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VON NEUMANN INDEX THEOREMS
FOR MANIFOLDS WITH BOUNDARY

MOHAN RAMACHANDRAN

1. Introduction

The index theorem of Atiyah and Singer relates the index of elliptic
operators on closed manifolds to characteristic numbers on the manifold.
In the case of compact manifolds with boundary, Atiyah, Patodi, and
Singer [3] showed that the index of a first-order elliptic operator of Dirac
type is not the usual characteristic number; instead the difference is a term
depending only on the boundary called the eta invariant.

In the case of noncompact manifolds without boundary the index of
elliptic operators is not well defined since these operators in general are
not Fredholm. In the case of elliptic differential operators, on infinite Ga-
lois coverings of closed manifolds, equivariant with respect to the Galois
group, Atiyah (cf. [1]) introduced a real-valued index given by replacing
the notion of dimension by a generalized dimension introduced by von
Neumann. He proceeded to prove an index theorem for elliptic opera-
tors in the above context. In the case of noncompact manifolds arising as
leaves of a foliation of a closed manifold, with holonomy invariant trans-
verse measure, Connes (cf. [10]) proved a von Neumann index theorem
for differential operators elliptic along the leaves of the foliation.

This then brings us to the question that is answered in this paper. What
are the corresponding results in the case of noncompact manifolds with
boundary, i.e., is there an analog of the Atiyah-Patodi-Singer index theo-
rem for infinite Galois coverings of compact manifolds with boundary? Is
there a similar index theorem in the case of foliations of compact man-
ifolds with boundary, with the leaves intersecting the boundary transver-
sally, and equipped with a holonomy invariant transverse measure? As
in the usual Atiyah-Patodi-Singer index theorem one would like to know
the analog of the usual eta invariant on the boundary. In the case of
infinite Galois coverings these generalized eta invariants were introduced
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by Cheeger and Gromov [8]. In the case of foliations the foliation eta
invariant was introduced by the author [26] and Peric [25] independently.

We prove new von Neumann index theorems for first-order elliptic op-
erators of Dirac type on manifolds with boundary, thus answering the
question raised in the previous paragraph, under a mild assumption that
the Dirac operators on the boundary satisfy a local cancellation condition.
This condition is satisfied by all Dirac operators that arise in geometric
contexts, as was proved by Bismut and Freed (cf. [5]).

We now state our main theorem for geometric Dirac operators. See §6
for a more detailed statement.

Theorem 1.1. Let D be a Dirac operator on a compact manifold M

with boundary acting on sections of a graded Clifford bundle S, with grad-

ing operator ε. We assume that the data (D, S, ε) has a product structure

near the boundary {in the sense of Definition 2.1.1). Let M be a Galois cov-

eringwith Galois group Γ . Let (D,S,e) be the lift of the data (D,S,e)

to M. Let B be the Atiyah-Patodi-Singer boundary condition {see Defini-

tion 2.1.3) associated to D. Then the Γ index {in the sense of §5) of the

Breuer Fredholm operator D with boundary condition B is given by

indΓ(D) = f ch(σD)Td(M) -
J M

where ηΓ{0) is the Y-eta invariant on the boundary of M.
We now state our index theorem for foliations.
Theorem 1.2. Let {M, &~) be a compact foliated manifold with bound-

ary, with the foliation &~ transverse to the boundary. Let D^ bealeafwise
Dirac operator acting leafwise on S a Clifford bundle over T^, the tan-
gent bundle to the foliation. We assume S is graded with grading operator
ε. Let v be a holonomy invariant transverse measure for the foliation £F.
Further assume that the data {D^, S, ε) has a product structure near the
boundary {see Definition 2.3.2). Let B^ be the family of Atiyah-Patodi-
Singer boundary conditions corresponding to the family D^ . Then the
v-index of this family of Breuer Fredholm operators {see §5) is finite and

ind^ZV) = (ch{σD^)Td{M), v) - rh^)±!ί ,

where ηu{0) is the foliation eta invariant o/§2.
The proofs of Theorems 1 and 2 follow in outline that of [3] making use

of a reformulation of [3] by Roe [31]. The extension of this approach to
our case requires several technical modifications. The proof in [3] cannot
be directly used to compute the index because the eta invariants in our
context do not admit meromorphic continuation to the right half plane.
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The paper is organized as follows. Section 1 describes the basic prop-
erties of nonlocal Sobolev spaces on manifolds with boundary. The re-
striction properties of these Sobolev spaces is proved by using the spectral
decomposition theorem for selfadjoint elliptic operators due to Browder,
Mautner, and Garding. This theorem also plays a key role in construct-
ing boundary parametrices for the Atiyah-Patodi-Singer boundary value
problem.

Section 2 deals with type II eta invariants. The proof of existence
and the Cheeger-Gromov estimates for these eta invariants is proved by
methods in Ramachandran [26]. We remark that these Cheeger-Gromov
estimates play an important role in the computation of the index. Sec-
tions 4 and 5 deal with the construction of parametrices which are used
to prove the Breuer Fredholmness of the Atiyah-Patodi-Singer boundary
value problem. The spectral theorem of Browder, Mautner, and Garding
plays a key role in the construction of these parametrices. In §6 we for-
mulate the Breuer index of these boundary value problems. The novelty
in the foliation case is that we work with the equivalence relation given
by the foliation rather than the foliation groupoid. In fact the boundary
value problems are most naturally formulated on the leaves of the folia-
tion rather than on their holonomy covers. We complete the calculation
of the index in §7. It should be remarked here that Bismut and Cheeger
[4] have proved a much stronger theorem when the foliation is a fibration
with compact fibres.

2. Preliminaries

We introduce the terminology and prove the basic facts about nonlo-
cal Sobolev spaces on manifolds with boundary. We state the spectral
decomposition theorem of Browder and Garding for selfadjoint elliptic
operators.

2.1. The Atiyah-Patodi-Singer boundary condition. Our data will be
the following. M will denote a C°° complete Riemannian manifold with
C°° boundary N. By the data (D, S, ε) we mean a Dirac operator D
acting on smooth sections of a graded Clifford bundle S, with grading
operator ε. For definitions see Roe [32], [30], Lawson and Michelson
[20].

Definition 2.1.1. By a product structure on the given data (D, S, ε)
in a neighborhood of the collar [0, l ]x iV,we mean the following:

1. The Riemannian metric on M is a product in a neighborhood of

[0,1] xN.
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2. The Dirac operator has the special form D = σ(d/dy + Q) where
a is the Clifford multiplication by the unit normal to the boundary N, y
is the coordinates normal to the boundary, and Q is a Dirac operator on
N and independent of y.

We assume henceforth that the data (D, S, ε) has a product structure
as in Definition 2.1.1, and also that on the geometric double of M which
we denote by dbM, the doubled data (D, S, έ) satisfy the bounded ge-
ometry hypotheses in §2 of Roe [32]. Such examples naturally arise in the
study of Dirac operators on Galois coverings of compact manifolds with
boundary and leafwise Dirac operators on foliations of compact manifolds
with boundary with the foliation transverse to the boundary. All manifolds
with boundary in this paper will be smooth.

C^°(M;S) will denote compactly supported smooth sections of S
smooth up to the boundary. Then we have the following Green's formula:

(2.1.1) ( j , Ds2) - (Ds{ 9s2)= [ (σbs{, s 2 ) ,
JNN

2where ( , ) denotes the L2 inner product on sections of S, sx and
s2 belong to C™(M S), and bs denotes the restriction of the section
s <E CC°°(M S) to the boundary N.

