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THE SPECTRUM OF DEGENERATING
HYPERBOLIC 3-MANIFOLDS

I. CHAVEL & J. DODZIUK

1. Introduction

According to the cusp closing theorem of Thurston [14, §5.8], a com-
plete, three-dimensional, noncompact manifold M, of constant negative
curvature - 1 and finite volume, is a limit of a sequence of compact hy-
perbolic manifolds M{ -> M. The Laplacian on the limit manifold M
has continuous spectrum filling the interval [1, oo) with multiplicity equal
to the number of cusps. In this paper we investigate the rate of clustering
of the eigenvalues of the Laplacian on Mi as / tends to infinity. The
analogous question for surfaces has been studied by Wolpert [19], Hejhal
[9], and Ji [10], and a sharp estimate of the accumulation rate was ob-
tained by Ji and Zworski [11]. In addition, Colbois and Courtois [4], [5]
proved that the eigenvalues below the bottom of continuous spectrum are
limits of eigenvalues of compact approximating manifolds for both Rie-
mann surfaces and hyperbolic three-manifolds. Problems of this kind do
not arise in dimensions greater than or equal to four (cf. [7]), since the
number of complete hyperbolic manifolds of volume less than or equal to
a given constant is finite in this case.

Suppose M has only one cusp. Then, for large /, M{ will contain
a metric tubular neighborhood of a short, simple, closed geodesic γ. of
length /z —• 0 and of radius i?z —• oo. Let Δ. be the Laplacian on λf.,
Spec(Δ.) its spectrum and N.(x) = #{λ e Spec(Δ.)|l < λ < 1 + x2} . Our
result is that

(1.1) Ni(x) = ±Ri + Ox{l),

or equivalently (cf. (2.4))

(1.2) tf,(x) = £ log Q-)+0,(1).
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If M has q > 1 cusps, then M. will have q shrinking geodesies y], γ2,

-" 9γ
q. surrounded by disjoint tubes of radii R), R2, - , R] respec-

tively and the equalities above hold with Ri = Σj~?λ R\ and with logO//,.)

replaced by ΣJΪ?log(l///).
The paper is organized as follows. In §2 we review certain aspects of

the convergence M{ —• M and the geometry of "thick and thin" decom-
positoin of hyperbolic three-manifolds. A reduction of the proof to the
study of the Strum-Liouville problem

-u - sinh~ (r)u = vu,

u(l) = u(R) = 0,

as R tends to infinity is carried out in §3. After this reduction the proof
of (1.1) is completed by invoking a theorem about ordinary differential
equations proved in §4. The result of §4 is of independent interest. In
particular, it can be used to rederive the theorem of Ji and Zworski [11],
the analog of (1.2) for Riemann surfaces without appealing to scattering
theory.

We would like to thank P. Buser, T. Jorgensen, L. Karp, J. Kazdan, B.
Randol and R. Sacksteder for helpful suggestions.

2. Geometric preliminaries

From now on the term hyperbolic manifold will be used to refer to a
complete oriented Riemannian manifold of three dimensions, finite vol-
ume and constant sectional curvature - 1 . A very readable survey of the
geometry of such manifolds is contained in [7]. For a very thorough dis-
cussion of this topic see [14, Chaps. 4, 5, 6].

We will use the following notation. For a Riemannian manifold M and
an interval / , Mj = {p e M\ι{p) e 1} , where ι(p) denotes the injectivity
radius at p e M. It is a consequence of Kazhdan-Margulis theorem [12],
[14] that there exists a positive number μ such that for every hyperbolic
manifold M, the set A/| ^ is nonempty and connected. M,o μ] consists
of finitely many connected components. If a component C is not compact,
it is isometric to the product R+ x F equipped with the metric

(2.1) ds2 = dp2 + e~2pds2

0,

where ds^ is a flat metric on the two-dimensional torus F .
Compact components of M,o , are called tubes. They are metric tubu-

lar neighborhoods of simple closed geodesies in M of length smaller than
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or equal to 2μ. Let γ be such a geodesic and let γ be one of its lifts to
the universal covering M = H3 . The corresponding tube T = Tγ in M is

obtained as the quotient of a tubular neighborhood f of γ by the cyclic
group generated by A = Aγ, the deck transformation corresponding to γ.

