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SPECTRAL DEGENERATION
OF HYPERBOLIC RIEMANN SURFACES

LIZHEN JI

Abstract

Given a degenerating family St (1 > 0) of Riemann surfaces with their
canonical hyperbolic metrics, we work out in detail the spectral degen-
eration of the collars around the pinching geodesies in Sy. Using the
spectral degeneration of the pinching collars, we show that the eigen-
values of Si become dense at every point of the continuous spectrum
[± , +oo) of So and give upper and lower bounds for the rate of the
clustering. Furthermore, we show that Eisenstein series, which are gen-
eralized eigenfunctions, of SQ arise as limits of eigenfunctions of 5Z as
/ - 0 .

1. Introduction

Let Mg (g > 2) be the moduli space of compact Riemann surfaces of

genus g, and M be the compatified moduli space of Riemann surfaces
o _ _ _ _ _

(see [11]). For any S e Mg, S has a canonical hyperbolic metric (of
constant curvature - 1 ) , induced from the uniformization. From now on,
we call such a surface with its canonical hyperbolic metric a hyperbolic
Riemann surface.

With respect to this metric on S,we have the Beltrami-Laplace operator
As, and its spectrum on L2(S) is denoted by spec(5'). The spectrum is
a very natural invariant of a manifold (see [19]). For generic S e Mg,
spec(S) uniquely determines S (see [38]).

It is therefore a natural question to consider the dependence of spec(S)
on S e ~M~g . For S e Mg , S is compact, and spec(S) is discrete. Further-
more, spec(S) changes real analytically in terms of suitable coordinates
on the Teichmϋller space, which is a covering space of M (see [37]).

_ _ _ _ _ o

On the other hand, for So e M \ Mg, So is complete, noncom-
pact, and has finite area and cusps as its ends (see §2). Furthermore
spec(S) = discrete part U continuous spectrum [£, +oo) (see Proposi-
tion 2.5). The discrete part may be finite, and the continuous part has
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multiplicity equal to the total number of the cusps of So . Furthermore,
the generalized eigenfunctions of the continuous spectrum are given by
Eisenstein series. Any information about the discrete part of the spectrum
will be quite useful in the theory of the Selberg trace formula and auto-
morphic representations. Currently not much is known, especially about
the embedded eigenvalues in [~, +00). Actually there are two opposite
conjectures about the embedded eigenvalues. A weak version of a con-
jecture of A. Selberg states that for any So e Mg \ Mg, So always has
infinitely many embedded eigenvalues. On the other hand, R. Phillips and
P. Sarnak conjectured that for a generic So e Mg \ Mg , So has at most
finitely many embedded eigenvalues (see [15], [32], [33]).

In this paper, we want to study spectral degeneration of Riemann sur-
faces, that is, the behavior of the Beltrami-Laplace As of S when S
approaches M \ M . In this case, S acquires cusps and becomes non-
compact. More precisely, let St (/ > 0) be a degenerating family of
Riemann surfaces with m > 1 disjoint simple closed pinching geodesies
JΊ(/)>••• , Vm(l) on Sr Let /. = |y.(/)| be the length of γ.(l) (1 < 1 <
m). Then I. —> 0 as / -» 0 for 1 < i < m. The limit surface SQ is
noncompact, while for / > 0, Sι is compact. The behavior of eigen-
values < \ and their eigenfunctions of Sι is understood well. Actually,
they converge to the small eigenvalues (< \) and their eigenfunctions of
SQ (see [17, Theorems 6.6 and 7.2] and [8]). We would like to study the
spectral degeneration related to the continuous spectrum of So. In par-
ticular, we will explain the occurrence of the continuous part [\, +00)
of spec(50), and their associated generalized eigenfunctions, which are
Eisenstein series, during degeneration. Furthermore, we would also like
to characterize the existence of embedded eigenvalues of SQ in [\ , +00)
through degeneration.

The main results of this paper are as follows:
Theorem 1.1 (Clustering of Eigenvalues). 1. For a degenerating family

of hyperbolic Riemann surfaces Sj as above, the eigenvalues of Sι cluster
at every point of the continuous spectrum [\ , +00) of So as I —• 0.

2. For any s> \9 let Nt{x) = \{λ e spec(57)| | < λ < x}\ be the spectral
counting function ofSι. Then for small I > 0 with lt< \, and any x > \,

(1.2)
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where the function θ is defined by θ[t] = max{0, t - Γ1} for t >
0,τ(/f.) = arcsinh(±csch(/./2)) (~ log(2//.) as I -> 0) is the half of
width of the standard collar embedded around the pinching geodesic γ.(l)
with length /z (see §2 for details), m is the total number of the pinch-
ing geodesies on Sι, and Bχ (JC) is some constant independent of I. In
particular, as I -> 0,

(1.3) N^r

The clustering of the eigenvalues and the asymptotic behavior of the
rate of the clustering N^x) (1.3) are due to S. Wolpert [39, §4.5] and
D. Hejhal [16, 17, Theorem 9.5]. Actually, D. Hejhal also gave bounds
on N[(x) which are weaker than ours. The methods which we use here
are more geometric and direct. Our contribution here is the asymptoti-
cally sharp lower and upper bounds ((1.1) and (1.2)). From these bounds,
we can get bounds for eigenvalues of St belonging to any finite subin-
terval of [\, +oo) in terms of / and the length of the subinterval. The
lower bound for N^x) in (1.1) is not optimal, and better bounds will
be proved in §3. There is a conjectural lower bound for Nt{x) which is

\ Σ™=ϊ τil^yx - \ - B*(x), where B*(x) is some constant independent
of / (it is suggested by the referees). See §3 for discussions about this
conjecture.

Theorem 1.1 deals with the asymptotic behavior of the eigenvalues of
S[ as / -* 0 and the appearance of the continuous spectrum [±, +oo)
of SQ. A refinement of the problem about eigenvalues concerns the be-
havior of eigenfunctions of 5Z, especially the occurrence of generalized
eigenfunctions of So, which are Eisenstein series. To compare functions
on SQ and 5Z, we use the harmonic map of infinite energy πι: So -» *SZ

constructed by M. Wolf [37] to pull functions on 5Z back to So. The
map πι is a homeomorphism from So to St \ { pinching geodesies 7Z(/)},
and intuitively opens up each pair of cusps of *S0 into a pinching geodesic
?i(l) on Sι.

Theorem 1.2 (Compactness of Eigenfunctions). Let φ(l) be an eigen-
function with eigenvalue λ(l) on Sι which has L2-norm 1. Assume that
λ(l) converges as I —• 0, and denote the limit by λ(0).

1. If n*(φ(l)) -» 0 uniformly over some compact subsets of SQ as
I -» 0, then there exists a sequence I. -> 0 such that as j —• +oo,
π* (φ(l)) converges uniformly over all compact subsets of So to a nonzero

L1-eigenfunction φ(ϋ) on So with eigenvalue λ(0).



266 LIZHEN JI

2. If π*(φ(l)) -> 0 uniformly over all compact subsets of So as I —• 0,
then the following hold:

(a) ΓΛe limit λ(0) = \ + t2 >\ for some t>0.

(b) There exist some constants Kι -> oo αAzrf α sequence I. -+ 0 swcΛ

ίΛαί Kιπ
¥

ι{φ{lj)) converges uniformly over all compact subsets of So to

some nonzero function ψ(0) on So as j ->+oo.
(c) The function ψ(0) satisfies Δ 0^(0) + {\ + t2)ψ{0) = 0, wΛere Δ o

is the Laplacian of So.

(d) There exist an L2-function φ {which could be zero) on So with

Aoφ + (± + t2)φ = 0, and constants aχ, , α 2 m ŵcΛ that

2 i

where E^ ; \ + Λ/-TO (1 < / < 2m) w ίΛe Eisenstein series associated
to the i th cusp of So (see §5 for details), and 2m is the total number of
cusps of SQ.

(e) If λ(0) = \ + t2 is not an eigenvalue of So, then

1=1

£.(• \ + Λ/-T0 (1 < / < 2m) w the Eisenstein series associated to
the i th cusp of So.

Remarks. 1. If λ(0) = \ or t = 0, then some derivatives (dk/dks)
Et( ; s)\s=zl,2 may enter the summation ((1.4) for y(0)).

2. After writing up a preliminary version of this paper, we received
a preprint of S. Wolpert [41, Theorem 3.4]. By using elegant methods,
he proved the above theorem among other results. Our methods here are
more elementary.

3. From 2(d) above, eigenfunctions on 57 can only limit in linear com-
binations of eigenfunctions and generalized eigenfunctions of So, while in
Theorem 2(e), if λ(0) is not an eigenvalue of SQ, we give a partial expla-
nation for the occurrence of Eisenstein series of So through degeneration.

In the above Theorem 1.2, we use the harmonic map π 7 : So —• Sι to
compare functions on SQ and S,. The reason is that π{ is global and
canonical (unlike the local cut-paste procedure, which depends on a choice
of local coordinates). Let ds2(l) denote the hyperbolic metric of St. Then
π*ds2(l) converges to ds2(0) smoothly over all compact subsets of SQ.
Furthermore, if the degenerating family Sι is a real analytical family in /
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at / = 0, then π*ds2(l) is also real analytic in / near / = 0 [37, Theorem
5.3]. It is conceivable that by exploiting the harmonicity of πι, we can
understand the behavior of the eigenfunctions on 5Z better.

The general philosophy of this paper is as follows. According to the De-
composition Principle [13, Proposition 2.1] (see Proposition 2.4 below),
the continuous spectrum of a noncompact, complete Riemannian mani-
fold is determined by the geometry of its ends. By the collar theorem of
L. Keen [21], J. P. Matelski [27, the main Lemma and Remark 6.6], B.
Randol [29], for a degenerating family of hyperbolic Riemann surfaces
S[, the noncompactness of So is caused by the degeneration of the collars
\JCι around the pinching geodesies {)>,(/)} on St (see §2). This philoso-
phy that the degeneration localizes into the pinching collars has been used
successfully by S. Wolpert [39], [40], and M. Wolf [37]. The proofs of
Theorems 1.1 and 1.2 show that the formation of the continuous spec-
trum [\, +oo) and their associated generalized eigenfunctions, which are
Eisenstein series, of So can be understood through careful studies of the
degeneration of the pinching collars U Cι.

To study the degeneration of the pinching collars \J Cι, it is essential
to choose a good set of coordinates on \J Cι. For simplicity, we assume
that there is only one pinching geodesic γ(l) which has length /, and for
0 < / < \ , we denote the standard collar of γ(l) by Cz which has width
2τ(/) = 2arcsinh(±csch(±)) (see §2). Let (r, θ) with -τ(/) < r < τ ,
0 < θ < 1 be the Fermi coordinates on Cz with respect to the core geodesic
γ(l). Since the collar Cι is rotationally symmetric in θ, the Hubert space
L2(C7) decomposes according to phases, that is, L2(CZ) = ^

where for n e Z,

Correspondingly, theLaplacian Δ7 of Cι decomposes into Δ^/i) (n e Z),

where Δz(n) acts on the Hubert subspace L^C^ .

For any x > ±, let DN®(x) be the spectral counting function for the

Dirichlet problem of (Δz(0), L 2(C 7)), that is,

DN°(x) = \{λeSpec(Aι(0),L2

0{Cι)) with Dirichlet condition \\<λ<x}\.

Then using the variational characterization for eigenvalues, we prove

Theorem 1.3 (Dirichlet Problem o n C / ; n = 0 ) . 1. With respect to the

Dirichlet boundary condition, Spec(Δz(0), L^C^) cluster at every point of
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[*, +00) as / -+ 0. More precisely, for any x > \, I < \, and 0 < δ < 1,

I - Isech(5τ(/)) - 2 < Z)Λ?(*) < |τ(/tyx- ±,

τ(/) = arcsinh^ csch(^)) ~ log 7 as I -» 0, am/ w half of the width

of the collar Cι. In particular, let δ = ̂ ffi-, we get

DNf(x) > | θ

= max{0, t-Γ1} for t>0.

