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LOCAL PROPERTIES OF FAMILIES
OF PLANE CURVES

ROBERT TREGER

Introduction

Let PV be the projective space parametrizing all projective plane curves
of degree n (N =n(n+3)/2). For d > 1, we let 2, 4C PY x Symd(PZ)
be the closure of the locus of pairs (E, ):;LlPi) , where E is an irreducible
nodal curve and P, --- , P, are its nodes. The purpose of this paper is
to prove the following theorem.

Theorem. The variety X, , is unibranch everywhere.

The variety X, , plays an important role in the study of the family of
irreducible plane curves of degree n with d nodes and no other singular-
ities as well as the locus V' (n, g) C PY of reduced and irreducible curves
of genus g, where g = (n—1)(n—2)/2—d. We mention two corollaries.

Corollary 1 (Harris [5]). The variety V(n, g) C PV is irreducible.

Corollary 2. The locus V(n, g) is unibranch everywhere.

It is well known that V(n, g) is not unibranch everywhere [3], [5, §1],
[6, Lecture 3], [10, §11]. We now prove the corollaries. Recall a result
of Arbarello and Cornalba [1] and Zariski [13]: the general members of
V(n, g) have d = (n—1)(n—2)/2— g nodes and no other singularities. It
follows that the projection of X, , to PV coincides with V(n, g). Every
component of X d contains a pair of the form ()::’=1Lr , dP) , where the
lines L, (1 <r < n) meet only at P, and by the deformation theory,
Zn‘ 4 contains all such pairs [6, Lecture 3, §2], [10, §11]. It is clear that
these pairs form an irreducible family. Hence X, , is irreducible by our
theorem. It follows that V' (n, g) is also irreducible.

We now prove Corollary 2. Let C be an arbitrary member of ¥V (n, g).
For a point P € C, we set J, = dim 5P /Op , where O, is the local ring
of C at P,and 5,, its normalization. By the genus formula, EQGCJQ =d
[7, Theorem 2]. Therefore if a nodal member of V(n, g) specializes to
C, then exactly J, of its nodes specialize to P € C [12, §3.4]. Hence C
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is the projection of a unique pair (C, Zd 1) €L, 4. Since V(n, g) is

open in V(n, g) [7, Theorem 5], Corollary 2 follows from the theorem.
The proof of the theorem relies on the result of Arbarello and Cornalba
and Zariski and its generalization by Harris [5, §2].
The author wishes to thank the referee for very helpful remarks.

Proof of the theorem

We fix d > 1 and prove the theorem by decreasing induction on »n.
For each n, we consider the projections =: Zn’ i P" and T, Zn’ i
Symd(Pz) (by abuse of notation we omit the index n).

For n > d, the theorem is elementary. Indeed, Sym“'(P2 ) is obviously
unibranch everywhere. For n > d, =, is surjective and its general fiber is
a linear system of curves with d assigned singularities. Let S C Symd(Pz)
denote the singular locus. Outside S, 7, is a bundle whose fibers are
canonically isomorphic to /inear subspaces of P" . Hence z, A7 (S) is
unibranch everywhere.

Let Symd(Pz) c P be a closed imbedding. For a point v € n;'(S) ,
we consider a fundamental system of polycylinders {U,} in PY x pM
containing v. Set U' =U,nN X, 4- We get a fundamental system of
neighborhoods {U } of vin X ,. Let n,{ € £, , be two distinct
points such that n(n) and w(¢) are nodal curves and ny(n) = my(&).
Then n(X, ;) contains the line in pPY passing through zn(n) and =n(£).

We consider a decomposition of U)\(U, N n;'(S)) in a union of its

connected components. Projecting these components to Symd(Pz) , We
obtain a decomposition of © d(Uy')\S in a disjoint union of open subsets.

Since Symd(P2 ) is unibranch, the latter decomposition must be trivial.
Hence U,\(U, N n;'(S)) is connected, and X, , is unibranch at v.

We now suppose that £, , is unibranch everywhere. Let (C, Zi 19:)

n+l1,
be an arbitrary point of £, ,. Let [/ C P’ be a fixed line in general

position with respect to (C, }Zd _19;),and p € I\C a fixed point. We set
a=(C+1, Z _19,) - To getrid of / we need two general lemmas.
Recall that a noetherian topological space W is connected in codimen-

sion 1 if and only if for every closed subspace K C W of codimension
> 2, the set W\K is connected.
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Lemma 1. Let A be a complete local noetherian domain. Let h,,
=+, h, beelementsof A,and B=A/(h,,--- , h,). If dimA4 =dim B+
m, then Spec(B) is connected in codimension 1.