We use the Fermi coordinates (r, t, θ) in H3 based on γ. r denotes
the distance from γ, Ms the arclength along γ and θ is the angular co-
ordinate in the circle of unit vectors perpendicular to γ at a point. To
make a consistent choice of θ we choose and fix a parallel field of unit
vectors perpendicular to γ. In terms of these coordinates the metric of
H3 is expressed as

(2.2) ds2 = dr2 + cosh2 r dt2 + sinh2 r dθ2,

and the deck transformation A is given by A(r, t, θ) = (r, t+l{y), θ+a)
for some angle a. f = {p e M\d{p, γ) < R}, and T = f/{Aγ) is
determined up to isometry by R, a, and / = l(γ).

We need to establish relations between various quantities introduced
above. Note first that

v o l ( Γ ) = / / / sinh cosh r d θ drdt = πl sinh R.
7 Jo Jo Jo

Moreover, every tube Tγ contains an embedded ball of radius equal to

jμ since the injectivity radius at a boundary point of Tγ is equal to μ.

Thus there exist universal constants cx, c2 > 0 such that

(2.3) cx < I sinh2 R<c2 YOI(M) .

In particular, if the volume is bounded and / approaches zero, then R
tends to infinity, R ~ £log(l//).

Recall that we are interested in a noncompact hyperbolic manifold M
and a sequence of compact hyperbolic manifolds {M ) ^ converging to
M [7, §3]. It is known [14] that vol(Af.) < vol(Af).

If M has q cusps, we can find a positive number ε < μ and a sequence

ε \ 0 such that each M( contains exactly q geodesies γ), γ2, •• , y\ of

length less than or equal to εt and that for every i the injectivity radius at

every point of Λ^MJ^i Tyj is greater than or equal to ε . Let l(γj) = ij

and let Rj be the radius of 7\ . It follows from (2.3) that

(2.4) i?f = £log(l///) + 0(logvol(M)).

Thus Mi contains exactly q tubes of radii tending to infinity when / -•
oc. These tubes become cusps in the limit. The boundary of a tube with
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FIGURE 1

the induced metric is a flat torus. The tori Fj = d Tγj are nondegenerate

in the following sense.

Lemma 2.5. There exists a universal constatn K > 0 such that Fj with

its induced metric has injectivity radius at every point greater than or equal

to K . Moreover vol(F/) < cvol(Af) for a constant c independent of i.

Therefore the tori Fj form a relatively compact family.

Proof Let γ = γj , / = // , R = R\, T = Tγ. Then

vol(F;1)= / si
Jo Jo

sinhRcoshRdθ dt

= 2πlsinhRcoshR < cvol(Γ) < cvol(Af),

since for R bounded away from zero cosh I? < csinhi?. This proves
the second assertion. To prove the first one we use the upper half-space
model of H3 taking x3-axis for γ. The tube f becomes a cone whose
axis of rotation is the jc3-axis. Take p e dT = F and the embedded
ball B(p, μ) c Mχ. Applying an appropriate power of Aγ we can choose

a lift p = (x{,x2, x3) of p with 1 < x3 < 2. Let B be the lift of
B(p, μ) centered at p . In our situation R tends to infinity, i.e., the angle
ψ between the axis and the generators of the cone approaches π/2 (cf.
Figure 1).

Recall that the induced metric on F is flat and observe that the set
B(p, μ)ΠF is diffeomorphic to a disk. Thus, the injectivity radius of F
at p is greater than or equal to the distance (with respect to the induced
metric on F) from p to dB(p, μ)ΠF. It therefore suίfices to bound this
distance from below independently of /. To do this we replace B(p, μ)ί)F
with BΠdf and observe that, since the angle ψ is bounded away from
zero, this set is quasi-isometric to its projection to the plane x3 = 1 under

(xx, x2, x3) >~> (xx 9 x2 9 1) I t i s n o w c l e a r t h a t d{β 9 dBΠdf) is bounded
below independently of /, which proves the first assertion of the lemma.
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Finally, the compactness of the family {Ff} is a consequence of Mahler's
criterion [13, Corollary 10.9]. q.e.d.