2. For any A(/) € Spec(Δ/(0)? L^C^), its normalized eigenfunction
φ(l) satisfies the following relations:

If λ{l) converges to a limit λ(0), then some multiple K^(l)(r - τ(/)) of
φ(l) converges uniformly over compact subsets of [0, -f oo) to the general-
ized eigenfunction E( , ± 4- y/^ϊt) = e^1 sin(rt) of the standard cusp Co

(see Definition 2.1 and Proposition 2.3), where t > 0 satisfies λ(0) = \ + t2 .
It is this special case which suggests Theorems 1.1 and 1.2 above. In

order to prove Theorem 1.1, we have to study the Neumann problem on
Cι first. For any x > \ , let NN^x) be the spectral counting function for
the Neumann problem of (Δ7, L

2(C7)),

NN^x) = \{μ e Spec(Δ7, L
2(CZ)) with Neumann condition \\<μ<x}\.

The first application of Theorem 1.3 is the following:

Theorem 1.4 (Neumann Problem on Cι all n). With respect to the

Neumann boundary condition, Spec(Δ7, L
2(C7)) cluster at every point of

[\ > +°o) as I —> 0. More precisely, for any x> \, I < \,

_±|_|logτ(/)y^-4<^(x)<^τ(/)y^+5W,

where B(x) is some constant independent of I, the function θ[t] =
max{0, t-Γ1} for t > 0, and τ(l) is half of the width of the collar
as above.

Applying the monotonicity for eigenvalues and the above Theorems 1.3
and 1.4, we prove Theorem 1.1 on the clustering of the eigenvalues of Sι.

In Theorem 1.3, we have only studied the piece (Δ7(0), LQ(C 7 )) in the

decomposition (Δ/5 L
2(C7)) = 0 / 2€Z(Δ /(«), £ 2 (C 7 )) . In order to study the
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eigenfunctions on Sι and prove Theorem 1.2, we need to study Dirichlet

problems on the nonrotationally invariant pieces, that is, (Δz(n), L2(CZ))

( # i # 0 ) .

Let Co be the standard cusp (see Definition 2.1), Δ0(/ι) and LQ(C0)

be the phase components of Δ o and L2(C0) respectively on Co as in the

case of C z . For any n φ 0, let 0 < λ\(ΐ) < λ"{l) < be the Dirichlet

eigenvalues of (Δ7(/i), L J ( C Z ) ) ,and 0 < A"(0) < λn

2{0) < the Dirichlet

eigenvalues of Δ0(/ι) acting LQ( C O)
 = ^2([°> +°°)> e r ^ 0 . Intrinsically,

the limit of Cι as / —• 0 should consist of a pair of standard cusps.
Because of the reasons that will be explained in §2, we only take one
standard cusp Co here. Furthermore, let {φl(l)}^Lι be a complete system
of orthonormal Dirichlet eigenfunctions of {λn

k(l)}™=x. Then they satisfy
the following symmetry relations (Lemma 4.4):

(1.5) φn

k(l)(-r) = ±φn

k(l)(r)

(recall that φn

k(l)(r) is defined for r e [-τ(/), τ(/)]). Similarly let
l ^ L { be the corresponding orthonormal Dirichlet eigenfunctions of

^ . Then we have
Theorem 1.5 (Dirichlet Problem on Cz n Φ 0). With the notation as

above, for any n φθ, and k > 1,

^_1() / 4 ( ) , ( ) ,

Jimφn

lk_x{l)\r - τ(/)) = Jimφn

2k_x(l)\τ{l) - r) = \φn

k(Q)\r),

jim^(/)2(r - τ(/)) = Jim^(/)2(τ(/) - r) = \φn

k{Q)\r)

uniformly for r in compact subsets of [0, +oo).
Using an analogue of Maass-Selberg relation (Lemma 5.3) and a char-

acterization of Eisenstein series in terms of its growth in all the cusps of
5 0 (Lemma 5.2), we derive Theorem 1.2 from Theorem 1.5.

The organization of this paper is as follows. In §2, we recall the collar
theorem for hyperbolic Riemann surfaces with short geodesies (of lengths
< j). In §3, using the monotonicity for eigenvalues with respect to poten-
tials and domains, we prove Theorem 1.3. Then using the regular perturba-
tion theory, we prove Theorems 1.4 and 1.1. We also give the conjectural
lower bound for N^x) mentioned earlier and heuristic arguments for this
conjecture. In §4, we use the Feynman-Kac formula to prove Theorem
1.5. Then in §5, we prove Theorem 1.2.
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Finally, in §6, we speculate on some questions related to the spectral
degeneration for Sι, in particular, a characterization of embedded eigen-
values of SQ through degeneration. One of the motivations of this paper is
to understand Spec(50) through degeneration. By very simple arguments,
we can prove known facts about small eigenvalues (< \) for noncompact
surfaces from the corresponding results for compact surfaces (see [5] and
[12]), thus justifying partially this point of view. Besides this, the spec-
tral degeneration of Sι is an interesting and subtle singular perturbation
problem involving continuous spectrum and embedded eigenvalues.
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2. Standard collars around the pinching geodesies

In this section, we shall recall the Collar Theorem (Theorem 2.2) on
structures of disjoint standard collars around short geodesies and standard
cusps near punctures of any hyperbolic Riemann surfaces. Then in terms
of the Fermi coordinates with respect to the pinching geodesies, we write
down the phase decomposition for the Laplacians of the standard collars
and the cusps (equation (2.5)). In order to express the fact that the collar
around a pinching geodesic converges (intrinsically) to a pair of cusps in
terms of explicit coordinates, we have to shift the Fermi coordinate r
(equation (2.1)). Finally we study the spectral analysis on the standard
cusps to prepare for the proof of Theorems 1.1, 1.3 and 1.5.
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At first, we set
Definition 2.1. 1. A hyperbolic cylinder with core geodesic length /

and width 2w is a cylinder {(r, θ)\-w <r <w, 0 <θ < l}/(r, 0) ~
(r, 1) endowed with the hyperbolic metric rfr2 + /2 cosh2(r) rf20.

2. The standard cusp Co is a half infinite cylinder Co = {(r, 0)|O <

r < +oo, 0 < 0 < l}/(r, 0) ~ (r, 1) with the hyperbolic metric rfr2 +

Remark. The definition of the cusp here is easily seen to be the same as
the usual definition Co = {z\ Im(z) > 1}/{Z ~ z + 1} with the hyperbolic
metric y~2(dx2 + rfy2). Then we have the following collar theorem for
hyperbolic Riemann surfaces, which is due to L. Keen [21], J. P. Matelski
[27, the main Lemma and Remark 6.6], and B. Randol [29].

Theorem 2.2 (The Collar Theorem). 1. There is a universal constant
a > 0 (for simplicity we take a = \ from now on ) such that for any
simple closed geodesic y on any hyperbolic Riemann surface S with \y\<
I(= a), there is a hyperbolic cylinder with y as its core geodesic and of
width 2τ(/) = 2arcsinh(|csch^) (~ 21og J|J as \γ\ -+ 0) embedded
isometrically in S, which is called the standard collar of γ and denoted by

2. For each of the punctures of any hyperbolic Riemann surface S, the
standard cusp CQ is embedded isometrically near the puncture.

3. For any surface S as above, all the standard collars around short
geodesies (with lengths < \) and the standard cusps around the punctures
are disjoint.

For a general degenerating family of hyperbolic Riemann surfaces Sι,
we have more than one pinching geodesies. It is important that all the
standard collars around different pinching geodesies are disjoint (Theo-
rem 2.2(3)). For simplicity, we assume that there is only one pinching
geodesic y(l) of length /, and the standard collar for y(l) is denoted by
C z . Intrinsically, as / -> 0, the collar Cι should converge to a pair of
the standard cusps CQ U Co . But in terms of the Fermi coordinates (r, θ)
with respect to the pinching geodesic y(l) on C7, Cι does not converge to
Co U C o , since / cosh r —• 0 Φ e~2r as / —• 0. An important observation
here is that we shift and fix the left boundary of Cz at r — 0. Then as
/ -» 0, the core pinching geodesic y(l) moves to infinity towards right, so
to speak, and Cι converges to Co (see equation (2.1)). It seems that the
right cusp in the limit is missing. Actually the right cusp is at infinity in
terms of the shifted coordinate r. Since the right cusp is isometric to the
left cusp, we can concentrate on studying the left cusp which is at finite
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place, taking the symmetry into consideration. Examples of this symmet-
ric consideration include the proofs of Theorem 1.4 (in particular, (3.20))
and Lemma 4.5, and the statements of Theorem 1.5 and Lemma 4.4.

More precisely, the collar Cz around the pinching geodesic γ(l) of
length / (< \) can be represented as {(r, 0)|O < r < 2τ(/), 0 < θ <
l}/(r, 0) ~ (r, 1) with the hyperbolic metric dr2 +I2 cosh2(r - r(l))dθ2 ,
where τ(/) = arcsinh(^csch^) ~ log(y) as / -> 0. Then in these shifted
coordinates, the geometric convergence of C; to Co at finite r follows
from

(2.1) lim/cosh(r--τ(/)) = £>~r.

We are now going to express the Laplacian Aι of the standard collar
Cι in terms of the coordinates {r,θ). Recall that the Beltrami-Laplace
operator Δ for any Riemannian manifold (M, g^dx^xj) is given by

Δ =

where (gιj) = {g..) ι . For / > 0, let Aι be the Beltrami-Laplace operator
for Cι. Then after direct computations, we have that for / > 0,

(2.2) Δ, = ILr - tanh(r - τ ( / ) ) | - + -Ί ^ - ^ ,
1 dr2 V V dr l2cosh2(r-τ(l))dθ2

where r e[0, 2τ(/)], θ e[0, 1]. Since Cι is rotationally symmetric, that

is, Sι acts on Cz and then on L2(CZ), we have the following decompo-

sition according to phases,

(2.3)

where L2^) = {f(r)e2πyriYnθ\f(r)e2π^nθ e L2(CZ)} with the induced
norm from L2(CZ), that is,

(2.4) L2(CZ) ~ L2([0, 2τ(/)], / cosh(r - τ(l))dr).

Since Δ ; commutes with the rotational Sι action, we can decompose

(Δ7, L (C7)) correspondingly,

(2.5) l z

rc),L2([0,2τ(/)],/cosh(/ -
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where the operator Δ7(«) acting on the Hubert subspace £„(£",) is given
by

f%c\ A / N d2

 t , . .... d 4π2n2

(2.6) Δ,(n) = —j ~ tanh(r - τ(/))-j—r tanh(r τ(/)) , — , .
rfr2 ^ /2cosh2(r-τ(/))

By conjugating the operator Δ ^ H ) , we find a unitarily equivalent one
A./(n) which acts on L2([0, 2τ(/)], 6?r), the standard L2 space over the
interval [0, 2τ(/)]. More precisely, define

λ,(n) = cosh1/2(r - τ(/))Δ,(«) cosh 1/2(r -

d2 (\ 1. ,2 4 π V
(2.7)

The conjugated operator A7(/i) is still in divergence form. It is impor-
tant to note that only the Dirichlet boundary condition is preserved under
the above conjugation. Then with respect to the Dirichlet boundary condi-
tion, for any n e Z we have (Δz(/i), L J ( C Z ) ) ~ (Δ/(Λ), L2([0, 2τ(/)], rfr))
unitarily. Thus for the Dirichlet boundary condition,

(2.8) (Δ / 5 L
2(CZ)) ^ 0 ( ^ ( ^ 2 ) , L2([0, 2τ(l)],dr)).

n€Z

Similarly, the Beltrami-Laplacian Δ o of the standard cusp Co is given
by

(2-9) Δ * _!_+ * * - * !
° ar2 dr Qθ2

and is decomposed into ( Δ o , L2(C0)) = φ n € Z ( Δ 0 ( n ) , ^ ( C o ) ) , where we

have the Hubert space L2(Cp) = {f{r)e2πs/^n θ\f{r) e L2([0, +oo), e~r dr)}
and the operator Δ o («) acting on it:

(2.10) A0(n) = j-ϊ-^-r-4π2n2e2r.

The conjugated operator AQ(n) is given by

(2.11) Δ0(/i) = —j - ^ - 4π n ^ ,
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and acts on L2([0, oo), dr). Finally with respect to the Dirichlet bound-
ary condition,

(2.12) (Δ o , L2(C0)) ~ 0 ( Δ o ( n ) , L2([0, +00), dr).

