{j}, X_{j}, E_{j} \mid j \in \Gamma_{\Omega}=\{0,1, \cdots, m\}\right)$ singularity, if $\rho \geq \delta_{0}$, h^{\sharp} is holomorphic, and $\left\{\left(z_{n}^{\prime}\right)^{\rho-\delta_{0}} h^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)=0\right\}$ has a weak type ($\delta_{j}, X_{j}, E_{j} \mid j \in\{1, \cdots, m\}$) singularity on the blow-up of Ω along X_{0}.

The property of having a weak type δ singularity is additive in the following sense: if two varieties $\left\{h_{1}\left(z_{1}, \cdots, z_{n}\right)=0\right\}$ and $\left\{h_{2}\left(z_{1}, \cdots, z_{2}\right)\right.$ $=0\}$ have weak type $\delta_{\Omega}=\left(\delta_{j}, X_{j}, E_{j} \mid j \in \Gamma_{\Omega}\right)$ singularities on Ω, then so does the variety $\left\{h_{1}+h_{2}=0\right\}$. This holds because

$$
\begin{aligned}
& h_{1}\left(z_{1}, \cdots, z_{n}\right)=\left(z_{n}^{\prime}\right)^{l_{1}} h_{1}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right), \\
& h_{2}\left(z_{1}, \cdots, z_{n}\right)=\left(z_{n}^{\prime}\right)^{l_{2}} h_{2}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)
\end{aligned}
$$

with $l_{1}, l_{2} \geq \delta_{0}$, so $\min \left(l_{1}, l_{2}\right) \geq \delta_{0}$, and

$$
\begin{aligned}
\left(h_{1}+\right. & \left.h_{2}\right)\left(z_{1}, \cdots, z_{n}\right) \\
= & \left(z_{n}^{\prime}\right)^{\min \left(l_{1}, l_{2}\right)}\left(\left(z_{n}^{\prime}\right)^{l_{1}-\min \left(l_{1}, l_{2}\right)} h_{1}^{\sharp}\left(z_{1}^{\prime}, \cdots z_{n}^{\prime}\right)\right. \\
& +\left(z_{n}^{\prime} l_{2}^{l_{2}-\min \left(l_{1}, l_{2}\right)} h_{2}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)\right) \\
= & \left(z_{n}^{\prime}\right)^{\delta_{0}}\left(\left(z_{n}^{\prime}\right)^{l_{1}-\delta_{0}} h_{1}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)+\left(z_{n}^{\prime}\right)^{l_{2}-\delta_{0}} h_{2}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)\right) .
\end{aligned}
$$

Since both $\left\{\left(z_{n}^{\prime}\right)^{l_{1}-\delta_{0}} h_{1}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)=0\right\}$ and $\left\{\left(z_{n}^{\prime}\right)^{l_{2}-\delta_{0}} h_{2}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)\right.$ $=0\}$ have weak type $\left(\delta_{j}, X_{j}, E_{j} \mid j \in\{1, \cdots, m\}\right)$ singularities on the blow-up of Ω along X_{0}, by induction

$$
\left\{\left(z_{n}^{\prime}\right)^{l_{1}-\delta_{0}} h_{1}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)+\left(z_{n}^{\prime}\right)^{l_{2}-\delta_{0}} h_{2}^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)=0\right\}
$$

also has a weak type $\left(\delta_{j}, X_{j}, E_{j} \mid j \in\{1, \cdots, m\}\right)$ singularity. Then $\left\{h_{1}\left(z_{1}, \cdots, z_{n}\right)+h_{2}\left(z_{1}, \cdots, z_{n}\right)=0\right\}$ has a weak type $\delta_{\Omega}=\left(\delta_{j}, X_{j}, E_{j}\right) \mid j$ $\left.\in \Gamma_{\Omega}=\{0,1, \cdots, m\}\right)$ singularity on Ω.

If $M \subset V$ has a type $\mu=\left(\mu_{j}, X_{j}, E_{j} \mid j \in\{0,1, \cdots, m\}\right)$ singularity, and \widetilde{M}_{j} is the proper transform of M in V_{j}, then by the adjunction formula,

$$
\begin{align*}
K_{\widetilde{m}}= & K_{\widetilde{M}_{m+1}} \\
= & K_{V_{m+1}}+\widetilde{M}_{m+1} \\
= & \pi_{m+1}^{*}\left(K_{V_{m}}\right)+\left(n-\nu_{m}-1\right) E_{m}+\pi_{m+1}^{*}\left(\widetilde{M}_{m}\right)-\mu_{m} E_{m} \\
= & \pi_{m+1}^{*}\left(K_{V_{m}}+\widetilde{M}_{m}\right)-\left(\mu_{m}-\left(n-\nu_{m}-1\right)\right) E_{m} \tag{1.1}\\
= & \cdots \\
= & \pi_{m+1}^{*}\left(\cdots \left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(K_{V}+M\right)-\left(\mu_{0}-\left(n-\nu_{0}-1\right)\right) E_{0}\right)\right.\right. \\
& \left.\quad-\left(\mu_{1}-\left(n-\nu_{1}-1\right)\right) E_{1} \cdots\right) \\
& \quad-\left(\mu_{m}-\left(n-\nu_{m}-1\right)\right) E_{m} .
\end{align*}
$$

Since $n-\nu_{j}-1 \geq 1$, we get
Proposition 1.1. A section of $K_{V} \otimes M$ with a weak type $\mu-1=\left(\mu_{j}-\right.$ $\left.1, X_{j}, E_{j} \mid j \in\{0,1, \cdots, m\}\right)$ singularity induces a section of $K_{\widetilde{M}}$.

Definition. Let $T \subset \mathbb{C}^{N}$ be an open neighborhood of the origin $0 \in$ T. Assuming that $\sigma: M \rightarrow T$ is a family of reduced equidimensional algebraic varieties, $M_{t}=\sigma^{-1}(t)$, then we say that the family M_{t} is μ equisingular at $t=0$ in the sense that we can resolve the singularity of M_{t} simultaneously, that is, there is a proper morphism $\pi: \widetilde{M} \rightarrow M$, so that $\sigma \circ \pi: \widetilde{M} \rightarrow T$ is a flat map and $\sigma \circ \pi: \widetilde{M}_{t}=(\sigma \circ \pi)^{-1}(t) \rightarrow M_{t}$ is a resolution of the singularities of M_{t}. Moreover, if M_{t} has a type $\mu(t)=\left(\mu_{j}(t), X_{j}(t), E_{j}(t) \mid j \in \Gamma(t)\right)$ singularity with the above resolution, then $\mu_{j}(t)=\mu_{j}$ and $\Gamma(t)=\Gamma$ are independent of t, and the exceptional divisors and the singular loci of the desingularization $\widetilde{M}_{t} \rightarrow M_{t}$ have the same configuration for all t (cf. [16], [17], [18]).

2. Curves on generic surfaces in $\mathbf{P}^{\mathbf{3}}$

Our starting point is the following (cf. [2], [8], [9]).
Noether-Lefschetz Theorem. Every curve on a generic surface of degree $d \geq 4$ in \mathbf{P}^{3} is a complete intersection.

Let C be an irreducible curve on a generic surface $S=\{F=0\}$ of degree $d \geq 5$ in \mathbf{P}^{3}. Then C is a complete intersection of S with another surface $S_{1}=\{G=0\}$ of degree k, i.e., C is a type (d, k) curve on S. Here we always assume that the generic surface S is smooth, and both $\{F=0\}$ and $\{F=0\} \cap\{G=0\}$ are reduced. First of all, we have the following lower bound estimate on the geometric genus $g(C)$ of C.

Theorem 2.1. If C is a curve on a generic surface S of degree $d \geq 5$ in \mathbf{P}^{3}, and C is a complete intersection of S with another surface of degree k, then $g(C) \geq \frac{1}{2} d k(d-5)+2$.

Before we go into the proof of Theorem 2.1, let us first set down our notation.

For P a singular point of $C \subset S$, we use $\mathbf{e}(\mathbf{P}, \mathbf{C})$ to denote the multiplicity of C at P (cf. [12, Chap. 9]), that is, if $\pi: W \rightarrow S$ is the blow-up of S at P, and E is the exceptional divisor, then $\pi^{*} C=C^{*}+e(P, C) E$. Here C^{*} is the proper transform of C by π. If $\left\{q_{1}, \cdots, q_{s}\right\}=C^{*} \cap E$, then the points q_{i} are said to be the infinitely near points of \mathbf{P} on \mathbf{C} of the first order. Inductively, infinitely near points of $q_{i}(i=1,2, \cdots, s)$ on C^{*} of the j th order are said to be the infinitely near points of \mathbf{P} on C of the $(j+1)$ th order. We define $e\left(q_{i}, C\right)=e\left(q_{i}, C^{*}\right)$, and so on.

If $P_{0 j}\left(j=0,1, \cdots, n_{0}\right)$ are all the singular points on $C, P_{i j} \quad(j=$ $0,1, \cdots, n_{i}$) are all the infinitely near points on C of the i th order $\mu_{i j}=$ $e\left(P_{i j}, C\right)$, and $E_{i j}$ is the exceptional divisor resulting from the blowing up at $P_{i j}$, then C has a type $\mu=\left(\mu_{i j}, P_{i j}, E_{i j} \mid(i, j) \in \Gamma\right)$ singularity with $\Gamma=\left\{(i, j) \mid \mu_{i j}>1\right\}$, and

$$
\begin{aligned}
& g(C)=\pi(C)-\sum_{i, j} \frac{1}{2} \mu_{i j}\left(\mu_{i j}-1\right) \\
& \quad \frac{1}{2} d k(d+k-4)+1-\sum_{i, j} \frac{1}{2} \mu_{i j}\left(\mu_{i j}-1\right)
\end{aligned}
$$

Therefore the key to the proof of Theorem 2.1 is to see how bad the singularities of C may be.

Lemma 2.2. If $F\left(z_{1}, z_{2}\right)$ is an analytic function on an open set $\Omega \subset \mathbb{C}^{2}$ defining a curve $C, P_{00} \in \Omega$ is the only singular point of C, and C has a type $\mu_{\Omega}=\left(\mu_{i j}, P_{i j}, E_{i j} \mid(i, j) \in \Gamma_{\Omega}\right)$ singularity at P_{00}, then the curves
$\left\{\partial F / \partial z_{1}=0\right\}$ and $\left\{\partial F / \partial z_{2}=0\right\}$ in Ω have weak type $\mu_{\Omega}-1=$ $\left(\mu_{i j}-1, P_{i j}, E_{i j} \mid(i, j) \in \Gamma_{\Omega}\right)$ singularities at P_{00}.

Proof. First of all, we note that the conclusion of Lemma 2.2 is independent of the choice of the local coordinates on Ω. Without loss of generality, we may assume $P_{00}=(0,0) \in \Omega$, and

$$
\xi=z_{1}, \quad \eta=z_{2} / z_{1}
$$

are the new coordinates after blowing up at P_{00}; therefore

$$
F\left(z_{1}, z_{2}\right)=z_{1}^{\mu_{00}} F^{*}(\xi, \eta)
$$

Here $F^{*}=0$ is the equation of the proper transform of the curve $\{F=0\}$ after blowing up at P_{00}. Now

$$
\frac{\partial F}{\partial z_{1}}=z_{1}^{\mu_{00}-1}\left(\mu_{00} F^{*}+\xi \frac{\partial F^{*}}{\partial \xi}-\eta \frac{\partial F^{*}}{\partial \eta}\right)
$$

Since $\left\{F^{*}=0\right\}$ has a singularity with fewer steps to resolve at $P_{1 j}$, then by induction, both $\left\{\partial F^{*} / \partial \xi=0\right\}$ and $\left\{\partial F^{*} / \partial \eta=0\right\}$ have weak type $\left(\mu_{i j}-1, P_{i j}, E_{i j} \mid(i, j) \in \Gamma_{\Omega}-(0,0)\right)$ singularities. Therefore by additivity $\left\{\partial F / \partial z_{1}=0\right\}$ has a weak type $\mu_{\Omega}-1=\left(\mu_{i j}-1, P_{i j}, E_{i j} \mid(i, j) \in \Gamma_{\Omega}\right)$ singularity at P_{00}. On the other hand,

$$
\frac{\partial F}{\partial z_{2}}=z_{1}^{\mu_{00}-1} \frac{\partial F^{*}}{\partial \eta}
$$

Again we see that $\left\{\partial F / \partial z_{2}=0\right\}$ has a weak type $\mu_{\Omega}-1=\mu_{i j}-$ $\left.1, P_{i j}, E_{i j} \mid(i, j) \in \Gamma_{\Omega}\right)$ singularity at P_{00}. q.e.d.

Lemma 2.2 is a special case of the following.
Lemma 2.3. If $C_{t}=\left\{F_{t}\left(z_{1}, z_{2}\right)=0\right\}$ is an analytic μ-equisingular family of curves in an open set $\Omega \subset \mathbb{C}^{2}, C_{t}$ has only one singular point $P_{00}(t)$ in Ω, and C_{t} has a type $\mu(t)_{\Omega}=\left(\mu_{i j}, P_{i j}(t), E_{i j}(t) \mid(i, j) \in \Gamma_{\Omega}\right)$ singularity, then the curve $\left\{d F_{t} /\left.d t\right|_{t=0}=0\right\}$ in Ω has a weak type $\mu_{\Omega}-1=$ $\left(\mu_{i j}(0)-1, P_{i j}(0), E_{i j}(0) \mid(i, j) \in \Gamma_{\Omega}\right)$ singularity at $P_{00}(0)$.

Proof. Let $P(t)=\left(c_{1}(t), c_{2}(t)\right)$, and

$$
F_{t}\left(z_{1}, z_{2}\right)=\sum_{i+j \geq \mu_{00}} a_{i j}(t)\left(z_{1}-c_{1}(t)\right)^{i}\left(z_{2}-c_{2}(t)\right)^{j}
$$

Then

$$
\begin{aligned}
\left.\frac{d F_{t}}{d t}\right|_{t=0}= & -\left.\left\{\frac{d c_{1}(t)}{d t} \frac{\partial F_{0}}{\partial z_{1}}+\frac{d c_{2}(t)}{d t} \frac{\partial F_{0}}{\partial z_{2}}\right\}\right|_{t=0} \\
& +\left.\frac{d}{d t}\left\{\sum_{i+j \geq \mu_{00}} a_{i j}(t)\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j}\right\}\right|_{t=0}
\end{aligned}
$$

By Lemma 2.2, both $\left\{\partial F_{0} / \partial z_{1}=0\right\}$ and $\left\{\partial F_{0} / \partial z_{2}=0\right\}$ have weak type $\mu_{\Omega}-1$ singularities at $P_{00}(0)$.