We conclude this section by introducing global coordinates on the tube
Tγ and computing the Laplacian in terms of these coordinates. Let
(r, t, θ) be the Fermi coordinates introduced above. Consider the map-
ping f:(r,t,φ)\->(r,t,θ), where θ = φ + at//, / = l(γ), and a is
the twist angle of Aγ. Recall that A(r, t, 0) = (r, t + l{γ) ,θ + a). Thus,
i n t e r m s o f ( r 9 t 9 φ ) 9 A y i s g i v e n b y ( r 9 t 9 φ ) ι - + ( r 9 t + l 9 φ ) . I t f o l l o w s
that 0 < r < R, t e R//Z and φ e R/2πZ are well-defined functions on
Tγ = f/(Aγ). The pullback of the metric (2.2) is given by

(2.6) ds2 = d r2 + cosh2 r dt2 + sinh2 r d(φ + at /if.

We remark that near the boundary F = dTγ this metric is a very good
approximation of the metric (2.1) of a cusp. Indeed, if p = R- r, then
4 sinh2 r ~ 4 cosh2 r ~ e2Re"2p since i? tends to infinity so that

(2.7) ds2~dp2 + e-2pds2

0,

where rf^Q is the metric of F.
For future reference note that

(2.8) dV = sinh r cosh rdrdφdt

is the formula for the volume element on the tube. A straightforward
calculation yields the expression for the Laplacian Δ = Δ z .

Au = —r-r Γ— •£- sinhrcoshr—
smh r cosh rdr \ 9r/

~cosh~ r— r - l sinh~ r—r-cosh~ r)—T+2Tcosh , o . . .
dt2 \ z )dΦ l d t d φ

-2 d2u

We denote the first term by Lu and the sum of remaining terms by Aru.
Thus

(2.9) Au = Lu + Aru

and

(2.10) Lu = - . u

 1

 u j - fsinh r cosh r ^ = -w"-2coth(2r)w',v J smhrcoshrdr V dr J v )

where the prime denotes the derivative with respect to r. The operator
Ar is the Laplacian on the distance torus Fr — {p e T\d(p, y) = r} with
respect to the induced metric.
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3. Reduction to a Sturm-Liouville problem

To simplify the notation we will assume that M has exactly one cusp.
The modifications required in case of several cusps will be obvious. Recall
that N((x) = #{λ G SpecCΔ^jl < λ < 1 + x2} . We begin by proving the
lower bound for N^x).

Lemma 3.1. For every x > 0

during the degeneration Λf/ —• M'.

Proof. Let γ = γ. be the shrinking geodesic in Mχ,\ and let %? c
C°°{M>) be the space of functions vanishing on the complement of the
tube Tγ and on {p e Mt\d(p, γ) < 1}, and depending only on the distance
r from γ in the tube. Consider the Sturm-Liouville problem

(3.2) Lu = vu, u(l) = u(R) = 0

on the interval [1, R]. Its eigenfunctions can be identified with elements
of <%". Let (vk)™=ι be the sequence of eigenvalues of (3.2) and let {λk)^x

be the spectrum of the Laplacian on Mi, both ordered in an increasing way
and with eigenvalues repeated according to their multiplicities. It is a con-
sequence of the variational characterization of eigenvalues [3] that, for ev-
ery k, vk > λk . Upper eigenvalue bounds translate into lower bounds for
the counting function Nt(x). We remark here that the number of eigenval-
ues of M{ in the interval [0,1] is bounded by cvo^Λ^) < cvol(Λf) for
a universal constant c > 0 [1], [2]. Therefore, if we allow all eigenvalues
below the level 1 +x2 in the definition of Nt(x), the asymptotic behavior
will change by a bounded amount which can be absorbed in Oχ{\) term.
In addition, vχ > 1 [6, Lemma 1]. Therefore

W /-0(1),

vk < 1 +x2}.
(3.2) by the substitution
where D.(x) = #{fc|l < vk < 1 +x2}. To estimate Dt(x) we transform
(

(3.3) w = sinh" 1 / 2 (2r)/.

The eigenvalue problem (3.2) becomes

(3.4) -f-sinh-2(2r)f=(v-l)f,

One easily sees that

vk-\ <π2k2/(R-\)2
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by comparing vk - 1 with eigenvalues of

This proves that N.(x) > Dt{x) - 0(1) > x(R. - l)/π - 0(1) = xR/π -
0,(1). q.e.d.

The upper bound N.(x) < xR/π + 0^(1) will be reduced to a com-
parison with (3.4) as well. However, the reduction is more subtle. We
first show that removing the complement of Tγ has no effect on clustering
of eigenvalues. More precisely, we first show that the counting function
for Neumann eigenvalues of the tube differs from N((x) by a bounded
amount when i —• oo.

