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LINEAR HOLONOMY OF MARGULIS SPACE-TIMES

TODD A. DRUMM

To Aimee, with love

1. Introduction: Free discrete groups

If T c Aﬁ'(SR3) acts properly discontinuously on ®’ , then T is ei-
ther solvable or free up to finite index [3], [6]. If T is free and acts
properly discontinuously on M, then T is conjugate to a subgroup of
H =0(2, 1)xV, where V is the group of parallel translations in E = |2 !
[3]. Let G =SO(2, 1) and let G° denote its identity component.

Complete affinely flat manifolds correspond to I' C Aff(i)%3 ) which act
properly discontinuously and freely on E. Define Margulis space-times
as complete affinely flat 3-dimensional manifolds with free fundamental
group; their existence was demonstrated by Margulis [4], [5].

Let L: Aﬁ‘(‘ﬁ3) — GL(n, R) be the usual projection. If I" acts properly
discontinuously on E, then L(I") is conjugate to a free discrete group of
G ; it was shown in [2].

Theorem 1. For every Schottky group G C G° there exists a free T ¢ H
which acts properly discontinuously on E and L(I') =G.

G c G’ is a Schottky group if and only if all nonidentity elements are
hyperbolic. The set of all Schottky groups in G° is a proper subset of
the set of all free discrete subgroups of G°. In particular, there are free
discrete subgroups of G°, which contain parabolic elements.

We shall prove

Theorem 2. G = L(I') for some free finitely generated T" C Aff(m3)
which acts properly discontinuously on E if and only if G is conjugate to
a free finitely generated discrete subgroups of G.

For the affine manifoﬁl\c/l M, the group of deck transformations Il acts
on the universal cover M by affine automorphisms. The developing map
D:M—Eisa homeomorphism for complete M. For every 7 € Il there
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is a unique affine automorphism ¢(7) such that Dot = ¢(1) o D, and
¢: I — Aﬁ'(iR3) is called the affine holonomy representation.

Lo ¢:IT — GL(3, R) is called the linear holonomy representation.
Margulis conjectured that L o ¢(IT) for any complete affine flat manifold
with free fundamental group contains no parabolic elements. Theorem
2 shows that this conjecture is false. More generally, Theorem 2 is a
classification of linear holonomy representations of complete affinely flat
manifolds with free fundamental group.

2. Generalized Schottky groups

Classically, Schottky groups lie in PSL,(C). We can consider their
restriction to PSL,(%R). We also allow for orientation reversing matrices
and define a Schottky group H C PGL,(R) of n generators as a free group
which acts properly discontinuously on the hyperbolic plane H’? such that
there exists a fundamental domain for its action which is bounded by 2n
‘complete ultraparallel geodesics.

We define a generalized Schottky group of n generators in PGL,(R)
to be a free group which acts properly discontinuously on H? such that
there exists a fundamental domain for this action, which is bounded by
2n complete nonintersecting geodesics.

The following theorem is well known.

Theorem 3. A C PGL,(R) is a free finitely generated discrete subgroup
if and only if it is a generalized Schottky group.

Proof. By definition, a generalized Schottky group is a free finitely gen-
erated discrete group of PGL,(R).

Conversely, suppose that A acts properly discontinuously on H.
Topologically, H? /A is an n-punctured surface of genus g, where k =
2g—n—1,and k istherank of A. H’ /A may be an unoriented surface.

We perform surgery on this surface along k£ nonintersecting puncture-
to-puncture curves so that the resulting surface is simply connected. n—1
of these surgeries will be from one puncture to another. There will be
2g surgeries from a puncture to itself along curves which are not null
homotopic.

We may now construct a fundamental domain X for the action of A
on H?. X is bounded by the 2k nonintersecting curves corresponding to
the k surgeries.

These curves may be straightened to complete nonintersecting geodesics.
The region X in H? bounded by these 2k intersecting geodesics is also a
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fundamental domain for the action of A on H?. Thus, A is a generalized
Schottky group. q.e.d.

Let n: G — PGL,(R) be the usual isomorphism. Generalized
Schottky groups and Schottky groups in G are defined to be the preimages
of generalized Schottky groups and Schottky groups in PGL,(fR).

