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NONUNIFORM HYPERBOLIC LATTICES AND
EXOTIC SMOOTH STRUCTURES

F. T. FARRELL & L. E. JONES

0. Introduction

Let θ m denote the group of homotopy ra-spheres where m > 4. Ele-

ments in θ m are equivalence classes of oriented manifolds homeomorphic

to Sm . Two such manifolds Σ™ and Σ™ are equivalent provided there

exists an orientation-preserving diffeomorphism between them. In this pa-

per, D m + 1 and Sm respectively denote the unit ball and unit sphere in

(0.0!)
S dΏ { R

MS.).
S = dΏ = {x e R | | J C | < 1 } .

Kervaire and Milnor proved in [13] that θm is a finite abelian group.

Let Mm be a smooth m-dimensional manifold. A possible way to
change its smooth structure, without changing its homeomorphism type,
is to take its connected sum Mm # Σ m with a homotopy sphere Σm . We
showed in [9] that it is sometimes possible to change the smooth structure
on a closed (real) hyperbolic manifold Mm in this way and still to have
a negatively curved Riemannian metric on Mm # Σ m . But when Mm is
noncompact (and connected), this method never changes the smooth struc-
ture on Mm . (See the proof of Corollary 1.5 for an argument verifying
this statement.)

We use a different method in this paper, which can sometimes change
the smooth structure on a noncompact manifold Mm . The method is to
remove an embedded tube Sι x Ώm~ι from Mm and then reinsert it with
a "twist". To be more precise, pick a smooth embedding / : Sι x Dm~* —•
Mm and an orientation-preserving diffeomorphism φ: Sm~2 —• Sm~2 .
Then a new smooth manifold Mf is obtained as a quotient space of the
disjoint union

(0.02) Sl x Bm~lUMm-f(Sl x IntD"2"1),
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where we identify points (x, v) and f(x, φ(v)) if (x, v) e Sι x Sm~ .
(Here, IntD" 1 " 1 denotes the interior of Όm~ι i.e., it is Bm~ι - Sm~2 .)
The smooth manifold Mf is canonically homeomorphic to Mm but is
not always diffeomorphic to Mm . We obtain the following result in this
way. In this paper, H w denotes real hyperbolic m-space, and Iso(Hw) its
group of isometries.

Theorem 0.1. Let m be any integer such that θm_{ Φ 1, and ε be any
positive real number. Then there exists an m-dimensional complete Rie-
mannian manifold Mm with finite volume and all its sectional curvatures
contained in the interval [-1 -ε, - 1 +ε], and satisfying the following. Mm

is not diffeomorphic to any complete Riemannian locally symmetric space;
but it is homeomorphic to Mm/Γ where Γ is a torsion-free nonuniform
lattice in Iso(Mm).

Let us recall some qualitative facts about θn . Kervaire and Milnor
[13] and Browder [4] showed that θ2n-ι *s nontrivial for every integer
n > 2 which does not have the form n = 2ι - 1. On the other hand θ 1 2

is trivial. Therefore if Mn is a closed hyperbolic manifold, M 1 2 # Σ 1 2

must be diffeomorphic to Mn where Σ 1 2 is any homotopy 12-sphere.
The results in [9] consequently fail to yield an exotic smooth structure
on a negatively curved 12-manifold which is homeomorphic to a (real)
hyperbolic manifold. But our present technique does. In particular, we
have the following result.

Theorem 0.2. Let m be any integer such that either θ w or θm_{ is
not trivial; e.g., m can be any integer greater than 6 provided it has neither
of the following two forms; m = 2J — 2 nor m = 2J — 3, where J G Z . Then
there exists a closed Riemannian manifold Mm whose sectional curvatures
are all pinched within ε of -I and such that

2. Mm is homeomorphic to a real hyperbolic manifold;
3. Mm is not diffeomorphic to any Riemannian locally symmetric space.
We end this introduction with the following comments. The exotic

Riemannian manifolds Mm constructed in this paper via Theorem 4.2 and
Addendum 4.3 are all different from those exotic Riemannian manifolds
jVm previously constructed via [9, Proposition 1.2]. That is, the only time
Mm is diffeomorphic to o/ym is when they are both diffeomorphic to a
locally symmetric space and hence neither is exotic.

Finally, the results of this article should be useful in extending those of
[10].

We wish to thank Ronnie Lee, whose question motivated this paper.
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1. Exotic smooth structures

Let (Mm ,f,φ) be a triple where Mm is a smooth manifold, f:Sιx

Bm~ι -• Mm is a smooth embedding (i.e., a tube) and φ: Sm~2 -> Sm~2

is an orientation-preserving diffeomorphism. (We assume throughout this

paper that d imM m = m > 6.) This data determines the new smooth

manifold Mf constructed in §0. Recall that Mf m is canonically home-

omorphic to M . The purpose of this section is to give useful sufficient

conditions which guarantee that Mr is not diffeomorphic to Mm .

Recall that two smooth structures No and Nχ on a topological mani-

fold N are concordant if there exists a smooth structure ~N on N x [0, 1]

such that N(, for i = 0, 1, is the induced smooth structure on N x /.

Two concordant structures are diffeomorphic. (See [14, pp. 24, 113-116].)

The tube / determines a framed simple closed curve a: Sι —• Mm where

a(y) = f(y, 0) for each y e Sι. The framing of a consists of the vector

fields Xχ, X2, - - , Xm_x where Xt(y) is the vector tangent to the curve

11-> f(y9 tet) at t = 0. Here et denotes the point in Rm~ ! whose z-th

coordinate is 1 and all other coordinates are 0. We use a to denote the

curve equipped with this framing. It is called the core of / . The con-

cordance class of Mf depends only on Mm , the core α o f / , and the

(pseudo-)isotopy class of φ denoted by x. We consequently denote the

concordance class of Mf by M(a, x). Recall that the isotopy classes

of orientation-preserving diffeomorphisms of Sm~2 are in one-one cor-
respondence with the elements in the abelian group θ m - 1 which is also
identified with πm_j(Toρ/0) therefore, x e Θm_χ.

Assume now that Mm is a complete (connected) Riemannian mani-
fold with finite volume and whose sectional curvatures are all - 1 . The
universal cover of Mm is real hyperbolic m-space Hm and πχM

m is
identified via the group of all deck transformations with a torsion-free lat-
tice Γ C IsoH m . We say that an element γ e πχM is cuspidal if there
are arbitrarily short closed curves in Mm which are freely homotopic to
a curve representing γ. This condition is equivalent to either γ = 1 or y
corresponds to a nonsemisimple matrix under the identifications

(1.0) πχM = Γ c IsoHm = O+(m, 1, R) c GLW + 1(C).

Note that the identity 1 eπχM is the only cuspidal element when M is
compact.

We now state the main result of this section. Recall that a π-manifold
is a smooth manifold whose tangent bundle is stably trivial. Throughout
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this paper Z denotes the ring of all (rational) integers and Z + denotes its
additive group.

Theorem 1.1. Let Mm be a complete {connected) Riemannian mani-
fold with finite volume and all sectional curvatures - 1 . Let a be a framed
simple closed curve in Mm and [a] c nχM be the fundamental group el-
ement it determines. Assume that Mm is a π-manifold and there exists a
homomorphism η: nχM —• Z + such that

1. η([a]) = 1 and
2. η(γ) is divisible by the order of θm_χ for every cuspidal element γ

in πχM.