If we move the singular point $P_{00}(t)$ of $F_{t}=0$ to $P_{00}(0)$, we get

$$
F_{t}^{*}=\sum_{i+j \geq \mu_{00}} a_{i j}(t)\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j}
$$

Now we can blow up simultaneously at $P_{00}(0)$. If we let

$$
\xi=z_{1}-c_{1}(0), \quad \eta=\left(z_{2}-c_{2}(0)\right) /\left(z_{1}-c_{1}(0)\right)
$$

be the new local coordinates after blowing up, then

$$
\begin{aligned}
F_{t}^{*} & =\left(z_{1}-c_{1}(0)\right)^{\mu_{00}} F_{t}^{\sharp}(\xi, \eta) \\
\left.\frac{d F_{t}^{*}}{d t}\right|_{t=0} & =\left.\left(z_{1}-c_{1}(0)\right)^{\mu_{00}} \frac{d F_{t}^{\sharp}(\xi, \eta)}{d t}\right|_{t=0} .
\end{aligned}
$$

Here F_{t}^{\sharp} is still a μ-equisingular family, but has improved singularities. By induction, $\left\{d F_{t}^{\sharp}(\xi, \eta) /\left.d t\right|_{t=0}=0\right\}$ has a weak type $\left(\mu_{i j}(0)-1\right.$, $\left.P_{i j}(0), E_{i j}(0) \mid(i, j) \in \Gamma_{\Omega}-(0,0)\right)$ singularity. By additivity we conclude that $\left\{d F_{t} /\left.d t\right|_{t=0}=0\right\}$ has a weak type $\mu_{\Omega}-1$ singularity at $P_{00}(0)$.

Lemma 2.4. Let $F_{t} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right), \quad G_{t} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right)$, and $C_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ be a μ-equisingular family of curves with a type $\mu(t)=\left(\mu_{i j}, P_{i j}(t), E_{i j}(t) \mid(i, j) \in \Gamma\right)$ singularity. Set $d F_{t} /\left.d t\right|_{t=0}$ $=F^{\prime}$, and $d G_{t} /\left.d t\right|_{t=0}=G^{\prime}$. If all the surfaces $F_{t}=0$ are smooth, and $\partial F_{0}(P) / \partial Z_{i} \neq 0, Z_{i}(P) \neq 0 \quad(i=0,1,2,3)$ at every singular point P of $C=\left\{F_{0}=0\right\} \cap\left\{G_{0}=0\right\}=\{F=0\} \cap\{G=0\}$, where $\left\{Z_{0}, Z_{1}, Z_{2}, Z_{3}\right\}$ are homogeneous coordinates, then the curve $\left\{\left(\partial F / \partial Z_{i}\right) G^{\prime}-\left(\partial G / \partial Z_{i}\right) F^{\prime}=\right.$ $0\}$ on $S=\{F=0\}$ has a weak type $\mu-1=\left(\mu_{i j}-1, P_{i j}(0), E_{i j}(0) \mid(i, j) \in\right.$ $\Gamma)$ singularity.

Proof. We fix $P=P_{0 s}(0)$ for some s, and assume that C_{t} has a type $\mu_{s}(t)=\left(\mu_{i j}, P_{i j}(t), E_{i j}(t) \mid(i, j) \in \Gamma_{s}\right)$ singularity at $P(t)=P_{0 s}(t)$. Denoting $\left\{z_{1}, z_{2}, z_{3}\right\}=\left\{Z_{1} / Z_{0}, Z_{2} / Z_{0}, Z_{3} / Z_{0}\right\}$, if we solve the equation $F_{t}\left(1, z_{1}, z_{2}, z_{3}\right)=0$ near the point $P(t)$, and get $z_{3}=\varphi_{t}\left(z_{1}, z_{2}\right)$, then we can view C_{t} as a μ-equisingular family of curves locally defined by the equation $G_{t}\left(1, z_{1}, z_{2}, \varphi_{t}\left(z_{1}, z_{2}\right)\right)=0$ in an open set $\Omega \subset \mathbb{C}^{2}$. By Lemma 2.3, the curve locally defined by the equation

$$
\left.\frac{d G_{t}}{d t}\left(1, z_{1}, z_{2}, \varphi_{t}\left(z_{1}, z_{2}\right)\right)\right|_{t=0}=0
$$

on the surface $S=\{F=0\}$ has a weak type $\mu_{s}(0)-1=\left(\mu_{i j}-1, P_{i j}(0)\right.$, $\left.E_{i j}(0) \mid(i, j) \in \Gamma_{s}\right)$ singularity at $P(0)=P_{0 s}(0)$.

From the equation $F_{t}\left(1, z_{1}, z_{2}, \varphi_{t}\left(z_{1}, z_{2}\right)\right)=0$, we get

$$
\begin{aligned}
& F^{\prime}\left(1, z_{1}, z_{2}, \varphi_{0}\left(z_{1}, z_{2}\right)\right) \\
& \quad+\left.\frac{\partial F}{\partial Z_{3}}\left(1, z_{1}, z_{2}, \varphi_{0}\left(z_{1}, z_{2}\right)\right) \frac{d \varphi_{t}}{d t}\left(z_{1}, z_{2}\right)\right|_{t=0}=0
\end{aligned}
$$

and thus

$$
\left.\frac{d \varphi_{t}}{d t}\right|_{t=0}=-\left(\frac{\partial F}{\partial Z_{3}}\right)^{-1} F^{\prime}
$$

We also have

$$
\begin{aligned}
\left.\frac{d G_{t}}{d t}\left(1, z_{1}, z_{2}, \varphi_{t}\left(z_{1}, z_{2}\right)\right)\right|_{t=0} & =G^{\prime}+\left.\frac{\partial G}{\partial Z_{3}} \frac{d \varphi_{t}}{d t}\right|_{t=0} \\
& =G^{\prime}-\left(\frac{\partial F}{\partial Z_{3}}\right)^{-1}\left(\frac{\partial G}{\partial Z_{3}}\right) F^{\prime}
\end{aligned}
$$

Thus the curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}-\left(\partial G / \partial Z_{3}\right) F^{\prime}=0\right\}$ on the surface S has a weak type $\mu_{s}(0)-1=\left(\mu_{i j}-1, P_{i j}(0), E_{i j}(0) \mid(i, j) \in \Gamma_{s}\right)$ singularity at $P(0)=P_{0 s}(0)$. Since s is arbitrary, we conclude that the curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}-\left(\partial G / \partial Z_{3}\right) F^{\prime}=0\right\}$ on surface $S=\{F=0\}$ has a weak type $\mu-1=\left(\mu_{i j}-1, P_{i j}(0), E_{i j}(0) \mid(i, j) \in \Gamma\right)$ singularity.

Lemma 2.5. Assume $C=\{F=0\} \cap\{G=0\}$ is a curve on a smooth surface $S=\{F=0\}$ in $\mathbf{P}^{3}, \operatorname{deg} F=d, \operatorname{deg} G=k$, and C has a type $\mu=\left(\mu_{i j}, P_{i j}, E_{i j} \mid(i, j) \in \Gamma\right)$ singularity. If $Q \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(m)\right)$ is not in the homogeneous polynomial ideal (F, G) generated by F and G, and the curve $\{Q=0\}$ on S has a weak type $\mu-1=\left(\mu_{i j}-1, P_{i j}, E_{i j} \mid(i, j) \in \Gamma\right)$ singularity, then

$$
\sum_{(i, j) \in \Gamma} \mu_{i j}\left(\mu_{i j}-1\right) \leq d k m
$$

Proof. By Bezout's Theorem, the intersection number $I(Q, G)_{F}$ of the divisors $\{Q=0\}$ and $\{G=0\}$ on $S=\{F=0\}$ is equal to $d \mathrm{~km}$. Let $P_{0 s}=P_{o s}(0) \quad\left(s=0,1, \cdots, n_{0}\right)$ be all the singular points of C on S, $S_{0,1} \xrightarrow{\pi_{0,1}} S_{0,0}=S$ be the blow-up of S at $P_{0,0}$ with $\widetilde{C}_{0,1}$ the proper transform of $C=\{G=0\} \cap S$ in $S_{0,1}$ and inductively $S_{0, s+1} \xrightarrow{\pi_{0, s+1}} S_{0, s}$ be the blow-up of $S_{0, s}$ at $P_{0, s}$ with $\widetilde{\widetilde{C}}_{0, s+1}$ the proper transform of $\widetilde{C}_{0, s}$ in $S_{0, s+1}$. Then $\pi_{0,1}^{*} C=\mu_{00} E_{00}+\widetilde{C}_{0,1}$. Since $Q=\{Q=0\}$ has a weak type $\mu-1$ singularity, $\pi_{0,1}^{*} Q-\left(\mu_{00}-1\right) E_{00}$ is an effective divisor in $S_{0,1}$,
so

$$
\begin{aligned}
\widetilde{C}_{0,1} & \left(\pi_{0,1}^{*} Q-\left(\mu_{00}-1\right) E_{00}\right) \\
& =\left(\pi_{0,1}^{*} C-\mu_{00} E_{00}\right)\left(\pi_{0,1}^{*} Q-\left(\mu_{j 00}-1\right) E_{00}\right) \\
& =C \cdot Q-\mu_{00}\left(\mu_{00}-1\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I(Q, G)_{F}= & C \cdot Q \\
= & \widetilde{C}_{0,1} \cdot\left(\pi_{0,1}^{*} Q-\left(\mu_{00}-1\right) E_{00}\right)+\mu_{00}\left(\mu_{00}-1\right) \\
= & \cdots \\
= & \widetilde{C}_{0, n_{0}+1} \cdot\left(\pi _ { 0 , n _ { 0 } + 1 } ^ { * } \left(\cdots \pi_{0,2}^{*}\left(\pi_{0,1}^{*} Q-\left(\mu_{00}-1\right) E_{00}\right)\right.\right. \\
& \left.\left.\quad-\left(\mu_{01}-1\right) E_{01}\right)-\cdots-\left(\mu_{0 n_{0}}-1\right) E_{0 n_{0}}\right) \\
& +\sum_{s=0}^{n_{0}} \mu_{0 s}\left(\mu_{0 s}-1\right) .
\end{aligned}
$$

If we continue the above process on all the infinitely near points on C of the first order, and so on, finally we will get

$$
I(Q, G)_{F} \geq \sum_{(i, j) \in \Gamma} \mu_{i j}\left(\mu_{i j}-1\right) . \quad \text { q.e.d. }
$$

After these four lemmas, we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. We first fix an integer $d \geq 5$. Let g be the minimum integer so that on a generic surface of degree d in \mathbf{P}^{3} there is a curve C with geometric genus $g(C) \leq g$. Setting

$$
\begin{gathered}
H_{m, g}=\left\{F \in \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right) \mid \text { there is a degree } m\right. \text { curve } \\
C \subset\{F=0\} \text { with } g(C) \leq g\}
\end{gathered}
$$

it is well known that $H_{m, g} \subset \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ is an algebraic subvariety. By our assumption on g and the Noether-Lefschetz Theorem, the natural map

$$
\bigcup_{k=1}^{\infty} H_{d k, g} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)
$$

is surjective, so $H_{d k, g} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ is surjective for some positive integer k, and the image of $H_{d k, g-1} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ is a proper algebraic subvariety. Let
$W_{d, k, g}=\left\{F \in \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right) \mid \exists G \in \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right)\right.$ such that the curve $C=\{F=0\} \cap\{G=0\}$ is reduced, irreducible and $g(C) \leq g\}$, $\widetilde{W}_{d, k, g}=\left\{\{F, G\} \in \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right) \times \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right) \mid\right.$ the curve $C=\{F=0\} \cap\{G=0\}$ is reduced, irreducible and $g(C) \leq g\}$.

Since the natural map $H_{d k, g}-W_{d, k, g} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ is not dominant by Noether-Lefschetz Theorem, the image of the map $\sigma_{2}: W_{d, k, g} \rightarrow$ $\mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(d)\right)$ contains a Zariski open set. By our assumption, σ_{2} : $W_{d, k, g-1} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ is not dominant. Since the two natural maps $\sigma_{1}: \widetilde{W}_{d, k, g} \rightarrow W_{d, k, g}, \sigma_{3}: \widetilde{W}_{d, k, g} \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ satisfy $\sigma_{3}=\sigma_{2} \circ \sigma_{1}$, there are two sets $W \subset W_{d, k, g}-W_{d, k, g-1}$ and $\widetilde{W} \subset \widetilde{W}_{d, k, g}$, so that the image of the map $\sigma_{2}: W \rightarrow \mathbf{P} H^{0}\left(\mathbf{P}^{3^{3}}, \mathscr{O}(d)\right)$ contains a Zariski open set of $\mathbf{P} H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$, and $\sigma_{1}: \widetilde{W} \rightarrow W$ is dominant. Therefore at some regular point of W, we can find a smooth section of $\sigma_{1}: \widetilde{W} \rightarrow W$, that is, there is a pair $\{F, G\} \in \widetilde{W}$, such that for any deformation F_{t} of F with $F=F_{0}$ in W, there is an unique deformation G_{t} of G with $G=G_{0}$ so that $\left\{F_{t}, G_{t}\right\} \in \widetilde{W}$. Moreover, we can assume the family of curves $C_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ is μ-equisingular, and C_{t} has a type $\mu(t)=\left(\mu_{i j}, P_{i j}(t), E_{i j}(t) \mid(i, j) \in \Gamma\right)$ singularity.

Since the surface $S=\{F=0\}$ is smooth, we may choose homogeneous coordinates $\left\{Z_{0}, Z_{1}, Z_{2}, Z_{3}\right\}$ for \mathbf{P}^{3}, so that

$$
\frac{\partial F}{\partial Z_{i}}\left(P_{0 j}(0)\right) \neq 0, \quad Z_{i}\left(P_{0 j}(0)\right) \neq 0, \quad \forall i,(0, j) \in \Gamma
$$

By Lemma 2.4, for any $F^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(d)\right)$, there is a unique deformation $G^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right)$ of G constructed above, such that the curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}-\left(\partial G / \partial Z_{3}\right) F^{\prime}=0\right\}$ on S has a weak type $\mu-1=$ $\left(\mu_{i j}-1, P_{i j}(0), E_{i j}(0) \mid(i, j) \in \Gamma\right)$ singularity.