Elements of G act on E leaving the inner product

B(x,y) = XY XY — X3y
invariant. The associated cross product is

X¥3 = X3 7Y,
x®y=| %35, —x;Y;
X1 %%

Let C = {x € E|B(x, x) = 0} be the cone invariant under the action of

all g € G, and let

N = {x € C|x; > 0}
be its upper nappe which is invariant under G°. A conical neighborhood
A of C is a subset of C such that ANN is ¢ connected, and if x € A
then kx € A forall k € ®. For u, ve ANNNS?, the ordered pair (u, v)
is the bounding vector pair for A if B(uRv,x) >0 forall xe ANN.

Note that if (u, v) is the bounding vector pair for conical neighborhood
A, then (v, u) is the bounding vector pair for the conical neighborhood
C-A.

For every generalized Schottky group in G’ there exist a set of in-
dependent generators {g,, &,, - , &,} and corresponding 2n conical
neighborhoods j {Ali , A;t TR Af} whose interiors are disjoint and

g(A]) =cl(C—A)).
Here cl denotes closure in the usual topology.

Let p(x, y) denote the Euclidean distance between x,y € E. S? is the
Euclidean unit sphere centered at the origin, and B(x, ) is the Euclidean
J-ball centered at x.

Generalized Schottky groups in G can contain parabolic elements, i.e.,
unipotent elements, and do contain hyperbolic elements. Hyperbolic ele-
ments in G are defined to have 3 distinct real eigenvalues |4 gl <l< |1;1| ,

whose corresponding eigenvectors are x; , x; ,and x;,' . We choose the ex-
panding eigenvector x; and the contracting eigenvector x; so that both
are in NNS”. The invariant vector x; is chosen so that B(x;, x3) = 1
and {sx; ) Xg s x;} is a right-handed basis for E.
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For any y € E such that B(y, y) > 0, let xy and x be the elements

of NNS? such that By, xf ) =0 and {y, x; , xy} isa nght-handed basis
of E.

g is e-hyperbolic if it is hyperbolic and p(xg , x;) >e.

Lemma 1. If G C G is a generalized Schottky group with generators
8,8 >8, thenfor geTl

+ GAf:gn(j') and X GA SIBn(Jm),

where g = II;"_ ( "‘) such that i, € {1,2,---,n}, j, € Z—{0}, and
lk # lk+1

Proof. Consider the action of g’ = n(g) on the boundary of the hy-
perbolic plane OH’ . Write the projectivization of all x € C and A c C
as x' and A’, respectively. Note that if (g~') = f’ then x;) = (xp)',
and if d’ = (g]')'(g)'(g;")’ then (x;)" = (g])'(x;)’. Thus, we only need
to consider x; where g is such that i, # i, . By an appropriate change
of generators we have j, >0 and i, = 1.

We can show by induction that g'((A])") c (A])'. Hence Brouwer’s
fixed point theorem shows that ¢’ has a fixed point in (A])’, and x; €
A7. qed

In particular,

(1) g "(g(A])) cAj:sn(m and g, g " (g(A])) c Aj;sn(z;)_

3. Separating wedges

For a conical neighborhood A ¢ C with bounding vector pair (u, v),

let
O(A) = 2arcsin(p(u, v)/2),
and #(A) = (u—v).

The horizontal plane through x is defined to be H, = {yly; = x;}.
Denoting the origin by o, we say that y is a horizontal vector if ye H ,
thatis y; =0. y, w € H, for some x if and only if y—w is a horizontal
vector.

Note that #(A) is a horizontal vector. ©(A) can be interpreted as the
angle between the projection of its bounding vectors u and v onto H, .

Define the wedge
BuRv,

W(A)={weE’ BBy o ))z

>0 if B(w,w)<0, or}
0 if B(w,w)>0, ’

See Figure 1.
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FIGURE 1. THE BOUNDARY OF A WEDGE.

The set of y € W(A) such that B(y, y) < 0 is a closed set bounded
by A itself and (u,v). For y € E such that B(y,y) > 0, denote the
half-planes tangent to C and containing y as

P(y) = {w € E|B(w, w) > 0 and x:; = x;'}.
P(y) C W(A) if and only if x} € A.
Define the translated wedge.

T(A) = [W(A) + t(A)].

(See [1] for more discussion.) By examining Figures 2-4 (see next page),
we note that T(A) C W(A). In fact, #(A) is the unique horizontal vector
v such that forall £ >0, (W(A)+ kv) C W(A).