Then M is diffeomorphic to a manifold in the concordance class M(a,x)
only when x = 0.

The proof of this result requires some preliminaries. Represent M(a, x)
by the manifold Mj and let g: Mf —> M be the canonical homeo-
morphism. Mostow's rigidity theorem [19], as extended by G. Prasad [21]
to the finite volume situation, can be used together with its topological
analogue [8, Corollary 10.3] and the topological analogue of Bieberbach's
work on flat Riemannian manifolds [6], [7] to reduce Theorem 1.1 to
the assertion that g is topologically concordant to a diffeomorphism only
when x = 0. See the proof of [9, Lemma 2.1] for how to accomplish this
reduction.

By [14, Theorem 10.1] there is an identification of the concordance
classes of smooth structures on (the topological manifold) M and the ho-
motopy classes of maps from M to Top/O, denoted by [M, Top/O],
with the hyperbolic structure on M corresponding to the class of the con-
stant map. The identification of θ m and πm(Top/O), with Sm corre-
sponding to 0 also follows from [14, Theorem 10.1]. Let ά: Mm -> Sm~ι

be the result of applying the Pontryagin-Thom construction to the framed
1-manifold a. It is explicitly described by

(1.1.1) &{f(y,υ)) = q(υ)9

where (y, v) e Sι x 3m~l, and q: Bm~ι -> Dm-1/9ID)m"1 = S m - 1 is the
canonical quotient map; if y & image / , then

The naturality of [14, Theorem 10.1] yields the following result.
Lemma 1.2. The map x »-• Af(α,jc) is the homomorphism ά* :

π

m_i(Top/0) —• [M,Top/O] under the identifications of the previous
paragraph.

Hence Theorem 1.1 is equivalent to the assertion that ά* is injective.
We now embark on verifying this assertion.
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Given an embedding h: N —• JV where N and JV are manifolds of
the same dimension with N compact, there is a dual map h1: JV jdJV ->
N/dN defined by

( 1 2 1 ) ti(h{y))=y, ifyelntN,

h'{y) = oo, otherwise.

Here oo denotes the point corresponding to d N in the decomposition
space N/dN. We also, when convenient, abbreviate N/dN to N/d .

Proposition 1.3. Let Nm be a closed π-manifold, and h: Sι xB™"1 ->
Nm be a tube with core a: Sι —• N. Assume there exists a map ψ: Nm ->
Sι such that the composite ψ o a: Sι —• Sι has degree ± 1 . Then

{h'γ\ [Sl x Bm~l/d, Top/O] - [iV, Top/O]

is monic.
Proof. Recall that Top/O is an oo-loop space (see [2, p. 215]). Let Y

denote the (m +1 )-fold delooping of Top /O i.e., Ω m + 1 Y = Top /O. Re-
call there is a natural bijection between [Σm+1ΛΓ, 7] and [X, Ωm+ιY] =
[X, Top/O]. Here [ , ] denotes the homotopy classes of (base-point-
preserving) maps and X is a space (with base point). Consequently, to
prove Proposition 1.3, it suffices to show that

(1.3.1) (Σm +V)*: [Σm+ι(SιxΌm~ι/d), Y]-+[Σm+lN, Y]

is monic. Consider the codimension-0 embedding

.3.2) Λ x i d : ( 5 x P ) x D —>7V x

and observe that (h x id)' factors through Σm+ι(h'). Hence it suffices to
show that

(1.3.3) ( Λ x i d ) ' * : ^ 1 xBm~l xΏm+l/d, Y] -> [N x Bm+l/d, Y]

is monic. Let F: Nm x P m + 1 -^ Sι x D 2 m be a codimension-0 embedding
such that the composites p o F and ^ o q are homotopic, where p and ^
respectively denote the projections onto the first factors of Sι x B2m and
Nn x D w + 1 . Note that F exists because N is a π-manifold. Using the
fact that (F o(hx id))' = (h x id)' o Ff, we easily see that

(1.3.4) (A x id)' o F ' : (S1 X B2 m)/d -+ (S1 x P '"" 1 x Bm+ι)/d

is a homotopy equivalence. This completes the proof of Proposition 1.3.
q.e.d.

An elaboration of this argument yields the following extension.
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Addendum 1.4. Let Nm be a compact connected π-manifold with (pos-

sibly) nonempty boundary. Let h: Sι x Ώm~ι -> lnt(Nm) be a tube with

core a: Sι -+ Nm . Suppose there exists a map ψ: Nm —• Sι satisfying the

following two properties.

1. The composite ψ o a : Sx —> Sι has degree ± 1 .
2. For αwy map β: Sι -> dN, ίλe έ/^ree of ψ o β : Sι -> Sι is

divisible by the order of the group θ m _ 1 .

composite

ί* * w , Top/O]

w monk, where p: Sι x Bm~{/d —• Ώm~ι/d is determined by projection

onto the second factor of Sι x D m " 1 .
Proo/ We can assume that ψoa has degree one by composing ψ with

a degree-one self map of Sι if necessary. Let F:Nmx D m + 1 -> S 1 x D 2 w

be an embedding as in the proof of Proposition 1.3. We can easily arrange
that F satisfies the following two additional properties:

(1.4.1) ImageF n (Sl x S2m~l) = F{dNm x D m + 1 ) ,

(1.4.2) F(h(u ,υ),w) = (u, (v/2, w/2))

for all u e Sι, υ e Bm~ι and w e Bm+ι. Let k: Sι x D m - 1 ^ Nm

denote the composition of h with the inclusion map Int(Nm) c Nm .
The argument given before shows that

(k x id/*: [Sl x Ώm~l x ®m+ι/d, 7] ̂  [iVw x Bm+l/d , 7]

is monic. (Note that d(ΛT X D W + 1 ) = dNm x D w + 1 U Nm x 5 W .)

Let s denote the order of θm_ι, and Φ: 5 1 x Ώ2m/d -> Sι x B2m/d

be the map induced by the function (z, w) »-» (z*, w) where z e Sι and

w G B2m . Likewise let

P : Sl x D'"" 1 x D m + 1 /9 - B'"^1
 X D W + 1 / ^

be determined by projection onto the last two factors of Sι x D m ~ ι x D m + 1 .
Property (1.4.2) yields the following identity

(1.4.3) Po(Fo(kx id))' oφ = Po(Fo(kx id))'.

Let σ:dNmx[0,l]-+ Nm be a collaring of Nm . To complete the proof,
it suffices to show that the equation

(1.4.4) (σ x id)'*(α) = {k x id/*(/>*(&))

only has solutions a and ό when the element b e θ m - 1 is zero.
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To show that b = 0, apply ( f Ό φ ) * to (1.4.4) and use identity (1.4.3)
yielding

(1.4.5) {(F o (σ x id))' o Φ ) » = ( F o ( h id))'* (P*(b)).

