LOCAL PROPERTIES OF FAMILIES OF PLANE CURVES

ROBERT TREGER

Introduction

Let \mathbf{P}^{N} be the projective space parametrizing all projective plane curves of degree $n(N=n(n+3) / 2)$. For $d \geq 1$, we let $\Sigma_{n, d} \subset \mathbf{P}^{N} \times \operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$ be the closure of the locus of pairs $\left(E, \Sigma_{i=1}^{d} P_{i}\right)$, where E is an irreducible nodal curve and P_{1}, \cdots, P_{d} are its nodes. The purpose of this paper is to prove the following theorem.

Theorem. The variety $\Sigma_{n, d}$ is unibranch everywhere.
The variety $\Sigma_{n, d}$ plays an important role in the study of the family of irreducible plane curves of degree n with d nodes and no other singularities as well as the locus $V(n, g) \subset \mathbf{P}^{N}$ of reduced and irreducible curves of genus g, where $g=(n-1)(n-2) / 2-d$. We mention two corollaries.

Corollary 1 (Harris [5]). The variety $\overline{V(n, g)} \subset \mathbf{P}^{N}$ is irreducible.
Corollary 2. The locus $V(n, g)$ is unibranch everywhere.
It is well known that $\overline{V(n, g)}$ is not unibranch everywhere [3], [5, §1], [6, Lecture 3], [10, §11]. We now prove the corollaries. Recall a result of Arbarello and Cornalba [1] and Zariski [13]: the general members of $V(n, g)$ have $d=(n-1)(n-2) / 2-g$ nodes and no other singularities. It follows that the projection of $\Sigma_{n, d}$ to \mathbf{P}^{N} coincides with $\overline{V(n, g)}$. Every component of $\Sigma_{n, d}$ contains a pair of the form $\left(\Sigma_{r=1}^{n} L_{r}, d P\right)$, where the lines $L_{r}(1 \leq r \leq n)$ meet only at P, and by the deformation theory, $\Sigma_{n, d}$ contains all such pairs [6, Lecture 3, §2], [10, §11]. It is clear that these pairs form an irreducible family. Hence $\Sigma_{n, d}$ is irreducible by our theorem. It follows that $\overline{V(n, g)}$ is also irreducible.

We now prove Corollary 2. Let C be an arbitrary member of $V(n, g)$. For a point $P \in C$, we set $\delta_{P}=\operatorname{dim}_{\mathrm{C}} \widetilde{O}_{P} / O_{P}$, where O_{P} is the local ring of C at P, and \widetilde{O}_{P} its normalization. By the genus formula, $\Sigma_{Q \in C} \delta_{Q}=d$ [7, Theorem 2]. Therefore if a nodal member of $V(n, g)$ specializes to C, then exactly δ_{P} of its nodes specialize to $P \in C[12, \S 3.4]$. Hence C

[^0]is the projection of a unique pair $\left(C, \Sigma_{i=1}^{d} Q_{i}\right) \in \Sigma_{n, d}$. Since $V(n, g)$ is open in $\overline{V(n, g)}$ [7, Theorem 5], Corollary 2 follows from the theorem.

The proof of the theorem relies on the result of Arbarello and Cornalba and Zariski and its generalization by Harris [5, §2].

The author wishes to thank the referee for very helpful remarks.

Proof of the theorem

We fix $d \geq 1$ and prove the theorem by decreasing induction on n. For each n, we consider the projections $\pi: \Sigma_{n, d} \rightarrow \mathbf{P}^{N}$ and $\pi_{d}: \Sigma_{n, d} \rightarrow$ $\operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$ (by abuse of notation we omit the index n).

For $n \gg d$, the theorem is elementary. Indeed, $\operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$ is obviously unibranch everywhere. For $n \gg d, \pi_{d}$ is surjective and its general fiber is a linear system of curves with d assigned singularities. Let $S \subset \operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$ denote the singular locus. Outside S, π_{d} is a bundle whose fibers are canonically isomorphic to linear subspaces of \mathbf{P}^{N}. Hence $\Sigma_{n, d} \backslash \pi_{d}^{-1}(S)$ is unibranch everywhere.