Following Roe [31] we make the following definition.
Definition 2.1.2. We say B: CC°°(M; S) -> C°°(M S) defines a self-

adjoint boundary condition if
1. B extends to a bounded operator on L2(N\ S),
2. B = B* and σB + Bσ = a .
If s{, S2 e CC°°(M; S) satisfying Bbs{ = 0 and Bbs2 = 0, then

(2.1.2) (sl9Ds2) = {Dsl9s2).

Remark. If we analyze the interaction of the product structure of the
data (D, S, e) with the grading operator ε, we find that Q is essentially
selfadjoint on C™(N\S) and commutes with ε. Since ε is an involution,
diagonalizing it splits S = S+ Θ S~ and Q preserves this decomposition.
We label Q restricted to sections of S± by Q± respectively.

Definition 2.1.3. The Atiyah-Patodi-Singer (A.P.S.) boundary condi-
tion is the operator B which restricts to the projection onto the nonneg-
ative part of the spectrum of Q+ on the + part of the grading, and onto
the positive part of the spectrum of Q_ on the - part of the grading.
One can easily check that B satisfies the conditions of Definition 2.1.1.

2.2. Sobolev spaces. We now define nonlocal Sobolev spaces for man-
ifolds with boundary. From now on the assumptions of §2.1 carry over
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to the rest of this paper. The main references for this section will be Roe
[32], [31] and Lions and Magenes [21].

Definition 2.2.1. Let A: be a nonnegative integer. The Sobolev space

Wk(M\ S) is the completion of CC°°(M; S) in the norm

where \\s\\ = (s, s). For k a negative integer Wk(M\ S) is the dual of

W~k(M; S) considered as a space of distributional sections.

Also W'°°(M\ S) = U Wk{M\ S) and W°°{M\ S) = f| Wk(M\ S)
W°°(M S) has the obvious Frechet topology, and W~°°(M S) is equip-

ped with weak topology that it inherits as the dual of W°°(M\ S).

For k nonnegative we observe that any element of Wk(M\ S) can be

extended to db(M) with control over the norm.

Proposition 2.2.1. There is a bounded linear operator Ek: Wk(M; S)

-> Wk(dB(M) S) for every integer k>0 with the property that Ekf is

restricted to M in f.

Proof. If 5 G Wk(M\ S) vanishes in a neighborhood of the collar

[0, \) x N, we define Eks = 0. By using a bump function it is enough

to define Ek for sections supported in the collar [ 0 , l ] x J V . Let s e

Wk(M; S) be supported in [0, 1] x N. Then define

where α are chosen so that the first k derivatives in the y direction
match at y = 0. This implies that the a- 's satisfy the system of equations

J^ί-l/A/ =1 for 0 < j < k - 1.
ι=ι

The determinant of this linear equation is not zero, so the appropriate a's
can be found.

Definition 2.2.2. Let r be a nonnegative integer. The uniform Cr

space UCr(M S) is the Banach space of Cr sections S, Cr up to the
boundary of M such that the norm

is finite, where the supremum is taken over all m e M and collections
vι > " ' ' vq (0 ^ 9 ^ r) °f u n i t tangent vectors at m . Also UC°°{M 5)
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Proposition 2.2.2. The Frechet space W°°(M\ S) is continuously in-
cluded in UC°°(M;S).

Proof. By Proposition 2.2.1, W°°(M\S) is continuously included in
W°°(db(M) S). Proposition 2.8 of Roe [32] now implies the result.

Proposition 2.2.3. A continuous linear opeator from W~°°(M\ S) to
W°°(M S) is represented by a smoothing kernel smooth up to the corners
on M x M. Also the kernel and all its covariant derivatives are uniformly
bounded.

Proof The strategy for the proof is the same as in Proposition 2.9 of
Roe [32]. We use Proposition 2.2.2 instead of Proposition 2.8 used in Roe
[32]. q.e.d.

In the remark following Definition 2.1.2 we mentioned that Q is es-
sentially selfadjoint on C™(N; S). This follows immediately by a minor
modification of the proof in Chernoff [9]. The main difference between
Chernoff [9] and our context is that N need not be connected, but the
fact that N is a disjoint union of countable many complete Riemannian
manifolds implies that the proof in [9] can be used here. We leave the
details to the reader.

Since Q is essentially selfadjoint, it has a unique closure which we
denote by Q. By the spectral theorem we can define Sobolev spaces on
the boundary N as follows.

Definition 2.2.3. Let k be a nonnegative half integer. Then define

Wk(N; S) = domain (β*) .

If A: is a nonnegative integer W (N; S), it coincides with the closure of
CC°°(ΛΓ; S) under the norm

We now state the generalized eigenfunction expansion theorem for Q
due to Browder and Garding.

Theorem 2.2.1 (Browder and Garding). There exists a sequence of
smooth sectional maps e. R x J V ^ 5 , namely e- is measurable and

for each λ e R, e.{λ, ) is a smooth section of S over N, and measures

μ on R such that

(2.2.1) Qej(λ,n) = λej(λ,n).

Further, the map

(2.2.2) (Vs)j(λ) = f\s(n)\ej(λ9 n)) dvolN

J N
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defined on C™(N\S) extends to an isometry of Hilbert spaces

(2.2.3) V: L2(N; S) - 0 L 2 ( μ . ) ,
j

where the sum on the right-hand side of "(2.2.3) is the Hilbert direct sum, and
also the bar inside the integral sign of'(2.2.2) is the fiber wise inner product
on S. Further V intertwines the operator f(Q) with multiplication by

(2.2.4) domain/(β) = {s \ ΣjjΛλ)\2\{Vs)j(λ)\2 dμβ) < oo}

and

(2.2.5) f \s(n)\2 dvolN = W |(K*)/λ)|2 dμ(λ).
JN J JR

Proof See Dieudonne [11, 300-307] and Dunford and Schwartz [13].
We now sketch the proof of a restriction theorem for the Sobolev spaces

defined before in this section.

Theorem 2.2.2. b: C™(M S) -> C™(N S) extends to a bounded op-

erator b: Wk{M\ S) -• Wk~ι/2{N; S) for any natural number k.

Proof Again it is enough to consider elements of Wk(M;S)

supported in the collar [ 0 , l ) x J V . We extend them to elements of

Wk{db(M)\S) supported in ( - 1 , 1) x N. Note that our data {D, S, έ)

has product structure on ( - 1 , 1) x N. Hence we can consider them as

elements of Wk((—oo, oo)x S). Therefore it is enough to prove that

(2.2.6) Wk{{-oo, oo) x N\ S) ̂  Wk~l/2{0 x N S ) ,

where r is the restriction map is bounded. Because our data has prod-
uct structure on (-oo, oo) x N, we have D2 = -d2jdy2 + Q2. Hence
H^((-oo, oo) x N\ S) is the closure of C™{(-oo, oo) x N; S) with re-
spect to the norm

Using the map V given in (2.2.3) in the N direction and the Fourier
transform in the y direction we see that

Wk({-oo,oo)xN;S)

( 2 < 2 J ) ' " - 2 l V " '"' ••X2 + ξ2)k\(Vs)j{λ,ξ)\2dμdζ
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where the "hat" denotes the Fourier transform in the y direction. We call
the operator V, the spectral transform. The rest of the proof is the same
as the classical proof. See the appendix in Hormander [18].

2.3. Foliations of manifolds with boundary.

Definition 2.3.1. A C°° manifold with boundary and the foliation
transverse to the boundary is a C°° manifold with boundary and a col-
lection of open sets {Ua} covering M and homeomorphisms φa: Ua —•
Va x Wa with Va open in Hp = {(x1? ••• , xp) e Rp\x{ > 0} a n d V
open in R* which satisfies the following condition:

1. If we write φa = (v, w), the coordinate changes are given by C°°
map φ and local diffeomorphism ψ, namely,

υ'= φ(υ, w) and w' = ψ(w).