Consider the case $F^{\prime}=Z_{i} U$ with $U \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d-1)\right)$, and let $G^{\prime}=G^{\prime}\left(Z_{i} U\right) \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right)$ be the corresponding deformation of G. Since

$$
\begin{align*}
\frac{\partial F}{\partial Z_{3}} & \left(Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right)\right) \tag{2.1}\\
& =Z_{i}\left(\frac{\partial F}{\partial Z_{3}} G^{\prime}\left(Z_{j} U\right)-\frac{\partial G}{\partial Z_{3}} Z_{j} U\right)-Z_{j}\left(\frac{\partial F}{\partial Z_{3}} G^{\prime}\left(Z_{i} U\right)-\frac{\partial G}{\partial Z_{3}} Z_{i} U\right),
\end{align*}
$$

we find that the curve $\left\{\partial F / \partial Z_{3}\left(Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right)\right)=0\right\}$ on S has a weak type $\mu-1$ singularity. But $\left(\partial F / \partial Z_{3}\right)\left(P_{0 s}(0)\right) \neq 0$ for all s by our assumption, so the curve $\left\{K_{i j}(U)=0\right\}=\left\{Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right)=0\right\}$ on S has a weak type $\mu-1$ singularity.

Since $\{F=0\} \cap\{G=0\}$ is reduced and irreducible, it is well known that the polynomial ideal (F, G) generated by F and G satisfies $(F, G)=$ $\sqrt{(F, G)}$. Let K_{k+1} be the space of homogeneous polynomials of degree $k+1$ generated by $K_{i j}(U)$ with $i, j=0,1,2,3$ and

$$
U \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d-1)\right)
$$

Case 1. If $\operatorname{dim}\left(K_{k+1} /(F, G)\right) \geq 2$, we can choose $0 \neq Q \in K_{k+1} /(F, G)$ so that the curve $\{Q=0\}$ on S passes through an extra smooth point of $C=\{F=0\} \cap\{G=0\}$. Lemma 2.5 gives

$$
\begin{aligned}
d k(k+1) & =I(Q, G)_{F} \geq \sum_{(i, j) \in \Gamma} \mu_{i j}\left(\mu_{i j}-1\right)+1 \\
g(C) & =\frac{1}{2} d k(d+k-4)+1-\sum_{(i, j) \in \Gamma} \frac{1}{2} \mu_{i j}\left(\mu_{i j}-1\right) \\
& \geq \frac{1}{2} d k(d+k-4)+1-\frac{1}{2} d k(k+1)+\frac{1}{2}
\end{aligned}
$$

that is, $g(C) \geq \frac{1}{2} d k(d-5)+2$.
Case 2. If $\operatorname{dim}\left(K_{k+1} /(F, G)\right)=1$, let Q be a generator of $K_{k+1} /(F, G)$. Then $K_{i j}(U) \equiv A_{i j}(U) Q \bmod (F, G)$, where $A_{i j}(U)$ are complex numbers. We may assume $A_{i j}(U) \neq 0$ for some i, j, U. From the construction of $K_{i j}(U)$, we get

$$
\begin{gathered}
Z_{h} K_{i j}(U)+Z_{i} K_{j h}(u)+Z_{j} K_{h i}(U)=0 \\
\left(Z_{h} A_{i j}(U)+Z_{i} A_{j h}(U)+Z_{j} A_{h i}(U)\right) Q \equiv 0 \quad \bmod (F, G)
\end{gathered}
$$

Since $\{F=0\} \cap\{G=0\}$ is reduced and irreducible, and Q is nontrivial, we must have

$$
Z_{h} A_{i j}(U)+Z_{i} A_{j h}(U)+Z_{j} A_{h i}(U) \equiv 0 \quad \bmod (F, G)
$$

But $\operatorname{deg} F=d \geq 5$, so $\operatorname{deg} G=k=1$. We may assume that $(i, j)=$ $(0,1)$, i.e., $A_{01}(U) \neq 0$. Then

$$
\begin{aligned}
& G \mid A_{01}(U) Z_{2}+A_{12}(U) Z_{0}+A_{20}(U) Z_{1} \\
& G \mid A_{01}(U) Z_{3}+A_{13}(U) Z_{0}+A_{30}(U) Z_{1}
\end{aligned}
$$

and this is impossible.

Case 3. If $\operatorname{dim}\left(K_{k+1} /(F, G)\right)=0$, then

$$
K_{i j}(U)=B_{i j}(U) F+C_{i j}(U) G
$$

Here $B_{i j}(U)$ and $C_{i j}(U)$ are homogeneous polynomials. From the equation

$$
Z_{h} K_{i j}(U)+Z_{i} K_{j h}(U)+Z_{j} K_{h i}(U)=0
$$

it follows that

$$
\begin{aligned}
& \left(Z_{h} B_{i j}(U)+Z_{i} B_{j h}(U)+Z_{j} B_{h i}(U)\right) F \\
& \quad+\left(Z_{h} C_{i j}(U)+Z_{i} C_{j h}(U)+Z_{j} C_{h i}(U)\right) G=0
\end{aligned}
$$

Since F and G are relative prime, $\operatorname{deg} C_{i j}(U)=1$, and $\operatorname{deg} F=d \geq 5$, it is easy to see that

$$
\begin{aligned}
& Z_{h} C_{i j}(U)+Z_{i} C_{j h}(U)+Z_{j} C_{h i}(U)=0 \\
& Z_{h} B_{i j}(U)+Z_{i} B_{j h}(U)+Z_{j} B_{h i}(U)=0
\end{aligned}
$$

so that

$$
\begin{aligned}
& C_{i j}(U)=Z_{i} C_{j}(U)-Z_{j} C_{i}(U), \\
& B_{i j}(U)=Z_{i} B_{j}(U)-Z_{j} B_{i}(U)
\end{aligned}
$$

for some homogeneous polynomials $B_{i}(U), C_{i}(U)$. Therefore

$$
\begin{aligned}
& Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right)= K_{i j}(U) \\
&=\left(Z_{i} B_{j}(U)-Z_{j} B_{i}(U)\right) F \\
&+\left(Z_{i} C_{j}(U)-Z_{j} C_{i}(U)\right) G, \\
& Z_{i}\left(G^{\prime}\left(Z_{j} U\right)-B_{j}(U) F-C_{j}(U) G\right) \\
&-Z_{j}\left(G^{\prime}\left(Z_{i} U\right)-B_{i}(U) F-C_{i}(U) G\right)=0 \\
& G^{\prime}\left(Z_{j} U\right)-B_{j}(U) F-C_{j}(U) G=Z_{j} V
\end{aligned}
$$

for some $V \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k-1)\right)$. The curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}\left(Z_{j} U\right)-\right.$ $\left.\left(\partial G / \partial Z_{3}\right) Z_{j} U=0\right\}$ on S has a weak type $\mu-1$ singularity, $Z_{j}\left(P_{0 s}(0)\right) \neq$ 0 , so we conclude that for any $U \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d-1)\right)$, there is a corresponding $V \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k-1)\right)$, so that the curve $\left\{\left(\partial F / \partial Z_{3}\right) V-\right.$ $\left.\left(\partial G / \partial Z_{3}\right) U=0\right\}$ on S has a weak type $\mu-1$ singularity. Note that $V=V(U)$ is unique $\bmod (F, G)$.

Now the above argument can be repeated again. We construct the space K_{k}. If $\operatorname{dim}\left(K_{k} /(F, G)\right) \geq 2$, then as before we get the estimate $g(C) \geq$ $\frac{1}{2} d k(d-4)+2 \geq \frac{1}{2} d k(d-5)+2$, while otherwise we may continue on.

If $k \geq d$ and $\operatorname{dim}\left(K_{j} /(F, G)\right)=0$ for $j=k+1, k, \cdots, k-d+2$, then the above argument will end with a homogeneous polynomial R_{3} of degree $k-d$, such that the curve $\left\{\left(\partial F / \partial Z_{3}\right) R_{3}-\partial G / \partial Z_{3} \cdot 1=0\right\}$ on S has a weak type $\mu-1$ singularity. If we replace Z_{3} by $Z_{i}(i=0,1,2)$ and repeat the same argument, then either we get the right estimate for $g(C)$, or we have homogeneous polynomials R_{0}, R_{1}, R_{2} of degree $k-$ d, such that the curve $\left\{\left(\partial F / \partial Z_{i}\right) R_{i}-\partial G / \partial Z_{i} \cdot 1=0\right\} \quad(i=0,1,2)$ on S has a weak type $\mu-1$ singularity. By our construction $R_{0} \equiv$ $R_{1} \equiv R_{2} \equiv R_{3} \bmod (F, G)$ and $\operatorname{deg} R_{i}=k-d<k$, so $R_{0} \equiv R_{1} \equiv$ $R_{2} \equiv R_{3} \bmod (F)$. If $\left(\partial F / \partial Z_{i}\right) R_{i}-\partial G / \partial Z_{i} \equiv 0 \bmod (F, G)$ for all i, then $\operatorname{deg} \partial G / \partial Z_{i}=k-1<k$ implies that $\left(\partial F / \partial Z_{i}\right) R_{i}-\partial G / \partial Z_{i} \equiv 0$ $(\bmod F)$, so that the Euler relation will give us $G \equiv 0 \bmod (F)$. Therefore one of $\left(\partial F / \partial Z_{i}\right) R_{i}-\partial G / \partial Z_{i} \not \equiv 0 \bmod (F, G)$, hence $\sum \mu_{i j}\left(\mu_{i j}-1\right) \leq$ $d k(k-1)$ as before, i.e.,

$$
g(C) \geq \frac{d k(d-3)}{2}+1 \geq \frac{d k(d-5)}{2}+2
$$

If $k<d$ and $\operatorname{dim}\left(K_{j} /(F, G)\right)=0$ for $j=k+1, k, \cdots, 2$, the above three steps of the argument will end with the following situation: for any $U \in H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(d-k)\right)$, there is a corresponding constant $V=V(U)$, such that the curve $\left\{\left(\partial F / \partial Z_{3}\right) V-\left(\partial G / \partial Z_{3}\right) U=0\right\}$ on S has a weak type $\mu-1$ singularity. Now we define K_{1}, and we only need to consider the case $\operatorname{dim}\left(K_{1} /(F, G)\right)=0$. Take $U=Z_{i} U^{\prime}$, and let $V=V\left(Z_{i} U^{\prime}\right)$ be the corresponding constant. Then

$$
Z_{i} V\left(Z_{j} U^{\prime}\right)-Z_{j} V\left(Z_{i} U^{\prime}\right)=A_{i j}\left(U^{\prime}\right) G
$$

in K_{1}, thanks to the fact $\operatorname{deg} F=d \geq 5$. Now

$$
\left(Z_{h} A_{i j}\left(U^{\prime}\right)+Z_{i} A_{j h}\left(U^{\prime}\right)+Z_{j} A_{h i}\left(U^{\prime}\right)\right) G=0
$$

and forces $A_{i j}\left(U^{\prime}\right)=0$ for any U^{\prime}, that is $V=V\left(U^{\prime}\right)=0$. Then the curve $\left\{\left(\partial G / \partial Z_{3}\right) U^{\prime}=0\right\}$ on S has a weak type $\mu-1$ singularity for any $U^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d-k-1)\right)$, i.e., the curve $\left\{\partial G / \partial Z_{3}=0\right\}$ on S has a weak type $\mu-1$ singularity. Since $k<d$ and one of the $\partial G / \partial Z_{i}$ $(i=0,1,2,3)$ is nontrivial, we get $\sum \mu_{i j}\left(\mu_{i j}-1\right) \leq d k(k-1)$, and

$$
g(C) \geq d k(d-5) / 2+2
$$

This completes the proof of Theorem 2.1.

3. Hyperplane sections of generic surfaces and the proof of Theorem 1

Before we go into the proof of Theorem 1, let us first have a look at the special case $k=1$. Namely, if C is a hyperplane section of a generic surface in \mathbf{P}^{3}, what kind of singularities can C have?

Proposition 3. Every hyperplane section of a generic surface of degree $d \geq 5$ in \mathbf{P}^{3} has at most either (1) 3 ordinary double points, (2) an ordinary double point and a simple cusp (locally defined by $x^{2}=y^{3}$), or (3) a tacnode (locally defined by $x^{2}=y^{4}$).

Proof. We follow the notations in the proof of Theorem 2.1. Let $\{F, G\} \in \widetilde{W}$, and assume $C=\{F=0\} \cap\{G=0\}$ has a type $\mu=$ $\left(\mu_{i j}, P_{i j}, E_{i j}\right)$ singularity. Since for any deformation $F^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ of F, there is a deformation $G^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(1)\right)$ of G, such that the curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}-\left(\partial G / \partial Z_{3}\right) F^{\prime}=0\right\}$ on $S=\{F=0\}$ has a weak type $\mu-1=\left(\mu_{i j}-1, P_{i j}, E_{i j}\right)$ singularity, we have

$$
\begin{equation*}
\left(\frac{\partial G}{\partial Z_{3}} F^{\prime}-\frac{\partial F}{\partial Z_{3}} G^{\prime}\right)\left(P_{0 s}\right)=0 \tag{3.1}
\end{equation*}
$$

on S for all the singular points $P_{0 s}$ on C. If C has at least one double point, then there will be a nontrivial condition imposed on G^{\prime}. Because of the fact $\operatorname{deg} G=1$, we may choose homogeneous coordinates $\left\{Z_{0}, Z_{1}, Z_{2}, Z_{3}\right\}$ such that $\partial G / \partial Z_{i} \neq 0$ for $i=0,1,2,3$. Note that $P_{0 s} \in\{G=0\}, h^{0}\left(\mathbf{P}^{2}, \mathscr{O}(1)\right)=h^{0}(\{G=0\}, \mathscr{O}(1))=3$, and that it is well known that any four distinct points of \mathbf{P}^{3} impose independent conditions on homogeneous polynomials of degree ≥ 3. Thus (3.1) implies that C can be singular at most at three different points.