Let $\operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right) \subset \mathbf{P}^{M}$ be a closed imbedding. For a point $v \in \pi_{d}^{-1}(S)$, we consider a fundamental system of polycylinders $\left\{U_{\gamma}\right\}$ in $\mathbf{P}^{N} \times \mathbf{P}^{M}$ containing v. Set $U_{\gamma}^{\prime}=U_{\gamma} \cap \Sigma_{n, d}$. We get a fundamental system of neighborhoods $\left\{U_{\gamma}^{\prime}\right\}$ of v in $\Sigma_{n, d}$. Let $\eta, \xi \in \Sigma_{n, d}$ be two distinct points such that $\pi(\eta)$ and $\pi(\xi)$ are nodal curves and $\pi_{d}(\eta)=\pi_{d}(\xi)$. Then $\pi\left(\Sigma_{n, d}\right)$ contains the line in \mathbf{P}^{N} passing through $\pi(\eta)$ and $\pi(\xi)$.

We consider a decomposition of $U_{\gamma}^{\prime} \backslash\left(U_{\gamma}^{\prime} \cap \pi_{d}^{-1}(S)\right)$ in a union of its connected components. Projecting these components to $\operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$, we obtain a decomposition of $\pi_{d}\left(U_{\gamma}^{\prime}\right) \backslash S$ in a disjoint union of open subsets. Since $\operatorname{Sym}^{d}\left(\mathbf{P}^{2}\right)$ is unibranch, the latter decomposition must be trivial. Hence $U_{\gamma}^{\prime} \backslash\left(U_{\gamma}^{\prime} \cap \pi_{d}^{-1}(S)\right)$ is connected, and $\Sigma_{n, d}$ is unibranch at v.

We now suppose that $\Sigma_{n+1, d}$ is unibranch everywhere. Let $\left(C, \Sigma_{i=1}^{d} Q_{i}\right)$ be an arbitrary point of $\Sigma_{n, d}$. Let $l \subset \mathbf{P}^{2}$ be a fixed line in general position with respect to $\left(C, \Sigma_{i=1}^{d} Q_{i}\right)$, and $p \in l \backslash C$ a fixed point. We set $\alpha=\left(C+l, \Sigma_{i=1}^{d} Q_{i}\right)$. To get rid of l we need two general lemmas.

Recall that a noetherian topological space W is connected in codimension 1 if and only if for every closed subspace $K \subset W$ of codimension ≥ 2, the set $W \backslash K$ is connected.

Lemma 1. Let A be a complete local noetherian domain. Let h_{1}, \cdots, h_{m} be elements of A, and $B=A /\left(h_{1}, \cdots, h_{m}\right) . \operatorname{If} \operatorname{dim} A=\operatorname{dim} B+$ m, then $\operatorname{Spec}(B)$ is connected in codimension 1 .

Proof of Lemma 1. See [4, Exp. XIII, Theorem 2.1].
Following Harris [5, §2], for $m \leq n$, we let $\Sigma_{n, d, m} \subset \Sigma_{n, d}$ be the closure of the locus of pairs $\left(F, \Sigma_{i=1}^{d} R_{i}\right)$, where F is an irreducible nodal curve having smooth contact of order at least m with l at p. Let $\mathbf{P}^{N_{1}}$ be the projective space parametrizing all projective plane curves of degree $n+1$. We consider a small open analytic neighborhood $\mathscr{A} \subset \Sigma_{n+1, d}$ of α. Let $\left(E, \Sigma_{i=1}^{d} P_{i}\right)$ be a point of \mathscr{A}, and let

$$
f_{E}(X, Y, Z)=\Sigma a_{j k} X^{j} Y^{k} Z^{n+1-j-k}=X(\cdots)+\Sigma a_{0 k} Y^{k} Z^{n+1-k}
$$

be an equation of E. We have chosen our coordinate system in \mathbf{P}^{2} such that $l=\{X=0\}$ and $p=(0: 1: 0)$. For $m \geq 1$, the condition $a_{0 n+1}=\cdots=a_{0 n+2-m}=0$ means that E has contact of order at least m with l at p (if $E \supset l$, then by definition, they have contact of order ∞ at p). We set

$$
\Sigma_{n+1, d, n+2}=\left\{\left(D+l, \Sigma_{i=1}^{d} R_{i}\right) \mid\left(D, \Sigma_{i=1}^{d} R_{i}\right) \in \Sigma_{n, d}\right\} .
$$