Further, the collection {Ua} is assumed maximal among all such col-
lections. Since the coordinate changes smoothly transform level surfaces
w = constant to wf = constant, the level sets coalesce to form maximal
connected sets called leaves and the manifold M is foliated by these leaves
which intersect the boundary transversely to give a smooth foliation of the
boundary with same codimension as the foliation of the interior of M.
We denote the foliation by &, and let (M, &) be the manifold with the
foliation. If we consider the tangent bundle to the leaves of &, then we
get a smooth vector bundle over M, which is a subbundle of the tangent
bundle of M. We denote this subbundle by TSF.

We say the foliation & is transversely orientable if the quotient bundle
of TMjT^ is orientable.

From now on we assume that our foliation is transversely oriented.
Fact 2.3.1. Let (M, &) be as above. Then there is a collar W on N

such that &\w is diffeomorphic to [0, 1) x {£? \N).
Proof. See Hector and Hirsch [16, p. 43].
Let Dp be a leafwise Dirac operator on S where S is a Clifford bundle

over T& (cf. Roe [29]).
Definition 2.3.2. We say the data (D^, S, ε) where S is a graded

Clifford bundle over TSF with grading ε has a product structure in a
neighborhood of the foliation collar [0, 1) x &\N if

1. the Riemannian metric on ¥ is a product in a neighborhood of
[0, l ]x iV,and

2. the leafwise Dirac operators D^ has the form D^ = σ(d/dy +
Qp) where Q^ is a leafwise Dirac operator on &ΊN, and σ is the
Clifford multiplication of the unit normal along the leaves to the boundary
foliation.
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We remark that, implicitly included in our data (Dp, S, e) is the fact
that M has a Riemannian metric.

3. Type II eta invariants

This section proves the existence of eta invariants for Dirac operators
on coverings of compact manifolds, and for leafwise Dirac operators on
foliations of compact manifolds. Cheeger and Gromov [7] proved the ex-
istence of eta invariants for the signature opeator on coverings of compact
manifolds. Peric in his thesis [25] proved the existence of the foliation
eta invariant. In our study of Cheeger-Gromov estimates and generaliza-
tions of A.P.S. theorem to foliation we discovered a proof of existence of
these eta invariants which also gave the Cheeger-Gromov estimates [26].
These Cheeger-Gromov estimates were applied in Douglas, Hurder, and
Kaminker [15] and by Hurder [19]. This section presents the proof in [26].
§3.1 deals with the covering eta invariant, and §3.2 with the foliation eta
invariant.

3.1. Eta invariant for coverings. Let TV be a compact Riemannian

m a n i f o l d w i t h o u t b o u n d a r y . Let D b e a D i r a c o p e r a t o r o n 5 , a Clifford
-tD2

bundle. Now D is essentially selfadjoint, and De defined by the
spectral theorem is a smoothing opeator. See Roe [30] for a proof of these
statements. We assume that the pointwise trace of De~tD is O(t1^2).
This local cancellation property was first observed by Bismut and Freed
[5] for Dirac operators arising in geometric situations. Following them we
call this local cancellation property the Bismut-Freed cancellation property.

Let N be a Γ principal bundle over TV, where Γ is a discrete countable
group. Let D and S be the lifts of D and S respectively to N. By Atiyah
[1], D acting on C™(N;S) is essentially selfadjoint. Let

EndΓ(L (N\ S)) = {bounded operator on L (N; S) commuting with Γ}.

If T e EndΓ(L (N; S)) is an integral operator with smooth kernel kτ ,
then we define the Γ trace of T as follows.

Definition 3.1.1. trΓ(Γ) = fF Ύτχ kτ(x, x) dx where F is a funda-

mental domain for the Γ action on N, and Ύτχ is the matrix trace on

End(Sχ).
Definition 3.1.2. Let RB(M) = Borel functions on R which are rapidly

decreasing. By rapidly decreasing we mean
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sup(l + |JC|) \f(x)\ < Ck for every positive integer k.
JC€R

Remark. By the spectral theorem and Sobolev lemma, f(D) e
EndΓ(L2(N;S)) and f(D) is an integral operator with smooth kernel
for / e RB(R). See Chapter 13 of Roe [30] for more details. Hence
trΓ/(Z>) is finite for / e RB(R).

-tD2

Let the kernel of the integral operator e be Kt(x, y), and the kernel

e~tAg be kt(x,y) where Δ is the Laplace-Beltrami operator on N. Then

we have
Lemma 3.1.1.

(3.1.2) \ΎvχDKt(x,x)\<Atl/\

where A is a constant depending on the local geometry of N, S, the
dimension of N, and the rank of S.

Proof Let P(x, y, t) be a smooth parametrix for the kernel Kt(x9 y),
supported in an ε neighborhood of the diagonal of N x N where ε is one-
half the injectivity radius of N. We also assume that P(x 9y 9t) satisfies
the following additional properties:

(3.1.3) P(x,y,t)eHom(Sy,Sx),

(3.1.4) (d/dt + D2)P(x, y, t) is O(tm),

(3.1.5) D{d/dt + D2)P{x, y, t) is O(tm~l).

m is chosen so that

(3.1.6) / (t - s)~n sm~l ds is O(tι ) where n = dim TV,

(3.1.7) \\P(x,y,t)\\Xfy<AΓn/2, 0 < / < 1 .

In this section 4̂ will denote a constant depending on the data described
in the statement of the lemma. If the constant A appears in two places
repeated by some prose, then they are different. For a construction of
such a parametrix P see Patodi [24]. By Theorem 3.5 of Rosenberg [33,
p. 294] we have

(3.1.8) \\Kt(x,y)\\χy<ectkt(x,y),

where c depends only on the local geometry. The proof of (3.1.8) in
Rosenberg uses probabilistic methods. For a proof of (3.1.8) based on the
work of Dodziuk [14] see Ramachandran [26].
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By DuhameFs principle (cf. Roe [30]) we obtain
(3.1.9)

Ύτχ(DKt(x, x)) = Ύrχ(DP(x,x, t))

- + J DP{y ,x,s)dvi

Bismut and Freed [5] showed that

(3.1.10) \Ύτχ(DP(x, x, t))\ < At1'2,

so that

JN \θd j

<A f \\Kt(x9y)\\ sm-ldvo\χ(y)
JB(x,e)

< AYOI(B{X, ε))(t-s)~n/2sm~l,

where B(x, e) is the metric ball of radius ε centered at x, and we have
used standard estimates heat kernel for the Laplace Beltrami operator 0 <
kt{x, y) < AΓn/2 see Chavel [6] and 3.1.5. The bounded geometry of N
implies that
(3.1.11)

M2

, χ,s)d <At1

The estimate of (3.1.2) is completed by using estimates (3.1.10) and
(3.1.11). q.e.d.

By the remark following Definition 3.1.2 for any / e 5(R), 5(R) de-
notes the Schwartz space where we have trΓ f(D) > 0. Consider the linear
functional

I(f) = tτΓf(D) foτfeS(R).

By standard methods in harmonic analysis we have

(3.1.13) /(/)= ί fdmΓ,
JR

where mΓ is a tempered measure on R, namely, there exists a positive
integer / such that

d i s finite./

We now proceed to the main theorem of this section. Let

(3.1.14)
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Theorem 3.1.1.

(3.1.15) \ηΓ(0)\<Avol(N),

where A is a constant satisfying the properties described in Lemma 3.1.1.
Proof. As in Cheeger and Gromov [7] we split the integral in (3.1.14)

into the following integrals and estimate them separately.