We now recall the spectral analysis on C o .
Proposition 2.3 (Spectrum of C o ) . With respect to the Dirichlet bound-

ary condition, ( Δ 0 , L 2 ( C 0 ) ) has continuous spectrum [\, +00), which

comes from the rotationally invariant piece (Δ 0 (0) , L Q ( C 0 ) ) . There are

also infinitely many embedded eigenvalues from (A0(n), L2

n(CQ)) for all

n Φ 0 . The continuous part of the spectral decomposition of Δ o is given

by the generalized eigenfunctions E(r , 9 ; | + yf-ϊt) = erfl sin(rt) for all

t>0.

Remark. We use the notation E( j + y/^Tt) to resemble the Eisen-
stein series E(- \ + Λ/-TO which are the generalized eigenfunctions of
general noncompact hyperbolic Riemann surfaces (see §5 for details).

Proof With respect to the Dirichlet boundary condition, A0(n) is uni-

tarily equivalent to Δo(«) for all n € Z, where AQ(n) is given by (2.11).
First we assume that n = 0. As is well known, the following Dirichlet

eigenvalue problem,

(2.13)
l / feL2([0,+oc),dr),

has continuous spectrum [\, +00), and the generalized eigenfunctions
are given by sin(fr) with all t > 0. Recalling the unitary isomorphism
between Δo(«) and Δ 0 (π), we see that E( \ 4- V^ϊt) = e^1 sin(rt) are
the generalized eigenfunctions of (Δ o , L2(C0)) for all t > 0.

Next we assume that n Φ 0. Recall from (2.11),

Since \ + rπ2n2e2r -> +00 as r -> +cx), by a Theorem of Titchmarsh-
Weyl (see [34, §5.5, 5.9] or [29, Property B on p. 300 and Lemma 3]), the
following Dirichlet eigenvalue problem,

(2.14)

has only discrete spectrum which does not accumulate at any finite point.
By the Max-Min principle (Lemma 3.1), all the Dirichlet eigenvalues are
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strictly larger that \, and are embedded in the continuous spectrum

[I,+00) of ( Δ 0 , L 2 ( C 0 ) ) .
The following is the Decomposition Principle [13, Proposition 2.1] men-

tioned earlier in the introduction.
Proposition 2.4 (Decomposition Principle). Let M be a complete Rie-

mannian manifold, and let K c M be any compact submanifold. Then
the continuous spectrum of M is the same as the continuous spectrum of
M\K with theDirichlet boundary condition on dK.

From Proposition 2.3, we have the following well-known fact.
Corollary 2.5 (The Continuous Spectrum of So). Let So be any non-

compact finite volume hyperbolic Riemann surface; then it has continuous
spectrum [\, +oo).

Proof Let K = So \ (J Co be the complement of all the standard cusps
in So then K is compact, and the conclusion follows from Propositions
2.3 and 2.4.

3. Bounds on the clustering of eigenvalues

In this section, we will first state the variational characterizations of
eigenvalues (Lemmas 3.1 and 3.2) and the monotonicity properties of
eigenvalues (Lemmas 3.3, 3.4 and 3.5). Applying the results in §2, we
prove Theorems 1.3, 1.4 and 1.1. Then we discuss improvements for the
lower bound for N^x) in Theorem 1.1 and a conjectural lower bound.

Now we recall some basic materials on operators of divergence form
(see [6, Chapter 1] and [10, Chapter VI]). Associated to each operator of
divergence form

(3.1) L=^-r (a(r)^J - V(r), m < r < M,

where a(r) > 0 for r £ [m, M] and V(r) is the potential, we have a
quadratic form

N ίM < ,du(r)dv(r) ... . , N , λ ,

where w, v are two C 1 functions over [m, M]. The Green's formula
for the operator L is given by (see [10, p. 278])

(3.2) /
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which follows from integration by parts. Let b(r) be a positive function
on [m, M]. Then the following Dirichlet eigenvalue problem

(Lu(r) + λb(r)u(r) = O,
( \ u(m) = u{M) = 0
can be described through the Rayleigh quotient

Q(u,u)

Cb(r)u2(r)dr'
That is, we have

Lemma 3.1 (The Max-Min Principle). Let {λk}™ be all the Dirichlet
eigenvalues of the problem (3.3) counted with multiplicity. Then for any
k> 1,

(3.4) λ k = max min M ^r'p ,
{9 'Ψ}{f\f^b(r)φi{r)f{r)dr=o, \<i<k-\} fm b(r)f {r)dr

where φ. e L2([m, M]) for 1 < i < k - 1 and f e H*([m,M]). The

space H^dm, M]) is theSobolevspace over [m, M] with vanishing bound-

ary values. Note that for k = 1, there is no other restriction on f besides

feHl{[m,M]) in (3.4).
Lemma 3.2 (Courant-Weyl Principle). With the same notation as in

Lemma 3.1, for any k > 1,

(3.5) λk= max min M P >
k {/,,- Λ-J{/|/,(Λ=o, i<f<*-i} J^b(r)f2{r)dr

where I. (i = 1, ••• , k - 1) are linearly independent functionals on

HQ ([m, M]), and f € HQ ([m, M]), the Sobolev space as above.
Remarks. 1. If the end points of the interval [m, M] are not fi-

nite, then the corresponding vanishing boundary conditions are dropped
in Lemmas 3.1 and 3.2.

2. There is a similar variational characterization for the Neumann
eigenvalues. The only difference is that in this case the admissible Hubert
space Hl{[m, M]) is replaced by the Sobolev space Hι([m, M]) without
vanishing boundary conditions (see [6, pp. 14-17]).

From the above Max-Min principle, we get immediately various mono-
tonicity properties of eigenvalues (see [6, Chapter 1, §5]).

Lemma 3.3 (Potential Monotonicity). Let L{ = d1 jdr1 - Vχ{r) and
L2 = d2/dr2 - V2(r) be two operators over [m, M] with Vx{r) > V2(r) for
all r e[m, M\. Then the eigenvalues of Lχ are larger than the correspond-
ing eigenvalues of L2 with respect to either the Dirichlet or the Neumann
boundary conditions.
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Lemma 3.4 (Domain Monotonicity). Let L be an operator of diver-
gence form as in (3.1) and - o o <a<b <c< + 0 0 be three real numbers.
Then the following hold:

1. Let all the Dirichlet eigenvalues of (L, L2([a, c])) be {AJ^0 counted

with multiplicity, and combine all the Dirichlet eigenvalues of (L, L2([a, b]))

and (L, L2([b, c])) into an increasing sequence {λ^ . Then λ( < l for

all i > 1. In particular, the Dirichlet eigenvalues of (L, L2([a, c])) are

smaller than the corresponding Dirichlet eigenvalues of (L, L2([a, b])).
2. Let all the Neumann eigenvalues of (L, L2([a, c])) be {μ^

counted with multiplicity, and combine all the Neumann eigenvalues of
(L, L2([a, b])) with the Neumann eigenvalues of (L, L2([b, c])) into an
increasing sequence {μj^0 . Then μt > μi for all i>\.

Similarly, using the Courant-Weyl principle, we have [36, Theorem 9.1
and Corollary 1]

Lemma 3.5 (Boundary Condition Monotonicity). Let L be an opera-
tor of divergence form as in (3.1) over [m, M], and b(r) be a continuous
positive function on [m,M]. Furthermore, let {λ.}™ and { μ j ^ be re-
spectively the Dirichlet and Neumann eigenvalues of Lu(r)-\-λb(r)u(r) = 0,
re[m,M]. Then for all i > 1

After these preparations, we now start to prove Theorems 1.3, 1.4 and
1.1.

Proof of Theorem 1.3. Recall from §2 that Δ7 is the Beltrami-Laplace
operator of the standard collar Cι and can be decomposed according to
phases as: (Δ7, L

2(C7)) = ew€Z(A7(W), Lj(C7)) (equation (2.5)). With
respect to the Dirichlet boundary condition, we have a unitary equivalence

(3.6) (Δ7(0), L2

0{C,)) ~ (21/(0), L2

0([0, 2τ(/)], dr)),

where the conjugated operator Δ;(«) is given by (equation (2.7))

(3.7) Δ;(0) = jμ-(\ + \

We would like to bound the Dirichlet eigenvalues of Δ{(0) (or Δ^O)) by
explicitly computable eigenvalue problems.

By the potential monotonicity (Lemma 3.3), the Dirichlet eigenvalues
of

< 3 8 » Uo-VpτW,-,
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are clearly larger than the corresponding Dirichlet eigenvalues of the fol-
lowing problem

(3 9) ί £«(')-i«(')
\«(0) = «(2τ(/)) = 0.

On the other hand, by the domain monotonicity (Lemma 3.4), the Dirich-
let eigenvalues of the problem (3.8) are smaller than the corresponding
Dirichlet eigenvalues of the following problem:

λι{n)u(r)

(3.10) I r e [0, (1 - δ)τ(l)] U [(1 + δ)τ(l), 2τ(/)],

I M(0) = «((1 - δ)τ(l)) = «((1 + δ)τ(l)) = u{2x{l)) = 0,

where δ is any constant satisfying 0 < δ < 1. Note that for any r e

^ sech2(r - τ(/)) < i sech2(<ϊτ(/)).

Thus by the potential monotonicity (Lemma 3.3) again, the eigenvalues of
the Dirichlet problem (3.10) are smaller than the corresponding Dirichlet
eigenvalues of

[ = 0,
(3.11) I r€[0,(l-<J)τ(/)]U[(l+<J)τ(/),2τ(/)],

I «(0) = «((1 -δ)τ(l)) = u((l + δ)τ(l)) = u(2τ(l)) = 0.

Therefore the Dirichlet eigenvalues of the problem (3.8) are bounded from
below and above respectively by the corresponding Dirichlet eigenvalues
of the problems (3.9) and (3.11). Clearly the Dirichlet eigenvalues of these
two problems accumulate at every point of [^, +oo) as / —• 0 and δ —> 0.
Then it follows that the Dirichlet eigenvalues of the problem (3.8) cluster
at every point of [\, +oo) as / —> 0. By the unitary equivalence (equation
(3.6)), the Dirichlet eigenvalues of (Δ7(0), ^(C,)) cluster at every point
of [\, +oo) as / - + 0 .

We are now going to bound the rate of the clustering of the eigenvalues.
From the previous paragraph, the Dirichlet eigenvalues of (Δ7(0), LQ(C7))

are bounded by the corresponding Dirichlet eigenvalues of the problems
(3.9) and (3.11) respectively from below and above. The asymptotics of
these two problems are for the classical harmonic oscillators and can be
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evaluated explicitly. More precisely, for / < \ and any x > \ ,

\{λ\λ, an eigenvalue of (3.9), \ < λ < x}\

(3.12) | μ μ , an eigenvalue of (3.11), \ < λ < x}\

= 2 1(1 - x - i - isech2(<Jτ(/))

1-1 - 2,

where the function [t] equals the integral part of ί and the function
[ί]+ = max{t, 0} for. t e R. Recall the definition of DN?(x),

DN?(x) = \{λ\λ is an eigenvalue of (3.8),$ < λ < x}\.

Then it is clear that for / < 5 and any x > \ ,

- 1 - 1 sech 2 ((5τ(/))]- 2 <

Noticing that for M > m > 0, \]M - m > VJϊ-m/y/M, and | sech2(j;)|

< 4e~2y for y > 0, we get immediately
+

DN?(x) > |
-2δτ(l)

, * - - -

Let 0 < δ = ί ^ p < e ' 1 < 1 it then follows that

DNf(x) > \

(3.13)
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where the function θ[/] = max{0, t - Γ1} for t > 0. This proves the
part 1 of the lemma.

Next we prove the part 2. By the Max-Min principle (Lemma 3.1) and

(3.7), any Dirichlet eigenvalue λ(l) of (Δ7(0), LQ(C 7 )) satisfies

(3.14) λ ( / ) > .

Then λ(0) = l i m ^ ^ / ) > ±. Write λ(O) = \ + Γ for some ί > 0.

Let ΛΓ7 be a constant satisfying AΓ/J^^(/)(τ)|r=0 = ί, where φ(l)(r) =

φ(l)(r)(lcosh(r-τ{l)))ι/2. Since ^(Q)φ{l) + λ{l)φ{l) = 0, by (2.7) we

have
w i 1 1

1? ι U + 4
Notice that lim^Q | + | sech2(r - τ(/)) - λ(l) = t2 for any finite r > 0,
A'/p(/)(0) = 0 and ^/^^(O( r)lΓ =o = ^ Then from the stability of initial
value problems for ordinary differential equations with respect to coeffi-
cients it follows that lim, oΛT70(/)(r) = sin(rί) uniformly for r in com-

/ 0 /

pact subsets of [0, +oo), because (d2/dr2-t2) sin(rί) = 0, sin(rί)| r = 0 = 0

and £sin(rt)\r=0 — t. Therefore,

limK,φ(l)(r) = E (r i + V=ϊt) = eβsin(rί)

uniformly for r in compact subsets of [0, +00). This completes the proof
of part 2 and Theorem 1.3. q.e.d.