For sufficiently small \mathscr{A}, the curves of $\pi(\mathscr{A})$ have no singularities at p and the supports of the cycles of $\pi_{d}(\mathscr{A})$ do not intersect l. For each m, $0 \leq m \leq n+2$, the general points of $\Sigma_{n+1, d, n+2}$ belong to $\Sigma_{n+1, d, m}$ [5, §2], hence $\alpha \in \Sigma_{n+1, d, m}$. It follows from the semistable reduction theorem for families of curves and dimension counts that the locus of nonreduced curves has codimension strictly greater than 1 in $\pi\left(\Sigma_{n+1, d, m} \cap \mathscr{A}\right)$ for $0 \leq m \leq n+2,[2, \S 1(\mathrm{a})],[5, \S 2]$, [9].

Lemma 2. For an integer $m, 0 \leq m \leq n+2$, let E be a general point of an arbitrary codimension 1 subfamily of $\pi\left(\Sigma_{n+1, d, m} \cap \mathscr{A}\right)$. Then E has at most one non-nodal singularity which is a cusp, a tacnode, or an ordinary triple point. Furthermore, $\Sigma_{n+1, d, m} \cap \mathscr{A}$. is smooth at all points corresponding to E.

Proof of Lemma 2. For $m=0$ or $n+2$, the lemma is known; see [2, $\S 1(\mathrm{a})]$. Since $\operatorname{dim} \Sigma_{n+1, d, m}=\operatorname{dim} \Sigma_{n, d}+n+2-m$ [5, §2], by taking the corresponding hyperplane sections, we reduce the proof of the first part of the lemma to the case $m=n+2$.

We now assume that our E is a member of $\pi\left(\Sigma_{n+1, d, m} \backslash \Sigma_{n+1, d, m+1}\right)$ of genus $g(E)=n(n-1) / 2-d$; the remaining cases are similar only easier. We apply a general argument of Harris [5, §2]. For $i=0,1, \cdots, m$, we blow up the plane i times at p in the direction of l; let $S_{i} \rightarrow \mathbf{P}^{2}$ be the
corresponding morphism, and $K_{S_{i}}$ the canonical divisor on S_{i}. Let E_{i} be the proper transform of E in S_{i}, and $\varphi_{i}: \widetilde{E} \rightarrow E_{i}$ the normalization morphism. We have $-E_{m} \cdot K_{S_{m}}=3(n+1)-m[5$, p. 451]. Therefore, for $i=0$ or m, the deformations of the pair $\left(\widetilde{E}, \varphi_{i}\right)$ are parametrized by a germ \mathscr{D}_{i} of a smooth manifold of dimension

$$
3(n+1)+g(E)-1-i=N_{1}-d-i=\operatorname{dim} \Sigma_{n+1, d}-i
$$

and there is a natural immersion $\mathscr{D}_{m} \hookrightarrow \mathscr{D}_{0}$ [8], [11, 1.3-1.6]. On the other hand, $\Sigma_{n+1, d}$ is smooth at $\pi^{-1}(E)$ and, in a neighborhood of E, π^{-1} is a one-to-one map [2, $\left.\S 1(a)\right]$. Hence there is a natural analytic isomorphism between \mathscr{D}_{0} at $\left(\widetilde{E}, \varphi_{0}\right)$ and $\Sigma_{n+1, d}$ at $\pi^{-1}(E)$. The image of \mathscr{D}_{m} in $\Sigma_{n+1, d}$ lies in $\Sigma_{n+1, d, m}$. Thus $\Sigma_{n+1, d, m}$ is smooth at $\pi^{-1}(E)$. This proves the lemma.