ί tτΓ(De )dt

i3 iΓ ' W ^»*
Now

(3.1.16)

~tDf CXll\ττφe-ιlJ)dt
Jo

rlβ\Tτχ(bKt(x,x))\dyol~dt

<A t~l/2tl/2dt /
Jo JF ~

where the final inequality follows from (3.1.2).
We estimate

i;
λe-'λ2dmΓ(λ)dt

(3-1.17)

1 z oo /*

ϊ72)/ ι XβL
^ r<Tm Γfl'2 ί \Me~'λ2dmΓ(λ)dt

V / / J1 J R
-\/2 -{t-\)λ2 , . , Mv

* e d t d m r W

< f
JR

~DBy (3.1.8), tv(e~D ) < AYOI(N) . Combining (3.1.16) and (3.1.17) we have
(3.1.15).

3.2. Eta invariants for foliations. Let TV be a C°° compact Rieman-

nian manifold, and & a smooth foliation on Λ .̂ We assume that N does
not have a boundary. For each leaf L of & we denote the volume ele-
ment of the induced Riemannian metric by d volL . Let v be a holonomy
invariant transverse measure, and D^ a leafwise Dirac operator acting
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on a Clifford bundle δ (cf. Roe [29], Moore and Schochet [23]). Fur-
ther we assume that D^ restricted to each leaf satisfies the Bismut Freed
cancellation property. We now state the main theorem of this section.

Theorem 3.2.1. The integral

(3.2.1)

exists and satisfies the inequality

(3.2.2) \η^(O)\<Aη(N),

where tτu is the foliation trace given by the holonomy invariant transverse
measure v, A is a constant depending on the rank of the vector bundle
S and the local geometry of the leaves, and μ is the total measure on N
given by combining the leafwise volume elements with transverse measure
v.

Proof The main references for the theorem are Roe [32], [29], Moore
and Schochet [23], and Connes [10]. The Dirac operator DL on each
leaf L is essentially self adjoint on CC°°(L; SL). By the spectral theorem
f(DL) is a bounded operator for / a bounded Borel function on R. If
/ e iS(R), then the f(DL) is an integral operator with smooth kernel (cf.
Roe [32]).

On the leaf L we can define a smooth measure Trpίf(DL)dvolL if
/ G *S(R), where Ύτpt f(DL) is the pointwise trace of the integral kernel
of f{DL). The family of measures {Trpt f(DL) d volL}, by the param-
eterized version of the spectral theorem, is a Borel family of tangential
measures on the equivalence relation corresponding to the foliation &.
By the uniform geometry of the leaves, Tr , f{DL) is uniformly bounded
over all leaves. By Proposition 4.22 in Moore and Schochet [23], the in-
tegral tr^ f(Dgr) = fNλdv is well defined and finite, where λ = {λL}Le^
denotes the tangential measures {Tΐpίf(DL)dγolL). If / > 0, then
tvptf(DL)dvolL is a positive measure. This implies that Xrvf(D^) > 0
if / > 0.

Consider the positive linear functional /: S(R) —• C defined as

(3.2.3) I(f) = truf(D^).

There exists a tempered measure m^ on /R such that

(3.2.4) /(/)= ί fdm^.
JR

Let

(3.2.5) J£(0) = T^ΓF^ Γt~l/2K(D^e~'D^)dt.
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From 3.2.4 replacing mΓ by
To deal with the integral

(3.2.6)

in (3.1.17) we have <Aμ(V)

we observe that (3.1.2) implies that

(3.2.7) \τrpt(DLe-tDkx,x))\ < ALt
X'\ 0 < t < 1.

Since we have global bounds on the local geometry of the leaves in terms
of the geometry of V and S, we have a uniform bound for the AL 's in
(3.2.7). Thus

ί
(3.2.8)

for all leaves L.
From (3.2.8) we get

(3.2.9) | t r " ( Z V e

Ίτpt(DLe'tBί(x, < At
1'2 0 < t < 1,

/Tr (

JN
 μ

tD

<Atl/2μ(N).

Therefore

f
Jo

l{x,x))dvo\Ldv

<Aμ(N),

which completes the proof of the theorem, q.e.d.
We remark that in the case of the signature operator with co-efficients

in a flat bundle the methods in Cheeger and Gromov [8] can be adapted to
our situation to insure that the constants A in Theorems 3.1.1 and 3.2.1
depend only on the metric data and not on its derivatives.

4. Selfadjointness of the boundary value problem

Our assumptions are the same as in §§2.1 and 2.2. Henceforth B will
denote the boundary condition satisfying Definitions 2.1.2 and 2.1.3. This
boundary condition will be known as the A.P.S. boundary condition. We
prove in this section that D acting on W°°(M; S)B is essentially selfad-
joint where

W°°(M\ S)B = {Se ; S)\Bbf = 0}.

Our approach to the problem of essential selfadjointness was inspired
by Roe [31]. This will involve the construction of bounded linear operators
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R{ and R2 satisfying the properties:

(4.1) R.: Wk(M;S)^Wk+X(M;S)B,

for / = 1, 2 and k a nonnegative integer, is continuous. Moreover,

(4.2) DRX - Id = Sx, R2D - Id = S2,

where 5^ and S2 are smoothing operators, and

(4.3) Wk{M 5) 5 = {s e Wk{M\ S)\Bbs = 0} for k > 1.

Assuming the existence of operators Rt and their adjoints i^ satisfying
(4.1)-(4.3) we prove the essential selfadjointness of the boundary value
problem (B.V.P.).

Theorem 4.1. The unbounded operator D: L2(M;S) -> L2(M\S)
with domain W°°(M; S)B is essentially selfadjoint.

Proof. We first prove that the minimal domain of D is WX(M\ S)B .

This proof follows Roe [31]. The closure of W°°{M\ S)B in the graph

norm is clearly contained in WX{M\ S)B. To prove the two spaces to

be the same, we show that any element in WX{M\ S)B can be approxi-

mated by elements in W°°(M S)B . It is enough to show that elements in

Wx(M S)B supported in a collar [0, l)xN can be approximated by ele-

ments in W°°(M; S)B . Let s e WX(M; S)B be supported in [0, 1) x N.

Then we can think of s as an element of ^ ( [ 0 , oo) x JV; S)B. We

regularize s in the boundary direction by the operator

(4.4) Hts = be~tQlBs + (/ - B)e~tQ\l - B)s.

By reflection we can extend s to ^ ( ( - o o , oo) x iV; S), so in the
cylinder direction we regularize s by

where φ is a smooth compactly supported positive function on [-1, 1]
with f φ = 1 and even φ. Combining (4.4) and (4.5) gives the required
approximation.

We now prove that

domain of D* = WX (M S)B ,

where D* is the Hubert adjoint of D. Now

(4.7) Dom(Z)*) = {se L2(M', S)\f~ (S, Df) for / e WX(M; S)B

extends to a bounded linear functional on L2},

(4.8) (/, Ds) = (g,s,) for all seWx{M\ S ) B .
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Since DR{s + S{s = s, by (4.8) we have

(/, s) = </, DRχS + Sxs) = (g, Rχs) + (/, Sxs)

= (Rm

ιg9s) + (SΓιf,s).

Hence / = R*g + 5*/ € ^ ( M ; 5) and 6 / is defined. Also if s e

Wl(M;S)B, then

(4.9) ( / , 2)5) = (£>/, s) + (6 / , σfo) = (g, s).

By choosing s compactly supported in the interior of M we see that
Df = g, so that by (4.9) we have

φf,σbs) = 0 for alls eWl{M;S)B.