The lower bound of DN®(x) in (3.13) is not optimal and can be im-

proved greatly by choosing splittings of the interval [0, 2τ(/)] finer than

[0, (l-ί)τ(/)]U[(l+ί)τ(/), 2τ(/)] in the eigenvalue problem (3.10). There

is a conjectural lower bound for DN®(x), which is ^τ{l)Jx - \ - b(x),

where b(x) is some constant independent of / < \ . Correspondingly, the
lower bound for N^x) in Theorem 1.1 (equation (1.1)) can be improved.
We will postpone these discussions after the proofs of Theorems 1.4 and
1.1.

Proof of Theorem 1.4. For 0 < / < \ and n eZ, denote the Neumann

and Dirichlet eigenvalues of (Δ7(n), L2(CZ)) by {/ι"(/)}~ and {λ?(/)}~

respectively. We are going to prove Theorem 1.3 in two steps:

1. (n = 0). The eigenvalues {μ^(/)} °̂ cluster at every point of

[\ 9 +00) as / —• 0 at the rate stated in Theorem 1.4.

2. (nφΰ). All other eigenvalues {Jn^oi^U^T d o n o t accumulate at

any point of [\ , +00) and thus do not contribute to the clustering.
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Step 1 (n = 0). Since Δz(0) is of divergence form with a zero potential,
by the Green's formula (3.2) or the Max-Min principle (Lemma 3.1), it is
clear that μ\{l) = 0 and μ°.(l) > 0 for all i > 2. Note that the Neumann
boundary condition is not preserved by the unitary transformation from
Δ7(0) to Δz(0). Thus we cannot bound the Neumann eigenvalues of Δz(0)
in terms of the Neumann eigenvalues of A, (0) as in the case of the proof of
Theorem 1.3 for the Dirichlet problem. Instead, we compare the Neumann
eigenvalues with the Dirichlet eigenvalues. According to Lemma 3.5, for
all i > 1,

(3.15) μ°(/) < λ°(/) < μ°+2(0.

From (3.14), λ\{l) > \ . Thus μ°(/) > \ for all i > 3 . It follows then for
any x > \

DN?(x) - 2 < NN?(x) < DN°(x) + 2,

where DN®(x) and sNN®(x) are respectively the Neumann and Dirichlet
counting functions of Δ;(0). We have discarded the first two Neumann
eigenvalues, and -2 appears on the left. On the other hand, +2 appears
on the right because of the shifting of indices by 2 in (3.15). From the
bounds of DN®(x) in Theorem 1.3, we get immediately that for / < j
and any x > i ,

Step 2 (n Φ 0). Now we are going to show that Un^oi^i^T ^°
not accumulate at any finite point as / -» 0. Let ψ be any Neumann
eigenfunction of ΔZ(AZ) with eigenvalue μϋ\{ΐ) satisfying

1 d ( dφ
j sech(r - τ(/))-7- I / cosh(r - τ(l))-f-

_ 4 π V s e c h 2 r _ τ / n [

I2 '
= 0.

Multiply both sides of the above equation by / cosh(r-τ(l))φ and integrate
over [0, 2τ(/)]. Using the Neumann boundary condition and integration
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by parts, we get

Γ2t(θ /Jfn\
2

'cosh(r-τ(/»(g) dr

(3.16) +4πV/ 4
2t(/)

Note that τ(/) = arcsinh^ csch ̂ ) ~ log j as / —• 0 and

1 2 . 1 2

>0 jl /—0 jl

Then there is some constant c0 > 0 such that for / < ^ and any r e
[0, 2τ(/)], (l//2)sech2(r - τ(/)) > c 0. Substituting this inequality into
(3.16), we obtaifo immediately

r2τ(l) \ r2τ{l)

cΛπn / ltosh{r-τ{l))φ2dr<μn(l) / /cosh(r- τ(l))φ2dr.
Jo i ./o

That is, for all / > 1 and any n,

(3.17) μ-(l)>co4π2n2.

For any x > \, let HQM = [yx/co4π2] -f 1. Then for any n > no(x)

and Ϊ > 1, //"(/) > x . Therefore, \Jn>n (x)^"(1)}T h a s n o intersection

point with [\, x].

Now we look at the case where 0 Φ \n\ < no(x). Since

(3.18) lim \ sech2(r - τ(/)) = e2r,

we can pick constants /0(JC) > 0 and 0 < ro(x) < τ(lo(x)) such that for

/ < lo{x) and r e [ro{x), 2r - τ{l)0{x)],

(3.19) -ί sech2(r - τ(/)) > - ^

By a similar computation as in (3.16), and replacing the interval [0, 2τ(/)]
by [ro(x), 2τ(/) — rQ(x)], we show that any Neumann eigenvalue μ of
(Δz(/ι), L2([r0(x), 2τ(/) - rQ(x)], / cosh(r - τ{l))dr)) (n φ 0) satisfies

x 2 2

 >

4π2

That is, when n Φ 0 and / < /0(x) there are no Neumann eigenvalues of

(Δ ;(Λ) , L2{[r0(x), 2τ(/) - ro(x)], / cosh(r - τ(l))dr)) belonging to [\, x].
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In order to bound the Neumann eigenvalues of (Δ^w), L2([0, 2τ(/)],

/ cosh(r- τ(l))dr)) from below by the domain monotonicity (Lemma 3.4),

we need to consider the Neumann eigenvalues of {Δ^n), L2([0, ro(x)] U

[2τ(l)-ro(x), 2τ(/)], lcosh(r-τ(l))dr)). Notice that for 1 < \n\ < nQ(x),
the Neumann eigenvalues of (Aι(n)9 L2[0, ro(x)], I cosh(r-τ(/))dr)) con-

verge to the Neumann eigenvalues of (Δ 0(π), L2([0, ro(x)]9 e' dr)) as

/ -> 0, which has of course only discrete spectrum. It implies that for

/ < lo(x), there are at most finitely many Neumann eigenvalues of

2 ((J (Δ,(Λ), L2([0, r0(x)],lcosh(r-τ(l))dr))
\<\n\<no(x)

belonging to [\, x]. Via the substitution r = 2τ(/) - r, it is clear that

(3 20) ( Δ / ( W ) ' L ( [ 2 τ ( / ) r ° W

~ (Δ,(Λ) , L2([0, ro(x)], I cosh(r -

We have considered the case 0 < / < /0. Notice further that for 0 <

lo(x) < I < \ , the Neumann problems

U (Δ7(/ι), L2([0, 2τ(/)], /cosh(r- τ{l))dr))
\<\n\<no{x)

form a smooth family in /. It then follows that there exists a constant

B(x) independent of / such that for / < \ , the number of the eigenvalues

°f U κ | n | < π (x)^/ !(0)Γ belonging to [\ , +oo) is bounded from above by

B(x). In particular, Ui<ιn|<π (*){/*?(0)Γ ^° n o t c l u s t e r a t anY point of

[ i , x ] a s / - , 0 .

Combining the above discussions about the two cases \n\ > nQ(x) and

1 < \n\ < no(x), we see that U ^ o ^ W ^ Γ ^° n o t c l u s t e r a t anY point

of [ |, x]. Since JC> ̂  is arbitrary, U ^ o W W}Γ d o n o t c l u s t e r a t anY

point of [\ , +oo). This proves Step 2.

Finally, noticing that the Neumann eigenvalues of (Aι, L (C7)) consist

of {μ^(/)}?° and Un^oi^^^T» w e S e t ^ e conclusions in Theorem 1.4
immediately. The proof of Theorem 1.4 is now complete.

Proof of Theorem 1.1. By the assumption, Sι is a degenerating fam-
ily of hyperbolic Riemann surfaces with m (m > 1) pinching geodesies

, , ym(l)}, and the pinching geodesies y.(l) have length /. with
Q /. = 0 for I < i < m. Let /0 > 0 be a constant such that /z < ^

(/ = l , , m) if / < /0. For / < /0, let (J C; be the union of all the
standard collars around the pinching geodesies in 5^, and U Co be the
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union of all the standard cusps embedded in SQ. Then for 0 < / < /0,
Sι\\JCι is a compact Riemannian manifold with boundary. Furthermore,
{Sι \ U C / } 0 < / < / form a smooth family of compact manifolds with bound-
ary (see [3,~Property IV in §3]). Therefore, the eigenvalues of Sι\\JCι

converge to the corresponding eigenvalues of SQ \ \J Co as / —• 0, with
respect to both the Dirichlet and the Neumann boundary conditions. This
follows from the general theory for regular perturbations in K. Kodaira
and D. C. Spencer [22] or T. Kato [19]. In particular, the eigenvalues of
sι \ U cι 9

 w i t h respect to either boundary condition, do not accumulate
at any finite point as / —• 0. Applying the domain monotonicity (Lemma
3.4) to Sj = (St \ LJC/)U(UC/) and Theorems 1.3 and 1.4, we see im-
mediately that the eigenvalues of St cluster at any point of [\ , +oc) as
/ - 0 .

We are now going to bound the rate of the clustering. By the domain
monotonicity for the Dirichlet eigenvalues, λ^S^ < ^.(UQ) for all i' < 1.
Since there are at most 4g - 2 eigenvalues of Sι less than \ (see [4]),
the lower bound for N^x) follows from the lower bound of DN^^ (x) in
Theorem 1.3.

On the other hand, by the domain monotonicity for the Neumann eigen-
values, an upper bound for Nt(x) is given by the summation of the total
number of Neumann eigenvalues of (Aι, Sι \ \J Ct) and (Δ7, |J C7) be-
longing to [\ , x]. By the discussion at the beginning of the proof, the
number of the Neumann eigenvalues of (Δ7, S/MJ C/) belonging to [\, x]
is bounded from above by a constant B2(x) independent of 0 < / < /0.
Then the upper bound for N^x) follows from the upper bound of NN^x)
in Theorem 1.4. q.e.d.

As mentioned earlier, the lower bound for iV ĵc) in Theorem 1.1 can
be improved. It is clear from the proof of Theorem 1.1 that it suffices to
improve the lower bounds for DN?{x). Recall from (3.8) that DN?{x)
is the spectral counting function of the following Dirichlet problem:

[d2/dr2 - (I + i sech 2 ( r- τ(/))]M(r) + λu(r) = 0,

(3.21) { r€[0 ,2τ(/)] ,

iι(0) = κ(2τ(/)) = 0.

We need to bound the eigenvalues of (3.21) from above by some explic-
itly computable eigenvalue problems. The idea is to make better approx-
imations than the problem (3.10). For any 1 > δ > ε > 0, consider the
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following subintervals:

[ 0 , ( 1 - δ)τ(l)] U [(1 - δ)τ(l), (1 - ε)τ(/) u [(1 + e)τ(/), (1 + δ)τ(l)]

285

Notice that for r e [0, (1 - δ)τ(l)] U [(1+ δ)τ(l), 2τ(/)],

andfor

i sech2(r - τ(/)) < ^ sech2(e5f(

i sech2(r - τ(/)) < i sech2(ετ(/)).

Then by the domain monotonicity (Lemma 3.4( 1)) and the potential mono-
tonicity (Lemma 3.3), the Dirichlet eigenvalues of the problem (3.21) are
smaller than the corresponding ones in the combination of the following
two Dirichlet problems:

[d2/dr2 - (i + I sech2(<5τ(/)))]«(r) + λu{r) = 0,

(3.22)

(3.23)

«(0) = «((1 - δ)τ(l)) = M((1 + ί)τ(/)) = i/(2τ(/)) = 0,

[i/2/i/r2 - ( i + i sech2(δτ(/)))]M(r) + AM(Γ) = 0,

r G [(1 - ί)τ(/), (1 - β)τ(/)] U [(1 + ε)τ(l), (1 + ί)τ(/)],

= 0.

