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A FINITENESS THEOREM FOR
RICCI CURVATURE IN DIMENSION THREE

SHUN-HUI ZHU

1. Introduction

The purpose of this paper is to prove the following result.
Theorem 1. There are only finitely many homotopy types in the class of

three-dimensional Riemannian manifolds M satisfying

Ric(M) > -H2, Diam(M) < D, Vol(M) > V,

where Ric(M) is the Ricci curvature, Diam(M), the diameter, and Vol(M),
the volume of M.

As a noncompact counterpart to Theorem 1, we also prove
Theorem 2. Let M3 be a complete open three-manifold satisfying

R i c > 0 , Vol{Bp(r))>cr\

Then M is contractible.
Results of the type of Theorem 1, known as finiteness theorems, were

first obtained by A. Weinstein [20] and J. Cheeger [4], [12]. Cheeger's
finiteness theorem states that there are only finitely many diffeomorphism
types for the class of Riemannian manifolds with a bound on the absolute
value of sectional curvature and bounds on the diameter and volume iden-
tical to that of Theorem 1. Subsequently, Grove-Petersen [7] proved the
finite homotopy type theorem only assuming a lower bound on sectional
curvature. This was later strengthened to finite diffeomorphism types for
n φ 3, 4 by Grove-Petersen-Wu [8]. Theorem 1 is an attempt to generalize
this to an assumption on Ricci curvature instead of sectional curvature.

All finiteness theorems as quoted above prove that, under a bound on the
curvature (which is local), the topology of the manifold is controlled by its
size. The proofs of these theorems rely on the understanding of the local
structure of the corresponding class. For Cheeger's finiteness theorem, the
crucial step is to prove a lower bound on the injectivity radius for that class,
hence on a uniform size smaller than that bound, the topology is simple: it
is diffeomorphic to a Euclidean ball. The corresponding statement for the
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result of Grove-Petersen is a lower bound on the geometric contractibility
radius (for definition see §3), which says a small ball is contractible, relative
to a bigger ball. Theorem 1 is proved by establishing a similar bound on
the geometric contractibility radius. Let us point out that the existence of
such a bound is strictly three dimensional. In fact, M. Anderson showed
there are metrics on S2 x S2 satisfying the same bound as in Theorem
1, but with no bound on the geometric contractibility radius [1]. This is
one of the main difficulties in trying to generalize Theorem 1 to higher
dimensions.

Then what is special about dimension three? The first thing to come
into mind is that in dimension-three sectional curvature can be recovered
from Ricci curvature (an alternating sum). This has been used by R.
Hamilton in conjunction with Ricci flow to get the spectacular result that
any three-manifold with positive Ricci curvature admits a metric with
constant sectional curvature. Another theorem special to dimension three
is that of Schoen-Yau, which states that a three-dimensional open manifold
with positive Ricci curvature is diffeomorphic to R . These two results
exploit the analytic and geometric aspects of three-dimensional geometry
of Ricci curvature. In contrast, our proof exploits the topological aspect.
In fact, the geometric part of the argument, such as that contained in
Lemma 3.1 to Lemma 3.4, holds for all dimensions. It is the topological
part which is special to dimension three. Thus it is perhaps fair to say
that, as far as the geometry relevant to finiteness theorems is concerned,
we know no more in dimension three than in higher dimensions. An
outstanding question is whether we can bound the length of shortest closed
geodesies by the data in Theorem 1. This is known not to be true if the
dimension is greater than three [1].

The class of manifolds in Theorem 2 can be obtained by scaling the class
in Theorem 1. Thus Theorem 2 can be thought of as a local version of The-
orem 1. Its validity demonstrates the possibility of bounding the geometric
contractibility radius in the proof of Theorem 1. However, Theorem 2 can
also be considered as a partial result towards the classification of complete
three-manifolds of nonnegative Ricci curvature, originally put forward by
Schoen-Yau in [14]. To this date, this classification is still open. However,
let us point out that with an additional assumption on the boundedness
of sectional curvature, W. Shi [16] and Anderson-Rodriguez [2] did gave
a classification. The method of W. Shi is analytic, using Hamilton's Ricci
flow for open manifolds as developed in [17], [18], while the method of
Anderson-Rodriguez is geometric, through the study of minimal surfaces
along the lines of Schoen-Yau [14].