We show next that there is no point $P \in C$ such that its multiplicity $e(P, C) \geq 3$, i.e., $\mu_{0 s} \leq 2$ for all s. Assuming there is one, then for any deformation F_{t} of $F=F_{0}$, there is a deformation G_{t} of $G=G_{0}$, such that the family of curves $C_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ is μ-equisingular and C_{t} has a singular point $P(t)$ with multiplicity $e\left(P(t), C_{t}\right) \geq 3$. Because $k=1$ and the surface $\left\{G_{t}=0\right\}$ is smooth, solving $G_{t}\left(1, z_{1}, z_{2}, z_{3}\right)=0$, we get $z_{3}=\psi_{t}\left(z_{1}, z_{2}\right)$, where ψ_{t} is linear in z_{1}, z_{2}. Let

$$
\begin{aligned}
f_{t}\left(z_{1}, z_{2}\right) & =F_{t}\left(1, z_{1}, z_{2}, \psi_{t}\left(z_{1}, z_{2}\right)\right) \\
P(t) & =\left[1, c_{1}(t), c_{2}(t), \psi_{t}\left(c_{1}(t), c_{2}(t)\right)\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
f_{t}\left(z_{1}, z_{2}\right)= & \sum_{i+j \geq 3} a_{i j}(t)\left(z_{1}-c_{1}(t)\right)^{i}\left(z_{2}-c_{2}(t)\right)^{j} \\
\left.\frac{d f_{t}}{d t}\left(z_{1}, z_{2}\right)\right|_{t=0}= & -\left.\frac{\partial f_{0}}{\partial z_{1}}\left(z_{1}, z_{2}\right) \frac{d c_{1}(t)}{d t}\right|_{t=0}-\left.\frac{\partial f_{0}}{\partial z_{2}}\left(z_{1}, z_{2}\right) \frac{d c_{2}(t)}{d t}\right|_{t=0} \\
& +\sum_{i+j \geq 3}\left\{\left.\frac{d a_{i j}(t)}{d t}\right|_{t=0}\right\}\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j}
\end{aligned}
$$

As in the proof of Lemma 2.4,

$$
\begin{equation*}
\left.\frac{d f_{t}}{d t}\left(z_{1}, z_{2}\right)\right|_{t=0}=F^{\prime}-\left(\frac{\partial G}{\partial Z_{3}}\right)^{-1} \frac{\partial F}{\partial Z_{3}} G^{\prime} \tag{3.2}
\end{equation*}
$$

thus

$$
\begin{aligned}
\left(F^{\prime}-\left(\frac{\partial G}{\partial Z_{3}}\right)^{-1} \frac{\partial F}{\partial Z_{3}} G^{\prime}\right) & \left(1, z_{1}, z_{2}, \psi_{0}\left(z_{1}, z_{2}\right)\right) \\
& +\left.\frac{\partial f_{0}}{\partial z_{1}} \frac{d c_{1}(t)}{d t}\right|_{t=0}+\left.\frac{\partial f_{0}}{\partial z_{2}} \frac{d c_{2}(t)}{d t}\right|_{t=0}=O(3)
\end{aligned}
$$

at $P(0)$ on $\{G=0\}$. Since $h^{0}\left(\mathbf{P}^{2}, \mathscr{O}(1)\right)=3, h^{0}\left(\mathbf{P}^{2}, \mathscr{O}(d)\right) \geq 6$ for $d \geq 5$, and the set

$$
\begin{aligned}
A_{2}=\{1, & z_{1}-c_{1}(0), z_{2}-c_{2}(0),\left(z_{1}-c_{1}(0)\right)^{2} \\
& \left.\left(z_{1}-c_{1}(0)\right)\left(z_{2}-c_{2}(0)\right),\left(z_{2}-c_{2}(0)\right)^{2}\right\}
\end{aligned}
$$

has six elements, so we can choose F^{\prime}, such that the above equation is not true for any choices of $G^{\prime} \in H^{0}(\{G=0\}, \mathscr{O}(1))$ and the two numbers $d c_{1}(t) /\left.d t\right|_{t=0}, d c_{2}(t) /\left.d t\right|_{t=0}$. Therefore C has only double points.

Now we look at the case where C has a simple cusp. Let C_{t} be a μ-equisingular deformation of C, and $P(t)$ be the simple cusp of C_{t}. Using the notation of the last paragraph, we have

$$
\begin{aligned}
f_{t}\left(z_{1}, z_{2}\right)= & \left(a(t)\left(z_{1}-c_{1}(t)\right)+b(t)\left(z_{2}-c_{2}(t)\right)\right)^{2} \\
& +\sum_{i+j \geq 3} a_{i j}(t)\left(z_{1}-c_{1}(t)\right)^{i}\left(z_{2}-c_{2}(t)\right)^{j}
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d f_{t}}{d t}\left(z_{1}, z_{2}\right)\right|_{t=0}= & -\left.\frac{\partial f_{0}}{\partial z_{1}} \frac{d c_{1}(t)}{d t}\right|_{t=0}-\left.\frac{\partial f_{0}}{\partial z_{2}} \frac{d c_{2}(t)}{d t}\right|_{t=0} \\
& +\sum_{i+j \geq 3}\left\{\left.\frac{d a_{i j}(t)}{d t}\right|_{t=0}\right\}\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j} \\
& +2\left(a(0)\left(z_{1}-c_{1}(0)\right)+b(0)\left(z_{2}-c_{2}(0)\right)\right) \\
& \cdot\left(\left.\frac{d a(t)}{d t}\right|_{t=0}\left(z_{1}-c_{1}(0)\right)+\left.\frac{d b(t)}{d t}\right|_{t=0}\left(z_{2}-c_{2}(0)\right)\right)
\end{aligned}
$$

and also, by (3.2),

$$
\begin{aligned}
\left(F^{\prime}-\right. & \left.\left(\frac{\partial G}{\partial Z_{3}}\right)^{-1} \frac{\partial F}{\partial Z_{3}} G^{\prime}\right)\left(1, z_{1}, z_{2}, \psi_{0}\left(z_{1}, z_{2}\right)\right) \\
& +\left.\frac{\partial f_{0}}{\partial z_{1}} \frac{d c_{1}(t)}{d t}\right|_{t=0}+\left.\frac{\partial f_{0}}{\partial z_{2}} \frac{d c_{2}(t)}{d t}\right|_{t=0} \\
= & 2\left(a(0)\left(z_{1}-c_{1}(0)\right)+b(0)\left(z_{2}-c_{2}(0)\right)\right) \\
& \cdot\left(\left.\frac{d a(t)}{d t}\right|_{t=0}\left(z_{1}-c_{1}(0)\right)+\left.\frac{d b(t)}{d t}\right|_{t=0}\left(z_{2}-c_{2}(0)\right)\right)+O(3)
\end{aligned}
$$

at $P=P(0)$ on $\{G=0\}$. The set A_{2} just defined above contains six elements, and we are free to choose $d c_{1}(t) /\left.d t\right|_{t=0}, d c_{2}(t) /\left.d t\right|_{t=0}, d a(t) /\left.d t\right|_{t=0}$, and $d b(t) /\left.d t\right|_{t=0}$, so having a simple cusp imposes at least two conditions on G^{\prime}. Now if D_{1} and D_{2} are two distinct points of C, one can find hyperplanes $H_{i}(i=1,2)$ so that $H_{i}=0$ at D_{i} and $H_{i} \neq 0$ at D_{j} for $j \neq i$. Writing $F^{\prime}=H_{1}^{3} F_{1}+H_{2}^{3} F_{2}$, because $F^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(d)\right)$ and $d \geq 5$, we can choose F_{1}, F_{2} so that the Taylor expansion of $\left.F^{\prime}\right|_{G=0}$ has prescribed coefficients up to the second order at any two distinct points $D_{1}, D_{2} \in C$ simultaneously. However $G^{\prime} \in H^{0}(\{G=0\}$, $\mathscr{O}(1))=H^{0}\left(\mathbf{P}^{2}, \mathscr{O}(1)\right)$, and $h^{0}\left(\mathbf{P}^{2}, \mathscr{O}(1)\right)=3$, so C could not afford two simple cusps. Similarly, writing $F^{\prime}=H_{1} F_{1}+H_{2} F_{2}+H_{1} H_{2} F_{3}$, we can choose F_{1}, F_{2}, F_{3} such that $\left.F^{\prime}\right|_{G=0}$ has prescribed values at D_{1}, D_{2} and simultaneously its Taylor expansion has prescribed coefficients up to the second order at a point $D_{3} \in C$. By (3.1) and above, we see that C cannot have two ordinary double points D_{1}, D_{2} and a simple cusp D_{3}. So we conclude that if C has no infinitely near point $P_{1 j}$ of the first order such that $e\left(P_{i j}, C\right)=\mu_{1 j}>1$, then C has at most three nodes or a node and a simple cusp.

Finally, we consider the case that the proper transform of C after blowing up at P_{00} is singular at P_{10}. Let $\left\{z_{1}, z_{2}, z_{3}\right\}=\left\{Z_{1} / Z_{0}, Z_{2} / Z_{0}\right.$, $\left.Z_{3} / Z_{0}\right\}$ be local coordinates, and $C_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ be a
μ-equisingular deformation of C. Keeping f_{t}, g_{t}, ψ_{t} as before, and denoting $\xi=z_{1}-c_{1}(0), \eta=z_{2}-c_{2}(0) / z_{1}-c_{1}(0), P_{00}(t)=\left[1, c_{1}(t), c_{2}(t)\right.$, $\left.\psi_{t}\left(c_{1}(t), c_{2}(t)\right)\right], P_{10}(t)=\left(0, c_{3}(t)\right)$, we then have

$$
\begin{gathered}
f_{t}\left(z_{1}, z_{2}\right)=\sum_{i+j \geq 2} a_{i j}(t)\left(z_{1}-c_{1}(t)\right)^{i}\left(z_{2}-c_{2}(t)\right)^{j} \\
\sum_{i+j \geq 2} a_{i j}(t)\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j} \\
= \\
=\left(z_{1}-c_{1}(0)\right)^{2}\left(\sum_{i+j \geq 2} b_{i j}(t) \xi^{i}\left(\eta-c_{3}(t)\right)^{j}\right) \\
= \\
\begin{aligned}
& \frac{d f_{t}}{d t}\left(z_{1}, z_{2}-c_{1}(0)\right)^{2} f_{t}^{\sharp}(\xi, \eta), \\
&=-\left.\frac{\partial f_{0}}{\partial z_{1}}\left(z_{1}, z_{2}\right) \frac{d c_{1}(t)}{d t}\right|_{t=0}-\left.\frac{\partial f_{0}}{\partial z_{2}}\left(z_{1}, z_{2}\right) \frac{d c_{2}(t)}{d t}\right|_{t=0} \\
&+\left.\frac{d}{d t}\left\{\sum_{i+j \geq 2} a_{i j}(t)\left(z_{1}-c_{1}(0)\right)^{i}\left(z_{2}-c_{2}(0)\right)^{j}\right\}\right|_{t=0} \\
&=-\left.\frac{\partial f_{0}}{\partial z_{1}} \frac{d c_{1}(t)}{d t}\right|_{t=0}-\left.\frac{\partial f_{0}}{\partial z_{2}} \frac{d c_{2}(t)}{d t}\right|_{t=0} \\
&+\left.\frac{d}{d t}\left(\left(z_{1}-c_{1}(0)\right)^{2} f_{t}^{\sharp}(\xi, \eta)\right)\right|_{t=0}, \\
&=-\left.\frac{\partial f_{0}^{\sharp}}{\partial \eta} \frac{d c_{3}(t)}{d t}\right|_{t=0}+\left.\sum_{i+j \geq 2} \frac{d b_{i j}(t)}{d t}\right|_{t=0} \xi^{i}\left(\eta-c_{3}(0)\right)^{j},
\end{aligned} \\
\left.\frac{d}{d t} f_{t}^{\sharp}(\xi, \eta)\right|_{t=0}
\end{gathered}
$$

and also, by (3.2),

$$
\begin{align*}
\left(F^{\prime}-\right. & \left.\left(\frac{\partial G}{\partial Z_{3}}\right)^{-1}\left(\frac{\partial F}{\partial Z_{3}}\right) G^{\prime}\right)\left(1, z_{1}, z_{2}, \psi_{0}\left(z_{1}, z_{2}\right)\right) \\
& +\left.\frac{\partial f_{0}}{\partial z_{1}} \frac{d c_{1}(t)}{d t}\right|_{t=0}+\left.\frac{\partial f_{0}}{\partial z_{2}} \frac{d c_{2}(t)}{d t}\right|_{t=0} \tag{3.3}\\
= & \left(z_{1}-c_{1}(0)\right)^{2}\left(-\left.\frac{\partial f_{0}^{\sharp}}{\partial \eta} \frac{d c_{3}(t)}{d t}\right|_{t=0}+O(2)\right)
\end{align*}
$$

If we take the Taylor expansion of the left side of (3.3) at $z_{1}=c_{1}(0)$, $z_{2}=c_{2}(0)$, then its coefficients of $1, z_{1}-c_{1}(0), z_{2}-c_{2}(0)$ must be zero.

As we noted early, this imposes at least one condition on G^{\prime} due to the free choices of $d c_{1}(t) /\left.d t\right|_{t=0}$ and $d c_{2}(t) /\left.d t\right|_{t=0}$. Since the set $\left\{1, \xi, \eta-c_{3}(0)\right\}$ has three elements, and we are free to choose the number $d c_{3}(t) /\left.d t\right|_{t=0}$, if the proper transform of C in the blow-up of S at P_{00} has a double point P_{10}, then at least two more conditions will be imposed on G^{\prime}. Altogether at least three conditions are imposed on G^{\prime}. However, $\operatorname{dim} H^{0}(\{G=$ $0\}, \mathscr{O}(1))=3$, thus it is not hard to see that P_{10} must be an ordinary double point. If P_{10} is a simple cusp, then at least one more condition will be imposed on G^{\prime} as we have seen in the last paragraph. If we have a worse singularity than a node or a simple cusp at P_{10}, we can go on one more step up as we will do in the proof of Proposition 4 to see that it will impose extra conditions on G^{\prime}. Therefore P_{00} is a tacnode of C. q.e.d.

Finally we give the
Proof of Theorem 1. Let C be a curve on a generic surface S of degree $d \geq 5$ in \mathbf{P}^{3}. Then C is a complete intersection of S with another surface of degree k. By Theorem 2.1, the geometric genus $g(C) \geq \frac{1}{2} d k(d-5)+2$. For $d \geq 6$, we have

$$
g(C) \geq \frac{d k(d-5)}{2}+2>\frac{d(d-3)}{2}-2
$$

when $k \geq 2$. We conclude that the sharp lower bound of $g(C)$ can be achieved only by a hyperplane section. When $k=1$,

$$
\begin{aligned}
g(C) & =\pi(C)-\sum \frac{\mu_{i j}\left(\mu_{i j}-1\right)}{2} \\
& =\frac{d(d-3)}{2}+1-\sum \frac{\mu_{i j}\left(\mu_{i j}-1\right)}{2} \\
& \geq \frac{d(d-3)}{2}-2
\end{aligned}
$$

by Proposition 3.
It only remains to consider the case $d=5$. By Theorem 2.1, $g(C) \geq 2$. Our goal is to show that actually we have $g(C) \geq 3$.