For any JC> \ , let ^ ^ ( x ) = \{λ an eigenvalue of (3.22) \\<λ< x}\ and

^ ε = \{λ, an eigenvalue of (3.23) |£ < λ < x}\ be the spectral counting

functions of the the problems (3.22) and (3.23) respectively. Then for any

Now we take δ = ί ^ p then by (3.13),

- 1
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when / is small. For the problem (3.23),

> §«!)* 1 e
tχ--4-

-2ετ(l)

x — -
X 4J

-rτ(')«\/x-4-2

1 e
,x--4-

-2ετ(l)

χ-h

2,
π

9
" 4 2

Then for x > \ and / small,

Nt{x) > | τ ( ^ - | logτ(/) e

-2ετ(l)

- 5 .

For small /, take ε = logo logτ(/)/τ(/). Then it follows that 0 < ε < δ <
1, and

2
Nt{x) > -

Γ 2
- ^ - -logo Γ

- - - c 2 ,
where c2 is some constant independent of /. By taking a better approx-
imation to [0, 2τ(/)] using 0 < β / < β < ί < l , and a similar argument,
we can get that for small /,

Γ 2
4

where c3 is a constant. We can repeat this process and prove that for any
n e N and small /,

I Γ 2 / Γ
l l l o g τ ( / ) y x - - - cn,

where log o log o o log is n compositions of log, and cn is a constant
independent of /. The above inequality strongly suggests the following
conjectural lower bound for Nt(x): for any x > \ and /,

(3.24)

where c is a constant independent of /. Note that the constants cn ->
+oo as n —> oo. Thus we cannot use the above arguments to prove the
conjectural lower bound for N^x).
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4. Stability of embedded eigenvalues for the degenerating collars

In this section, we will recall the Feynman-Kac formula (Proposition
4.1), and use it to prove the convergence of the Dirichlet heat kernel of
(Δ^/i), L2

n{Ct)) as / -> 0 (Lemma 4.2) for n φ 0. By bounding from
below the Dirichlet eigenvalues of ΔZ(AZ) restricted to subcollars of Cι,
we prove the convergence of the Dirichlet eigenvalues of (Δz(w), L^(C7))
as / —> 0. This, combined with the convergence of the heat kernels, would
finish the proof of Theorem 1.5.

For any operator L = d1 jdr1 - V(r) acting on L2([m, M\), its (min-
imal) Dirichlet heat kernel is a function PL(x, y, t) in C°°([m, M] x
[m, M] x R+) which satisfies

where Lχ is the operator L acting on the x variable, and the <$ (•) is
the Dirac delta function at y. If the end points of the interval \m, M]
are not finite, then the corresponding vanishing boundary conditions are
dropped. In this case, the minimal Dirichlet heat kernel is defined to be
the limit of the Dirichlet heat kernels of an exhausting family of finite
subintervals of [m, M] (see [6, Chapter VIII]).

An important fact is that the Dirichlet heat kernel PL(x9y9 t) can be
expressed through the Brownian motion on R1. That is, we have [30,
Equation (3)]

Proposition 4.1 (Feynman-Kac Formula). With the notation as above,
the Dirichlet heat kernel PL(x, y, t) can be written as

PL(x ,y,t) = P(x9y, t)E{ap(- ί ' \ V(r(s))ds)\r(0) = x, r(2t) = y,
Jo L

r{s)e[m,M]forse[0,2t]},

where P(x9y, t) = ^ e x p f - ^ ^ ) is the heat kernel of the operator
d1 jdr1 on R1, and E{g(r(-))\r( ) e Ω} is the integration of g over a
measurable subset Ω of the Wiener space of R1 with respect to the Wiener
measure.

Let n Φ 0 be an integer, which will be fixed throughout this section. Let
Pt(x 9y9t) be the Dirichlet heat kernel of (A7(/i), L2([0, 2τ(l)]dr)), and
P0(x,y91) be the minimal Dirichlet heat kernel of (Δo(«), L2([0, oo), dr)).
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Recall from (2.7) and (2.11) that

- I \ + \ sechz(r -

1

4 π V .2,
— = — sech (r

2 2 2r

Then using the Feynman-Kac formula, we obtain

P,(x,y,t)

(4.1)

x,y,t) jexp (- ζ \\\ + \ sech2(φ) -

r(0) = x, r(2t)=y, r(s) e [0, 2τ(/)] for s € [0,

(4.2)

= P(x, y, t)E { exp I - / ± i + 47t 2nV ( ί ) rfj

r(20 = y , r(j) € [0, oo) for 5 e [0, 2t] \ .

We are going to use the above expressions of the heat kernels to prove
Lemma 4.2. With the notation as above, for any x, y > 0 and t > 0,

Since

9 9

i + isech2(φ)-τ(/))+^-sech2(φ)-τ(/))

exp -

< 1,

and £"{ 1} = 1, by the Lebesgue dominated convergence theorem it suffices
to prove the pointwise convergence. Each point in the domain of integra-
tion for P0(x, y, t) corresponds to a continuous path in [0, oo) with x
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and y as its end points, that is, a continuous map r: [0, 2t] —> [0, oo)
with r(0) = x and r(2t) = y . Since {r(jc)|s € [0, 2t]} is a compact subset
of [0,oo),

Jim I + \ sech2(φ) - τ(/)) + ̂ - sech2(φ) - τ(/)) = I + 4τΛV φ )

uniformly for 5 G [0,2/]. This implies the pointwise convergence, and
thus proves Lemma 4.2. q.e.d.

Recall from (3.18) that Iim7_>o(l//2) sech2(r-τ(/)) = e2r. Furthermore,
from (3.19), for any x > \, let lo(x) > 0 and 0 < rQ(x) < τ{lQ{x)) be
constants such that for any / < lo(x) and r £ [rQ(x), 2τ(/) - rQ(x)],

4π « - 2/—^—sech ( r -

Lemma 4.3. With the notation as above, let λ{([rQ(x), 2τ(/) - rQ(x)])

be the first Dirichlet eigenvalue of (Δ7(/i), L2([r0(x), 2τ(/) - ro(jc)], rfr)).

Then for l<lo(x),

λι([r0{x)92τ(l)-r0(x)])>x.

Proof By the above assumptions on lo(x) > 0 and ^0(x) > 0, the
potential of Az(«) is strictly larger than x when r is restricted to the
subdomain [ro(x), 2τ(/) - ro(x)]. Thus the conclusion follows from the
Max-Min principle (Lemma 3.1). q.e.d.

For convenience, we set up the following:
Lemma 4.4. (1) Any Dirichlet eigenvalue of (Δ7(Λ) , L2([0, 2τ(/)], dr))

is of multiplicity one.
(2) Let φ be any

Then φ(2τ(l) - r) = ±φ(r).
(2) Let φ be any Dirichlet eigenfunction of (ΔZ(Λ) , L2([0, 2τ(/)], dr)).

Proof. Let λ be a Dirichlet eigenvalue of (Δ ;(«), L2([0, 2τ(/)], dr)),
and φ be an eigenfunction of λ. Then φ satisfies the following ordinary
differential equation:
(4.3)

4 π V 2 _
drzr,, | 4 4 -w, / 2 secn^r

By the uniqueness of the initial value problems to ordinary differential
equations, the eigenspace of λ is one-dimensional, that is, λ is of mul-
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tiplicity one. This proves part (1). For part (2), notice that (4.3) is
invariant under the substitution r -> 2τ(/) - r, and thus φ(2τ(l) - r)
also satisfies (4.3). Therefore, by part (1), φ(2τ(l) - r) = cφ(r), where
c is a constant. By iterating this equality, we obtain φ(2τ(l) - r) =
cφ(r) = c2φ(2τ(l) - r), that is, c2 = 1. It then follows that c = ±1
and φ{2τ(l) — r) = ±φ(r). q.e.d.

Before proceeding to prove Theorem 1.5, we first need to establish the
following Lemma 4.5 which is similar to Proposition 7.1 and Theorem 7.2
in [17]. However, for completeness, we include here the proof which also
brings out the symmetric consideration pointed out at the beginning of §2.

Lemma 4.5. For any integer kQ > 1, let ψχ (I), , ψk (/) be any

orthonormal Dirichlet eigenfunctions of (Az(n), L2([0, 2τ(/)], dr)) with

eigenvalues vχ (I), , vk (/) respectively. Assume that for a sequence I. —•

0, for all 1 < k < k0, lim._>ooi/ fc(/ ) exists, and ψk{l;){r) converges to

some function ψk{0) uniformly for r in compact subsets of [0, oo). Then

ψk(2τ(l)-r) converges to some function ψk(r) uniformly for r incompact

subsets of [0, oo) (1 < k < kQ), the limit function ψx(0), ••• , ψk (0),

y*(0) , ••• , ψk (0) are all Dirichlet eigenfunctions of (Δ 0(/i),

L2 ([0, oo)], dr)), and the kQ pairs of functions (ψx{0), ψ*(0)), ••• ,

( ^ ( 0 ) , ψk (0)) are linearly independent.

Proof By Lemma 4.4 we obtain ψk(l)(2τ{l) - r) = ±ψk(l)(r) for 1 <

k<kQ. Since Ψk{lj) converges to ψk(0)(r) uniformly for r incompact
subsets of [0, oo), it is clear that ψk{lj)(2τ(lj)-r) converges to ±ψk(0)(r)
uniformly for r in compact subsets of [0, oo), by taking a subsequence
if necessary, and the limit function is denoted by ψk(0) (1 < k < k0).

If ( ^ ( 0 ) , ψx(0)), , (ψk(0)9 ψ£ (0)) are not linearly independent,

then there exist constants aχ, , ak not all zero such that Σx° ak(ψk(0),

ψk(0)) = 0. In particular,

(4.4) Jim\f̂ akψk(lj)(r) = lim £ % ^ ( / )(2τ(/;) - r) = 0

uniformly for r in compact subsets of [0, oo). Let ^(0) = liπ^ _0^k(lj)

for 1 < k < k0, x = maxίi/^O), ••• ,vk (0)} + 1, and ro(x) be the

constant in Lemma 4.3. Furthermore, let η(r) be a cut-off function with

η(r) = 1 for [ro{x) + 1, 2τ(/) - ro{x) - 1], η(r) = 0 for r < ro(x)

or r > 2r(/) - ro{x), \η(r)\ < 1 and | $ | < 2 for all r. Let K,(r) =

\ + \ sech2(r - τ(/)) + (4πV// 2 ) sech2(r - τ(/)) be the potential of A,{n).
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Then by the Max-Min principle (Lemma 3.1) and Lemma 4.3 we have

lτ(\ίλnΈ\ϋakΨk{lj))Ϋ ^Vt

>λι([ro(x)2τ(l)-ro(x)])>x.

On the other hand
(4.6)

2η(X[2W d2η(

= {L

X

dr

))

d r

/
JO

2τ(/;)

2/dr2)In the last equality, we have used (d2/dr2)ψk(l) = iΊΨk(l) - vk(l)ψk(l).
Then from (4.6) and (4.4), it follows that for small lj

rWj)ίd ( k° \Y

rlτ{l) ko

<e(lj)+ ' Σ
JO j

d r

*o *0

1 V ' 1

where ε(l) —> 0 as /. -> 0. Substituting the inequality (4.7) into the
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Rayleigh quotient, we get that for small I.,

This is a contradiction to the inequality (4.5). Therefore (^(0) ,
• , (ψk (0), ψk (0)) are linearly independent. Finally, notice that ψk{0)

and ^ ( 0 ) clearly satisfy

A0(n)u(r) + vk{Q)u{r) = 0, κ(0) - 0.

That is, they are Dirichlet eigenfunctions of ( Δ 0 ( Λ ) , L*([0, oo), dr)).
The proof of Lemma 4.5 is now complete.

Proof of Theorem 1.5. The proof is divided into two steps. First, we
use Lemma 4.5 to prove \mϊι^oλ

n

2k_χ{l) = lin^^A^i/) = ^(0) Then
we use Lemma 4.2 to prove

for r > 0.
Step 1. First all, intrinsically the limit of the pinching collar C{ consists

of two copies of the standard cusps, Co U Co . More precisely, denote a
function on COUCO by {φ{r), φ*{r)). Then a sequence of functions φt{r)
on Cι converges to (φ(r), φ*{r)) if and only if \\mι^oφι(r- τ(/)) = φ(r)
and Iim7^o p7(τ(/) - r) = φ*(r) for r e [0, oo).