It can be shown, using hypothesis 2 of Addendum 1.4, that

((Fo(ffxid));oΦ)*(fl)

is divisible by s. (Hint. The map F o (σ x id): dNm x [0, 1] x D m + 1 -+
Sι x B2m lifts to the connected ^-sheeted cover of Sι x D 2 m .) Since
(F o (k x id))'* is an isomorphism, P*(b) is also divisible by s. But
P* is a monomorphism onto a direct summand; therefore, b e θm_x is
divisible by s and hence b = 0. This completes the proof of Addendum
1.4. q.e.d. _ ^

Recall that Mm is the interior of a compact smooth manifold Mm and
observe that the cuspidal elements in πχM — πχM are precisely those rep-
resentable by curves in M which are freely homotopic to curves in dM.
If we set Nm = Tfm and h = / , then a = p o hf and hence Addendum
1.4 verifies the assertion, made in the sentence following Lemma 1.2, that
ά* is injective. This completes the proof of Theorem 1.1.

The first comment made at the end of the Introduction is explained by
the following remark.

Corollary 1.5. Let Mm be a manifold satisfying the hypotheses of The-
orem 1.1. Let the homotopy sphere Σm represent an element in θm and
x € ®m-i V Mm#Σm is diffeomorphic to a manifold in the concordance
class M(a, JC), then Mm#Σm is diffeomorphic to Mm .

Proof Let Afy be a manifold in M(a, x) where α is the core of

/ and the isotopy class of φ is x. Further, suppose Mm # Σ m is diffeo-

morphic to Mj. . We first consider the case where Mm is not compact;

then every map Mm —• Sm is homotopic to a constant map. But the

concordance class of Mm # Σ m is in the image of

γ*:[Sm,Top/O]^[Mm,Ύop/O],

where γ: M -> S is the result of the Pontryagin-Thom construction
applied to a framed point γ: * —• Mm . Therefore Mm # Σ m is concordant
and hence diffeomorphic to Mm . (This argument, showing that Mm # Σ m

is diffeomorphic to Mm , is valid for any noncompact connected manifold
Mm
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We now assume that Mm is compact. Let y: Bm -+ Sι x Bm~ι be an
1 ¥Yi— 1

orientation-preserving embedding. Also, let the maps q: S xB /d —•

Bm~ι/d and ω: Ώ)m~ι/d -> Sι x Bm~ι/d be respectively determined by

projection onto the second factor of Sι x D m - 1 and the inclusion

Lemma 1.2 yields that M(a, x) = f*(q*(x)). By looking at [9, Proof
of Proposition 1.2], we also see that M#Σm and M#(-Σm) are in the
concordance classes of /""(/*(y)) a n d /'*(/*(-)')) > respectively, where
y e θm is the concordance class of Σm . The argument proving [9, Adden-
dum 2.3] yields that Mf is concordant to either M#Σm or M # ( - Σ m ) ;

therefore, either f*{q*\x)) is equal to /*(/*()>)) or to /*(/*(-}>)).
Now y'* is monic by Proposition 1.3 in which we set Nm = Mm and
h = f. Consequently, q*{x) = γ'*{z) for some z e θm. Since the
composite q o ω = id, we have

(1.5.1) x = ω\q\x)) = {γ oω)\z).

The map γΌω: Sm~ι -> Sm is homotopic to a constant. Therefore, (1.5.1)
implies that x = 0, which completes the proof of Corollary 1.5. q.e.d.

We end this section with a corollary of the Mostow-Prasad strong rigid-
ity theorem.

Proposition 1.6. Let Mm, with m > 2, be a complete {connected)
Riemannian manifold with finite volume and all sectional curvatures -1.
Let Nm be a complete Riemannian locally symmetric space. If M and N
are homeomorphic, then they are isometrically equivalent {after rescaling
the metric on N by a positive constant).

Proof This is an immediate consequence of the Mostow-Prasad strong
rigidity theorem when N has finite volume [19, §24] and [21]; cf. [16, p.
334, Theorem 7.24]. Note that iV must have finite volume when M is
compact. Hence we now assume that M is not compact.

To show that N has finite volume, in this case, we argue as follows.
Let JV" be the universal cover of TV then

(1.6.1) N = ExH,
1 '

where E is fe-dimensional flat Euclidean space and H{ is a symmetric

space of noncompact type. (The DeRham decomposition of N has no

compact factor since iV is aspherical.) We proceed to show that k = 0.
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Let

(1.6.2) Γ C Iso(E* xHχ) = Iso(E*) x I s o ( ^ )

be the group of all deck transformations ofN->N. (We denote by

Iso(Λf) the group of all isometries of a Riemannian manifold X.) Recall

that Iso(E^) is a semidirect product Rk x O(k). Hence the abelian Lie

group Rk is a closed normal connected subgroup of Iso(E* x Hχ). Let

(1.6.3) π: Iso(E xi/j)—>Iso(E x Hχ

be the natural map and U = π(Γ) denote the closure of π(Γ). The
identity component U° of U is solvable by [22, Theorem 8.24]. If U°
is not trivial, then π(Γ) Π U° is a nontrivial normal solvable subgroup
of π(Γ), and Γ would consequently contain a nontrivial normal abelian
subgroup. But this is impossible since Γ is isomorphic to a torsion-free
lattice in O+(m, 1, R). Hence, π: Γ -» π(Γ) is monic and π(Γ) is a
discrete subgroup of Iso(H{). By looking at the cohomological dimension
of Γ, it is now easily seen that k = 0.

Note that ΓίΊ \^o{Hχγ contains a free abelian subgroup A of rank
m—\ since Mm has at least one cusp. Suppose A contains an element
γ with nontrivial semisimple Jordan component s. Since A centralizes
s, H{ contains a proper ^4-invariant totally geodesic subspace H2 which
must be flat by [15] and have codimension one since H2/A is compact.
This forces N = Hχ = H2 . But this is impossible since dim N > 2. We
therefore conclude that A contains only unipotent elements. Hence [16,
Proposition 1.5] shows that A is contained in the unipotent radial RU(P)
of a parabolic subgroup P of lso(Hχ). For cohomological dimension
reasons, A is cocompact in RU{P). This forces the R-split rank of lso(Hχ)
to be 1 and RU(P) to be abelian by [22, p. 34, Corollary 2]. Hence Hχ =
H m after rescaling the metric on Hχ by a positive constant. It is now a
routine exercise to see that Hχ/Γ has finite volume. This completes the
proof of Proposition 1.6.

2. Negative curvature and M(a, JC)

The symbol Mm will denote, for the rest of this paper, a complete
(connected) Riemannian manifold of finite volume (possibly compact)
and with all sectional curvatures - 1 . Also a will denote a simple or-
thonormally framed geodesic in Mm . It determines an immersion a: Sι x
Rm~ι ^Mm defined by
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ίm-\

(2.0) ά(y tχ, t2, , tm_x) = exp ί

where y e ί 1 , ί,. € R and ̂ , e2, , em_x is the orthonormal framing
of α . For each nonnegative real number r and each subset T c R5, let
rΓ denote the subset of Rs defined by

(2.0.1) rT = {ry\yeT}.

We say that a is the core of a geometric tube of radius r if the restric-
tion of a to Sx x rl))"1"1 is a smooth embedding. Denote the arc length
of a by \a\ and let the orthogonal matrix Aa e O(m - 1, R) be the
holonomy around a. It is explicitly defined as follows where we regard
a: R —• M as a periodic function of period 2π and speed |α|/2π . Let
ex, e 2 , , £m_j be the parallel vector fields along a satisfying £.(0) =
e.(0) for / = 1, 2, , m - 1. Define a matrix Aa{t) e O(m - 1, R), for
each t e R, by

(2.0.2) ei(t)

and then set Aa = AJlπ). We call the correspondence t \-+ Aa(t) the
holonomy function associated to a. The purpose of this section is to prove
the following result.