Now we assume there is a type $(5, k)$ curve of geometric genus $g(C)=$ 2 on a generic quintic surface S. By Proposition 3, we must have $k>1$. Again we follow the notation in the proof of Theorem 2.1. Let $\{F, G\} \in$ \widetilde{W}, and let $C=\{F=0\} \cap\{G=0\}$ have a type $\mu=\left(\mu_{i j}, P_{i j}, E_{i j}\right)$ singularity, such that for any $F^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(5)\right)$, there is a unique $G^{\prime}=$ $G^{\prime}\left(F^{\prime}\right) \in H^{0}\left(\mathbf{P}^{3}, \mathcal{O}(k)\right)$, so that the curve $\left\{\left(\partial F / \partial Z_{3}\right) G^{\prime}-\left(\partial G / \partial Z_{3}\right) F^{\prime}=\right.$ $0\}$ on S has a weak type $\mu-1$ singularity. Let $F_{1}^{\prime}, F_{2}^{\prime} \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(5)\right)$.

Then the curve $\left\{G^{\prime}\left(a F_{1}^{\prime}+b F_{2}^{\prime}\right)-a G^{\prime}\left(F_{1}^{\prime}\right)-b G^{\prime}\left(F_{2}^{\prime}\right)=0\right\}$ on S has a weak type $\mu-1$ singularity. We may assume that $G^{\prime}\left(a F_{1}^{\prime}+b F_{2}^{\prime}\right)-$ $a G^{\prime}\left(F_{1}^{\prime}\right)-b G^{\prime}\left(F_{2}^{\prime}\right) \equiv 0 \bmod (F, G)$ for all $a, b, F_{1}^{\prime}, F_{2}^{\prime}$; otherwise we will get $\sum \mu_{i j}\left(\mu_{i j}-1\right) \leq d k k$ by Lemma 2.5, and $g(C) \geq \frac{1}{2} d k(d-4) \geq 3$. Therefore the map $H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(5)\right) \rightarrow H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(k)\right) /(F, G), F^{\prime} \rightarrow G^{\prime}=$ $G^{\prime}\left(F^{\prime}\right)$ is linear.

Recall that we use K_{k+1} to denote the linear space of homogeneous polynomials of degree $k+1$ generated by $K_{i j}(U)=Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right)$ with $i, j=0,1,2,3$, and $U \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(4)\right)$. From the proof of Theorem 2.1 it is easy to see that $\operatorname{dim}\left(K_{k+1} /(F, G)\right) \leq 1$ implies $g(C) \geq 3$. So we need only to consider the case where $\operatorname{dim}\left(K_{k+1} /(F, G)\right) \geq 2$. As we noted in (1.1), a section of $K_{S} \otimes C=\mathscr{O}(d+k-4)=\mathscr{O}(k+1)$ with a weak type $\mu-1$ singularity induces a section of the canonical bundle of the desingularization of C. But $\operatorname{deg} K_{i j}(U)=k+1$, and the curve $\left\{K_{i j}=0\right\}$ on S has a weak type $\mu-1$ singularity, so $\operatorname{dim}\left(K_{k+1} /(F, G)\right)=2$ because of $g(C)=2$.

If we fix some $U \in H^{0}\left(\mathbf{P}^{3}, \mathscr{O}(4)\right)$, so that $K_{i j}(U)$ is nontrivial in $K_{i j} /(F, G)$ for some i, j, then the linear span of the set $\left\{K_{i j}(U) \mid i, j=\right.$ $0,1,2,3\}$ is the whole space $K_{k+1} /(F, G)$, as we noted in case 2 of the proof of Theorem 2.1. Let Q_{1}, Q_{2} be two generators of $K_{k+1} /(F, G)$, and

$$
\begin{aligned}
Z_{i} G^{\prime}\left(Z_{j} U\right)-Z_{j} G^{\prime}\left(Z_{i} U\right) & =K_{i j}(U) \\
& \equiv a_{i j} Q_{1}+b_{i j} Q_{2} \quad \bmod (F, G)
\end{aligned}
$$

Then the 4×4 matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are skewsymmetric and nontrivial. If we take a linear transformation $Z_{i}^{\prime}=\sum_{j} h_{i j} Z_{j}$ of the homogeneous coordinates $\left\{Z_{i}\right\}$, and use the linearity of $F^{\prime} \rightarrow G^{\prime}=$ $G^{\prime}\left(F^{\prime}\right)$, then

$$
Z_{i}^{\prime} G^{\prime}\left(Z_{j}^{\prime} U\right)-Z_{j}^{\prime} G^{\prime}\left(Z_{i}^{\prime} U\right) \equiv\left(H A H^{t}\right)_{i j} Q_{1}+\left(H B H^{t}\right)_{i j} Q_{2} \quad \bmod (F, G)
$$

with $H=\left(h_{i j}\right)$. It is well known that we can choose new homogeneous coordinates, still denoted by $\left\{Z_{0}, Z_{1}, Z_{2}, Z_{3}\right\}$, so that the alternative form B has the following standard form:

Case 1:

$$
B=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since

$$
\begin{equation*}
Z_{h} K_{i j}(U)+Z_{i} K_{j h}(U)+Z_{j} K_{h i}(U)=0 \tag{3.4}
\end{equation*}
$$

we have

$$
\begin{aligned}
\left(a_{i j} Z_{h}+a_{j h} Z_{i}+a_{h i} Z_{j}\right) Q_{1}+\left(b_{i j} Z_{h}\right. & \left.+b_{j h} Z_{i}+b_{h i} Z_{j}\right) Q_{2} \\
& \equiv 0 \bmod (F, G)
\end{aligned}
$$

Setting $\{i, j, h\}=\{1,2,3\}$ in (3.4), we get

$$
\begin{aligned}
& \left(a_{i j} Z_{h}+a_{j h} Z_{i}+a_{h i} Z_{j}\right) Q_{1} \equiv 0 \bmod (F, G), \\
& a_{i j} Z_{h}+a_{j h} Z_{i}+a_{h i} Z_{j} \equiv 0 \quad \bmod (F, G) .
\end{aligned}
$$

Because $k>1, a_{i j}=0$ for $i, j=1,2,3$.
Similarly, $a_{i j}=0$ for $i, j=0,2,3$. Setting $\{i, j, k\}=\{0,1,2\}$ in (3.4), we obtain

$$
a_{01} Z_{2} Q_{1}+Z_{2} Q_{2} \equiv 0 \quad \bmod (F, G)
$$

which contradicts the fact that $\operatorname{deg} G=k>1$.
Case 2.

$$
B=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Setting $\{i, j, h\}=\{0,1,2\},\{0,1,3\},\{0,2,3\},\{1,2,3\}$ in (3.4), we get

$$
\begin{aligned}
& M_{1} Q_{1}+Z_{2} Q_{2} \equiv 0 \quad \bmod (F, G), \\
& M_{2} Q_{1}+Z_{3} Q_{2} \equiv 0 \quad \bmod (F, G), \\
& M_{3} Q_{1}+Z_{0} Q_{2} \equiv 0 \bmod (F, G), \\
& M_{4} Q_{1}+\left(Z_{3}+Z_{1}\right) Q_{2} \equiv 0 \quad \bmod (F, G) .
\end{aligned}
$$

A linear combination of the above will lead to

$$
\begin{equation*}
L_{1} Q_{1}+L_{2} Q_{2} \equiv 0 \quad \bmod (F, G) \tag{3.5}
\end{equation*}
$$

where the line $L_{2}=a Z_{0}+b Z_{1}+c Z_{2}+d Z_{3}$ with free choices of a, b, c, d. Now we may choose L_{2} so that $L_{2} \cap C$ does not contain any singular points of C, and the intersection number $I_{P}\left(L_{2}, C\right)_{S}=1$ at any point P of $L_{2} \cap C$. By Bezout's Theorem, $L_{2} \cap C$ contains $5 k$ points with at most 2 points in $\left\{Q_{1}=0\right\} \cap C$, because $\operatorname{deg} K_{\widetilde{C}}=2 g-2=2$ and Q_{1} induces a section of $K_{\widetilde{C}}$. From $L_{1} Q_{1}=-L_{2} Q_{2}$ it follows that at least $5 k-2$ points of $L_{2} \cap C$ are on $L_{1}=0$, so they are on $L_{1} \cap L_{2} \cap S$. Since Q_{1}
and Q_{2} are linear independent, (3.5) implies that $L_{1} \neq L_{2}$. We conclude again by Bezout's Theorem that $5 k-2 \leq 5$, i.e., $k=1$, a contradiction.

This completes the proof of Theorem 1.

4. Subvarieties of higher dimensional hypersurfaces

By the Noether-Lefschetz Theorem, we know that every curve on a generic surface of degree $d \geq 4$ in \mathbf{P}^{3} is a complete intersection. In higher dimensions we have a better situation, thanks to the Lefschetz Theorem, which states that if V is a hypersurface in \mathbf{P}^{n+1} with $n \geq 3$, then $\operatorname{Pic} V=\mathbb{Z}$, and it is generated by $\mathscr{O}_{V}(1)$. Now if $M \subset V$ is a codimension-1 subvariety, then it is a complete intersection of V with another hypersurface.

Almost the whole proof of Theorem 1 can be generalized to prove Theorem 2, except we cannot apply intersection theory in higher dimensions; instead we need the following theorem of Hopf (cf. [1, pp. 108]).

Lemma 4.1 (Hopf). Given any setup of a linear map $\nu: A \otimes B \rightarrow C$, where A, B, C are complex vector spaces and ν is injective on each factor separately, then

$$
\operatorname{dim} \nu(A \otimes B) \geq \operatorname{dim} A+\operatorname{dim} B-1
$$

The analogy of Theorem 2.1 in higher dimensions is the following.
Theorem 4.2. If M is a codimension- 1 subvariety of a generic hypersurface V of degree $d \geq n+3$ in $\mathbf{P}^{n+1} \quad(n \geq 3)$, and M is a complete intersection of V with another hypersurface of degree k, then

$$
p_{g}(M) \geq\binom{ d-2}{n+1}-\binom{d-k-2}{n+1}+1
$$

Again the proof of Theorem 4.2 is based on the following three lemmas.
Lemma 4.3. Let M be a codimension- 1 subvariety of a smooth variety V of dimension n, and assume that M has a type $\mu=\left(\mu_{j}, X_{j}, E_{j}\right)$ singularity. If $\Omega \subset V$ is an open neighborhood of some point of M, $\left\{z_{1}, \cdots, z_{n}\right\}$ are local coordinates on Ω, and M is defined by $g\left(z_{1}, \cdots\right.$, $\left.z_{n}\right)=0$ and has a type $\mu_{\Omega}=\left(\mu_{j}, X_{j}, E_{j} \mid j \in\{0, \cdots, m\}\right)$ singularity on Ω, then the subvariety $\left\{\partial g\left(z_{1}, \cdots, z_{n}\right) / \partial z_{i}=0\right\}(i=1, \cdots, n)$ has a weak type $\mu_{\Omega}-1=\left(\mu_{j}-1, X_{j}, E_{j} \mid j \in\{0, \cdots, m\}\right)$ singularity on Ω.

Proof. Since the statement of the conclusion is independent of the choice of the local coordinates, we may assume that X_{0} is defined locally by $z_{h+1}=\cdots=z_{n}=0$. Let

$$
z_{1}^{\prime}=z_{1}, \cdots, z_{h}^{\prime}=z_{h}, z_{h+1}^{\prime}=\frac{z_{h+1}}{z_{n}}, \cdots, z_{n-1}^{\prime}=\frac{z_{n-1}}{z_{n}}, z_{n}^{\prime}=z_{n}
$$

be coordinates on the blow-up of Ω along X_{0}. Then

$$
\begin{aligned}
g\left(z_{1}, \cdots, z_{n}\right) & =g\left(z_{1}^{\prime}, \cdots, z_{h}^{\prime}, z_{h+1}^{\prime} z_{n}^{\prime}, \cdots, z_{n-1}^{\prime} z_{n}^{\prime}, z_{n}^{\prime}\right) \\
& =\left(z_{n}^{\prime}\right)^{\mu_{0}} g^{\sharp}\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right), \\
\frac{\partial g}{\partial z_{i}} & =\left(z_{n}^{\prime}\right)^{\mu_{0}} \frac{\partial g^{\sharp}}{\partial z_{i}^{\prime}}, \quad i=1,2, \cdots, h, \\
\frac{\partial g}{\partial z_{i}} & =\left(z_{n}^{\prime}\right)^{\mu_{0}-1} \frac{\partial g^{\sharp}}{\partial z_{i}^{\prime}}, \quad i=h+1, \cdots, n-1, \\
\frac{\partial g}{\partial z_{n}} & =\mu_{0}\left(z_{n}^{\prime}\right)^{\mu_{0}-1} g^{\sharp}+\left(z_{n}^{\prime}\right)^{\mu_{0}} \sum \frac{\partial g^{\sharp}}{\partial z_{i}^{\prime}} \frac{\partial z_{i}^{\prime}}{\partial z_{n}} \\
& =\mu_{0}\left(z_{n}^{\prime}\right)^{\mu_{0}-1} g^{\sharp}+\left(z_{n}^{\prime}\right)^{\mu_{0}-1}\left(-\sum_{i=h+1}^{n-1} z_{i}^{\prime} \frac{\partial g^{\sharp}}{\partial z_{i}^{\prime}}+z_{n}^{\prime} \frac{\partial g^{\sharp}}{\partial z_{n}^{\prime}}\right)
\end{aligned}
$$

Since $\left\{g^{\sharp}=0\right\}$ has improved singularities, by induction, $\left\{\partial g^{\sharp} / \partial z_{i}^{\prime}=0\right\}$ $(i=1, \cdots, n)$ has a weak type $\left(\mu_{j}-1, X_{j}, E_{j} \mid j \in\{1, \cdots, m\}\right)$ singularity on the blow-up of Ω along X_{0}, so $\left\{\partial g / \partial z_{i}=0\right\} \quad(i=1, \cdots, n)$ has a weak type $\mu_{\Omega}-1$ singularity on Ω.

Lemma 4.4. If $M_{t}=\left\{g_{t}\left(z_{1}, \cdots, z_{n}\right)=0\right\}$ is a μ-equisingular family of varieties defined in an open set $\Omega \subset \mathbb{C}^{n}$, and M_{t} has a type $\mu(t)_{\Omega}=$ $\left(\mu_{j}, X_{j}(t), E_{j}(t) \mid j \in\{0, \cdots, m\}\right)$ singularity on Ω, then the variety $\left\{d g_{t} /\left.d t\right|_{t=0}=0\right\}$ has a weak type $\mu(0)_{\Omega}-1=\left(\mu_{j}-1, X_{j}(0), E_{j}(0) \mid j \in\right.$ $\{0, \cdots, m\}$) singularity on Ω.