For k > 1, let λ£(C0 U Co) be the λ th Dirichlet eigenvalue of Δ 0 ( Λ )

on Co U Co . Then it is clear that λ"k_χ(C0 U Co) = λn

2k(C0 U Co) = λ£(0),

which is the A:th Dirichlet eigenvalue of Δo(«) on C o . Since all the

eigenvalues {λn

k(CQ UC0)}^° can be obtained from the Max-Min principle

by restricting the variation process to the subspace L2

n(C0), and Co U CQ

is complete, that for all k > 1, ϊ ϊ ϊ n ^ ^ / ) < λ^(C0 U C o ). That is, for
any fc > 1,

(4.8) B S ^ ^ . ^ / ) < λn

k(0),

We need to establish the reverse inequalities. Let {φk(l)}™ be a complete

system of orthonormal Dirichlet eigenfunctions of (A7(/i), L2([0, 2τ(/)],

dr)). Then by the stability of initial value problems to orinary differential

equations, for any sequence I. -> 0, there is a subsequence, still denoted by

Ij , such that for all k > 1, φk{l) converges to a function (φk(0), φ*k(0))

on Co U C o . By Lemma 4.5, the limit functions {(^(0), ^ (0)) }~ are
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linearly independent Dirichlet eigenfunctions of Δ0(w) on Co U C o . Of

course, this implies that limr^0λ
n

k{lj) > λn

k(C0 U Co) for k > 1. Since

/y —• 0 is an arbitrary sequence, we have ^kι_^oλ
n

k{l) > λn

k(CQ U Co) for
all k > 1. This, combined with the above inequalities (4.8), implies that
for any k > 1.

^_1() 4 ( ) ̂ ( )
Step 2. For / > 0, let {φk{l)}™ be a complete system of orthonor-

mal Dirichlet eigenfunctions of (Δ7(n), L ^ C ^ ) , where each (unshifted)

eigenfunction φl(l) is defined for r e [-τ(I), τ(/)]. Let

(4.9) φk(l)(r) = φ"k(l)(r - τ(/))(/cosh(r -

for r e [0, 2τ(/)]. Then the functions {φk{l)}°^ form a complete system

of orthonormal Dirichlet eigenfunctions of (AQ(n), L2([0, 2τ(/)],

and Dirichlet heat kernel Pz(r, r, t) can be written as

Similarly, let {^(0)}^ be a complete system of orthonormal Dirichlet

eigenfunctions of (Δ 0(n), Ln(C0)). Define

(4.10) <yθ)(r) = ^ ( 0 ) ( r ) e - r / 2 , r 6 [0, oo).

Then for r e [0, oo),

1

Set x = y = r in Lemma 4.2; it follows that for any r > 0 and ί > 0,

Multiplying both sides of the above equation by eλ'^', we get
(4.11)

2

Note that for k > 2, l i m ^ / ί ^ t / ) = l i m ^ λ ^ / ) = λ£(0) > λ"(0) by
step 1 and Lemma 4.4. Furthermore, by the upper bounds of heat kernels
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of the Gaussian type in [25, Theorem 3.1], Σ~έΓμ*(/)~λ |(0) )V*(/)fy) are
bounded independent of / for r in compact subsets of [0, oo) and for
t > 0. More precisely, fix a constant t0 > 0. Then for t > t0,

(4.12) <e-(*Zd)-Γι(θ))(t-to)'y*e-l»!HD-ιίlθ))tφ

where K(r, tQ) is a constant independent of /. Substituting the inequality
(4.12) into (4.11), we see immediately that for r > 0,

φ ι ( ) \ ) φ 2 ( ) ( ) φ ι ( ) ( )

By induction on k, we can similarly prove that for all k > 1 and r > 0,

(4.13) 2 2 2

We need further to show that for all k > 1,

Actually, by Lemma 4.4, we have
rW , ! r2τ(l)

Furthermore, ^2A:_1(/)(0) = 0, and

+ ΐ ^ sech2(r - τ(/» + A^.,(;)) 1 #a.,(/)(r) = 0.

By the stability of initial value problems for ordinary differential equations
and a diagonal argument, for any sequence /. —• 0, there exists a subse-
quence, still denoted by / , such that #2ifc-i(//XΓ) converges to a function
Ψ2ic-\(Q) uniformly for r in compact subsets of [0, oo). Of course, the
limit function ψ2k-\(®) satisfies

2 fτ{l) 2 1
Ψ(r)dr< Jim ^ ^ 2 f c _ t (/) (r) = -,

= 0, Ψ2k.ι(l)(°) = 0-
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By the uniqueness of solutions to ordinary differential equations, there

exists a constant c such that ψ2k-\tt) = cΦk^) τ h e n

(4.14) c2= Γc2φk(θf(r)dr= Γ ψ2

2k_x{r)dr < i
Jo Jo L

Similarly, there exist a subsequence of /., still denoted by /., and a con-

stant c such that limΛ_^o02Jt(/.) = cφk(0) with

(4.15) c2<1-.

Substituting the inequalities (4.14) and (4.15) into (4.13), we get immedi-

ately that c2 = c2 = \ , so that

# 2 * - i ( y ) W

Since the sequence /. -> 0 is arbitrary, we have, for any k > 1,

\imφ2k_λ{l)\r) = \imφlk{l)\r) = \φkφ)\r)

uniformly for r in compact subsets of [0, oo). Finally, from the unitary
transformations ((4.9) and (4.10)) and Lemma 4.4, it follows immediately
that for any k > 1,

\imφn

lk_x{l)2{r-τ{l)) = \ιmφn

2k_x{l)2{τ{l) - r) =

l i m ^ ( / ) 2 ( r - τ(/)) = limφn

2k(l)2(τ(l) - r) = ±φn

k

for r in compact subsets of [0, oo). This completes the step 2 and the
proof of Theorem 1.5.

5. Formation of Eisenstein series

In this section, we study the behavior of the eigenfunctions of S( as
/ -> 0, and prove Theorem 1.2. Specifically, we will recall some basic
properties of Eisenstein series of noncompact surfaces and their charac-
terization in terms of their growths in the cusps of the surfaces (Lemma
5.2). Then we formulate an analogue of the Maass-Selberg relation for
compact hyperbolic Riemann surfaces with short geodesies (Lemma 5.3),
and use this lemma and Theorem 1.5 to prove Theorem 1.2.

First, let us recall the definition of Eisenstein series for noncompact
Riemann surfaces (see [15] for details). Let S be a noncompact and
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complete hyperbolic Riemann surface of finite area. Assume that S has p
cusps, which are denoted by Cχ, , Cp . For every cusp C{, we associate
with it Eisenstein series E (z s), where z e S and s e C. The Eisenstein
series are generalized eigenfunctions of S and play an important role
in the Selberg trace formula, analytic number theory and automorphic
representations.

Proposition 5.1. With the notation as above, the Eisenstein series satisfy
the following properties:

1. For all 1 < i < p, Eχ{z\ s) is a meromorphic function of s eC for
every fixed z e S, and its poles are independent of z.

2. If a cusp Ct is represented as Ct = {z|Im(z) > l}/{z ~ z + 1 } . Then
for z = x + yf^y e Ci and s e C, E (x + V^Λy s) has the following
Fourier expansion:

Ei(x + ,/Zϊy s)=ys + Φu(s)y1-5 + ̂  an(i)y ι/2Ks_ι/2(2π\n\y)e2πV^nx,

where Φu{s) is a meromorphic function of s £ C, an(i) (n eZ\ {0}) are
constants, and Ks_Xn(') ^ the MacDonald Bessel function [35, equation

(6), p. 78]. In particular, ifsφ\, £.(. 5) ^ L2(5).
3. Let Cj be a different cusp from Ci. If C. and Ci are not on

one connected component of S, then we define E.(z s) = 0 for z e C .
Otherwise, represent C. = {|Im(z) > 1}/{Z ~ z + 1}. Then for z =
x + yf^ϊy e Cj and s e C, Et(x + V'-ϊy ^) has the following Fourier
expansion:

Et(x

Φ / y (ί) w a meromorphic function of s e C, and an(ij) (n e
are constants, and Ks_ι,2(') *s the MacDonaldBesselfunction as above.

4. If s eC is not a pole of Et{z s), then (Δ + s( 1 - s))E.(z s) = 0,
where Δ is rte Laplacian of S.

From parts 4 and 2 of Proposition 5.1, the Eisenstein series are gener-
alized eigenfunctions of S. Actually, for 0 < 0 < +00 and 1 < i < p,
E((z; 2 + y/^Λt) form the spectral measures corresponding to the con-
tinuous spectrum of S. Notice that Kv{y) ~ \pke~y as y -> +00 for
any v e C. It follows that the Eisenstein series have polynomial growths
in every cusp of S. An important fact is that they can be characterized
by their growths in all the cusps of S. More precisely [31, p. 297], for
t e C, we define the space of automorphic forms sf(S,t) on S with
characteristic t consisting of functions u(z) satisfying:
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1. Δiι(z) + (J + t2)u{z) = 0 on z e S
2. for every cusp Ct = {z\ Im(z) > l}/{z ~ z + 1} of 5 , * + >/-Ty €

C,, the following Fourier expansion holds:

(5.1) u(x + yί=Λy) = fco(y)

where Z?π (Λ / 0) are constants and K^—^^-) is the MacDonald Bessel
function.

Furthermore, we define the space of cusp forms ff(S, t) on S with
characteristic t to be a subspace of sf(S9t)9 which consists of those
functions u(z) whose zero terms of their Fourier expansions in every
cusp of S vanish, that is, for x + yf^Λy. € Cz,

(5.2) u(x + v^Γμ)

Then we have
Lemma 5.2 [26, Satz 10 and Satz 11]. Let $/{S,t) and W(S, t) be

the space of automorphic forms and cusp forms on S with characteristic t
respectively as above. Then

1. d i m j / ( 5 f , t)/W(S, t)= p, where p is the total number of the cusps
ofS.

2. If t Φ 0, then the images of the Eisenstein series Ex(z\ j+>/-Tθ, ,
Ep(z\\ + yί-ϊt) form a basis of the quotient space s/(S_9 t)/&(S, t).

3. If t = 0, then some linear combinations of E.(z; ^ + V^Λt) and
their derivatives at t = 0 form a basis of s/(S9 t)/&(S, t).

Remark. For some (arithmetic) surfaces E.(z\ \ + V-ΐt) may have
zero Fourier coefficients which vanish at t = 0 thus their images in the
quotient space are zero. In this case, we should take their derivatives with
respect to t e C at t = 0. This is a standard method in the construction
of the modified Bessel functions (see [35, §§3.5, 3.7]).

Next we establish a generalization of the Maass-Selberg relation to com-
pact hyperbolic surfaces with short geodesic (length < \). Let γ be a sim-
ple closed geodesic on a compact hyperbolic surface S with length |y| < \ .
Further, let Cγ be the standard collar around γ as in Theorem 2.2, that
is, Cγ = {(r, 0)| - τ(|y|) < r < τ(\γ\), 0 < θ < 1}/{(Γ, 0) - (r, 1)} with

the hyperbolic metric dr2 + \γ\2 cosh2(r) dθ2. For any 0 < a < τ(\γ\), let
Cγ(a) = {{r, θ) e Cγ\ - τ(\γ\) + a<r< τ(\γ\) -a} b e a subcoUar of Cγ.

For any function <p(r,θ) on Cγ, let

(5.3) φ(r,θ
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be the Fourier expansion of φ . For convenience, define [ί>]0(r) = fo(r)

and [?>],(/•, θ) = ΣnϊOfn(
r)e2πV=Tnθ to be the zero Fourier term and

the remaining summation respectively. Motivated by the Maass-Selberg
relation (see [23, pp. 18-20]), for any a > 0, we define a function φ" on
S by

1 φ elsewhere.
Then we have the following.

Lemma 5.3. Let φ be any function on S satisfying Aφ + ( | + t2)φ = 0
t>0.

[„„(„,) |,| cosh(α),

] 0 is ίΛe z^ro Fourier coefficient of φ on C' dμ is the Rieman-
nian measure of S, and \γ\ is the length of γ.