Theorem 2.1. Given real numbers ε, I > 0, an integer m > 6 and a
map A(t): R —• O(m - 1, R), there exists a real number r > 0 such that
the following statement is true for any pair (Mm , a) as above but subject
to the following extra constraints:

1. |α| = /;
2. Aa{t) = A(t)forallt£R;
3. a is the core of a geometric tube of radius 2r.

For any x € θ m - 1 , there exists a complete negatively curved Riemannian
manifold Nm of finite volume in the concordance class M(a, JC) and such
that all the sectional curvatures of Nm lie in the interval [-1 - ε, - 1 + ε].

The following is the strategy used to prove this result. Pick a represen-
tative diffeomorphism φχ: S

m~2 -> Sm~2 for each element x in the finite
group θ m _ j . Let / : Sι x Bm~ι -• Mm be the tube defined by

(2.1.1) f(y,v) = ά(y,2rv).
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The core of / is the geodesic a equipped with the framing 2reχ, 2re2,
• , 2rem_χ. But it is easily seen that Mj is a smooth manifold in
the concordance class M(a, x). It is the underlying smooth manifold of
the posited Riemannian manifold Nm . To put the Riemannian metric on
Mf , we express it as the union of three manifolds

j i ψx

(2.1.2) M w - / ( 5 1 χ I n t D w " 1 ) , Sιx$Bm~ι

9 SXx(Ώm~X-± IntD™"1).

The Riemannian metric on Mm induces the Riemannian metrics on the
first two submanifolds via the inclusion map and the embedding / , respec-
tively. The third submanifold, which can be identified with the cylinder
(S x Sm~ ) x [j, 1], thus inherits a Riemannian metric on its top and
bottom boundary components. We taper these Riemannian metrics to-
gether over the interior. The larger r is, the close to - 1 is pinched the
sectional curvatures in this tapered Riemannian metric. This tapering is
accomplished by using Lemma 2.2 which we proceed to formulate.

Let Sm~ x R denote the Riemannian symmetric space which is the
metric product of Sm~2 and the flat line R. Let ψ be the isometry of
Sm~2 induced by A(2π) i.e.,

(2.1.3) ψ(y)=yA(2π), y e Sm~\

and let T: R -• R be the translation T(y) =y + l, y e R". Then ψ x T is

an isometry of Sm~2 x R. Let Jfm~x denote the orbit space of Sm~2 x R

under the action of the infinite cyclic group of isometries generated by

ψ x T. It is a compact Riemannian locally symmetric space. Let π: Sm~2 x

R -> Jfm~x denote the covering projection, and ω: JVm~x -• (j^)Sι be

the map induced by projection onto the second factor of Sm~2 x R. Here

the circle (j^)S1 is identified with the orbit space of R under the action

of the group generated by T. Consider the cylinder Jfm~x x [1,2] .

Let ξ and γ be the distributions respectively tangent to the foliations

{JTm-χ xt\t G [ l , 2 ] } a n d {y x [ 1 , 2]\y e Jίm~x}. L e t ξχ a n d ξ2 b e

the subdistributions of ξ respectively tangent to the foliations

(214) {π(Sm'2xy)χt\yeR, te[l,2]} a n d

{ ( R ) \ S m - 2 te[l2]}{π(yχR)χt\yeSm

m~xLet B be any Riemannian metric on jVm~x x [1, 2] satisfying
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(1) £_Lyand
( 2 L 5 ) (2) B(*- » U I

where t is the second coordinate in the product structure J/'m~ι x [1, 2].

Given a positive real number r, construct a new Riemannian metric Br

~ι x

(1)

on JVm~ι x [1, 2] by requiring the following properties:

(2.1.6) ( 3 ) βr(u, v) = sinh2 (rt)B(u,v), if u,veξ{

(4) Br(u, υ) = sinh (rt)B(u, υ), if ueξ{ and v e ξ 2

( 5 ) 5 r ( w , υ) = s i n h 2 ( r ί ) ^ ( w , v ) + rfω(w) rfω(v), ifu,υeξ2.

m-\Lemma 2.2. Let P denote an arbitrary 2-plane tangent to JV X
[1,2] . Then

uniformly in P, where KB (P) denotes the sectional curvature of P relative
to Br.

Before proving Lemma 2.2, we use it to prove Theorem 2.1 by imple-
menting in detail the strategy outlined after the statement of this theorem.
Define a diffeomorphism Ψ: R x Sm~2 -> Sm~~2 by the formula

(2.2.0.1)

(Recall that AQ(ή = A(t).) It induces a diffeomorphism Ψ: Sι x Sm~2 ->

Jfm~x since ψ(y) = yA(2π) cf. (2.0.2) and (2.1.3).

Fix a Riemannian metric B( , ) on yym~x x [1, 2] satisfying (2.1.5)
together with the following additional properties where B\ , ) denotes
the induced Riemannian metric on the hypersurface JVm~x x t, t e [1, 2]:

(1) B is the given locally symmetric metric on JVm .

(2) B2 is the pullback of Bl under the composite

diffeomorphism Ψ o ( i d x ^ ) o ψ ~ .

(3) Bι is constant in t near £ = 1 , 2 .
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I f s € R a n d u = ( t , y ) € Sι x R m ~ ι , d e f i n e s u = ( t , s y ) . L e t
h, hχ: Jfm~λ x (0, 2] -> Mm be the two embeddings defined by

(2 2 0 3) h(y,t) fφψ\y)) and

where y e yTm~1 and ί e ( 0 , 2 ] . (Recall / was defined in (2.1.1).)

fNote that Mfφ can be constructed by gluing y f m ~' x [1, 2] to Mm -

h(/Vm~ι x (1, 2)) along the maps

(2204) h : J x \ M
hχ: jrm~x x 2 -f M m - Λ^" 1 " 1 x (1, 2)).

Put a Riemannian metric ( , ) on Λff as follows. It is the given

hyperbolic metric onsMm-h(J^m~{ x (1, 2)) while, restricted to JVm~x x
[1, 2 ] , ( , ) is the Riemannian metric Br{ , ) of (2.1.6) constructed using
the Riemannian metric B( , ) fixed in (2.2.0.2). We leave the reader an
exercise to show that these two Riemannian metrics fit together. Use the
following hints. The Jacobi fields in H m can be explicitly calculated. This
calculation shows that H m is isometric to the warped product H m x R

where g(p) = cosh(/>(/?)), p e H m ~ 1 , and p(p) denotes the distance
between p and a fixed point p0 e Em~ι. The set of points pQ x R is a
geodesic line, and H"1"1 x 0 is a totally geodesic subspace (isometric to
Elm~1) meeting this line perpendicularly at p0 x 0. Furthermore, H"1"1 -
p0 is isometric to the warped product (0, +oo) xh S

m~2 where h(t) =
sinh(0, t e (0, +oo). Now use (2.2.0.2) and (2.1.6) together with the
trigonometric identity cosh2(£) = sinh2(ί) + 1 to show the metrics agree at
Jfm~x x 1. To show they agree at Jf m~ι x 2 use, in addition, the following
matrix identity. Let P denote the (m - 1) x (m - 1) matrix whose only
nonzero entry is Pm_x m_x — 1, and let A be any (m - 1) x (m - 1)
matrix whose bottom row is (0, 0, , 0, 1). Then A1 PA = P where
A* denotes the transpose of A. The conclusion of Theorem 2.1 now
follows from Lemma 2.2.