Proof. Since $X_{0}(t)$ is a smooth manifold, we may assume that $X_{0}(t)$ is locally defined by

$$
z_{h+1}=c_{h+1}\left(z_{1}, \cdots, z_{h}, t\right), \cdots, \quad z_{n}=c_{n}\left(z_{1}, \cdots, z_{h}, t\right)
$$

Then

$$
\begin{aligned}
& g_{t}\left(z_{1}, \cdots, z_{n}\right)=\sum_{i_{h+1}+\cdots+i_{n} \geq \mu_{0}} A_{i_{h+1}, \cdots, i_{n}}\left(z_{1}, \cdots, z_{h}, t\right) \\
& \quad \cdot\left(z_{h+1}-c_{h+1}\left(z_{1}, \cdots, z_{h}, t\right)\right)^{i_{h+1}} \cdots\left(z_{n}-c_{n}\left(z_{1}, \cdots, z_{h}, t\right)\right)^{i_{n}}
\end{aligned}
$$

By replacing Lemma 2.2 by Lemma 4.3, the proof goes exactly in the same way as that of Lemma 2.3.

Lemma 4.5. Let $F_{t} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(d)\right), G_{t} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(k)\right)$, and $M_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ be a μ-equisingular family of varieties with a type $\mu(t)=\left(\mu_{j}, X_{j}(t), E_{j}(t) \mid j \in \Gamma\right)$ singularity. Set $d F_{t} /\left.d t\right|_{t=0}=F^{\prime}$, $d G_{t} /\left.d t\right|_{t=0}=G^{\prime}$, and assume that all the hypersurfaces $F_{t}=0$ are
smooth for t in a neighborhood of 0 . Then the subvariety $\left\{\left(\partial F_{0} / \partial Z_{i}\right) G^{\prime}-\right.$ $\left.\left(\partial G_{0} / \partial Z_{i}\right) F^{\prime}=0\right\} \quad(i=0,1, \cdots, n+1)$ on $V=\left\{F_{0}=0\right\}$ has a weak type $\mu(0)-1=\left(\mu_{j}-1, X_{j}(0), E_{j}(0) \mid j \in \Gamma\right)$ singularity, where $\left\{Z_{0}, Z_{1}, \cdots, Z_{n+1}\right\}$ are homogeneous coordinates.

Proof. For any point $P \in M_{0}$, we can find an open set $\Omega \ni P$ of V, and generic homogeneous coordinates $\left\{Z_{i}^{\prime}\right\}$ with $Z_{i}^{\prime}=\sum_{j=0}^{n+1} l_{i j} Z_{j}$ $(i=0,1, \cdots, n+1)$, so that $\partial F_{0} / \partial Z_{i}^{\prime} \neq 0$ on Ω for all i. Assuming M_{0} has a type $\mu_{\Omega}(0)=\left(\mu_{j}, X_{j}(0), E_{j}(0) \mid j \in \Gamma_{\Omega}\right)$ singularity on Ω, and proceeding as in the proof of Lemma 2.4 except using Lemma 4.4 instead of Lemma 2.3, we conclude that the subvariety $\left\{\left(\partial F_{0} / \partial Z_{i}^{\prime}\right) G^{\prime}-\right.$ $\left.\left(\partial G_{0} / \partial Z_{i}^{\prime}\right) F^{\prime}=0\right\}$ has a weak type $\mu_{\Omega}(0)-1$ singularity on Ω. Since $\left(\partial F_{0} / \partial Z_{i}\right) G^{\prime}-\left(\partial G_{0} / \partial Z_{i}\right) F^{\prime}$ is a linear combination of the $\left(\partial F_{0} / \partial Z_{j}^{\prime}\right) G^{\prime}$ $-\left(\partial G_{0} / \partial Z_{j}^{\prime}\right) F^{\prime} \quad(j=0,1, \cdots, n+1)$, and the property of having a weak type $\mu_{\Omega}(0)-1$ singularity is additive by $\S 1$, we see that $\left\{\left(\partial F_{0} / \partial Z_{i}\right) G^{\prime}-\right.$ $\left.\left(\partial G_{0} / \partial Z_{i}\right) F^{\prime}=0\right\}$ has a weak type $\mu_{\Omega}(0)-1$ singularity on Ω. Selecting a covering of V with open sets, we deduce that the subvariety $\left\{\left(\partial F_{0} / \partial Z_{i}\right) G^{\prime}-\left(\partial G_{0} / \partial Z_{i}\right) F^{\prime}=0\right\}$ on V has a weak type $\mu(0)-1$ singularity.

Proof of Theorem 4.2. As we noted at the beginning of this section, every codimension-1 subvariety of V is a complete intersection. As in \mathbf{P}^{3}, we can find a pair $\{F, G\} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(d)\right) \times H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(k)\right)$, which has the following property: both $\{F=0\}$ and $\{F=0\} \cap\{G=0\}$ are reduced and irreducible, and for any deformation F_{t} of F with $F=F_{0}$, there is a unique deformation G_{t} of G with $G=G_{0}$, so that the family $M_{t}=\left\{F_{t}=0\right\} \cap\left\{G_{t}=0\right\}$ is μ-equisingular, and M_{t} has a type $\mu(t)=$ ($\left.\mu_{j}, X_{j}(t), E_{j}(t) \mid j \in \Gamma\right)$ singularity.

Now using Lemma 4.5, we may repeat the argument in the proof of Theorem 2.1. We construct the space K_{k+1}, so that for any $K \in K_{k+1}$, $\operatorname{deg} K=k+1$, and the subvariety $\{K=0\}$ on $V=\{F=0\}$ has a weak type $\mu-1=\left(\mu_{j}-1, X_{j}(0), E_{j}(0)\right)$ singularity. By (1.1), a section of $K_{V} \otimes M=K_{V} \otimes M_{0}=\mathscr{O}(k+d-n-2)$ with a weak type $\mu-1$ singularity gives a section of $K_{\tilde{M}}$. Since

$$
\operatorname{dim}\left(H^{0}\left(\mathbf{P}^{n+1}, \mathcal{O}(d-n-3)\right) /(F, G)=\binom{d-2}{n+1}-\binom{d-k-2}{n+1}\right.
$$

if $\operatorname{dim} K_{k+1} \geq 2$, then by Lemma 4.1, we conclude

$$
p_{g}(M)=h^{0}\left(\widetilde{M}, K_{\widetilde{M}}\right) \geq\binom{ d-2}{n+1}-\binom{d-k-2}{n+1}+1
$$

If $\operatorname{dim} K_{k+1} \leq 1$, we may follow the argument in the proof of Theorem 2.1 and get the same estimate on $p_{g}(M)$. q.e.d.

In the special case $k=1$, we have
Proposition 4. Let M be a hyperplane section of a generic hypersurface V of degree $d \geq n+3$ in $\mathbf{P}^{n+1} \quad(n \geq 3)$. Then M has at most $n+1$ singular points, all of which are double points, and the singularity does not affect the geometric genus of M, i.e.,

$$
p_{g}(M)=\binom{d}{n+1}-\binom{d-1}{n+1} .
$$

We postpone the proof of Proposition 4 until the next section. Now Theorem 2 is an easy consequence of Theorem 4.2 and Proposition 4.

Proof of Theorem 2. Let M be a complete intersection of V with another hypersurface of degree k. Then by Theorem 4.2, we have

$$
p_{g}(M) \geq\binom{ d-2}{n+1}-\binom{d-k-2}{n+1}+1
$$

If $k \geq 2$, then

$$
p_{g}(M) \geq\binom{ d-2}{n+1}-\binom{d-4}{n+1}+1
$$

if $k=1$, then by Proposition 4, we obtain

$$
p_{g}(M)=\binom{d}{n+1}-\binom{d-1}{n+1} .
$$

So

$$
p_{g}(M) \geq \min \left\{\binom{d-2}{n+1}-\binom{d-4}{n+1}+1,\binom{d}{n+1}-\binom{d-1}{n+1}\right\}
$$

This completes the proof of Theorem 2.

5. Hyperplane sections of generic hypersurfaces in \mathbf{P}^{n+1}

In the last section, we saw that if a codimension-1 subvariety $M=$ $\{F=0\} \cap\{G=0\}$ of a generic hypersurface has a type $\mu=\left(\mu_{j}, X_{j}, E_{j}\right)$ singularity, then for any deformation F^{\prime} of F, there is a deformation G^{\prime} of G, such that the subvariety $\left\{\left(\partial G / \partial Z_{n+1}\right) F^{\prime}-\left(\partial F / \partial Z_{n+1}\right) G^{\prime}=0\right\}$ on $\{G=0\}$ has a weak type $\mu-1$ singularity. Now we are free to choose $F^{\prime} \in H^{0}\left(\mathbf{P}^{n+1}, \mathcal{O}(d)\right)$ arbitrarily, and if $\operatorname{deg} G=1$, then G^{\prime} must stay in $H^{0}(\{G=0\}, \mathscr{O}(1))$ with $\operatorname{dim} H^{0}(\{G=0\}, \mathscr{O}(1))=n+1$. Thus M cannot afford very bad singularities. Here is a sketch of the

Proof of Proposition 4. We first take a pair

$$
\{F, G\} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(d)\right) \times H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(1)\right)
$$

as in the proof of Theorem 4.2, and assume that the codimension-1 subvariety $M=\{F=0\} \cap\{G=0\}$ of the generic hypersurface $V=$ $\{F=0\}$ has a type $\mu=\left(\mu_{j}, X_{j}, E_{j} \mid j \in\{0, \cdots, m\}\right)$ singularity. Since the hyperplane $\{G=0\}$ is smooth, we can find homogeneous coordinates $\left\{Z_{0}, \cdots, Z_{n+1}\right\}$ such that $\partial G / \partial Z_{i} \neq 0$ for $i \in\{0, \cdots, n+1\}$. By Lemma 4.5, we conclude that for any $F^{\prime} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(d)\right)$, there is a $G^{\prime} \in H^{0}\left(\mathbf{P}^{n+1}, \mathscr{O}(1)\right)$ so that the variety $\left\{\left(\partial G / \partial Z_{n+1}\right) F^{\prime}-\left(\partial F / \partial Z_{n+1}\right) G^{\prime}\right.$ $=0\}$ on $\{G=0\}$ has a weak type $\mu-1=\left(\mu_{j}-1, X_{j}, E_{j}\right)$ singularity. If P is a singular point of M, we must have

$$
\begin{equation*}
\left(\frac{\partial G}{\partial Z_{n+1}} F^{\prime}-\frac{\partial F}{\partial Z_{n+1}} G^{\prime}\right)(P)=0 \tag{5.1}
\end{equation*}
$$

on $\{G=0\}$. It is well known that homogeneous polynomials of degree $d \geq n+1$ take independent values on any $n+2$ distinct points in \mathbf{P}^{n+1}. But $G^{\prime} \in H^{0}(\{G=0\}, \mathscr{O}(1))$, and $h^{0}\left(\mathbf{P}^{n}, \mathscr{O}(1)\right)=h^{0}(\{G=0\}, \mathscr{O}(1))=$ $n+1$; thus (5.1) implies that M has at most $n+1$ singular points. The same argument as in the proof of Proposition 3 shows that M has no triple points, that is, $\mu_{j}=2$ for every j.

By formula (1.1), in order to conclude that the singularity of M does not affect its geometric genus, it suffices to show that $\operatorname{dim} X_{j}<n-2$ for each j.

Now assume that $\operatorname{dim} X_{j}=n-2$ for some j. For simplicity, we may assume that M has one double point $P=X_{0}, \operatorname{dim} X_{j}<n-2$ for $j<m$, $\operatorname{dim} X_{m}=n-2$, and all points of $X_{i}(i=1, \cdots, m)$ are infinitely near points of P.

Given any deformation F_{t} of F, there is a deformation $M_{t}=\left\{F_{t}=\right.$ $0\} \cap\left\{G_{t}=0\right\}$ of $M=\{F=0\} \cap\{G=0\}$, so that the family M_{t} is μ equisingular and M_{t} has a type $\mu(t)=\left(\mu_{j}, X_{j}(t), E_{j}(t) \mid j \in\{0,1, \cdots, m\}\right)$ singularity with $\mu_{j}=2$ for all j. Let the point $X_{0}(t)=\left[1, c_{1}(t), \cdots\right.$, $\left.c_{n+1}(t)\right], z_{0 i}=Z_{i} / Z_{0}$ for $i=1, \cdots, n+1$. Solving the equation $G_{t}=0$, we get $z_{0(n+1)}=\psi_{t}\left(z_{01}, \cdots, z_{0 n}\right)$. Set

$$
\begin{aligned}
& f_{0, t}\left(z_{01}, \cdots, z_{0 n}\right)=F_{t}\left(1, z_{01}, \cdots, z_{0 n}, \psi_{t}\left(z_{01}, \cdots, z_{0 n}\right)\right) \\
& \left.\frac{d F_{t}}{d t}\left(Z_{0}, \cdots, Z_{n+1}\right)\right|_{t=0}=F^{\prime}\left(Z_{0}, \cdots, Z_{n+1}\right) \\
& \left.\frac{d G_{t}}{d t}\left(Z_{0}, \cdots, Z_{n+1}\right)\right|_{t=0}=G^{\prime}\left(Z_{0}, \cdots, Z_{n+1}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\left.\frac{d f_{0, t}}{d t}\right|_{t=0}=F^{\prime}-\left(\frac{\partial G}{\partial Z_{n+1}}\right)^{-1} \frac{\partial F}{\partial Z_{n+1}} G^{\prime} \tag{5.2}
\end{equation*}
$$

Since $X_{0}(t)$ is a double point of $M_{t}=\left\{f_{0, t}=0\right\}$, we have

$$
\begin{align*}
& f_{0, t}=\sum_{i_{1}+\cdots+i_{n} \geq 2} a_{i_{1} \cdots i_{n}}(t)\left(z_{01}-c_{1}(t)\right)^{i_{1}} \cdots\left(z_{0 n}-c_{n}(t)\right)^{i_{n}} \tag{5.3}\\
& \left.\frac{d f_{0, t}}{d t}\right|_{t=0}= \\
& \quad-\left.\sum_{i=1}^{n} \frac{\partial f_{0,0}}{\partial z_{0 i}} \cdot \frac{d c_{i}(t)}{d t}\right|_{t=0} \\
& \quad+\left.\left\{\sum_{i_{1}+\cdots+i_{n} \geq 2} \frac{d}{d t} a_{i_{1} \cdots i_{n}}(t)\left(z_{01}-c_{1}(0)\right)^{i_{1}} \cdots\left(z_{0 n}-c_{n}(0)\right)^{i_{n}}\right\}\right|_{t=0}
\end{align*}
$$

Let

$$
\begin{equation*}
f_{0}^{*}\left(z_{01}, \cdots, z_{0 n}\right)=\left.\frac{d f_{0, t}}{d t}\right|_{t=0}+\left.\sum_{i=1}^{n} \frac{\partial f_{0,0}}{\partial z_{0 i}} \cdot \frac{d c_{i}(t)}{d t}\right|_{t=0} \tag{5.4}
\end{equation*}
$$

If we write down the Taylor polynomial of f_{0}^{*} at the point $X_{0}(0)$, then its coefficients of $1, z_{01}-c_{1}(0), \cdots, z_{0 n}-c_{n}(0)$ must all be 0 . Since

$$
\begin{align*}
& F^{\prime}\left(1, z_{01}, \cdots, z_{0 n}, \psi_{0}\left(z_{01}, \cdots, z_{0 n}\right)\right) \\
& \quad=\sum_{d \geq i_{1}+\cdots+i_{n} \geq 0} b_{i_{1} \cdots i_{n}}\left(z_{01}-c_{1}(0)\right)^{i_{1}} \cdots\left(z_{0 n}-c_{n}(0)\right)^{i_{n}} \tag{5.5}
\end{align*}
$$

with free choices of all its coefficients $b_{i_{1} \cdots i_{n}}$, the set $\left\{d c_{i}(t) /\left.d t\right|_{t=0} \mid i=\right.$ $1, \cdots, n\}$ contains n elements, and f_{0}^{*} depends linearly on F^{\prime}, we see that (5.2) and (5.4) imply that there will be at least one condition imposed on G^{\prime} if M has one double point.