Again citing Figures 2-4, we claim that if the interiors of conical neigh-
borhoods A, A,, --- , A, are mutually disjoint, then T(A,)NT(A j) =J,
for i#j.

Lemma 2. If G is a generalized Schottky group in G of rank n, then
forall 1 < i < n there exist h; and X; such that X; is a fundamental
domain for the action of (h;) on E, L(h;)=g;, G=(g,, &, "*8&,), and
(E—-X,) is a submanifold of X; for i+ j.

Proof. Because G is a generalized Schottky group, there are genera-
tors g, and associated conical neighborhoods Af c C whose bounding
vector pairs we denote (uf , v;t) . Af are chosen so that their interiors
are disjoint and



684 T. A. DRUMM

FIGURE 2. CROSS SECTION OF NONINTERSECTING TRANS-
LATED WEDGES (X, =c¢ > 0).

FIGURE 3. CROSS SECTION OF NONINTERSECTING TRANS-
LATED WEDGES (x; = 0).
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FIGURE 4. CROSS SECTION OF NONINTERSECTING TRANS-
LATED WEDGES (x; =¢ <0).

g(A7) =cl(C - A)).
We claim that
8(W(A])) = cl(E - W(A))),
or more directly,

(2) g(W(A; ) =W(g(A,)).
Remember that the set of y € W(A;") such that B(y, y) <0 is a closed
set bounded by A, itself and (u; ,v; ).
+ o+

g,'((“,'_ P V,_>) = (gj(u[_) s gi(vi_)) = (u,‘ s Vi ),
since g; takes elements of bounding vector pairs to scalar multiples of
elements of bounding vector pairs. Certainly for y such that B(y, y) <
0, ye W(A,) if and only if g(y) € W(g;(A;))-
For y € W(A,") such that B(y, y) > 0, it suffices to show that
(3) &;(P(y)) = P(g,(y))-
In fact, it is enough to show that (3) is true for at least one y.
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If g, is hyperbolic, then P(x;) can be written as
{w e Elw=m(x}) +n(x; ) for me Rand n € R'}.

The eigenvalue associated with x; may be negative, but the eigenvalue
associated with x; is always 1, because g € G. P(x; ) is invariant under

the action of g, .
For parabolic g; there existsa j € G’ such that j g; is hyperbolic. For
y such that B(y, y) > 0 we know that

jgi(P(Y)) = P(jgi(y)) s
and
i g,y = PG (ig,),

so that (3) is true for parabolic elements in G.
Now choose

hi(x) = &(x) + [-&(H(A]) + {A])]:
Then A(1(A7)) = (A7), and
X, = cl[E - T(A;) — T,(AD)]

is a fundamental domain for the action of (h;) on E since all of the
translated wedges are distinct by the previous discussion. Further, (E—X))
is a 3-dimensional submanifold of Xj . qed.

Let X = (N,¢;X;) - Before showing that X is the fundamental domain
for the action of I on E, we will prove the following technical lemma.
For g € G° and p € E, We define Sg(p) to be the plane containing p
and parallel to

S, = (xz , x;).

Lemma 3. For e-hyperbolic g € G,
@) B(£(6). 5 ) nS,(e)) C £(B6, )18, 6)),

Proof. 1t is sufficient to consider p = 0, and Sg(p) = Sg. Let Q
denote the rectangle in B(p, §) NS R whose four vertices are the four of

[(x3) U (x;)]NB(0, &) . Note that
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[

~—

B(o, 6)
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FiIGURE 5. S =

~

B(o, €6 /2) nSg cQn Sg.
See Figure 5.
g is a linear map which fixes the vertices of Q on (x‘g’,) and sends the

vertices of Q on (x;) to points on (x;) further from the origin. Thus,
Q c g(Q) and (4) follows. q.e.d.

The estimate in Lemma 3 is a lower bound of the compression by g
parallel to S ¢ - Note that (4) is independent of A =

Theorem 4. If G C G is a free discrete group, then there exists I" C
G x V which acts properly discontinuously on E such that L(I') = G.

Proof. By Theorem 3, G is a generalized Schottky group.

We can choose g;, &;,and X; asin Lemma 2. For I ={1,2,--- , n},
it suffices to show that for the 3-dimensional manifold X = (), X;) with
boundary is a fundamental domain for the action of I" on E.

From the construction of X it is apparent that no two distinct points in
the interior of X are I'-equivalent. It remains to show that every element
of E is I'-equivalent to some point in X.