Proof of Lemma 2.2. Smooth coordinate functions xχ, , xm_2 >
χ

m-\ > t defined in an open neighborhood of a point (p0, t0) e yym~x x
[ 1 , 2 ] are said to form a regular coordinate system about (/?0, /0) if
there exist coordinate functions y{, y2, , ym_{, s defined in an open
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neighborhood of a point (q0, t0) e (Sm~2 x R) x [1, 2] such that

(!) π(%)=Po>

(2) the composite x. o (π x id) = yi9 for / = 1, 2, , m - 1;

(3) s and ί are the [1, 2] coordinates in the two product

structures;

' " ' (4) ym_ι is the R coordinate in the product structure

5 m " 2 x l x [ l , 2 ] ; a n d

(5) y. is constant on each leaf of the foliation

{z x R x [1, 2] I z e Sm~2} provided 1 < i < m - 2.

It is easy to find a regular coordinate system about a given point in jVm~x x
[1,2] . By composing the coordinate functions y{9 y2, 9ym for this
system with members from a precompact set of isometries of the sym-
metric space *Sm~ x R x R, we construct a family of regular coordinate
systems (one for each point (pQ, tQ) e JVm~x x [1, 2]) satisfying the fol-
lowing properties:

(1) B( , ) = g.j dxt dXj + dt . We denote these functions by

gj*jOit° ( ) when we need to make explicit the dependence

of the functions g j( ) on the (base) point (p0, t0).

(2) The closure of the set

{g^°ito){po, *0) I (p0, tQ) e jrm~x x [ i , 2]}

cy <y <y\ is a compact space K of positive definite symmetric

matrices.

(3) There is a positive real number C, which is independent of

(p0, t0), such that for all integers k, s > 0, with k + s < 2,

the following inequalities hold:

χk+s Jpo,to)

For each positive real number r, define a new coordinate system xt, t
about (p0, t0) by setting

(2.2.3) t = rt and x. = s
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We then have the following equalities:

dt = rdt, dxi = sinh(r/0) dxt,

(2.2.4) d i d d Id

dt rdt' dxi sinh(rί0) dxt'

From (2.2.4) and the definition (2.1.6) of Br in terms of B it follows that

Br{ , ) = gijdxidxj + df,

where * - s i n h V ' ) - i f i < / / < w _ 2

( 2 2 5 ) » _ » _ «ω»2(r0 „

sinh2(rQ

Let Xj j . { ; .s denote the partial derivatives (Oth through 2nd order)

dk+sg..
( 2 2 6 ) Sξ^F^^
In particular, X.. = f l 7 (p 0 , ϊ 0 ) . It follows from properties (2.2.2), (2.2.4)
and (2.2.5) that

(2.2.7) ; u n ^ , y ; . . . . 5 ^ ; j = O f c 2 ^ ^ o ) ( P o ? g

uniformly in (p0, t0). Here 0° = 1 and 0^ = 0 if k > 1.
Choose an orthonormal basis {υ{, v2} for the 2-plane P and write

(2.2.8) υ;=αikd/dxk + αimd/dϊ

where we sum over the index k. It is a consequence of the classical
relation between the coefficients of the curvature tensor and of the first
fundamental form (cf. [12, §§5.3 and 6.2]) that KB (P) is a polynomial

/( ) in the set of variables {X.j.. mmm,,- ; j f 0 j 7 , det(Xu)~1} . The set &

of limiting values (as r -• +oo) of these variables

(2.2.9) 2> = {0k2sg^^\p0, t0), αiJ9 det(g^' i o )(p o, to))~1}

is a precompact (i.e., bounded) subset of the domain of / because of
(2.2.2) and (2.2.7). It consequently suffices to show that f\J? = -1 in
order to complete the proof of Lemma 2.2.
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Fix a point (pQ, tQ) e yKm~ι x [1 , 2 ] . Let xl9x2,>- , xm_x be the

standard coordinates on Rm~ι and let A( , ) be the flat Riemannian

metric on Rm~ι described by

(2.2.10) A( , ) = giJ(po,to)dxidxj9

where g..{ , ) is an abbreviated notation for £^°'o )( , ) . Now form the

warped product R x^ Rm~ι, where η: R -> R is the function ^(ί) = e'
and R has its standard (flat) Riemannian metric. (See [20, pp. 204-211]
for the definition and properties of the warped product.) Let t be the
first coordinate in the product structure R x Rm~ι. Then the Riemannian
metric A( , ) on the warped product R x R m - 1 is explicitly described
by the formula

(2.2.11) A( , ) = gijdxidxj + dt\

where gij(xι, , xm_x, 0 = e2ίg^ipQ, t0). The sectional curvatures of

R x^ R m - 1 are easily calculated using [20, Proposition 4.2, p. 210]. They

are all - 1 . Consider the point 0 = ( 0 ; 0 , 0 , , 0 ) G R X R m - 1 . The
value of the partial derivatives (Oth through second order) of g.. at 0
are equal to the limiting values of X. ... . c as r —• +oo; i.e., are

« • > } > ι \ » • • • > ι k > s

Qk2s'gjj(pQ9 t0). We consequently have that the value of / restricted to
S? is identically - 1 . This completes the proof of Lemma 2.2.

3. Relevant group theory

We intend to use the results of §§1 and 2 to construct the Riemannian
manifolds posited in Theorems 0.1 and 0.2. We will use examples due to
Millson [17] and a theorem of Sullivan [23]. Some specific group-theoretic
facts are needed to enable us to assemble these results. The purpose of this
section is to state and prove these results in group theory.

Let Q C C denote the algebraic closure (inside the complex numbers
C) of the field of rational numbers Q.

Lemma 3.1. Let Γ c GLΠ(Q) be a finitely generated subgroup, and
A, B e Γ be a pair of noncommuting elements. Also assume that A is a
semisimple matrix in GLΛ(C). Then there exists a homomorphism φ: Γ—•
G where G is a finite group such that φ(B) is not an integral power of
φ(A) i.e., the equation φ{B) = φ(A)n has no integral solution n.

Proof Since Γ is finitely generated, there exists an algebraic number
field k CQ such that Γ c GLn(k). (Recall that an algebraic number
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field is a finite field extension of Q.) We can even pick k so that A is
diagonalizable over k since the eigenvalues of A are also in Q. Hence, we
may assume, after applying an inner automorphism, that A is represented
by a diagonal matrix in GLn(k) under the embedding Γ c GLn{k). But
B is not a diagonal matrix since the set of all diagonal matrices form
an abelian subgroup of GLn(k) in particular, B{. Φ 0 for some pair of
unequal indices ί and j . Let (9 be the ring of all algebraic integers inside
of k. Recall the following properties of (9:

1. (9 is a Dedekind domain.

(3.1.1) 2. (9 is a finitely generated free Z-module.

3. (9 <8>z Q = k.

