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LOCAL PROPERTIES OF FAMILIES
OF PLANE CURVES

ROBERT TREGER

Introduction

Let P^ be the projective space parametrizing all projective plane curves

of degree n (N = n(n + 3)/2). For d > 1, we let Σn d c P * x Sym^(P2)

be the closure of the locus of pairs (E, Σ^P^ , where E is an irreducible
nodal curve and Pχ, , Pd are its nodes. The purpose of this paper is
to prove the following theorem.

Theorem. The variety Σn d is unibranch everywhere.
The variety Σn d plays an important role in the study of the family of

irreducible plane curves of degree n with d nodes and no other singular-
ities as well as the locus V(n, g) cPN of reduced and irreducible curves
of genus g, where g = (n - \){n - 2)/2 - d. We mention two corollaries.

Corollary 1 (Harris [5]). The variety V(n, g) c P ^ is irreducible.
Corollary 2. The locus V(n, g) is unibranch everywhere.
It is well known that V(n, g) is not unibranch everywhere [3], [5, §1],

[6, Lecture 3], [10, §11]. We now prove the corollaries. Recall a result
of Arbarello and Cornalba [1] and Zariski [13]: the general members of
V(n, g) have d = (n - \)(n - 2)/2 - g nodes and no other singularities. It
follows that the projection of Σn d to P ^ coincides with V(n, g). Every
component of Σn d contains a pair of the form {Σn

r=χLr, dP), where the
lines Lr (1 < r < n) meet only at P, and by the deformation theory,
Σn d contains all such pairs [6, Lecture 3, §2], [10, §11]. It is clear that
these pairs form an irreducible family. Hence Σn d is irreducible by our
theorem. It follows that V(n, g) is also irreducible.

We now prove Corollary 2. Let C be an arbitrary member of V(n, g).
For a point P € C, we set δp = dim c Op/Op, where Op is the local ring
of C at P, and Op its normalization. By the genus formula, ΣQeCδQ = d
[7, Theorem 2]. Therefore if a nodal member of V(n, g) specializes to
C, then exactly δp of its nodes specialize to P e C [12, §3.4]. Hence C
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is the projection of a unique pair (C, Σ^=1Q.) e Σn d. Since V(n, #) is

open in V(n, #) [7, Theorem 5], Corollary 2 follows from the theorem.
The proof of the theorem relies on the result of Arbarello and Cornalba

and Zariski and its generalization by Harris [5, §2].
The author wishes to thank the referee for very helpful remarks.

Proof of the theorem

We fix d > 1 and prove the theorem by decreasing induction on n.
For each n , we consider the projections π: Σn d —> P^ and nd:Σn d ->

Sym^(P2) (by abuse of notation we omit the index n).

For n > d, the theorem is elementary. Indeed, Symί/(P2) is obviously

unibranch everywhere. For « » d, πd is surjective and its general fiber is

a linear system of curves with d assigned singularities. Let S c Sym (P2)

denote the singular locus. Outside S, πd is a bundle whose fibers are

canonically isomorphic to linear subspaces of P^. Hence Σn d\πd

l(S) is

unibranch everywhere.

Let Syn/(P2) c PM be a closed imbedding. For a point υ e πd

ι(S),

we consider a fundamental system of polycylinders {£/,} in P^ x P M

containing v. Set U'γ = UγΓ\Σn d . We get a fundamental system of

neighborhoods {£/'} of ^ in Σn d . Let η,ξ e Σn d be two distinct

points such that π(η) and π({) are nodal curves and πd(η) = πr f(ί)

Then π(Σn d) contains the line in P^ passing through π(η) and π(ξ).

We consider a decomposition of U'y\{U'y Π nd

ι(S)) in a union of its

connected components. Projecting these components to Sym^(P2), we
obtain a decomposition of πd(U'y)\S in a disjoint union of open subsets.

Since Sym^P2) is unibranch, the latter decomposition must be trivial.

Hence U'\(U' Ππd

ι(S)) is connected, and Σn d is unibranch at v .

We now suppose that Σn+ι d is unibranch everywhere. Let (C, Σ^jβ^

be an arbitrary point of Σn d. Let / c P2 be a fixed line in general

position with respect to (C, Σ^Q.), and p e l\C a fixed point. We set

a = (C +1, Σ^Q;). To get rid of / we need two general lemmas.
Recall that a noetherian topological space W is connected in codimen-

sion 1 if and only if for every closed subspace K c W of codimension
> 2, the set W\K is connected.
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Lemma 1. Let A be a complete local noetherian domain. Let hχ,
• , hm be elements of A, and B = A/(hχ, , hm). If aim A = dimi?+
m, then Spec(i?) is connected in codimension 1.