We now finish the proof of the theorem. Let \mathscr{B} denote the locus in \mathscr{A} of the solutions of $n+2$ equations corresponding to the $n+2$ elements: $a_{0 n+1}, \cdots, a_{00}$. It is clear that $\Sigma_{n+1, d, n+2} \cap \mathscr{A} \subset \mathscr{B}_{\text {red }}$.

To compute $\operatorname{dim} \mathscr{B}$, we apply [5, §2]. For $1 \leq m \leq n+1$, let ($D, \Sigma_{i=1}^{d} R_{i}$) be a general point of the locus in \mathscr{A} of the solutions of m equations corresponding to the m elements: $a_{0 n+1}, \cdots, a_{0 n+2-m}$. Since $R_{1}, \cdots, R_{d} \notin l, l \not \subset D$ and D has contact of order m with l at p, provided D is reduced; moreover, D is reduced, as before, by the semistable reduction theorem. So

$$
\operatorname{dim} \mathscr{B}=\operatorname{dim} \Sigma_{n+1, d}-n-2=\operatorname{dim} \Sigma_{n+1, d, n+2}
$$

By Lemma $1, \mathscr{B}$ is connected in codimension 1 at α. Hence, by Lemma 2 (with $m=n+2$), $\mathscr{B}_{\text {red }}=\Sigma_{n+1, d, n+2} \cap \mathscr{A}$ and $\Sigma_{n+1, d, n+2}$ is unibranch at α. Therefore $\Sigma_{n, d}$ is unibranch at $\left(C, \Sigma_{i=1}^{d} Q_{i}\right)$. This proves the theorem.

References

[1] E. Arbarello \& M. Cornalba, Su una proprietá notevole dei morfismi di una curva a moduli generali in uno spazio proiettivo, Rend. Sem. Mat. Univ. Polytec. Torino 38 (1980) 87-99 .
[2] S. Diaz \& J. Harris, Geometry of the Severi variety, Trans. Amer. Math. Soc. 309 (1988) 1-34.
[3] W. Fulton, Algebraic Geometry-Open Problems, Proc. Ravello, 1982 (C. Ciliberto, F. Chione, and F. Orecchi, eds.), Lecture Notes in Math., Vol. 997, Springer, Berlin, 1983, 146-155.
[4] A. Grothendieck et al., Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux, North-Holland, Amsterdam, 1968.
[5] J. Harris, On the Severi problem, Invent. Math. 84 (1986) 445-461 .
[6] ___ Curves and their moduli, Algebraic Geometry, Proc. Sympos. Pure Math. (S. Bloch, ed.), vol. 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 99-143.
[7] H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves, Mem. College Sci. Kyoto, Ser. A 30 (1957) 177-195 .
[8] E. Horikawa, On deformations of holomorphic maps. I, J. Math. Soc. Japan 25 (1973) 372-396.
[9] A. Nobile, Genera of curves varying in a family, Ann. Sci. École Norm. Sup. (4) 20 (1987) 465-473 .
[10] F. Severi, Vorlesungen über algebraische Geometrie, Anhang F, Teubner, Leipzig, 1921.
[11] A. Tannenbaum, On the classical characteristic linear series of plane curves with nodes and cuspidal points: two examples of Beniamino Segre, Compositio Math. 51 (1984) 169-183.
[12] B. Teissier, The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (P. Holm, ed.), Sijthoff and Noordhoff, Groningen, 1977, 605-634.
[13] O. Zariski, Dimension-theoretic characterization of maximal irreducible algebraic systems of plane nodal curves of a given order n and with a given number d of nodes, Amer. J. Math. 104 (1982) 209-226 .

4 Mountain View Terrace \#14
Latham, NY 12110

[^0]: Received January 16, 1990, and, in revised form, April 10, 1992.