Using property 3 and the fact that Γ is finitely generated, we conclude
s

that Γ c Ghn{^[^\) where meZ and m Φ 0. In particular, Biy= bm
where i G ^ f , b Φ 0 and s e Z. Use property 1 to pick a maximal ideal
2t in (9 such that both ft £ 21 and m £ 21. Let ^ : ^f[^] -> (9j% be
the canonical factor homomorphism. Note that &'/2l is a finite field by
property 2 and that ^(ftm5) φ 0. Let # : GLΠ(<?[£]) -> GLΠ(<?/») be
the induced group homomorphism. Then the posited φ is the composite
of the inclusion of Γ into GLΠ(^[^]) with ^ . q.e.d.

A closed geodesic γ: Sι —• M m is said to be t-simple if y: Sι —• ΓM
is simple, i.e., a one-to-one function. Recall Mm has the same meaning
here as it has in §2 and m > 6. Also TM denotes the tangent bundle of
M. Let 1 e Sι c R2 = C be the complex number one.

Corollary 3.2. Assume Mm is orientable and γ: Sι -» M m w a t-
simple closed geodesic. Let x0 = y(l) α«ί/ 4̂ e πχ(M, ,x0) be the homotopy
class of γ. L^ί 5 fee <z«y oίΛ r̂ element in πχ(M9 x0) which is not an
integral power of A. 77ze« ί/^re βxΰϋ α homomorphism φ: π{ (M 9 xΌ) -+
G where G is a finite group and such that φ(B) is not an integral power
ofφ(A).

Proof The group Γ of all deck transformations of the universal cov-
ering space H m of Mm can be identified with π{(M, xQ). Using the fact
that A leaves invariant a geodesic line in H m , one sees that A and B
do not commute. Since Γ acts via isometries on E™ , we can identify Γ
as a lattice in the Lie group SO+(m, 1, R) C GLW + 1(R) such that A is
represented by a diagonalizable matrix in GL m + 1 (C). We can apply the
weak arithmeticity result of Garland and Raghunathan [11] which gener-
alizes to nonuniform lattices earlier results of Selberg; cf. [22, Proposition
6.6], and Calabi [5]. There consequently exist an algebraic number field
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K I and an element g e SO+(ra, 1, R) such that

gΓg-lCSO+(m,l,k)cGLm+ι(Q).

The composite of the inner automorphism determined by g with the em-
bedding SO+(ra, 1, k) C GLm + 1(Q) hence gives an embedding of Γ into
GLm + 1(Q) which satisfies the hypotheses of Lemma 3.1. An application
of Lemma 3.1 thus completes the proof of Corollary 3.2.

Corollary 3.3. Let γ: Sι —• Mm be an orthonormally framed t-simple
closed geodesic, and r be a positive real number. Then there exist a {con-
nected ) finite sheeted cover p: M —> M and an orthonormally framed
simple closed geodesic a: Sx —> M such that

1. p oa = γ and
2. a is the core of a geometric tube of radius r.

Proof Note first that we can assume Mm is orientable since γ lifts to
the oriented cover of Mm when Mm is nonorientable.

Let JC0 = y(l), and x0 be a lift of x0 to the universal cover q: B.m —>
Mm i.e., q(xQ) = x0. Identify πχ(M, xQ) with the group Γ of all deck
transformations of q: H m —> Mm via these choices, and let A e Γ cor-
respond to the homotopy class of a in πx(M9 xQ). Let L be a geodesic
segment of finite length such that x0 e L and q(L) = γ(Sι). A com-
pactness argument shows that these are only a finite number of elements
Bχ, B2, - , Bn in Γ such that, for each index 1 < / < n , the following
hold:

1. B. is not an integral power of A, and
2. some point on B^L) is within distance 2r + \L\ of L where \L\

denotes the length of L.
Now apply Corollary 3.2 to obtain a group homomorphism φ: πχ (M, x0)

—y G where G is a finite group and such that none of the elements φ(B.)
is an integral power of φ(A), where / = 1, 2, , n. Let S be the
cyclic subgroup of G consisting of all the integral powers of φ(A), and let
p: M —• M be the covering space corresponding to the subgroup φ~ (S) C
πχ(M, xQ). It is now routine to verify that p: M -> M satisfies the
properties posited in Corollary 3.3.

Lemma 3.4. Assume Mm is orientable and φ: πχ(Mm) -> Z+ is an

epimorphism. Then there is a t-simple closed geodesic γ : Sι —> Mm such
that φ([γ]) φ 0 where [γ] denotes the free homotopy class of γ.

Proof Recall that every conjugacy class of a nonidentity element in
πχM

m is represented by a closed geodesic when Mm is compact. So
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Lemma 3.4 is obviously true when Mm is compact. We argue as follows
in the general situation.

Identify πχM
m with the group of all deck transformations of the uni-

versal covering space p: H m —• Mm . Since Γ acts via isometries on H w ,
we can further identify it to a lattice in SO+(ra, 1, R) c GL m + 1 (R). The
individual elements ] J G Γ - { 1 } are partitioned into two disjoint classes
semisimple and cuspidal depending on whether the matrix representing β
in GLm + 1(C) is semisimple (i.e., diagonalizable) or not. We now recall
a few facts about the Jordan decomposition of β cf. [19, p. 10]. It de-
composes uniquely as a product β = pku where p,k,u are pairwise
commuting matrices in SO+(ra, 1, R) with u unipotent and both p and
k semisimple with positive real and length 1 eigenvalues, respectively.
When p Φ 1, it has exactly two eigenvalues λ and λ~ι different from 1,
and each eigenvalue has a one-dimensional eigenspace. It is a consequence
of [19, Lemma 5.2(i)] that if p Φ 1, then u = 1 hence, β is cuspidal
if and only if p = 1. Also [19, Lemma 5.2(i)] yields the following useful
criterion.

(3.4.1) If trace β > m + 1, then β is semisimple.

On the geometric side, the elements in Γ - {1} whose conjugacy class
is represented by a closed geodesic are precisely the semisimple elements,
while the cuspidal elements are those representable by curves of arbitrarily
short arc length.

We proceed to find a semisimple element β e Γ with <p(β) Φ 0. Pick
an element c eΓ such that <p(c) Φ 0. If c is semisimple, then we are
done. Hence assume that c is cuspidal. Using the fact that the set of
all closed geodesies is dense in the set of all geodesies [19, Lemma 8.3' ],
we can find a semisimple element β € Γ - {1} such that trace (βnc) ->
+oo as n -> -hoc. (Hint: β should "point towards" the cusp.) Hence
βnc is also semisimple by (3.4.1), when n is sufficiently large. Note that
<p(βnc) = nφ(β) + φ(c). Therefore either φ(β) φ 0 or φ(βnc) Φ 0. Thus
we have accomplished the goal stated in sentence one of this paragraph.

Note that for every closed geodesic β there exist an integer n and a
ί-simple closed geodesic γ such that β is the composite γ o Pn where
Pn: Sι —• Sι is the function z —• zn . Hence we can find a ί-simple closed
geodesic γ with φ([y])φθ. q.e.d.

We will need the following technical fact about the group SO+(m, 1, Z)
in order to prove Theorem 0.1.