Therefore bf e (σkerB)1- = kevB. Note B2 = B. This implies that

/ G ^ ί M ; ^ . q.e.d.
The construction of the operators Rt is based on the following pro-

cedure. We first construct an interior parametrix for D. Following the
notation in §2.1 we consider the data (D, S, έ) on the complete manifold
without boundary db(M). By Chernoff [9], D is essentially self adjoint on
C™(db(M) S). We construct parametrices Iχ and I2 with appropriate
Sobolev regularity, namely

(4.10) 7 7 : Wk(db(M):S)-+Wk+\dbM;S), I = 1 , 2 ,

and /: a nonnegative integer and

(4.11) DI{ - Id = S[,

(4.12) 7 2 D - I d = S2,

where Sj and S'2 are smoothing operators.
The next step is to construct a boundary parametrix and then to patch

the two together to get operators i?z. The construction of boundary
parametrix is very similar to that in §2 of [3]. The main tools in the con-
struction of boundary parametrix are separation of variables and Theorem
2.2.1.

Since we will be first constructing the boundary parametrix in a neigh-
borhood of the collar [0, 1) x JV and then multiplying this parametrix by
bump functions, we will assume without loss of generality that the collar
is [0, oo) x N, with the product metric. For the rest of this section let
M = [0,oo)xN.

Diagonalizing ε the grading operator we have S = S+ θ S~ where S+

and S~ are the +1 and -1 eigenspaces of ε respectively. Then

(4.13) D: W°°(M; S+) θ W°°{M; S~) - W°°(M\ S+) θ W°°{M\ S~).
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Since D = σ(d/dy + Q) where σ2 = - 1 , a anticommutes with ε and
Q commutes with e . Therefore we have

where β: S+ -> S~ is an isomorphism given by the Clifford action. Iden-
tifying S~ with S+ and using β we can assume

σ =

and

(4.15) Q--

Further,

(4.16) B=(ζ τ°_p) w h e r e P = Xio oo)(G+)

Further, Q+ and all its powers are essentially selfadjoint. Hence we can
apply Theorem 2.2.1. Under these identifications our B.V.P. is

/. ,̂ x r. ίθ -l\ { d IQ^ 0 \ \ n (P 0 \

< 4 1 7 » D - { ι o ) ( s ? + ( o - e j λ B = ( o / - J . ) -
This application of the spectral transform to prove Sobolev regularity

of the boundary parametrix is based on the observation

and

dyJ

Now

/ E Wk(M S) <* f e L2([0, oo); Wk{N\ S))

; Wk~j(N;S))9 l<j<k, fc>0, keeZ.

(4.18) Wk{[0,oo);H)={f\ψjeL\[Q,oo) H), 0 < 7 < ̂  1 ,

where H is a Hubert space.
Theorem 4.2. There exists an inverse T to D acting on

Cc°°([0, 00); W°°(N; S)) with the following properties:

(4.19) T:<^([0,Oo);W0O(N;S))-*Coo([0,oo);Wao(N ,S))B,

(4.20) DTf = f and TDf = f.
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Further T extends to a continuous operator

(4.21) T: Wk{M;S)^W^+{M;S), k>0,keZ,

where
Wy\oc(M'> S) = {fa distribution^/ € Wk{M; S),φe Cc°°([0, oo))} .

Proof. Our construction is the same as that in [3] except that we use
Theorem 2.2.1 instead of eigenfunction expansions.

We need to solve the equations

(d/dy + Q+)fχ = g ι with Pf{(0) = 0,

(d/dy - Q+)f2 = g2 with (/ - P)/2(0) = 0.

Applying the spectral transform we find

Jj + A) (F/,)(A, y) = (Vgι)(λ,y) with (K/,)/A, 0) = 0

(4.22)

k~λ) {vf2ΪM>yϊ = (v8i)M> w i t h yfi)

for λ<0.

Denote the Fourier Laplace transform by

= Γ
Jo

eiyξg(y)dy.

Then the solutions of (4.22) are

{Vfjμ, y) = j\λ(χ-y\Vgχ)μ, x)dx if λ > 0

= - Γ eλ(χ-y\Vgχ)μ,x)dx if A < 0,
(4 23) ? ~ , ,

(Vf2Uλ,y) = - eλ{y-χ)(Vg2)(λ,x)dx for λ > 0
7y

= / ^ ~ x ) ( F g 2 ) 7 ( A , JC) ί/x for A < 0.

Apply the Fourier Laplace transform with respect to the y variable to
(4.22), we get

(A + iξwfjμ, ξ) = (vgι)j(λ, ξ) + {vf{)μ, o),
where (VfΛΛλ, 0) = 0 for A > 0

(4.24) „ J

(-λ + iξ)(Vf2)j(λ, ξ) = (Vg2)j(λ, ξ) + (F/ 2) .(A, 0),

where F/2);.(A, 0) = 0 for A < 0.
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Also

(4.25)

(Vf{)j(λ, 0) = - jβ, x)dx iΐλ< 0,

(Vf2)μ,o) = - e-
λx(vg2)μ,x)dx ifλ>o.

J 0

When estimating the L2 norms, we find that fχ and f2 are in L 2

l o c .
We now prove that

(4.26) ^.L2-,

where
_ι_ 1

T gx = V (Vf{) and

(Vfx) and (Vf2) being defined by (4.23) are continuous. The higher
derivative estimates are similar. From (4.24) it follows that

λ2f\{VfJj(λ, ξ)\2dξ < I \(Vgi)j(λ,ξ)\2dζ for λ > 0

\(Vgi)j(λ,ζ)\2dξ + ,

where / = 1, 2.
Using (4.22), we obtain

d

( 4 2 7 ) d0 v ' χ

Thus

l\h{vfi)j{X

We consider

f\(vfι)μ,y)\2dy= f

y)-

y)-

,y)

ί
Jo

= -λ(Vf) (λ y) + (Vg) (λ y)
1 J

= λ(vf2)μ,y) + (Vg2)μ,y).

2 ί 2

eλ(x'y){Vgλ)μ,x)dx
2

dy for λ > 0.

Applying the Cauchy-Schwartz inequality yields

(4.28) / e I / ^ cu)

-2λ
o

I \(yg\)i(λ> x)\ dx\ dy
Jo 1

L 2λ
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One can estimate uniformly in λ, (1 — e~ y)/f2λ. Hence this implies

Putting these estimates together we have

T+ C
T —

1 " ' o τ~
where T{ is the solution to (4.22). Higher derivative estimates are made
in the same fashion as in §2 of [3]. We get the inverse of D:

Now we patch T and 1{ together as in §3 of [3]. Let p(a, b) denote
an increasing C°° function of the real variable y with p = 0 for t < a
and p = 1 for y > b. Define C°° functions φχ9 φ2, ψx, ψ2 by

(4.29)

Then Rt = φιTψι +φ2lιψ2 . Putting the estimates for T and I{ together
we see that Rι satisfies the properties (4.1)-(4.3) and so does its adjoint.

5. Parametrix for the parabolic initial boundary value problem

In §4 we showed that D: L2(M; S) -> L2(M; S) densely defined with

domain W (M S)B is selfadjoint. Further from the regularity properties

of the parametrix constructed in §4 it follows that Dom(z/) c Wk(M S)

for k a positive integer. Therefore by duality and the spectral theorem

we have
Proposition 5.1. // feRB(R), then f{D): W~k*(M; S)-+ Wk\M\ S)

for all kχ and k2 positive integers. Hence f(D) is represented by a smooth
kernel

Proof. Use functional calculus and Proposition 2.2.3. q.e.d.
-tD2

By Proposition 5.1, e is a smoothing operator. The rest of this
section focuses on constructing a parametrix for this initial boundary value
problem. As in [3] we construct an interior parametrix by considering the
heat kernel of D on the db(M) and restricting to the interior of M. As
in §4, in the construction of the boundary parametrix we can assume that
our collar is M = [0, oo) x N. Under the identifications (4.13)-(4.15), by
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the spectral transform the initial boundary value problem