Let Tχ = {pe M.\d(p, γ) < R- 1} and Mf = Mt\Tx. For an arbitrary
Riemannian manifold Z with (a possibly empty) boundary we denote by
K(Z, Λ:) the number of eigenvalues below level 1 + x2 of the Laplacian
on Z for Neumann boundary conditions. If Z = Zχ U Z 2 is the union of
two manifolds with disjoint interiors, then

(3.5) K(Z, x) < K(Z{, x) + K(Z2, JC)

by the Neumann comparison of eigenvalues [3]. In particular, we have

Ni{x)<K(Tι,x)^K(Mf,x).

The following lemma reduces our problems of bounding Λ^(JC) to analysis
on the tube.

Lemma 3.6. The counting function K(Mf, x) satisfies K(Mf, x) <
c(x) with c(x) independent of i.

Proof Recall that the injectivity radius satisfies ι(p) > ε for every
point p e Λf.\T . Take a maximal set & of points whose pairwise dis-
tances are greater than or equal to ε. The collection of β-balls centered
at points of & covers Mt\Ty, and balls of radius ε/2 with centers at
p G £P are disjoint. We take the covering % of M1 consisting of all these
balls and S = Ty\Tχ (see Figure 2, next page). The number of points
in & can be estimated easily from above in terms of vol(M ) < vol(Λ/)
and ε. Similarly, there exists a positive constant m depending only on
ε such that, for every p e Mf, the number of sets U e % containing
p is at most m. It follows from Lemma 2.5 and (2.7) that, for a given
level z the number of eigenvalues of S below z can be bounded from
above independently of /. The same is true trivially for every ε-ball in
^ . Let (K ) ^ be the sequence of all Neumann eigenvalues of all sets
of ^ , and let {vβJLi be the eigenvalue sequence of Mf for Neumann
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T

FIGURE 2

boundary conditions. We will show that

(3.7) Vj>Kj/m.

This implies the lemma, since, as remarked above, there are finitely many
sets in %, each has finitely many eigenvalues below the level m(l + x2),
and all the bounds are uniform in i. It remains to prove (3.7). Consider
the Hubert spaces H\M') and %f = @H\U), where H\Z) denotes
the Sobolev space of L2 functions on Z with first derivatives in L2,
and the orthogonal direct sum extends over all sets of %. We have the
restriction map F: f \-+ {f\U)Ue%>. The eigenvalues v have a min-max
characterization in terms of Rayleigh-Ritz quotient

JM'J

Similarly, κ are critical values of

ι2

1 Y" Γ 1̂  I2

where g = (gv) is a typical element of %?. One verifies easily that

which proves (3.7) in view of min-max principle, q.e.d.
We now use a variant of separation of variables to estimate K(T{, x).

Every function / on Tχ can be decomposed as f = f + f so that /

depends only on r and, for every r, / is orthogonal to constants on
Fr = {p e Tχ\d(p, γ) = r}. The value of / at a point is equal to the
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average of / over the torus Fr passing through that point, and / = / - / •
This decomposition is orthogonal with respect to the L2 inner product,
and it is preserved by the Laplacian. To prove the second assertion, it
suffices to show that Δf = Δ/. Clearly both ~Kj and ArJ are equal to
zero. Thus it is enough (cf. (2.9)) to prove that Lf = Lf. This follows
by differentiation under the integral sign since, by (2.8),

-Sί/,"•*•
We proceed to show that only eigenvalues belonging to eigenfunctions

depending solely on r contribute to clustering. The following notation
will be useful. Let Ta = {p e Tγ\d(p,γ)<R-a} for a e [0, R]. Thus

dTa = FR_a . Consider the space H^TJ c Hι{Ta) of functions satisfying

/ = 0. For such functions

(3.8)

|grad(/)|2ύ?F dp> f dp f |grado/|2ί/F
p Jo JFp

 μ p "

fR-a f

> / Hp)dp fdV
Jo JF,

 μ

where v(p) denotes the smallest positive eigenvalue of Δ , and the sub-
script p is used to indicate that the corresponding object is computed with
respect to the induced metric on Fp . We are going to need information
about v(p).

Lemma 3.9. v(r) is a decreasing function of r. Moreover for r e
(0, R] and sufficiently large i, the eigenvalues v{r) satisfy v{r) > ce2 ( Λ~ r )

with a positive constant c independent of i and r.