Proof of Lemma 1. See [4, Exp. XIII, Theorem 2.1].
Following Harris [5, §2], for m < n, we let Σn d m c Σn d be the

closure of the locus of pairs (F, Σf=1i?z), where F is an irreducible nodal

curve having smooth contact of order at least m with / at p. Let P^1

be the projective space parametrizing all projective plane curves of degree

n + 1. We consider a small open analytic neighborhood J / c Σ Λ + 1 d of

a. Let {E, Σf=1Pz) be a point of s/ , and let

fE(X, Y,Z) = ΣajkX
jYkZn+ι~J~k = * ( - . ) + ΣaokY

kZn+ι~k

be an equation of E. We have chosen our coordinate system in P 2 such
that / = {X = 0} and p = (0 : 1 : 0). For m > 1, the condition
aOn+ι = = aOn+2-m = 0 means that £ has contact of order at least m
with / at p (if E D /, then by definition, they have contact of order oo
at p). We set

For sufficiently small J / , the curves of π(sf) have no singularities at p
and the supports of the cycles of πd(srf) do not intersect /. For each m,
0 < m < n + 2, the general points of Σ Λ + 1 > έ / > I I + 2 belong to Σ π + 1 d m [5,
§2], hence a e Σn+ι d m . It follows from the semistable reduction theorem
for families of curves and dimension counts that the locus of nonreduced
curves has codimension strictly greater than 1 in π(Σn+ι d m n $/) for
0 < m < / i + 2,[2,§l(a)],[5,§2],[9].

Lemma 2. For an integer m, 0<m<n + 2,letE be a general point

of an arbitrary codimension 1 subfamily of π(Σn+{ d m Π J / ) . Then E

has at most one non-nodal singularity which is a cusp, a tacnode, or an

ordinary triple point. Furthermore, Σ n + ι d m Π J / is smooth at all points

corresponding to E.

Proof of Lemma 2. For m = 0 or n + 2, the lemma is known; see [2,
§l(a)]. Since dimΣ n + 1 d m = dimΣπ d + n + 2-m [5, §2], by taking the
corresponding hyperplane sections, we reduce the proof of the first part of
the lemma to the case m = n + 2.

We now assume that our E is a member of π(Σn+{ d m\Σn+udm+ι) of
genus g(E) = n(n -\)j2-d\ the remaining cases are similar only easier.
We apply a general argument of Harris [5, §2]. For i = 0, 1, , m, we
blow up the plane i times at p in the direction of / let St -> P 2 be the
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corresponding morphism, and Ks the canonical divisor on St. Let E.

be the proper transform of E in St, and φt: E —• E{ the normalization

morphism. We have —E Ks = 3(n + 1) - m [5, p. 451]. Therefore,
m

for i = 0 or m, the deformations of the pair (E, φ.) are parametrized

by a germ 3f. of a smooth manifold of dimension

and there is a natural immersion 3m -̂> i^0 [8], [11, 1.3-1.6]. On the
m

~ι(
other hand, Σ π + 1 d is smooth at π~ι(E) and, in a neighborhood of £ \

π " 1 is a one-to-one map [2, §l(a)]. Hence there is a natural analytic

isomorphism between &Q at (is, φ0) and Σ n + 1 ^ at π~ι(E). The image

of 3Jm in Σn+Ud lies in Σ n + 1 > l / f l f l . Thus Σ n + l f ί / > l f I is smooth at π " 1 ^ ) .

This proves the lemma.

We now finish the proof of the theorem. Let 3S denote the locus in si

of the solutions of n + 2 equations corresponding to the n + 2 elements:

< W l > * * * > *00 l t i δ C l e a r t h a t Σn+l,d,n+2 Π ^ C ^red

To compute d i m ^ , we apply [5, §2]. For 1 < m < n + 1, let

(D, Σ^=1i?.) be a general point of the locus in sf of the solutions of m

equations corresponding to the m elements: α 0 / 1 + 1 , , aOn+2_m . Since

Rχ, , Rd φ I, / £ Z> and Z> has contact of order m with / at p, pro-

vided Z> is reduced; moreover, D is reduced, as before, by the semistable

reduction theorem. So

d i m ^ = dimΣw + 1 ^ - n - 2 = d imΣ Π + l f έ / > l l + 2 .

By Lemma 1, ^ is connected in codimension 1 at α . Hence, by

Lemma 2 (with m = n + 2), ^ r e d = ΣM+1 d n ^ n J/ and Σ n + 1 ^ + 2

is unibranch at α . Therefore Σn d is unibranch at ( C , Σ^Q^. This

proves the theorem.
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