(5.1) (^+D2\f(,t) = 0, f{,0) = g(), Bbf = 0, BbDf=O

reduces to

( d d2 2\

(5.2) (Vfι)j(λ,0,ή+λ(Vfι)j(λ,0,t) = 0 foτλ>0,

(jr(yrf\)j(λ'°> t)+λ(vfι)j{λ> 0, θ ) = 0 for A<0,

(Vfι)J(λ,y,0) = (Vgι)j{λ9y)9

and

(5.3) (K/2),θC 0,/) = 0 forA<0,

- §j(.Vfι)M> 0 ' t) + λ{Vf2)μ, 0 , 0 = 0 for A > 0,

where

The solution to (5.2) is given by

(5.4)

where

{Vfχ)μ,x,t)= Γaλ{x,y,t)(Vgχ).(λty)dt for λ > 0/o

oo

- J°°bλ(x,y, t)(Vgι)j(λ,y)dy for A < 0,

and

(5.6) bλ(x,y,t) = aλ(x; y9t)+ λe'λ{x+y)erfc

where

= 4= / e ζ dξ.
Vπ Jx
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Similarly the solution of (5.3) is

(5.7)

/•OO

(Vf2)j(λ,x,t) = I aλ(x,y, t)(Vg2)j(λ, y)dy for λ < 0

= Γb_λ(x,y,t)(Vgι)j(λ,y)dy for λ > 0.
These solutions can be found in [3].

Let

E+(t)g(x,n)

aλ(x,y, t)(Vg).{λ,y)e.(n, λ)dydμ.(λ)
(5.8) yJλ>oJo J J J

+ ΣJλ<J™bλ{x,y,t){Vg)j{λ,y)ej{n,λ)dydμμ),

E-(t)g(x,n)

Σjλ<Jχ(>y> 0 ( ^ ) / , y)e/«, λ)dydμμ)

jΓ μ, y)e.[n, λ)dydμμ).

-λ2t

Now the off-diagonal exponential decay, along with the term e of
aλ(x ,y9t)9 bλ(x, y, t), and its derivatives imply that E+(t) and E~(t)
are smoothing operators and are represented by smooth kernels for t > 0.
Define

0 E~(t)J\β

Then E{ (t) is the fundamental solution of the initial boundary value prob-
lem (5.1) on the cylinder [0, oo) x N. Let F(t) be the fundamental solu-
tion of the heat equation on the double of M for D. Then we will patch
F(t) and Eχ(t) to get a parametrix for the initial boundary value problem
on M. We defined the functions φχ, φ2 and ψχ, ψ2 in §4, and now use
them to construct

(5.11) E(t) — φιEι(t)ψι + φ2F{t)ψ2 .

Note that (d/dt + D2)E(t) is O(tk) for all k>0. This follows from
the off-diagonal exponential decay of aλ(x, y, t), bλ(x, y, t), and F(t).

Theorem 5.1.

(5.12) e"D2 •
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is a bounded linear operator for all kχ and k2 positive integers. For kχ

and k2 very large positive integers there exists an a> 0 such that

We'102 - E(t)\\L{w-kι f w h ) < Cf forallO<t<\.

Proof. This follows from DuhameΓs formula

e

and Sobolev estimates. The basic idea is the following:

Now the off-diagonal exponential decay of aλ(x, y, t), bλ(x, y, t), and
F(t) along with the fact that

d2φ7 dφ2 dφ} d2φλ

have disjoint supports proves the theorem.

6. Breuer index for coverings and foliations

This section formulates the Breuer index for elliptic operators on cov-
erings of compact manifolds with boundary and for elliptic operators on
leaves of foliations compact manifolds with boundary with leaves trans-
verse to the boundary. Heuristically, in the case of Galois coverings of a
compact manifold with boundary M and Galois group Γ, we deal with
the von Neumann algebra with a semifinite faithful trace:

EndΓ L (M) = {all bounded linear operators commuting

with the Γ action} .

This trace is defined on a smaller class of operators. We will work with a
dense subalgebra of EndΓL 2(M) to define finite-Γ dimensionality.

In the case of a foliation & of M we have the Borel equivalence
relation

g% = {(x 9 y)\χ and y are on the same leaf L e 9Γ},

which has the structure of a measurable groupoid. See Moore [22] and
Moore and Schochet [23] for definitions and more details. Now the
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groupoid & acts on the field of Hubert spaces H = {L2(Lχ)}χeM nat-
urally. Following Connes [10] we study von Neumann algebra of inter-
twining endomorphisms of the field H up to suitable equivalence given
by a holonomy invariant transverse measure v . Moreover the transverse
measure gives rise to a natural faithful semifinite trace, which is used to
define the notion of finite v dimension. Section 6.1 deals with the case
of coverings, and §6.2 the case of foliations.

6.1. Finite dimensionality of the Γ index. Let M be a compact Rie-
mannian manifold with boundary N. Let D be a Dirac operator on a
graded Clifford bundle S with grading operator ε. We assume that the
data (D, 5 , ε) has a product structure in a neighborhood of the collar
[0, 1] x N; see Definition 2.1.1. Let M be a Galois covering of M with
Galois group Γ. We denote the lifts of D and S to M by D and S
respectively. Let B be the A.P.S. boundary condition associated to D as
in Definitions 2.1.2 and 2.1.3. _

In §4 we showed that the densely defined operator D: L2{M\ S) —•
L2{M\ S) with Όomφ) = Wι{M\ S)~ is selfadjoint. Further, D com-
mutes with the action of Γ. As in Roe [30] we introduce a dense subalge-
bra il of EndΓ(L 2(M; S)).

Definition 6.1.1. A e it if the following hold:

1. A is given by an integral kernel k(x, y) with the properties:

There is a constant C such that / \k(x > y)\2dvol~(y) < C and

f\k(x, y)\2 dvol~(x) < C for every x and y e M respectively.
2. A is smoothing, namely,

As(x)= [k(x,y)s(y)dvolχ(y) for S e L2(M; S),
J N

and the maps x —• k(x, •) and y —• k( , y) are smooth maps of M to

the Hubert space L2(M\ S).
Proposition 6.1.1. The set of operators 11 forms an algebra.
Proof The proof for manifolds with boundary follows exactly as that

of Proposition 13.5 of Roe [30].
Lemma 6.1.1. There exists a fundamental domain for the Γ action on

M, which we label F.
Proof The proof is exactly the same as in Atiyah [1] where it is proved

for manifolds without boundary, q.e.d.
We now define a functional τ : il —• C, which we call a trace, as follows.
Definition 6.1.2. Let A e i l . Then

(6.1.1) τ(A)= ί trk{x9x)dvόlJί(x)9
J F
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where F is a fundamental domain for the Γ action. The fact that A
commutes with the Γ action implies that the definition of τ is indepen-
dent of the choice of fundamental domain. We also use the notation trΓ

for τ .
Proposition 6.1.2. For Aχ,A2eU we have τ(AχA2) = τ(A2A{).
Proof. The proof for manifolds with boundary is the same as that for

manifolds without boundary; see Proposition 13.10 of Roe [30].

Definition 6.1.3, A closed subspace H of L2(M S) is said to be of fi-
nite Γ-dimension if the orthogonal projection P: L2(M\ S) —> H belongs
to i l . In this case we define

(6.1.2) dimΓ(Jf) = τ(P).

Proposition 6.1.3. For any f e RB(R), f(D) e U.
Proof. Follows immediately from Proposition 6.1.1.

Theorem 6.1.1. D: L2(M Jί) -> L2(M; S) is a closed densely defined

operator with Dom(D) = WX(M\ S)~ and has finite Y-dimensional kernel

and the Γ index indΓ(Z>) = dimΓ(kerZ)+) - dimΓ(kerί)~) is finite.