Proof By Green's formula (see [6, p. 7]), we have

S\Cγ(a)
Aφφdμ+ ί \V{φ)\2dμ= fd9{*'θ)9{a, θ)\y\cosh{a)dθ

γ(a) Js\Cγ(a) Jθ °r

noticing that d(S \ Cγ{a)) = {(a, θ)\0 < θ < 1} U {(-a, θ)\0 < θ < 1} ,
From (5.3) it follows that

f Aφφdμ+l \V{φ)\2dμ
Js\Cy(a) Js\Cγ(a)

(5.5) ,

\nez
Similarly,
(5.6)

α 1 ι j ^ ^ α ) d θ

W«-h(α).
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Adding the above equations (5.5) and (5.6) together yields immediately

Aφaφa + \Vφa\ dμ

(5.7) - (?ψua) - % % - < • ) ) irl cosh(α)

Furthermore, by the assumption Aφι + (± + t2)φa = 0 on S \ dCγ{a).
Then Lemma 5.3 follows from (5.7). q.e.d.

After these preparations, we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. The proof is divided into two parts, correspond-

ing to parts 1 and 2 of Theorem 1.2, and the proof of the part 2 consists
of four steps.

For simplicity, we assume that there is only one pinching geodesic γ(l)
of length / on Sι. The standard collar around the pinching geodesic
γ(l) will be denoted by Cι. Further, the Riemannian measure of Sι will
be denoted by dμι. In the following, we will argue intrinsically on the
surfaces, that is, depending on the size of the injectivity radius. Hence,
we do not shift the Fermi coordinates on the pinching collar C7 and do
not concentrate on studying one side of the pinching collar as in §§2 and 3.
Therefore we argue simultaneously for both sides of the pinching collar.

Proof of Part I. By the assumption, φ(l) is an eigenfunction on Sι with

eigenvalue λ(l) and iΛnorm 1, that is,

From integration by parts, it follows that

\Vφ(l)\2 dμ{ = λ(l) f φ(lf dμχ =
JSf

Since lim^Q^/) = λ(0) < +oo, by the regularity theory [14, Theorems
8.8 and 8.10], for any compact subset K c So and k € N, there exists a
constant c = c(k, K) independent of / such that

where IHI»*.2(jc) is the Sobolev norm. Take an exhausting family of com-
pact subsets of So. Then by the Sobolev embedding theorem [1, Theorem
5.4] and a diagonal argument, there is a sequence /; -> 0 as jr -*• oo such

that π*φ(l) converge to a function φ on So C -uniformly over compact
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subsets of So as y —• oo, for all k e N. The limit function ^(0) clearly
satisfies

λ(0M0) = 0>

By the assumption again, we can choose the sequence / —> 0 such that

π* φ(lj) do not converge to zero over some compact subsets of So . Then,

of course, p ( 0 ) ^ 0 . Therefore, φ(0) is an iΛeigenfunction on So with
eigenvalue λ(0).

Proof of Part 2. The proof of the part 2 is further divided into the
following four steps:

2. Show that there are constants Kι and a sequence /. -» 0 as 7 —• oo

such that Kjπ*φ(lj) converge to a function ψ(0) uniformly over compact

subsets of So.
3. Show that the limit function ^(0) is not identically zero on So .

4. Show that the function ^(0) es/(S0,t), where t = yjλ(θ) - \ .

Step 1. If λ(0) < \, then by Theorem 7.2 in [17], there is a sequence
/. —> 0 as j —• 00 such that π* φ(lj) converge to an eigenfunction on So

with eigenvalue λ(0) and L -norm 1 as j —> 00. In particular, πj φ{L)

do not converge to zero uniformly over compact subsets of So. This is a

contradiction to the assumption. Therefore, λ(0) > \ .
Step 2. Let [^(/)]0 be the zero Fourier coefficient of φ{l) on the collar

C{. For a > 1, let φa{l) be the function obtained from φ(l) by subtract-
ing off the zero Fourier coefficient [φ(I)]0 inside the subcollar C^a) as in
(5.4). Choose constants Kι > 0 for / > 0 such that

/ \Kιφ

a(l)\2dμι = l.

In particular,

(5.8) / \Kξ(9a{l)\2dμι<l.
JC,{a)

Recall from (2.6) that the zero Fourier coefficient K^(l)]0 satisfies the
following ordinary differential equation:

(5.9) ( J L _tanh(r)^ + λ(l)J ^[^(/)]0(r) = 0, re [-τ(l), τ(/)].

Using substitutions r —> r ± τ(l), the stability of initial value problems
of ordinary differential equations and the inequality (5.8), we see that
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^ Q and ^AΓ/[^(/)]0(±α) are bounded independently of /. Ap-
plying Lemma 5.3 to the function Ktφ{l) yields immediately

(5.10) / \VKιφ

a(l)\2dμι<c <+oo,
Js

where c is a constant independent of /. Note that Aιφ
a(l) + λ(l)φa(l) =

0 on Sι \ dC^ά) and l i m ^ ^ / ) = λ(0) < +oo. Then by the same
argument as in the proof of the part 1, there exists a sequence /; —•

0 as j —• oo such that K,π'ΐφa(l.) converge to a function ^(0) on
Ί j J

SQ \ d(C0(a) U C0(a)) C^-uniformly over compact subsets So \ d(C0(a) U
C0(a)) as j —> oo, for all k e N. Remember that lim^QC^α) =
C0(a) U C0(a) intrinsically, where C0(a) = {(r, θ) e C0\r > a} is a sub-
cusp of the standard cusp Co (see §2). (See step 1 of the proof of Theorem
1.5 in §3 for the convergence of functions on Cι to functions on Co U Co .)

In order to prove the uniform convergence of Kι π* φ(l.) over all com-

pact subsets of So, we should study the behavior of [φ(lj)]{ and [φ{lj)]0

inside the collar C z . We treat these two cases separately.
Case 1. The nonzero Fourier terms. By the assumption we have

(Δ;. +λ(lj))Klj[φ{lj)]ι =0, I IK^φil^dμ^ < 1.
h

Furthermore, from (5.10) it follows that

7 l9{lJ)]ι\
2dμι < ί \VKt φa(L)\2 < c < +oc,

j j Js, j
7 J ι ι

c, j j Js,

where c is a constant independent of /.. By the same argument as in

the proof of the part 1 above, there exists a subsequence of {/ }, which

is still denoted by {lj} for simplicity, such that Kι π*[φ(lj)]χ converge

to a function [^(0)]j on Co U Co as -> oo, and the convergence is

C -uniform over compact subsets of Co U Co for all k e N. The point

here is that Kιπ*[φ(lj)]ι converge to [^(0)]j Cfc-uniformly across the

boundary diC^a) U C0(α)).

Case 2. The zero Fourier term. Since limj_¥θoKιπ
1J φ(lj)(z) = ψ(0)(z)

uniformly for z in compact subsets of So \ d(C0(a) U C0(a)), and

limj._^ooKl

of {Co U Co} \ {CQ(a) U C0(a)} , it follows that

o 0 0

j._^ooKι[φ(lj)]ι(z) = [ψ(0)]{(z) uniformly for z in compact subsets
C } \ {C() C()} i f l l h

(5.11) Urn π*^[p(/.)] 0 (z) = [ψ(0)]0(z)
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uniformly for z in compact subsets of {CQ U Co} \ {C0(a) U C0{a)} . Now
we are going to extend the domain of definition of [ψ(0)]0(z), which is
currently defined for z e {Co UCo}\{C0(a)UCQ(a)} . Let [^(0)]0 be the
solution of the following differential equation

with the initial condition [ψ(0)]0 = [ψ{0)]0 on {CouCo}\{Co(α)UCo(α)}.
From (5.9), the stability of solutions to initial value problems of ordinary
differential equations and (5.11), it follows that

C^-uniformly for z in compact subsets of both the cusps Co U Co . In

particular, the convergence is C -uniform across the boundary d(CouCQ)
for all fceN. This finishes the case 2.

Now define a function ^(0) on So by

(5.12)
o n C 0 u C 0 .

Then by the above discussions, ψ(0) is a smooth function on 5"0 and
satisfies

Δ0</(0) + λ(0)ψ(0) = 0, lim K, π>(/)(z) = ψ(0)(z),

where the convergence is C^-uniform for z in compact subsets of So for
all keN.

Step 3. By the definition of ^(0) (5.12), it is clear that

/ 0> [ \ψ(0)\2dμ0.
s0 Js0

We are going to prove

(5.13)

In particular, ^(0) φ 0 on So . For any p > a, define

ε(p) - 1 - l im^o /"' \K,.φa(lj)\2dμr=Mί \K,_φ%)\2dμ, ,

which is intuitively the mass of K,φ(lj) inside the subcollar C, (p), where

C,(p) = {(r, θ) € C,|-τ(/)+/> < r'< τ(/)-/7} . Since l l ^ ^ ί / / ) ! ! ^ , = 1

and ]imι^0Kιπ*φa(lJ) = ψ(0), (5.13) follows from
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Claim 5.4. With the notation as above, l i m ^ ^ ε(p) = 0.

This claim intuitively means that no mass of the function Kt φa(lj)
is lost inside the pinching collar during the degeneration. The proof of
this claim is the technical part of the proof of Theorem 1.2 and depends
essentially on Theorem 1.5.

Now we prepare to prove Claim 5.4. Arrange all the nonrotation-
ally invariant Dirichlet eigenvalues U ^ o ^ W ϊ f c l i o f t h e P i n c h i n g collar
C7 into an increasing sequence {^(Z)}^ with multiplicity. Further, let
{w/(/)}^1 be the corresponding complete system of orthonormal Dirichlet
eigenfunctions on C,. Similarly, let {Aί(0)}^1 be all the nonrotation-
ally invariant Dirichlet eigenvalues with multiplicity of CQ U Co in the
increasing order, and {wί(0)}^1 be a corresponding complete system of
orthonormal Dirichlet eigenfunctions on Co U CQ which are the limits of
the eigenfunctions {u^l)}™ on Cι as / -• 0, that is, for i > 1,

(5.14) l i m π * ^ / ) 2 ^ ) = «/(0)2(z)

uniformly for z in compact subsets of both the cusps Co U C o , where
π/ is the restriction of the harmonic map πι: So —• S[. The existence
of such a complete system of orthonormal Dirichlet eigenfunctions on
Co U Co follows from Theorem 1.5. (5.14) intuitively means that none
of the eigenfunctions w.(/) loses any mass inside the collar C{ as I -» 0.
More precisely, for / > 1 and p > 0, define

K (/)|2^/.
\P)

Then (5.14) implies that, for i > 1,

(5.15) limε*(/>) = 0.

Let ξt be a cut-off function on Sι with ξt = 1 on C^α + 1), ^ = 0

on 5 ; \ C7(α) | ^ | < 1 and \Vξt\ < 2. Note that ξ cuts off both sides of

the pinching collar C,. Consider the function ξ, K, φa(L) on C, which

clearly satisfies the Dirichlet boundary condition. Let

(5.16) ξιK,φa(li) -
7=1

be the Fourier expansion of ξιKι φa(lj) in terms of the Dirichlet eigen-

functions {uftj)}™ on Cι . It is'clear that α.(/.) = {ξιKιφ
a{lj), wz-(/;.))
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for i > 1, and

For any N > 1, define δ(N) by

It is clear that δ(N) is monotonically decreasing in TV. Furthermore, we
have the following.

Claim 5.5. With notation as above, l i m ^ ^ δ(N) = 0.
Actually, if this claim does not hold, without loss of generality, we

assume that δ(N) >cQ>0 for N > NQ, where 7V0 and c0 are positive
constants.

By the assumptions on φ(l.) and Kι , it is clear that (Δ7 +λ(lJ))Kι φa{lj)

= 0 on S^dC^a) and 11^(1^^ = 1. Further', tim^Wj) =

λ(0) < H-oo. Then by direct computations,

(5.17) m^iA^K^U^^^yilj)^ < M <

where Λf is a finite constant.
On the other hand, by Theorem 1.5, the eigenvalues {A/(/)}°!1 do not

accumulate at any finite point as / —> 0. Thus, there exist constant /0 > 0
and N{>N0>0 such that for i > Nχ and / < /0,

For N > Nχ and /. < lQ, from the Fourier expansion (5.16) of ξι Kι φa{Ij)

we get
oo

χ2 .

M-

co

and, by the assumption δ(N) > c0 for N > NQ,

(5.18)
t (^ξK.
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The above inequality (5.18) is a contradiction to the inequality (5.17).
Therefore, the proof of Claim 5.5 is complete.