Proof Using (2.6) we compute

and the Rayleigh-Ritz quotient of g

(,u) WΛίΓ-
JFg dφdt

The formulas above imply immediately that u(r) is a decreasing function
of r. The inequality u(r) > ce2(i*~r) for r = R follows from Lemma 2.5.
To prove the general case we consider Fr as a fixed manifold with coor-
dinates (t, φ) equipped with a family of Riemannian metrics depending
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on the parameter r. If R is sufficiently large, then sinhiί/sinhr > \eR~r

and coshΛ/coshr > \eR'r. It follows from (3.10) and (3.11) that

Therefore
*,(*) > \e2{R-r)^R(g) > \v{R)eΆR-r),

which completes the proof, q.e.d.
We now proceed as follows. For a fixed x > 0 we use the lemma above

to choose a > 0 such that v{R- a) > ce > 1 + x . This choice is
determined by x alone, and from now on a is fixed. As above,

K{Tl,x)<K{Ta9x)

Using Lemma 2.5 and (2.7) we see that the manifolds Tχ\Ta, for differ-
ent i, are mutually quasi-isometric with constants controlling the quasi-
isometries independent of /. Thus the second summand above is bounded
independently of i. If φλ is a Neumann eigenfunction of Δ on Ta be-
longing to an eigenvalue λ, both φλ and φλ satisfy the equation Af+λf =
0. It now follows from Lemma 3.9 and (3.8) that, if ~φ~λ Φ 0, then
λ > 1 + x1. In particular, the eigenfunctions whose eigenvalues contribute
to K{Ta, x) depend only on r.

The discussion above shows that N.(x) < K'(x) + Oχ{\) where K\x)
is the number of eigenvalues below the level 1 + x2 for the following
Sturm-Liouville problem on (0, R - a].

(3.12) —7-r i—(/'sinhrcosh/) = μnu,
v } sinhrcoshrw } ^n

(3.13) f(R-a) = 0,
/(r) = 0( l )asr->0.

The eigenvalues of this problem admit a variational characterization.
Therefore all standard comparison theorems apply. We break the interval
(0, R-a] into the union of (0, 1] and [1, R-a] and use the requirement
that the function be square-integrable as the boundary condition at 0 and
Neumann condition f — 0 at remaining end points. Neumann compari-
son of eigenvalues implies then that the counting function K^R_a(x) for
the eigenvalue problem on [1, R - a] differs from K'(x) by a bounded
amount with bounds depending on JC but not on /. We now wish to use
the substitution (3.3). There is a slight complication in that the Neumann
conditions are not preserved by this substitution. However Dirichlet and
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Neumann eigenvalues, say (λk)™=ι and {μk)™=x respectively, for a Sturm-
Liouville equation satisfy [16]

(3.14) H<h<H+i-

Therefore switching between these boundary conditions changes the count-
ing function by a bounded amount (at most two in absolute value). We
pass to Dirichlet boundary conditions on [1, R - a], apply our substitu-
tion, than go back to Neumann conditions for the transformed equation.
The new Sturm-Liouville problem

-u" - sinh" ru = μn- 1,

u(l) = u(R-a) = 0

has the counting function Q(x) = #{μn\μn < 1 + x2} satisfying Nt(x) <
Q(x) + Ox{\). According to Theorem 4.1, we have

Q(x) = (x/π)(R - a - 1) + 0,(1) = (x/π)R + Oχ{\).

This concludes the proof of our main result (1.1) and (1.2).

4. A Sturm-Liouville problem on expanding interval

This section contains a proof of the following theorem.
Theorem 4.1. Let q(u) be a continuous, real-valued, integrable function

on [0, oo). Consider the eigenvalue problem

(4.2) -f' + q{u)f = λf,

(4.3) /(0) = f{R) = 0

on [0, R]. Let KQ R{x) be the number of eigenvalues of this problem

satisfying 0 < λ < x2. Then KQR(X) = xR/π + Oχ{\) as R -> oo.
The theorem asserts that an integrable potential q is negligible; the

behavior of the counting function is the same as that of the counting
function for the problem with q = 0. Classically, one studies KQR(x)
for fixed R and x -> oo. We will retrace a classical argument, which
goes back to Cauchy (cf. [15, Chapter 1]), to prove the theorem. A final
comment before we begin the proof is that the Neumann conditions can
be replaced by any selfadjoint boundary conditions without affecting the
conclusion. We will use only Neumann and Dirichlet conditions in the
proof.