Proof. The selfadjointness of D implies that D+ and D~ are Hubert
space adjoints of each other. By Proposition 6.1.3, the projection onto
ker(D) belongs to i l . Therefore dimΓ ker(Z>) is finite. This implies that
indΓ(Z>) is finite, q.e.d.

The next proposition is called the McKean-Singer formula.
Proposition 6.1.4.

(6.1.3) indΓ(D) = τ{εe~ω2).

Proof. The proof is the same as that of Proposition 13.14 of Roe
[30], if we observe that D+ and D~ are Hubert space adjoints of each
other, q.e.d.

In §7.1 we will use Proposition 6.1.3 to identify the Γ-index in terms
of topological data and the correction term arising from the eta invariant
of §3.1.

6.2. Finite ^-dimensionality of the foliation index problem. Let
(M ,SF) be a compact foliated manifold with boundary and the foliation
transverse to the boundary; see Definition 2.3.1. Let D^ be a leafwise
Dirac operator on a graded Clifford bundle S with grading operator. We
also assume that the data {D^, S, ε) has a product structure in the sense
of Definition 2.3.2, near the boundary. Let 3ίM denote the measurable
equivalence relation on M given by the leaves of the foliation &, and
RN the equivalence relation on the induced foliation of the boundary TV.
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Let H = {L2(Lχ SL )xeM} , where Lχ is the leaf through x , is a Borel
field of Hubert spaces. See Dixmier [12, Chapter I, Part II] for definitions.
By Proposition 4 of Dixmier [12, p. 167], to prescribe a measure structure
on the field of Hubert spaces H, it is enough to prescribe a countable
sequence {s.} of sections of this field of Hubert spaces with the additional

property that for x e M the countable set {s.(x)} c L2(Lχ; SL) is a
complete orthonormal set. We can do this in our context with the property
that each Sj(x) is also a smooth section on the leaf Lχ . See Appendix of
Heitsch and Lazarov [17].

There is a natural representation of the equivalence relation 31 on H,
namely, if (JC , y) e 3? , then the unitary isomorphism from L2(L Sr )

2

to L (Ly Sy) is just the identity map.
A Borel transversal to the foliation & is a Borel subset of M which

intersects every leaf in at most a countable set. The Borel transversals of
& generate a σ-ring S, namely, it is closed under countable unions and
relative complementation. Note that the holonomy pseudogroups act on
the σ-ring S. For more on this see Hector and Hirsch [16, Chapters III,
X].

Definition 6.2.1. A transverse measure v is a measure v on the σ-ring
S of Borel transversals, and v\τ is σ-finite for every T e S.

Definition 6.2.2. A transverse measure v is holonomy invariant if it
is invariant under the action of the holonomy pseudogroup on the σ-ring.

We note that the natural representation of 3ί on H is "square inte-
grable" in the sense of Connes [10]. We denote

= {uniformly bounded measurable field of

(6.2.1) bounded operators intertwining the natural

representation of 31 on H}.

Given a holonomy invariant transverse measure v Connes defines in
[10, Chapter V] a von Neumann algebra

2 2)
 E n d " ( i / ) { [ Γ ] | Γ e E n d ^ ( / / ) a n d Γ i ~ Γ 2 i f t h e y a r e

equal for v almost every leaf}.

He also shows that Enάu(H) is a direct integral of type I and type II von
Neumann algebras. In part it has a semifinite faithful trace tr^ obtained
from v. If the field of operators T € End^(H) in the domain of tr,
is implemented by a family of integral operators, one for every leaf L e
y , with the family of leafwise kernels {kL(x, y)}χ yeL/Le$r, then the
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von Neumann trace of T is given by

(6.2.3) tr^(Γ) = / kΛx,x)dvo\L dv.
JM

The integral is well defined, and the holonomy invariance of the measure
implies that the modular automorphism group generated by this state is
trivial.

Lemma 6.2.1. If the kernels kL(x, y) are uniformly bounded over all
leaves, then \τv{T) is finite.

Proof This follows immediately from (6.2.3).
Definition 6.2.3. We say a measurable field of closed subspaces of H

has finite z/-dimension if the corresponding family of orthogonal projec-
tions have finite v trace.

Let B^r = {BL}Le^r denote the family of A.P.S. boundary conditions,
for each leaf L e &. We thus have a family of closed densely defined
unbounded selfadjoint operators

(6.2.4) DLχ: L2{Lχ SL) - L2(Lχ SLJ, xeM,

where Lχ is the leaf through x , with Όom(DL ) = Wι(Lχ \SL)B , BL

being the A.P.S. boundary condition defined in §2.1 for the leaf Lχ . We
wish to show that the family {DL }xeM is a measurable family of selfad-
joint operators. This enables us to use the measurable spectral theorem
(cf. Reed and Simon [28, Theorem XIII.85] to prove

Theorem 6.2.1. If f is a bounded Borel function, then

(6.2.5)

Proof To prove the measurability of the family of operators in (6.2.4)

it is enough to show that the family {{DL +i)~l}xeM is a measurable fam-

ily of bounded operators. The family of Hubert spaces W (Lχ SL ) B
x Lχ

has a natural measure structure given by its inclusion into H.
Proposition 6.2.1. The field of bounded operators

(6.2.6) {DLχ + i}χeM : {W\LX SLχ)BJ to {L2(Lχ SLJ}χ€M

is measurable, and the leafwise defined inverse is also a measurable family.
Proof The selfadjointness of DL with domain W (Lχ SL ) B im-

x x Lχ

plies that DL + i: Wx{Lχ SL ) B is a Hubert space isomorphism. Let
x x Lχ

s, t be measurable sections of the domain and range respectively. Fol-
lowing Heitsch and Lazarov [17] we can choose / so that t(x) is smooth
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on Lχ. Then
χ

{(DLχ + i)s(x), t(x))L2{Lχ,SLχ) = (s(x), (DLχ - i)t{x))LHLχ,SLχ) •

by formula (2.1.1). The measurability of the right-hand side of the above
equation as a function of x follows immediately. From Example 2 of
Dixmier [20, p. 180] the leafwise inverse is a measurable field of opera-
tors. Combining Proposition 6.2.1 with the measurable spectral theorem
in Reed and Simon [28] immediately proves the theorem.

Lemma 6.2.2. If f eRB(R), then tr, f(D^) is finite.
Proof Proposition 5.1 and Theorem 6.2.1 imply that {f{DL )}xeM is

a measurable family of integral operators with the integral kernels smooth
and uniformly bounded. Therefore by Lemma 6.2.1 the proof is com-
plete, q.e.d.

In particular if we take

0 if x Φ 0,

1 if.x = 0,

then we have

(6.2.7) dimίkQvDgr) = dim {ker/X } is finite.

This immediately implies the following theorem.
Theorem 6.2.2. The family ofA.P.S. boundary value problems has finite

v -dimensional kernel, and therefore

(6.2.8) ind,, D^ = dim^ ker(D^) - dim^ ker(Zλ^) is finite.

-tD2

Proposition 6.2.2. ind^D^r) = tτu(εe *).
Proof We first observe that on each leaf L, D* and D~ are Hubert

space adjoints of each other. The familywise partial isometries in the
polar decomposition of D^ implement the isomorphism of the spectral
projections of D^D^ and D^D^ on Borel subsets of (0, oo). See Moore
and Schochet [23, Proposition (7.38)] and Connes [10, Corollary 8, p. 134]
for more details, q.e.d.

In §7.2 we use Proposition 6.2.2 to compute mάv(D^) in terms of
topological data and a correction term which is a foliation eta invariant
defined in §3.2.