Proof of Lemma 1. See [4, Exp. XIII, Theorem 2.1].

Following Harris [5, §2], for m < n, we let Zn,d’m C Zn’d be the

closure of the locus of pairs (F, Z;.i:lRi) , where F is an irreducible nodal

curve having smooth contact of order at least m with / at p. Let PV
be the projective space parametrizing all projective plane curves of degree
n+ 1. We consider a small open analytic neighborhood &/ C X, , , of

a. Let (E, x4 P,) be a point of &, and let

i=1"1

f(X,Y,Z)=%a, X' Y 2" x(...) 4 2q, YEZ™IE
E jk 0k

be an equation of E. We have chosen our coordinate system in P’ such
that / = {X =0} and p = (0:1:0). For m > 1, the condition

Ayypy =" =4gy,,y_,, = 0 means that E has contact of order at least m

with [ at p (if E D/, then by definition, they have contact of order oo
at p). We set

d d
5 {(D+1,Z_R)I(D,Z_R)€Z, ,}.

For sufficiently small & , the curves of n(%/) have no singularities at p
and the supports of the cycles of n,(%) do not intersect /. For each m,
0<m< n+2,the general pointsof %, , ., belongto X, ., , [5
§2], hence a € X, ; - It follows from the semistable reduction theorem
for families of curves and dimension counts that the locus of nonreduced
curves has codimension strictly greater than 1 in n(X Nng) for
0<m<n+2,(2,§1(a)] [5, §21, [9]-

Lemma 2. For an integer m, 0 < m< n+2, let E be a general point
of an arbitrary codimension 1 subfamily of n(%, dmN ). Then E
has at most one non-nodal singularity which is a cusp, a tacnode, or an
ordinary triple point. Furthermore, X N& . is smooth at all points
corresponding to E .

Proof of Lemma 2. For m =0 or n+ 2, the lemma is known; see [2,
§1(a)]. Since dimZ%, ,, , , = dim% ,+n+2-m[5, §2], by taking the
corresponding hyperplane sections, we reduce the proof of the first part of
the lemma to the case m=n+2.

We now assume that our E isa member of WX, 1 4.m\Zni1,d.me1) OF
genus g(E) = n(n— 1)/2 —d ; the remaining cases are similar only easier.
We apply a general argument of Harris [5, §2]. For i =0,1,--- , m, we
blow up the plane i times at p in the direction of /; let S; — P? be the

n+1,d,n+2 =

n+1,d,m

n+l,d,m
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corresponding morphism, and K the canonical divisor on ;. Let E;

be the proper transform of E in §;, and ¢;: E - E; the normalization
morphism. We have —E, - K, = 3(n+ 1) —m [5, p. 451]. Therefore,
for i =0 or m, the deformations of the pair (E, ;) are parametrized
by a germ Z; of a smooth manifold of dimension

3n+1)+gE)-1-i=N,-d-i=dimZ,, ,~i,

and there is a natural immersion &, — Z, [8], [11, 1.3-1.6]. On the
other hand, X, , , is smooth at n_l(E ) and, in a neighborhood of E,

7~ ! is a one-to-one map [2, §1(a)]. Hence there is a natural analytic
isomorphism between Z; at (E, ¢;) and X, , at n_l(E). The image

of 9, in%  ,liesin X . Thus X is smooth at 7~ '(E).
This proves the lemma.

We now finish the proof of the theorem. Let % denote the locus in &
of the solutions of n + 2 equations corresponding to the n + 2 elements:
Aoui1s * » Ggo - 1t is clear that Zn+l,d,n+2 N CEy-

To compute dim%, we apply [5, §2]. For 1 < m < n+1, let
(D, Zi.i:lR,.) be a general point of the locus in % of the solutions of m
equations corresponding to the m elements: a;, ,, - , @y, ,_,, - Since
R,,---,R; ¢ 1,1 ¢ D and D has contact of order m with [ at p, pro-
vided D is reduced; moreover, D is reduced, as before, by the semistable

reduction theorem. So

dim% =dimX

n+1,d,m n+1,d,m

n—-2=dimZX

n+l,d n+l,d,n+2°

By Lemma 1, % is connected in codimension 1 at «. Hence, by
Lemma 2 (with m = n+2), B 4=2,, 4,,N¥ and X, ,

is unibranch at «. Therefore £, , is unibranch at (C, E?lei) . This
proves the theorem.
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