Proposition 3.5. Given a semisimple element A e SO+(ra, 1, Z) of
infinite order and a positive integer n, there exist a finite group G and a
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homomorphism ψ: SO+(ra, 1, Z) —• G with the following properties:
1. The order of ψ(A) is divisible by n.
2. Let β be any unipotent element in SO+(m, 1, Z) such that ψ(B) =

ψ{A)s where s € Z then n divides s.
Fix an algebraic number field k such that k contains all the eigenvalues

of A as well as all the «th roots of unity. Note that A has real eigenvalues
λ and λ~ι with λ > 1, and its other eigenvalues are complex numbers of
length 1. Furthermore, the eigenspaces corresponding to λ and λ"1 are
both one-dimensional. Let <f denote the ring of all algebraic integers in
k, and let units <f denote the group of units of this ring. Notice that
units <f contains all the eigenvalues of A and all the nth roots of unity.
Fix a positive (rational) prime q which divides n, and let Ω denote a
specific choice of a primitive qth root of unity. The proof of Proposition
3.5 requires the following preliminary result.

Lemma 3.6. Given a positive (rational) integer s, there exists a prime
ideal 2t in (9 such that the coset λ + 21 is a unit in the finite field ^/2l
and its order is divisible by qs.

We now complete the proof of Proposition 3.5 using Lemma 3.6, and
after that we prove Lemma 3.6. Let n = qlιqs

2

2 "'^l' be the prime fac-
torization of n where the numbers q. are distinct positive primes and
each sz > 0. We will use Lemma 3.6 to construct finite groups G and
homomorphisms ψ.: SO+(m, 1, Z) —> Gt., for / = 1, 2, , r, with the
following two properties:

1. The order of ψt{A) is divisible by qsj.

(3.6.1) 2. Let B be any unipotent element in SO+(m, 1, Z) such that

ψ^B) = ψjίA)5, then qss divides s.

The proof of Proposition 3.5 is completed by setting G = GιxG2x-χGr

and ψ = ψχ x ψ2 x x ψr.
It remains to construct G and ψ{ satisfying (3.6.1). Let 21; be the

prime ideal 21 posited in Lemma 3.6 relative to setting q = qt and s =
sr Let G( = 5Xm + 1(^/2l.), and ψ. be the composite of the inclusion
SO+(m, 1, Z) C SLm+χ(<f) with the group homomorphism

induced by the coset homomorphism x ^ x + 21., x e &.
We must now show that (3.6.1) is satisfied. Note first that λ + 2lz is an

eigenvalue of the matrix ψt{A). Consequently, ψt{A) is conjugate to a
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blocked upper triangular matrix si of the form

λ + 21,.
(3.6.2)

0

where the top diagonal block is a l x l matrix whose entry is λ + f&..
Hence the order of sf is divisible by the order of the unit λ + 21, in the
field ^/2l z. Lemma 3.6 now shows that q*' divides the order of ψ^A)
since s/ and ψ^A) have the same order. This verifies property 1 of
(3.6.1).

To verify property 2, note that ψ^Af is conjugate to s/s. Hence s/s

is a unipotent matrix; i.e., all its eigenvalues are 1. But ^+21,. is clearly an
eigenvalue of sfs. The order of Λ + 21; in units(^)/2ί/) therefore divides
s. A second application of Lemma 3.6 now shows that q\ι divides s.
This completes the proof of Proposition 3.5.

Proof of Lemma 3.6. Recall that (9 satisfies the three properties of
(3.1.1). For each element x e (9, let (JC) denote the principal ideal it
generates; i.e., (x) = x(9. Each ideal in ff is the product of prime ideals
since <9 is a Dedekind domain. In particular, we have that

(3.6.3) ( Ω - l ) = 2 t ^ 2 t ^ . . . 2 t ^ ,

where each 2tf. is a prime ideal and each mt is a nonnegative (rational)
integer. Let

(3.6.4) v — max{mj, m2, , mr} + 1.

Recall that prime ideals are all maximal in Dedekind domains; i.e., if
21 is a prime ideal, then έf/21 is a field. Furthermore, ^/2t has finite
cardinality since the additive group of (9 is finitely generated. We see
that ^/2tn is a finite ring for each nonnegative (rational) integer n by
arguing in this way. We can clearly make the following assumption in
proving Lemma 3.6; namely,

(3.6.5) qs > cardinality of (9/Vζ

for each i = 1, 2, , r.
There is now the following fact which we will verify after first using it

to complete the proof of Lemma 3.6.
Claim 3.7. There exist a prime ideal 21 in (9 and a positive (rational)

integer j such that bJ - Ω e 21 but Ω - 1 & 21, where b = λq* .
As observed above, ^/2t is a finite field. Claim 3.7 can be rephrased

as the following statement about elements in this field

(3.7.1) y + 2l = Ω + 2l^ 1+21.
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Consequently, bj + % has order q in units (^f/21). But since bj = λjq ,
the order of λ + 2t must be divisible by qs. This proves Lemma 3.6.

We now proceed to formulate and verify an auxiliary result needed to
prove Claim 3.7. Fix a Z-basis for &. Then multiplication determines a
faithful representation

(3.7.2) η:0-+Mn(Z),

where Mn(Z) is the ring of all nxn matrices with entries in Z and n =
[k : Q ] . Composing η with the determinant function det: Mn(Z) —• Z
defines a norm on @. Denote by N(x) the norm of an element X G ^ .

Assertion 3.8.
limsuplΛ^-Ω)! =+oo.

j—>+oo

To verify this assertion, we start by analyzing the eigenvalues of the two
matrices η(λ) and η(Ω). Since the field Q(λ) is contained in k, we see
that λ is an eigenvalue of η(λ) and also that η(λ) is diagonalizable in
Mn(C). Since A is a root of the characteristic polynomial of A, this poly-
nomial also annihilates η(λ). The eigenvalues of η(λ) are consequently a
subset of the eigenvalues of A (not counting their multiplicities). By the
same reasoning, ^(Ω) is also diagonalizable in Mn(C) and its eigenvalues
are all primitive #th roots of unity.

Note that η(Ω) and η(λ) are simultaneously diagonalizable in AfΛ(C)
since Ωλ = AΩ. We consequently have the following formula for the norm
of^'-Ω:

(3.8.1) j fi

where λx = b, each λέ e {b, b~ι}uSι, and each Ω,. e Sι~{l} withΩf =
1. Observe the following two facts:

1. lim \bJ-z\ = +oo, and
(3.8.2) J^°° .

2. lim \b J - z\ = 1

for each complex number z e Sι. Furthermore, there exists an infinite
set S? of positive integers such that

(3.8.3) μf-l|<sin(7r/<7)

for each j e S?, and such that λt e Sι for each index /. One now easily
shows that
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(3.8.4) lim \N(bJ - Ω)| = +00

by using facts (3.8.2) and (3.8.3) in conjunction with formula (3.8.1). Thus
Assertion 3.8 is verified.

We now establish Claim 3.7 via proof by contradiction; hence we assume
Claim 3.7 is false. The prime factorization of each ideal (bj - Ω), j > 0,
consequently has the following form:

(3.8.5) (bj - Ω) = %™ι'jVl™2'J. . . α V

where each mi . is a nonnegative (rational) integer. (Recall the prime
ideals 2tz come from the factorization (3.6.3).) Suppose all the numbers
mi < v \ then there would only be a finite number of distinct ideals in

the list (bj - Ω), j > 0. Consequently only a finite number of integers
in the set {N(bJ - Ω) \j > 0} , contradicting Assertion 3.8. (Note that if
(x) = (y) 9 then N(x) = ±7V(y).) Hence there exists a pair of positive
numbers i, 7 such that mf 7 > ^ Consider the finite ring Λ = *f/9^ .
Then the following is true about certain elements in R:

(3.8.6) 67' + %] = Ω + tf.φ 1 + α^.