7. The index theorem for coverings and foliations

This section completes the proofs of the main theorems stated in the
Introduction. In the earlier sections we formulated the appropriate Breuer
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index, for boundary value problems. We compute the index in this section,
and obtain a topological component in the interior and a boundary spectral
component, the eta invariant of §3. The proof is in strategy very similar to
the one used by Atiyah, Patodi, and Singer [3]. In §7.1 we prove the index
formula in the case of coverings of compact manifolds with boundary. §7.2
gives the proof for the case of foliations. Since this case is very similar to
that of coverings in §7.1, we only sketch the proof, indicating where the
necessary changes have to be made.

7.1. Proof of index theorem for Galois coverings. Let M be a compact
Riemannian manifold with boundary N. Let D be a Dirac operator
on a graded Clifford bundle S with grading ε. We assume that the data
(D, S, ε) has a product structure in a neighborhood of the collar [0, 1 ] x N
as in Definition 2.1.1. Let M be a Galois covering of M with Galois
group Γ. We denote the lifts of D and S to M by D and S respectively.
Let B be the A.P.S. boundary condition associated to D as in Definitions
2.1.1 and 2.1.3. Now we state the index theorem.

Theorem 7.1.1.

(7.1.1) indΓ(D) = J^ch(σD)Td(M) - - ^ ,

where the integral is the standard formula in the calculation of the index on
a manifold without boundary,

(7.1.2) Λ = dimΓker«2+),

(7.1.3) ι,Γ(0) =

where D = σ(d/dy + Q) in a neighborhood of the collar [0, 1] x dM and

+ S+) - L2(dM S+)

is a Dirac operator on the boundary satisfying the Bismut-Freed local can-
cellation property.

Proof By Proposition 6.1.3 we have indΓ(I>) = trΓ(εe~tD ) . By The-
-tD2

orem 5.1 we can replace e by the parametrix constructed in §4 and
denoted by E(t) as t -> 0 + . In the definition of E{t) we lift cut-off
functions φ., ψt from the base M to M. Therefore

tτΓ(εE(ή) = \ττ(εφχE{t)ψχ) + \xτ{εφ2F{t)ψ2).
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Now

lim tτΓ(εφ2F(t)ψ2) = lim / F(t, x)ψ2(x)dx,
ί—0+ t-+Q+JM

where F(t, x) is the local supertrace of the heat kernel on the double of
M considered as a function of M. Since we have a product structure in
a neighborhood of the collar, it follows that

lim F(t, x) = 0 for x e collar,

so that

lim+tτΓ(εφ2F(ήφ2) = lim /" F(ί, x)rfvolM = ch(σD)Td{M)
t—•u t—•U J M

by the calculation in Atiyah, Bott, and Patodi [2]. Next we need to evaluate

(7.1.4) \xτ{eφxEi{t)ψx).

We note that the operator

φιE(t)ψι e EndΓ(L2([0, 1] x dM\ S))

and has an integral kernel. Now Γ acts only on dM and not on [0, 1].
Therefore if the integral kernel of ψχEψχ is kE(xχ, mχ x2, m2), then
by Fubini's theorem

ίι

t r Γ ( β ^ 1 £ 1 ( 0 ^ 1 ) = / trTJo

ί
(7.1.5) trΓ(β^1£1(0^1)= / trT(ekE(x,m;x9m))dx,

Jo

where trΓ under the integral sign is the Γ trace on dM. Combining
(7.1.5) with the definition of Eχ(t) we have
(7.1.6)

tτΓ(εφχEχ(t)ψχ)

erfc (^ + \λ\Vi\ \ dμ(λ) dt,\λ\e2Wy

where dμ(λ) is the measure on the real line determined by the Γ trace of
the spectral measure of the selfadjoint operator Q+ , and sign λ is given
by

r l i f λ > o ,
signλ = \

{ - 1 if λ < 0.
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If we replace /J and ψx{y) by 1 in (7.1.6), the error is estimated by
the integral

(7.1.7) CJ^em erfc^ + \λ\Vή dμ(λ),

which is bounded above by

= \ e dμ(λ) <Ce
/π JR

which decays exponentially as t —> 0+ . Therefore \τγ(βφχE{t)ψχ) is
asymptotic to the integral

(7.1.8) ^(O^^^s ignA^j i .^er fc^ + μi^)} dμ(λ)dy.

Changing the order of integration in (7.1.8) we get

(7.1.9) K(t) = - ί signAerfc(μ|v^)έ//ι(λ).

Differentiating with respect to t thus yields

(7.1.10) K'(t) = -±= ί λe~λ2tdμ(λ).
y/Ant JR

By the normality of the Γ trace on the boundary we have K(t) —• — jh
as t —• CXD where h = dimΓker((?+). Therefore K(t) + jh-+O as t -> CXD

We now consider the following integral. For Re(s) large and positive,

τ

/o
(7.1.12)

s

Now

where

if
as t -> 0+ .
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Then taking limit as s -> 0 in (7.1.12) gives

(7.1.13) -2(α 0 + A/2) + 2{K(T) + A/2) = //Γ(0).

Letting Γ —• oo, we get

(7.1.14) -(2a0 + A) = lim ^ ( 0 ) = ηΓ(0),
1 —»-oo

which follows from Theorem 3.1.1.
We have as t -> 0+

(7.1.15) K{t)

(7.1.14) and (7.1.15) imply

= / ch(σD)Td(M) -

7.2. Proof of the index theorem for foliations. Let (M, &) be a com-
pact foliated manifold with boundary and the foliation & transverse to
the boundary. Let D^ be a leafwise Dirac operator on a graded Clifford
bundle S over T^, and assume that M and & are oriented. Let g
be a Riemannian metric on M, and assume that data (D^, S, ε) has a
product structure as in Definition 2.3.2.

Theorem 7.2.1. Let v be a holonomy invariant transverse measure.
Then

(7.2.1) ind^D^r) = (ch(σD )Td(M), v) - (ηu(0) + A)/2,

where the first term on the right-hand side is what one gets in the com-
putation of the index of a leafwise elliptic operator on a manifold without
boundary,

(7.2.2) A = dimmer <2+),

Q+ = {QQL } the family of Dirac operators on the boundary dLχ satisfying

the Bismut-Freed cancellation property leafwise, and ηv{G) is the foliation

eta invariant defined in §3.2.
Proof Proposition 6.2.2 implies that

2

(7.2.3) ind^Z)^) = \xv{ze~l *).

On each leaf we replace the heat operator e~tΣ>L* by the parametrix
E(t)L constructed in §5. The cut-off functions are functions on M re-
stricted to Lχ . By the uniformity of Sobolev estimates and Theorem 5.1,
we have

(7.2.4) \\e'tD^ - E{t)Lχ\\L(w-ktWk)<Cta, 0 < t < 1, a > 0,
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where C is uniform in x and k a very large positive integer. Hence as

(7.2.5)

where E{t)^- is the family of operators {E(t)L }x£M . Therefore

(7.2.6) indu(D^-) ~ tτu(εφχ(t)ψχ) + tru(εφ2F(t)ψ2).

Applying the arguments of the previous section leafwise yields

(7.2.7) Bm \τv{εφ2F{t)ψ2) = (ch(σD^)Td(M), v).

We now study the term l i m , ^ \τv(εφχEχ(t)ψχ). φχEχ(t)ψχ is a family

of leafwise integral operators End^(L2([0, 1] x dLχ SdL )) where 31 is

the restriction of the equivalence 31 M to [0, l]xiV. By applying Fubini's

theorem as in the previous section we obtain

\rv{εφχEχ{t)ψx)

(7.2.8)

+ \λ\emy erfc ί ^= + \λ\yβ\ \ dμv{λ) dy,

where dμv{X) is the tempered measure on R given by the foliation trace

of the family of spectral projections of the family of Dirac operators

{QaL }χeN - F r o m here on the proof is the same as that in the previ-

ous section, except that we replace dμ(λ) by dμv(λ). This completes the

sketch of the proof of the theorem.
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