Now we use Claim 5.5 to prove Claim 5.4. The proof goes as follows.
By Claim 5.4, only the first finitely many terms really contribute to the
summation in (5.16). On the other hand, for these finitely many terms,
their masses deep inside the collar (fc ^u^lj)2 dμr) are negligible by

(5.15). Thus Claim 5.4 follows.
More precisely, by Claim 5.5, for any ε > 0 there exists an integer

N2>0 such that

Then for p > a + 1,

Jim
V 1

(5.19)

e(p) = timj \Kljφ
a{lj)\1dμli = lim jf \ζιKι/(lj)\2dμlj

<ϊϊϊn /
h^°Jq.(p)

+ lϊϊn /

Σ
1

dμt

dμr

< lim
UP)

dμr

By (5.15) we have

lim lim7 Ω /
p-^oo ιj "Jcqχp)

dμL=0.

Therefore, substituting this into the inequality (5.19) gives limp_^Qε(p) <
ε. Since ε > 0 is arbitrary, it follows that

limε{p) = 0,

which completes the proof of Claim 5.4 and Step 3.
Step 4. We need to study the Fourier expansion of the limit function

^(0) in every cusp of SQ. Let Ct = {z|Im(z) > 1}/{Z + 1 ~ z} be a
cusp of So . Then for z = x + y/^ϊy e C , we have the following Fourier
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expansion:

ψ(0)(x + V=Λy) = fo(y) +

By Step 2 above, Δ 0 ^(0) + λ(0)^(0) = 0. Then for any n e Z, /π(j;)
satisfies that

(5.20) y2^fn(y) - (4π2«V -λ(0))/n(y) = 0.

ar

By Step 1, λ(0) > \ . Let ^λ(O) - £ > 0. Now for nφO, the functions

yχl2K^ϊt(2π\n\y) and y1/2/vrΓTί(2π|Az|y) form a basis of the solutions to
the differential equation (5.20), where Kyjr^\t{2π\n\y) and Iy/^t{2π\n\y)
are the MacDonald Bessel functions. Thus there exist constants an and
βn such that

π\n\y) + β nI^u(2π\n\y).

Note the following asymptotics

(5.21) K^iy) ~ [£)XI2e-\ I^fr)- - (2πy)'ι/2ey

as y->+oo (see [35, pp. 202-203]). Then it is clear that y ' I^t(2n\n\y)

£ L2([l, oo), y~2 dy) for n φ 0. By Step 3, Js \ψ(0)\2 dμo=l, and for

Γfn{yfy~2dy< f \ψ(0)\2dμ0=l.
J\ Jci

Thus, of course, βn = 0, and fn(y) = any
ι/2Ky/I^t(2π\n\y) for any n φ

0. It follows that for z = x + \ί-ίy e Ct and 1 < / < p ,

Therefore, ^(0) es/(SQ9t). Finally, by Lemma 5.2, if t > 0, there exist

constants aχ, , <zp and an iΛfunction φ (possibly zero) on So with

(i + ^2)^ = ° s u c h that

ι=l
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In particular, if λ(0) = \ + 1 2 is not an embedded eigenvalue of So, then
φ = 0, and

ι = l

If / = 0, there is a similar expression for ^(0) involving derivatives of
Eisenstein series Et{- \ + y/^ϊt) with respect to t at t = 0. This finishes
Step 4. Therefore, the proof of Theorem 1.2 is finally complete.

6. Spectral degeneration

In the previous sections, we have discussed the behavior of the eigenval-

ues and eigenfunctions of Sι as / —• 0. In particular, the eigenfunctions

of S[ can only limit in linear combinations of Eisenstein series and L2-

eigenfunctions of So. We would like to reverse this process and show that

Eisenstein series and L2 -eigenfunctions of So can be approximated by

suitably chosen eigenfunctions of 5} as / —• 0 (see Conjecture 6.1). If so,

we would have a nice picture of the spectral degeneration for the family

Sι (/ > 0). This spectral degeneration picture corresponds to a picture

of how the terms in the Selberg trace formula for Sι split and degenerate

to the corresponding ones in the Selberg trace formula for So. We also

discuss how to determine intrinsically the constants ai iii (1.4) from the

eigenfunctions φ(l) on Sι.

First, we discuss the embedded eigenvalues of So . As mentioned in the

introduction, the existence of the embedded eigenvalues of So is mysteri-

ous (see [28]). From the degeneration point of view, we believe that the

following conjecture should be true.

Conjecture 6.1. For any degenerating family of hyperbolic Riemann sur-

faces Sι (/ > 0), let λ(0) > \ be an embedded eigenvalue of So. Then

there exist a sequence /. —• 0 as j -» oo, and eigenfunctions φ(lj) on

Sι with eigenvalues λ(lj) such that limι_^Qλ(lj) = λ(0) and π*φ(lj)(z)

converges uniformly for z in compact subsets of So to a nonzero L -
eigenfunction on So with eigenvalue λ(0).

The statement of this conjecture is similar to those of Theorems 1.3 and
1.5, since the pinching collars Cι can be thought of as a special family
of degenerating surfaces. Because of the symmetric consideration as in
Lemma 6.2 below, it may not be possible to approximate any prechosen
eigenfunction of λ(0) on SQ .
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For noncompact hyperbolic surfaces of finite areas, P. Lax and R.
Phillips [24] and Y. Colin de Verdiere [9] introduced the notion of pseudo-
Laplacians which is used successfully by R. Phillips and P. Sarnak in [28].
Motivated by the fact that all the embedded eigenvalues of So are part
of the eigenvalues of the pseudo-Laplacian of SQ, in [18], we generalized
the pseudo-Laplacians to compact surfaces with short geodesies (lengths
< j) and proved the convergence of the spectral measures of the pseudo-
Laplacian of Sj to the spectral measures of the pseudo-Laplacian of So

as / —• 0. In particular, embedded eigenvalues and their eigenfunctions of
SQ can be approximated by pseudo-eigenvalues and pseudo-eigenfunctions
of S[ as / —• 0. This gives some evidence for the above conjecture. If we
can understand more qualitatively the behavior of those eigenfunctions on
S[ which converge to Eisenstein series in Theorem 1.2, we would be able
to prove the above conjecture.

Next we study the approximation to Eisenstein series. An optimistic
guess would be that for each Et[z\ \ + yΠΛί) (1 < i < p), there exist
a sequence /, —• 0 as j -* oo and eigenfunctions φ(l.) on S, such that

J J j

π*φ(lj)(z) converges to Et{z\ \ + y/^ϊt) uniformly for z in compact
subsets of So. Actually, by the following Lemma 6.2, Eisenstein series
appear in pairs during the degeneration if the pinching geodesies separate
the surfaces. Before stating Lemma 6.2, let us recall some notation first.

For simplicity, we assume that S/ has only one pinching geodesic γ(l)
of length / in the following discussions. The standard collar of γ(l) is
denoted by Cι. More explicitly,

ς = {(r, 0)| - τ(l) < r < τ(/), 0 < θ < l}/{(r, 0) ~ (r, 1)}.

Further, for any a > 0, define the left band of Cz by B~(a) = {(r, θ) G
C7| - τ(/) < r < -τ(l) + a], and the right band by B+(a) = ,{(r, θ) e
^/l τ(0 ~ a ^ r ^ τ(l)} Since 57 has only one pinching geodesic, the
limit surface So has two cusps C{ and C2 . We assume that BJ"(a) and
B*(a) converge to bands B~(a) and B^(ά) in C{ and C2 respectively
as / -> 0. For any function φ(l) on Cι, let [φ(l)]0 be the zero Fourier
coefficient of φ(l) in C7 (see (5.3)). Then we have the following.

Lemma 6.1 [41, Remark 2.9]. Let two constants a and β satisfy \ <
a<β. Then for any family of eigenfunctions φ(l) on 57 with eigenvalues
λ(l) e [a, β], the following inequalities hold for large enough a:

hm—2-i-ί = < +oo,

^ W W O l l d
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> 0.

Corollary 6.2. Assume that the pinching geodesic γ(l) separates 5 7 .

Then for i = 1,2 and t > 0, ί/ẑ re *fo not exist any sequence {lj} and

eigenfunctions φ(l.) with eigenvalues λ(/ ) such that lim/_^oλ(/y) = \ +

r2 > ^ α/w/ lim/_>oπ*}?(/.)(z) = E.(z\ \ + A/^TJ) uniformly for z in

compact subsets of So.

Proof Suppose that there exist a sequence of eigenfunctions φ(lj) on

Si with eigenvalues λ(l ) converging to, say, Eχ(z\ j + y/-At) as /• —• 0,

where 1 ^ _0A(/y) = | + ί2 . Then for any a > 0 and z e B~(a) c Cj,

( 0 ( ) ^ 0.

On the other hand, for z e B+(a) c C2 ,

lim π*[^(/.)(z)]0 = [ ^ ( z ; ± + V=ϊί)] 0 = 0,

by the definition of Eisenstein series (Proposition 5.1.(3)), since Cχ and
C2 are not on one connected component. This clearly contradicts Lemma
6.2 above. Hence the proof is complete, q.e.d.

Corollary 6.2 shows that in (1.4) of Theorem 1.2, we cannot assign aχ

and a2 arbitrarily. A natural question then is how to determine algebraic
relations between a{ and a2 intrinsically from φ(l-). Since we can use
different scaling constants Kι , we are interested in their ratio ax/a2.

Proposition 6.3. Assume that γ(l) separates St. Let / —• 0 be a se-

quence and suppose φ(l.) are eigenfunctions on Sι whose multiples satisfy

hmι^0Kιπ*φ(lj)(z) = aιEι(z'9 \ + yf^ϊt)+a2E2(z\ ± + y/^ϊt) uniformly

for z in compact subsets of So, where t > 0 is a constant. Then the fol-
lowing double limit exists:

hm hm —ί = < +00.

ί \ { l ? d
Denote the limit by mι2 . Then the constants aχ and a2 satisfy

} 2

a~2
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where Φ^^+.y/^Tt) and Φ 2 2 ( i + V-ϊt) are the scattering matrix coeffi-
cients of E~(-\ 5+\/-Tθ and E2( ; ^+y/^Λt) respectively (seeProposition
5Λ,part2).

Proof. By the assumption, it is clear that for any a > 0

Now for z = Λ: + V-ϊy € C\, by Proposition 5.1,

for y > 1, where c > 0 is a constant. The fact that the error term is of
exponential decaying follows from (5.21) and that the constants an(i)(n Φ
0) in Proposition 5.1, part 2 can be bounded by bχe

bin , where bχ and b2

are constants. Thus,

~ Φ n ί^

as ίi-> +oo, where c > 0 is a constant. Similarly, as α —> +00,

Therefore it follows that

° Λf (., («2^2 (^ ϊ i + V ^ O ) 2 ^ 0 Φ22(i + V

Since, of course, the double limit exists, the conclusion follows, q.e.d.
We have only considered the case where y(l) separates 5^. On the

other hand, if y(l) does not separate Sι, we cannot exclude as above the
possibility that E ('\ •) can be approximated by some eigenfunctions of
Sι. Now suppose that E{(- •) and £ 2 ( •) can be approximated by two



SPECTRAL DECOMPOSITION OF RIEMANN SURFACES 311

sequences of eigenfunctions on Sι. We would like to understand the dif-
ference between these two families intrinsically. By a similar computation
as in the proof of Proposition 6.4, we have

Proposition 6.4. If there exists a sequence of eigenfunctions φ(l.) on

Sr whose multiples Krπ^φ(lj)(z) converge to E.(z\ \ + yf^Λt) uniformly

for z in compact subsets of So as l}. -> 0, where i = 1, 2 and t > 0, then

the following double limit exists:

lim lim

Denote the limit by m(i; t). If Φ n ( ± + yf-ϊή Φ 0 and / = 1, then
m(l;t) = oo. Similarly, if Φ22{j + V^ϊt) φ 0 and i = 2, then m(l t) =
0. The functions Φn{\-\-y/^Λt) and Φ 2 2 ( i + >/-Tθ are the scattering
matrix coefficients of the Eisenstein series {see Proposition 5.1).

ADDED IN PROOF. After submitting the revised version of this paper,
the author together with M. Zworski has proved the conjectured lower
bound (3.24) in L. Ji & M. Zworski, The remainder estimate in spectral
accumulation for degenerating hyperbolic surfaces, J. Functional Analysis,
to appear.
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