Proof Let K* b, K% b be the counting functions of the eigenvalues
of the equation (4.2) on the interval [a, b] for Neumann and Dirichlet
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boundary conditions respectively. By Dirichlet-Neumann bracketing and
(3.14)

KaW + Ka,RW " 4 * < β <

< <.(*)+<*(*).
It follows that

( 4 4 )
for i? —> oo. We will choose a later in such a way that it depends only
on x. We proceed to estimate K^R(x) for R -> oo.

Let 0(w) = φ(u,λ), χ(u) = χ(u,λ) be solutions of (4.2) satisfying
^(α) = 1, φ\ά) = 0, and /(i?) = 1, χ(R) = 0 respectively, φ and /
are holomorphic entire functions of the complex variable λ. The Wron-
skian W(φ, χ) = φχ - χφ' is independent of u and is an entire holo-
morphic function of λ denoted by ω{λ). Zeros of ω{λ) are precisely
the eigenvalues of the Neumann problem on [a, R]. One verifies that, if

2
g

λ = s2, then
1 fu

φ(u) = coss{u -fl) + - l sins{u - y)q(y)φ(y) dy
L J a

and
1 ίR

χ(u) = coss(R-u) + - / si
Differentiation under the integral yields

φ\u) = -s sin s(u -a) + cos s(u - y)q(y)φ(y) dy,
Ja
rR

χ\ύ) = s sins{R - ύ) - I coss{y - u)q(y)χ(y) dy.
Ju

We set s = σ + it. The proof of [15, Lemma 1.7] gives the estimates

(4.5) \φ\<eWu-a)-

(4.6) \x\<eWR~u)-

both valid provided | ί | ι /a°° |^(j;)| dy < 1.
Let
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~xn

I

It

I

ixn

σ
xn

FIGURE 3

We substitute the inequalities (4.5) and (4.6) into the integral equations
satisfied by φ, χ, and their derivatives to obtain

φ(u) = coss{u - a) + 0{BeW{u~a)),

χ{u) = coss(R - u) + O(BeM{R~u)),

φ\ύ) = -s sins(u - a) + O(\s\BeWu~a)),

χ\u) = s ύns{R - ύ) + O(\s\BeW{R~u)),

which hold if \s\~ι /fl°° \q(y)\ dy < 1. Thus we have

(4.7) ω(λ) = φχ - φ'χ = ssins(R - a) + O(\s\eW{R a)B).

We will work with \s\ bounded above and below and choose a suffi-
ciently large. The exact choice of a will be specified below.

Let xn = (n + j)π/(R - a) and let Γn be the closed contour in the
A-plane corresponding under A = s2 to the upper half of the boundary
of the square in the s-plane determined by the lines t = xn , t = -xn ,
σ = x Λ , and σ = -JCΠ for a positive integer n (Figure 3). Along this
contour

(4.8) \sms(R-a)\>ceM{R-a)

for a constant c independent of n . For given x and i? choose n so that
* n < x < xn+\ - Thus, if J? —• oo with fixed x and a, then « —• oo and

We now specify the choice of a. Since q(y) is integrable, we can
choose a sufficiently large so that \s ~ι

\q(y)\dy < I and, because of
- ά)\ on T

n .
(4.8), so that the O term in (4.7) is smaller than

Write F{λ) = ssins(R - a) = VλsinVλ(R - a) and G(λ) = ω(λ) -
F(λ), the O term in (4.7). Then, by our choice of a, B is small so that
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|G(λ)| < \F{λ)\ along Γn. By Rouche's theorem ω(λ) and F(λ) have
equal number of zeros inside the contour Tn . The zeros of F(λ) are at

2k2/(R a)2π2k2/(R - a ) 2 , k<n.

Thus

K*R(x) is a nondecreasing function of x and xn+{ - xn = π/(R - a).
Therefore

This finishes the proof in view of (4.4).
Remarks, (a) Suppose q(u) is an integrable function on the real line.

Consider the Sturm-Liouville problem for equation (4.2) on [-R, R] with
R —• oo . A slight modification of the proof above shows that the counting
functions for Dirichlet and Neumann boundary conditions satisfy

respectively. This gives an alternative proof of Theorem 1 of [11].
(b) R. Sacksteder pointed out that it is possible to give a proof of The-

orem 4.1 based on ideas of Wintner (cf. [8, §X.8], [17], [18]). Such a
method would avoid use of complex analysis.
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