We may move the point $X_{0}(t) \in V_{0, t}=\left\{G_{t}=0\right\}$ to $X_{0}(0) \in\{G=0\}$ and blow up simultaneously at $X_{0}(0)$. Let $V_{1, t} \rightarrow V_{0, t}$ be the blow-up, $M_{1, t}$ be the proper transform of M_{t} in $V_{1, t}$, and

$$
z_{11}=z_{01}-c_{1}(0), \quad z_{12}=\frac{z_{02}-c_{2}(0)}{z_{01}-c_{1}(0)}, \cdots, \quad z_{1 n}=\frac{z_{0 n}-c_{n}(0)}{z_{01}-c_{1}(0)}
$$

be the new coordinates after the blowing up. Then $M_{1, t}$ is defined by $f_{1, t}\left(z_{11}, \cdots, z_{1 n}\right)=0$. Here

$$
f_{1, t}=\sum_{i_{1}+\cdots+i_{n} \geq 2} a_{i_{1} \cdots i_{n}}(t) z_{11}^{i_{1}+\cdots+i_{n}-2} z_{12}^{i_{2}} \cdots z_{1 n}^{i_{n}}
$$

By (5.3) and (5.4),

$$
\begin{align*}
\frac{d f_{1, t}}{d t} & \left.\right|_{t=0} \\
& =\left(z_{01}-c_{1}(0)\right)^{-2} f_{0}^{*}\left(z_{01}, \cdots, z_{0 n}\right) \tag{5.6}\\
& =z_{11}^{-2} f_{0}^{*}\left(z_{11}+c_{1}(0), z_{11} \cdot z_{12}+c_{2}(0), \cdots, z_{11} \cdot z_{1 n}+c_{n}(0)\right)
\end{align*}
$$

If we let

$$
F_{1}^{\prime}=\sum_{d \geq i_{1}+\cdots+i_{n} \geq 2} b_{i_{1} \cdots i_{n}} z_{11}^{i_{1}+\cdots+i_{n}-2} z_{12}^{i_{2}} \cdots z_{1 n}^{i_{n}}
$$

then by (5.5) we can choose $b_{i_{1} \cdots i_{n}}$ freely. Furthermore $d f_{1, t} /\left.d t\right|_{t=0}$ depends linearly on F_{1}^{\prime} because of (5.2), (5.4), and (5.6). Since $G^{\prime} \in$ $H^{0}(\{G=0\}, \mathscr{O}(1))$ and $h^{0}(\{G=0\}, \mathscr{O}(1))=n+1$, the main point of rest of the proof is to see what condition

$$
\left.\frac{d f_{0, t}}{d t}\right|_{t=0}=F^{\prime}-\left(\frac{\partial G}{\partial Z_{n+1}}\right)^{-1} \frac{\partial F}{\partial Z_{n+1}} G^{\prime}
$$

must satisfy if M has a certain type of singularity; then we choose an appropriate F^{\prime} so that there is no G^{\prime} which satisfies the condition. We need to continue our discussion in the following cases.

Case a. $n=3$. We claim that the proper transform $M_{1, t}$ of M_{t} in $V_{1, t}$ cannot have more than one singular point on the exceptional divisor $E_{0}(t)$. Assume that $M_{1, t}$ has two distinct singular double points $P_{1}(t)$ and $P_{2}(t)$ on the exceptional divisor $E_{0}(t)$, and let $P_{1}(t)=\left(0, d_{1}(t), e_{1}(t)\right)$ and $P_{2}(t)=\left(0, d_{2}(t), e_{2}(t)\right)$ in the $\left\{z_{1 i}\right\}$ coordinates. By generic choice of the homogeneous coordinates $\left\{Z_{0}, \cdots, Z_{4}\right\}$, we may further assume that $d_{1}(0) \neq d_{2}(0), e_{1}(0) \neq e_{2}(0)$. Since $M_{1, t}$ is defined by $f_{1, t}=0$, we have

$$
f_{1, t}\left(z_{11}, z_{12}, z_{13}\right)=\sum_{i_{1}+i_{2}+i_{3} \geq 2} c_{i_{1} i_{2} i_{3}}(t) z_{11}^{i_{1}}\left(z_{12}-d_{1}(t)\right)^{i_{2}}\left(z_{13}-e_{1}(t)\right)^{i_{3}}
$$

$$
\begin{align*}
f_{1}^{*} & =\left.\frac{d f_{1, t}}{d t}\right|_{t=0}+\left.\frac{\partial f_{1,0}}{\partial z_{12}} \frac{d d_{1}(t)}{d t}\right|_{t=0}+\left.\frac{\partial f_{1,0}}{\partial z_{13}} \frac{d e_{1}(t)}{d t}\right|_{t=0} \tag{5.7}\\
& =\left.\frac{d}{d t}\left\{\sum_{i_{1}+i_{2}+i_{3} \geq 2} c_{i_{1} i_{2} i_{3}}(t) z_{11}^{i_{1}}\left(z_{12}-d_{1}(0)\right)^{i_{2}}\left(z_{13}-e_{1}(0)\right)^{i_{3}}\right\}\right|_{t=0}
\end{align*}
$$

So the coefficients of $1, z_{11}, z_{12}-d_{1}(0), z_{13}-e_{1}(0)$ in the Taylor expansion of f_{1}^{*} at $P_{1}(0)$ must be 0 . We have

$$
\begin{aligned}
F_{1}^{\prime}= & \sum_{d \geq i_{1}+i_{2}+i_{3} \geq 2} b_{i_{1} i_{2} i_{3}} z_{11}^{i_{1}+i_{2}+i_{3}-2} z_{12}^{i_{2}} z_{13}^{i_{3}} \\
= & \sum_{2 \geq i+j \geq 0} b_{i j}^{\prime}\left(z_{12}-d_{1}(0)\right)^{i}\left(z_{13}-e_{1}(0)\right)^{j} \\
& +z_{11} \sum_{3 \geq i+j \geq 0} b_{i j}^{\prime \prime}\left(z_{12}-d_{1}(0)\right)^{i}\left(z_{13}-e_{1}(0)\right)^{j}+z_{11}^{2} \cdot(\cdots) .
\end{aligned}
$$

Here we are free to choose $b_{i j}^{\prime}, b_{i j}^{\prime \prime}$. By (5.7), f_{1}^{*} depends on the two numbers $d d_{1}(t) /\left.d t\right|_{t=0}, d e_{1}(t) /\left.d t\right|_{t=0}$. Therefore (5.2), (5.5), and (5.6) imply that if $P_{1}(0)$ is a double point of $M_{1,0}$, then at least two more conditions will be imposed on G^{\prime}. Similarly the coefficients of $1, z_{12}$ $d_{2}(0)$, and $z_{13}-e_{2}(0)$ in the Taylor expansion of

$$
\left.\frac{d f_{1, t}}{d t}\right|_{t=0}+\left.\frac{\partial f_{1,0}}{\partial z_{12}} \frac{d d_{2}(t)}{d t}\right|_{t=0}+\left.\frac{\partial f_{1,0}}{\partial z_{13}} \frac{d e_{2}(t)}{d t}\right|_{t=0}
$$

at $P_{2}(0)$ must be 0 . Moreover any change of the coefficients of $\left(z_{12}-d_{1}(0)\right)^{2},\left(z_{13}-e_{1}(0)\right)^{2},\left(z_{12}-d_{1}(0)\right)\left(z_{13}-e_{1}(0)\right)$, or $z_{11}\left(z_{12}-d_{1}(0)\right)$ of F_{1}^{\prime} does not affect the above situation at $P_{1}(0)$. Since

$$
\begin{aligned}
\left(z_{12}-d_{1}(0)\right)^{2}= & 2\left(d_{2}(0)-d_{1}(0)\right)\left(z_{12}-d_{2}(0)\right) \\
& +\left(z_{12}-d_{z}(0)\right)^{2}+\left(d_{2}(0)-d_{1}(0)\right)^{2} \\
\left(z_{13}-e_{1}(0)\right)^{2}= & 2\left(e_{2}(0)-e_{1}(0)\right)\left(z_{12}-e_{2}(0)\right) \\
& +\left(z_{13}-e_{2}(0)\right)^{2}+\left(e_{2}(0)-e_{1}(0)\right)^{2} \\
\left(z_{12}-d_{1}(0)\right)\left(z_{13}-e_{1}(0)\right)= & \left(d_{2}(0)-d_{1}(0)\right)\left(e_{1}(0)-e_{1}(0)\right) \\
& +\left(d_{2}(0)-d_{1}(0)\right)\left(z_{13}-e_{2}(0)\right) \\
& +\left(e_{2}(0)-e_{1}(0)\right)\left(z_{12}-d_{2}(0)\right) \\
& +\left(z_{12}-d_{2}(0)\right)\left(z_{13}-e_{2}(0)\right) \\
z_{11}\left(z_{12}-d_{1}(0)\right)= & \left(d_{1}(0)-d_{1}(0)\right) z_{11}+z_{11}\left(z_{12}-d_{2}(0)\right)
\end{aligned}
$$

the conditions $d_{2}(0) \neq d_{1}(0)$ and $e_{2}(0) \neq e_{1}(0)$ imply that we are free to choose the coefficients of $1, z_{11}, z_{12}-d_{2}(0), z_{13}-e_{2}(0)$ of F_{1}^{\prime}; thus we are free to choose the coefficients of $1, z_{11}, z_{12}-d_{2}(0), z_{13}-e_{2}(0)$ of f_{1}^{*}. Moreover, if $M_{1,0}$ has a second double point $P_{2}(0)$, then at least two extra conditions will be imposed on G^{\prime}. But $1+2+2>4=$
$h^{0}(\{G=0\}, \mathscr{O}(1))$, so $M_{1,0}$ has at most one singular point. So far if M has a double point, there will be at least one condition imposed on G^{\prime}. If $M_{1,0}$ has a double point, then two more conditions will be imposed on G^{\prime}. Since $d \geq 5$, we are free to choose the coefficients of $z_{11}^{2}, z_{11}^{3}, z_{11}\left(z_{12}-d_{1}(0)\right), z_{11}\left(z_{13}-e_{1}(0)\right)$ of F_{1}^{\prime}. It is not hard to see that there will be at least two other conditions imposed on G^{\prime} if the proper transform of $M_{1,0}$ after blowing up at $P_{1}(0)$ has a double point. Since $h^{0}(\{G=0\}, \mathscr{O}(1))=4$, this is impossible. In conclusion, $\operatorname{dim} X_{j}=0$ for every j in case $n=3$.

Case b. $m=1$, that is, $\operatorname{dim} X_{1}(t)=n-2$, where $X_{1}(t)$ is a two-fold submanifold of $M_{1, t}$. Since $M_{1, t}$ is defined by $f_{1, t}\left(z_{11}, \cdots, z_{1 n}\right)=0$, by Lemma 4.3, $d f_{1, t} /\left.d t\right|_{t=0}=0$ on $X_{1}(0)$. Now we can choose all the coefficients of the monomials $1, z_{12}, \cdots, z_{12}^{2}, z_{12} z_{13}, \cdots, z_{1 n}^{2}$ of F_{1}^{\prime} freely, $\operatorname{dim} X_{1}(0)=n-2, h^{0}\left(\mathbf{P}^{n-2}, \mathscr{O}(2)\right)=\binom{n}{2}$, and $d f_{1, t} /\left.d t\right|_{t=0}$ depends linearly on F_{1}^{\prime}. Thus the singularity of $M_{1, t}$ along $X_{1}(t)$ imposes at least $\binom{n}{2}$ conditions on G^{\prime}. On the other hand, $h^{0}(\{G=0\}, \mathscr{O}(1))=$ $n+1<\binom{n}{2}$ if $n \geq 4$. This is impossible.