Assume that there is a p not I'-equivalent to any y € X. Certainly p
is contained in one of the translated wedges T(Aii) since their union is
the complement of X. p is also I'-equivalent to elements in all of the
translated wedges T(Aii) . Thus, we may assume that p € T(A;“) and that
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O(A:') < m/2, since the sum of the G(A,.i) ’s is not more than 27 .
Let X, =X and

X, = [Xn U (O(hi(xn) Uhi_l(x,.)))] '

i=1
This is a sequence of domains for which p(p, X, ,,) < p(p, X,) . We can
define y, € T" such that y,(X) C X, and

plp, X,)=p(p, 7,(X)).

7, has word length n as a reduced word in the free group I'. For n > 1,
7,(X) C T(AI’) so the leading term of y, must be #, .

Let (u;.L , v,.+) be the bounding vector pair for Af , and let

W= U;-'- - V:.

If ve H, is parallel to a ray lying in T(A1+) , then the angle between w
and v is less than or equal to 7/4.

Let L, C Hp be the line closest to p, which is Euclidean perpendicular

to w and bounds a half-plane in Hp containing the component of the
complement of X N H, which contains p. Note that

dn = p(p’ Ln) 2 p(p’ xn)
and d, , <d,. To arrive at a contradiction it suffices to show that (d, —
d,.,) is bounded away from 0. See Figure 6.

L

0 Ln | 'n+1

FIGURE 6. Hp .
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There exists a § > 0 such that B(y, d) c X, for all y € X. Thus,
(d, —d,) > d. Choose

¢ = min{v2sin(16(A)))}.
For n > 1, first suppose that y, is e-hyperbolic. For every x € E,
S L(y")(yn(x)) N Hp is parallel to a ray lying entirely within T(A;') NH, by
Lemma 1. Every ball B(y, ) cannot be compressed by more than a factor

of ¢/2 in a direction parallel to S LG, by the action of y, . Since the angle
between S, ., \(7,(x)) NH, and the normal to L, in H is at most 7/4,

d,,, <(d,—ed/2V2).

Now suppose y, is not s-hyperbohc. There exists an f, € I' with word
length < 2 such that fy, is e-hyperbolic and has word length n + 1 if
f, has word length 1 or n+ 2 if f, has word length 2. It is enough to
consider f, having length 2.

f, can be written as &, hb , where h, and hb are generators of I
or their inverses. S L.y, )( f ' Pn (x)) N H is parallel to a ray lying entirely

L(y,)

within T(A;') NH,. J-balls are not compressed by more than a factor of
€/2 in the direction parallel to SL( ) by the action of fnyn .
We can define the compression factor for g € G,

C, = min{|lg(v)||/lIv]},
veES
which is positive for all g € G. Let C. be the minimum of the compres-
sion factors of the g;’s. Then Cf” < Clz.
Thus, J-balls are compressed by at most a factor of Clz-s /2 in the
direction parallel to [L( fn'l(SL( 1 7,.))] by the action of y,. From (1),

Sg(f;yn)(y"(x))
this case,

NH, is parallel to a ray lying entirely within G(AT) n Hp . In

d,,, <(d, - Cred/2V2).
There must be an m < 2v2d,/(C2ed) such that p ¢ X, but peX,,,

4. The end
Theorem 4 proves Theorem 2 is one direction, and in this section we
will prove the other direction of Theorem 2.
If G =L for some free I' C Aﬁ'(iR3) , then G is conjugate to a
subgroup of O(2, 1) by [3]. Further, G is a discrete subgroup of O(2, 1)
by [6].
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Consider G ¢ PGL,(%), and assume that G N (0(2, 1) - G) # <.
There must be elements in G N (O(2, 1) — G) which have three distinct
real eigenvalues and do not have 1 as an eigenvalue, but rather —1 is an
eigenvalue. By an observation of Hirsch (see [3]), affine elements whose
linear parts do not have 1 as an eigenvalue have fixed points. This con-
tradicts the assumption that G acts properly on E. Thus, G must be
conjugate to a finitely generated free discrete subgroup in G.

I would like to thank G. A. Margulis for his time, interest, and discerning
eye while going through the proof of Theorem 4. I would also like to thank
T. Steger and C. Bishop for informing me of the existence and proof of
Theorem 3.
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