Therefore bj 4- Si)7 has order # in units i?. Recall again that bj = λjq

Hence the order of the element λ 4- Wζ in units R must be divisible by
qs. In particular, the cardinality of (9 j ^ must be greater than q which
contradicts assumption (3.6.5). This proves Claim 3.7.

4. Proof of Theorem 0.1 and 0.2

Recall that in this section, as in the previous two, Mm still denotes a
complete (connected) Riemannian manifold with finite volume (possibly
compact), all sectional curvatures - 1 and d i m M w = m > 6. Our object
is to combine §§1,2 and 3 with earlier work of Millson [17] and Sullivan
[23] to prove Theorems 0.1 and 0.2 formulated in the introduction. We
start by recalling Sullivan's result.

Theorem 4.1 (Sullivan [23]). Each lattice Γ in 0+{m, 1, E) contains

a torsion-free subgroup of finite index Γ such that 3Hm/Γ is a π-manifold.
The following is a consequence of Theorem 4.1 and results from the

previous sections.
Theorem 4.2. Assume that Mm is closed and has positive first Betti

number. Given ε > 0 and an infinite order element y e Hχ (Mm, Z),
there exist a (connected) finite sheeted covering space p: Jίm —> Mm and
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a simple framed geodesic a in Jίm with the following properties:
1. Some multiple of the homology class represented by a maps to a

nonzero multiple of y via p^: Hχ (Jίm, Z) -> Hχ (Mm, Z).
2. There is no manifold dijfeomorphic to Nm # Σm in the concordance

class JK(a, x) provided Nm is a Riemannian locally symmetric space, Σm

represents an element in θ m and x is a nonzero element in θm_{.
3. Each concordance class Jt(a9 x) contains a complete and finite vol-

ume Riemannian manifold whose sectional curvatures are all in the interval

Proof Theorem 4.1 yields a (connected) finite sheeted covering space
px: Jίχ -> M such that J£ is a π-manifold for every covering space Jt of
Jfcχ. There is clearly an orthonormally framed ί-simple closed geodesic aχ

in Jtχ whose homology class [aχ] satisfies the following two conditions:

1. Some integral multiple of pu[aχ] is a nonzero multiple of y.

2. There is a homomorphism ηχ: πχJtχ —• Z + with ^ ( [ α j ) = 1.

Let / denote the length of aχ, and Aa : Sι -> O(m - 1) be the holonomy
function associated to aχ via formula (2.0.2). Let r be the positive real
number posited in Theorem 2.1 relative to the given data ε, /, m and
A(t) = Aa (t). Next apply Corollary 3.3, with M = Jtx and γ = aχ, to get
a covering space p2: Jί -> Jtχ and an orthonormally framed simple closed
geodesic a in Jί such that p2°ct = a and aχ is the core of a geometric
tube of radius 2r. We now set p = p2 o pχ: ^ w -* Λfw . Condition 1 of
Theorem 4.2 is obviously satisfied. If we let η: πχJί —• Z + in Theorem
1.1 be the composite of ηχ with p2#: πχJΐ -• π ^ j , then condition 2
is an immediate consequence of Theorem 1.1 together with Corollary 1.5
and Proposition 1.6. Theorem 2.1 shows that condition 3 is satisfied since
Aa = Aa and the length of a is the same as the length of aχ. This proves
Theorem 4.2.

The pattern of the above proof yields the following weaker version when
Mm is not compact.

Addendum 4.3. Assume that Mm is a π-manifold (not necessarily com-
pact), γ is a t-sίmple framed closed geodesic in M, and λ: πχM

m -> Z+

is a homomorphism such that

l Kly]) = 1 where [γ] denotes the free homotopy class of γ and
2. λ(β) is divisible by the order of θ m _j for each cuspidal element

β in πχM
m.

Given a positive real number ε, there exist a (connected) finite sheeted
covering space p: Jίm -> Mm and a simple framed geodesic a in Jίm
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such that the composite p o a = γ, and conditions 2 and 3 of Theorem 4.2
are satisfied.

We next recall some examples due to Millson which we then use together
with Theorem 4.2 and Addendum 4.3 to prove Theorem 0.2 and 0.1.

Theorem 4.4 (Millson [17]). For each integer n > 1, there exist two
complete (connected) finite volume Riemannian manifolds Kn and Nn of
dimension n which satisfy the following properties:

1. All the sectional curvatures of both Kn and Nn are - 1 .
2. Both Kn and Nn have positive first Betti number.
3. Kn is compact.
4. Nn is not compact.
5. πιN

n is isomorphic to a finite index subgroup of SO+(n, 1, Z).
Proof of Theorem 0.2. When θm is nontrivial, this result follows from

[9, Theorem 1.1] and Proposition 1.6. When θm_ι is nontrivial, it follows
from Theorem 4.2 by setting Mm (in Theorem 4.2) equal to the manifold
Km of Theorem 4.3.

Proof of Theorem 0.1. Define two sequences of positive integers an

and bn as follows. Let an be the order of the finite group θn and let
bn be the least common multiple of the orders of the holonomy groups of
lattices in the Lie group of all rigid motions of Euclidean Az-dimensional
space. Bieberbach [1] showed that bn exists and divides the order of the
finite group GLΛ(Z3) because of Minkowski's theorem [18]. Let Nm be
the Millson manifold in Theorem 4.4. Because of Theorem 4.1, there is
a finite sheeted (connected) covering space p: Jfm -> Nm such that ev-
ery covering space of Jίm is a π-manifold. There is an epimorphism
φ: πχj¥

m —• Z + since Nm has positive first Betti number. Because of
Lemma 3.4, there is a ί-simple framed closed geodesic ω in Jίm such
that φ([ω]) Φ 0 where [ω] denotes the fundamental group element cor-
responding to ω. (Note that [ω] is well defined up to conjugacy.) Let
A G SO+(m, 1, Z) denote the semisimple matrix corresponding to [ω]
under an identification of πχjy

m with a subgroup of SO+(m, 1, Z). Let
ψ: SO+(m, 1, Z) —> G be a homomorphism satisfying the conclusions of
Proposition 3.5 relative to A and n = am_xbm_γ . Note that gbm~ι is
unipotent for every cuspidal element g e πγ/Vm . Hence conclusion 2 of
Proposition 3.5 yields the following fact.

(4.4.1) If ψ(B) = ψ{A)s where B is a cuspidal element of πxjV
m\

then am_χ divides s.

Consider the homomorphism φ x ψ: πιJ
/'m -> Z+ x G and let
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denote the infinite cyclic subgroup of Z + x G generated by (φ x ψ){A) =
(φ(A), ψ(A)). Let q: Mm -> Jf™ be the covering space corresponding
to (φ x ψ)#l(&), and λ: πχM

m —• Z + be the composite of q#, φ x ψ
and the identification of ^ with Z + determined by making (φ(A), ψ{A))
correspond to 1 € Z+ . Let γ be a lift of ω to Λ/w . Since the conditions
of Addendum 4.3 are clearly satisfied, the examples posited in Theorem
0.1 can now be drawn from the conclusions of Addendum 4.3.
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