Case c. $1 \leq \operatorname{dim} X_{1}(t)=s_{1}<n-2$. Since $M_{1, t}$ has a type ($\mu_{j}, X_{j}(t)$, $\left.E_{j}(t) \mid j \in\{1, \cdots, m\}\right)$ singularity with $\mu_{j}=2$, and $M_{1, t}$ is defined by $f_{1, t}=0$, by Lemma 4.3, $d f_{1, t} /\left.d t\right|_{t=0}=0$ has a weak type $\left(1, X_{j}(0)\right.$, $\left.E_{j}(0) \mid j \in\{1, \cdots, m\}\right)$ singularity. Let us assume that $X_{1}(0)$ is locally defined by

$$
z_{1 i}=h_{1 i}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right), \quad i=1, \cdots, n-s_{1}
$$

Rewriting,

$$
\begin{align*}
F_{1}^{\prime}= & \sum_{d \geq i_{1}+\cdots+i_{n} \geq 2} b_{i_{1} \cdots i_{n}} z_{11}^{i_{1}+\cdots+i_{n}-2} z_{12}^{i_{2}} \cdots z_{1 n}^{i_{n}} \\
= & \sum b_{i_{1} \cdots i_{n}}\left(\left(z_{11}-h_{11}\right)+h_{11}\right)^{i_{1}+\cdots+i_{n}-2}\left(\left(z_{12}-h_{12}\right)+h_{12}\right)^{i_{2}} \\
& \cdots\left(\left(z_{1\left(n-s_{1}\right)}-h_{1\left(n-s_{1}\right)}\right)+h_{1\left(n-s_{1}\right)}\right)^{i_{n-s_{1}}} z_{1\left(n-s_{1}+1\right)}^{i_{n-s_{1}+1}} \cdots z_{1 n}^{i_{n}} \tag{5.8}\\
= & F_{1 *}^{\prime}\left(z_{11}-h_{11}(\cdots), \cdots, z_{1\left(n-s_{1}\right)}-h_{1\left(n-s_{1}\right)}(\cdots),\right. \\
& \left.z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right)+F_{1 \sharp}^{\prime}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right) .
\end{align*}
$$

Here $F_{1 *}^{\prime}$ is a polynomial of its variables and $F_{1 *}^{\prime}\left(0, \cdots, 0, z_{1\left(n-s_{1}+1\right)}\right.$, $\left.\cdots, z_{1 n}\right)=0$. Since we are free to choose $b_{i_{1} \cdots i_{n}}$, we are free to choose the coefficients of the monomials

$$
\left(z_{11}-h_{11}(\cdots)\right)^{i_{1}} \cdots\left(z_{1\left(n-s_{1}\right)}-h_{1\left(n-s_{1}\right)}(\cdots)\right)^{i_{n-s_{1}}} z_{1\left(n-s_{1}+1\right)}^{i_{n-s_{1}}+1} \cdots z_{1 n}^{i_{n}}
$$

of $F_{1 *}^{\prime}$ provided that $i_{1}+\cdots+i_{n} \leq 2$ and $i_{1}+\cdots+i_{n-s_{1}} \neq 0$, and we are also free to choose the coefficients of the monomials $1, z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}$, $z_{1\left(n-s_{1}+1\right)}^{2}, \cdots, z_{1 n}^{2}$ of $F_{1 \sharp}^{\prime}$. Let

$$
\left.\frac{d f_{1, t}}{d t}\right|_{t=0}=f_{1 *}^{\prime}+f_{1 \sharp}^{\prime}
$$

as in (5.8). Then $d f_{1, t} /\left.d t\right|_{t=0}=0$ on $X_{1}(0)$ implies that $f_{1 \sharp}^{\prime} \equiv 0$. Since $f_{1 \sharp}$ depends linearly on $F_{1 \sharp}^{\prime}$, at least three conditions are imposed on G^{\prime}. Altogether, we have imposed at least four conditions on G^{\prime}; this makes up the difference between $h^{0}(\{G=0\}, \mathscr{O}(1))=n+1$ and $\operatorname{dim} X_{m}(0)=n-2$.

Now let $M_{2,0}$ be the proper transform of $M_{1,0}$ after blowing up along $X_{1}(0)$, and

$$
\begin{aligned}
& z_{21}=z_{11}-h_{11}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right) \\
& z_{2 i}=\frac{z_{1 i}-h_{1 i}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right)}{z_{11}-h_{11}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right)}, \quad i=2, \cdots, n-s_{1}, \\
& z_{2 i}=z_{1 i}, \quad i=n-s_{1}+1, \cdots, n
\end{aligned}
$$

be the new local coordinates. Denoting

$$
\begin{equation*}
F_{2}^{\prime}=z_{21}^{-1} F_{1 *}^{\prime}\left(z_{21}, z_{21} z_{22}, \cdots, z_{21} z_{2\left(n-s_{1}\right)}, z_{2\left(n-s_{1}+1\right)}, \cdots, z_{2 n}\right) \tag{5.9}
\end{equation*}
$$

we have free choices of the coefficients of $1, z_{21}, \cdots, z_{2 n}$ for F_{2}^{\prime}. Set

$$
\begin{align*}
f_{2}^{\prime} & =\left.\left(z_{11}-h_{11}\left(z_{1\left(n-s_{1}+1\right)}, \cdots, z_{1 n}\right)\right)^{-1} \frac{d f_{1, t}}{d t}\right|_{t=0} \tag{5.10}\\
& =z_{21}^{-1} f_{1 *}^{\prime}\left(z_{21}, z_{21} z_{22}, \cdots, z_{21} z_{2\left(n-s_{1}\right)}, z_{2\left(n-s_{1}+1\right)}, \cdots, z_{2 n}\right)
\end{align*}
$$

Since $\left\{d f_{1, t} /\left.d t\right|_{t=0}=0\right\}$ has a weak type $\left(1, X_{j}(0), E_{j}(0) \mid j \in\{1, \cdots\right.$, $m\}$) singularity, by definition, $\left\{f_{2}^{\prime}=0\right\}$ has a weak type ($1, X_{j}(0), E_{j}(0) \mid j$ $\in\{2, \cdots, m\}$) singularity. Moreover, f_{2}^{\prime} depends linearly on F_{2}^{\prime}.

From now on, we will continue our argument inductively. If $\operatorname{dim} X_{2}(0)$ $=s_{2}$, we may assume that $X_{2}(0)$ is locally defined by

$$
z_{2\left(s_{2}+1\right)}=h_{2\left(s_{2}+1\right)}\left(z_{21}, \cdots, z_{2 s_{2}}\right), \cdots, z_{2 n}=h_{2 n}\left(z_{21}, \cdots, z_{2 s_{2}}\right)
$$

so that we get

$$
\begin{aligned}
F_{2}^{\prime}= & F_{2 *}^{\prime}\left(z_{21}, \cdots, z_{2 s_{2}}, z_{2\left(s_{2}+1\right)}-h_{2\left(s_{2}+1\right)}, \cdots, z_{2 n}-h_{2 n}\right) \\
& +F_{2 \sharp}^{\prime}\left(z_{21}, \cdots, z_{2 s_{2}}\right), \\
f_{2}^{\prime}= & f_{2 *}^{\prime}+f_{2 \sharp}^{\prime}
\end{aligned}
$$

as in (5.8). We are free to choose the coefficients of $z_{2\left(s_{2}+1\right)}-h_{2\left(s_{2}+1\right)}, \cdots$, $z_{2 n}-h_{2 n}$ of $F_{2 *}^{\prime}$. Since we can also choose the coefficients of $1, z_{21}, \cdots$, $z_{2 s_{2}}$ for $F_{2 \sharp}^{\prime}$ freely, if $f_{2}^{\prime}=0$ holds on $X_{2}(0)$ (which is equivalent to $\left.f_{2 \sharp}^{\prime}=0\right)$, then at least $s_{2}+1=\operatorname{dim} X_{2}(0)+1$ conditions will be imposed on G^{\prime}.

Now if $m=2$, we have already imposed $4+\operatorname{dim} X_{2}(0)+1=n+3$ conditions on G^{\prime}, then we are done. Otherwise, let M_{30} be the proper transform of M_{20} after blowing up along $X_{2}(0)$, and

$$
\begin{aligned}
z_{3 i} & =z_{2 i}, \quad i=1, \cdots, s_{2}, \\
z_{3\left(s_{2}+1\right)} & =z_{2\left(s_{2}+1\right)}-h_{2\left(s_{2}+1\right)}, \\
z_{3 i} & =\frac{z_{2 i}-h_{2 i}}{z_{2\left(s_{2}+1\right)}-h_{2\left(s_{2}+1\right)}}, \quad i=s_{2}+2, \cdots, n,
\end{aligned}
$$

be the local coordinates. Denoting

$$
\begin{aligned}
& f_{3}^{\prime}=z_{3\left(s_{2}+1\right)}^{-1} f_{2 *}^{\prime}\left(z_{31}, \cdots, z_{3\left(s_{2}+1\right)}, z_{3\left(s_{2}+1\right)} z_{3\left(s_{2}+2\right)}, \cdots, z_{3\left(s_{2}+1\right)} z_{3 n}\right), \\
& F_{3}^{\prime}=z_{3\left(s_{2}+1\right)}^{-1} F_{2 *}^{\prime}\left(z_{31}, \cdots, z_{3\left(s_{2}+1\right)}, z_{3\left(s_{2}+1\right)} z_{3\left(s_{2}+2\right)}, \cdots, z_{3\left(s_{z}+1\right)} z_{3 n}\right)
\end{aligned}
$$

as in (5.9) and (5.10), we are free to choose the coefficients of $1, z_{3\left(s_{2}+2\right)}$, $\cdots, z_{3 n}$ for F_{3}^{\prime}. Moreover $\left\{f_{3}^{\prime}=0\right\}$ has a weak type $\left(1, X_{j}(0), E_{j}(0) \mid j \in\right.$ $\{3, \cdots, m\}$) singularity, and f_{3}^{\prime} depends linearly on F_{3}^{\prime}.

For simplicity, let us assume that $X_{3}(0)$ is locally defined by
$z_{3 i}=h_{3 i}\left(z_{3(s+1)}, \cdots, z_{3\left(s+s_{3}\right)}\right), \quad i \in\{1, \cdots, n\}-\left\{s+1, \cdots, s+s_{3}\right\}$.
If we write down $f_{3}^{\prime}=f_{3 *}^{\prime}+f_{3 \sharp}^{\prime}, F_{3}^{\prime}=F_{3 *}^{\prime}+F_{3 \sharp}^{\prime}$ as before, then we are free to choose the coefficients of $1, z_{3 i}\left(i \in\left\{s_{2}+2, \cdots, n\right\} \cap\left\{s+1, \cdots, s+s_{3}\right\}\right)$ for $F_{3 \sharp}^{\prime}$, and the coefficients of $z_{3 i}-h_{3 i}\left(i \in\left\{s_{2}+2, \cdots, n\right\}-\{s+\right.$ $\left.1, \cdots, s+s_{3}\right\}$) for $F_{3 *}^{\prime}$. If $f_{3}^{\prime}=0$ holds on $X_{3}(0)$, then at least $\rho=$ $1+\#\left\{\left\{s_{2}+2, \cdots, n\right\} \cap\left\{s+1, \cdots, s+s_{3}\right\}\right\}$ conditions will be imposed on G^{\prime}. If we construct F_{4}^{\prime} inductively, then we are free to choose ($n-$ $\left.s_{2}-1\right)-(\rho-1)=n+1-\left[\left(s_{2}+1+\rho\right]\right.$ coefficients of the zero and the first orders of F_{4}^{\prime}.

We may continue this argument. Either we have already imposed more than $n+1$ conditions on G^{\prime} before we have reached $X_{m}(0)$, or we have imposed $1+3+\lambda \leq n+1$ conditions on G^{\prime}, and we have a free choice of $n+1-\lambda$ coefficients of the zero and the first orders of F_{m}^{\prime} (hence f_{m}^{\prime}). Since $\operatorname{dim} X_{m}(0)=n-2$, if $X_{m}(0)$ is defined by $z_{m 1}=$ $h_{m 1}\left(z_{m 3}, \cdots, z_{m n}\right), z_{m 2}=h_{m 2}\left(z_{m 3}, \cdots, z_{m n}\right)$, then $f_{m}^{\prime}=f_{m *}^{\prime}+f_{m \sharp}^{\prime}=0$ on $X_{m}(0)$ implies that $f_{m \sharp}^{\prime}\left(z_{m 3}, \cdots, z_{m n}\right)=0$. But we are free to choose at least $(n+1-\lambda)-2$ of the coefficients of $1, z_{m 3}, \cdots, z_{m n}$ of F_{m}^{\prime}. If $f_{m}^{\prime}=0$ holds on $X_{m}(0)$, then at least $n+1-\lambda-2$ conditions will be imposed on G^{\prime}; this is impossible since $(1+3+\lambda)+(n+1-\lambda-2)=$ $n+3>h^{0}(\{G=0\}, \mathscr{O}(1))=n+1$.

Case d. $\operatorname{dim} X_{1}(t)=0$, that is, $X_{1}(t)$ is a double point of $M_{1, t}$. We see easily as in case (a) that this imposes two conditions on G^{\prime}. Therefore if $X_{0}(0)$ is a double point of M_{0} and $X_{1}(0)$ is a double point of $M_{1,0}$, there will be at least three conditions imposed on G^{\prime}. Now we can construct F_{2}^{\prime} and f_{2}^{\prime} as above. Using the fact that $f_{2}^{\prime}=0$ has a weak type $\left(1, X_{j}(0), E_{j}(0) \mid j \in\{2, \cdots, m\}\right)$ singularity, we may repeat the argument of the second part of case (c). Finally this will impose at least $n+2$ (instead of $n+3$ in case (c)) conditions on G^{\prime}, a contradiction.

This completes the proof of Proposition 4.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths \& J. Harris, Geometry of algebraic curves, Vol. I, Springer, Berlin, 1985.
[2] J. Carlson, M. Green, P. Griffiths \& J. Harris, Infinitesimal variation of Hodge structures. I, Compositio Math. 50 (1983) 109-205.
[3] H. Clemens, Curves on generic hypersurface, Ann. Sci. École Norm. Sup. 19 (1986) 629-636.
[4] H. Clemens, J. Kollár \& S. Mori, Higher dimensional complex geometry, Astérisque (1988).
[5] L. Ein, Subvarieties of generic complete intersection, Invent. Math. 94 (1988) 163-169.
[6] _, Subvarieties of generic complete intersections. II, preprint.
[7] G. Ellingsrud \& S. A. Stromme, The number of twisted cubic curves on the general quintic threefold, preprint.
[8] M. Green, Koszul cohomology and geometry, Lectures on Riemann Surfaces, World Sci. Publ., Singapore and River Edge, NJ, 1989.
[9] ___, Koszul cohomology and the geometry of projective varieties. I, II, J. Differential Geometry 19 (1984) 125-171; 20 (1984). 279-289 .
[10] P. Griffiths \& J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[11] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79 (1964) 109-203, 205-326 .
[12] S. Iitaka, Algebraic geometry, Springer, Berlin, 1982.
[13] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986) 151-162.
[14] S. Mori \& S. Mukai, The uniruledness of the moduli space of curves of genus 11, Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., Vol. 1016, Springer, Berlin, 1983, 334-353.
[15] D. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, preprint.
[16] B. Teissier, Résolution simultanée. II: Résolution simultanée et cycles évanescents, Sém. les Singularités des Surface (Palaiseau, 1976-1977), Lecture Notes in Math., Vol. 777, Springer, Berlin, 1980, 82-146.
[17] ___, Variétés polaires. II: Multiplicités polaires, sections planes et conditions de Whitney, Algebraic Geometry (La Rábida, 1981), Lecture Notes in Math., Vol. 961, Springer, Berlin, 1982, 314-491.
[18] J. Wahl, Equisingular deformations of plane algeboid curves, Trans. Amer. Math. Soc. 193 (1974) 143-170.

Mathematical Sciences Research Institute

[^0]: Received January 11, 1993. Partially supported by Sloan Doctoral Dissertation Fellowship.