A FINITENESS THEOREM FOR RICCI CURVATURE 713

The idea of the proof of our results was very much inspired by the
papers of Schoen-Yau [14] and M. Anderson [1]. The results of this paper
have been announced under the same title in [22].

2. Proof of the open case

In this section we give the proof of Theorem 2. Our argument follows
closely that of Schoen-Yau [14]. The strategy is to prove that π{(M) =
π2(M) = 0. Since m is open and of dimension three, Hk(M, Z) = 0,
for all k > 3. By the Hurewicz Theorem, we have πk(M) = 0 for all
k > 1. Hence M is contractible by the Whitehead Theorejm.

Let us first prove π2(M) = 0. If π2(M) Φ 0, then π2(M) φ 0, where
M is the universal covering space of M. The Sphere Theorem in three-
dimensional topology [10] says that there exists an embedded S2 in M
which is not homotopically trivial. If M\S2 were connected, we could
take a loop in M intersecting S2 at exactly one point. This loop could
not be null-homotopic. This would contradict π{(M) = {e}. Thus S2

divides M into two connected components. By Van Kampen's theorem,
each component is simply connected. If one of these were compact, then
by the Hurewicz Theorem it is trivial in π 2 since S2 is a trivial element
in H2 of the compact set. This is a contradiction. Therefore, S divides
M into two noncompact components. This implies the existence of a line,
namely a geodesic which is minimizing between any two of its points. Now
the Cheeger-Gromoll Splitting Theorem [5] implies that M is a product
of a line and a compact two-manifold Σ. Let Tr(Σ) be the r tubular
neighbourhood of Σ of radius r. Then Vol(Γr(Σ)) = r Vol(Σ). It is easy
to see that the volume growth condition in Theorem 1.2 is satisfied for
any point. We can thus assume p eΣ. Then it follows that Vol{Bp(r)) <
VoKΓr+Diam(Σ)(Σ)) = Vol(Σ) (r + Diam(Σ)) < r2 , for r large enough. This
contradicts our assumption on the volume growth. Hence π2(M) = 0.

Since dim(M) = 3 and M is open, thus Hk(M, Z) = 0 for k > 3.
By the Hurewicz Theorem, all higher homotopy groups of M vanish.
Therefore M is a K(π, 1) space, and Hι{πχ{M)) = H\M) = 0, for
i > 3. Since infinitely many cohomology groups of a finite cyclic group
are nonzero, hence nχ{M) is torsion free.

We now prove that nχ{M) is trivial. By passing to a covering space of
M, we may assume π{ (M) = Z . By using a volume comparison argument
similar to the one in [1] we will show this is impossible. Fix a point p e M
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and p e M, such that π(p) = p , where π is the covering map. Let σ be
a geodesic loop at p representing a generator for πx(M9 p), and F be a
fundamental domain of M containing p . Then it is obvious that

N

\J[σf(F n5/(r)) c ^(ΛT L(σ) + r),
k=l

where L(er) is the length of σ. Notice that π is volume-preserving when
restricted to F. Then using Vol([σ]{F) Π i7) = 0, we obtain

AT Vol{Bp{r)) - iV Vol(F Π

^ ( i V L(σ) + rf (since Ric > 0).

Choosing iV > [ ^ ] , and r > N L(σ), we have

Vol(Λ,(r)) < ^ (2r)3 < C-r\

This is a contradiction. Thus, πχ(M) = {e}. Therefore all homotopy
groups of M vanish. We hence conclude that M is contractible by the
Whitehead Theorem.

3. Proof of the finiteness theorem

Let us denote by Jί[n) the class of n-dimensional manifolds satisfying
the bounds: Ric > -(n - \)H, Diam < D, Vol > V . As pointed out in
the introduction, the crucial step towards a finiteness theorem is to get a
control of the local topology. For the class Jf(3), this takes the form of
a lower bound on the geometric contractibility radius. By the examples of
Sha-Yang and Anderson [1], such a bound does not exist for Jt{ή) when
/ i > 3 .

We first define the geometric contractibility radius (of relative size R):

CR(M) = inf sup{r\B (r) is contractible in B (R - r)}.

The crucial step in proving Theorem 1 is the following proposition.
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Proposition 3.1. There exist constants R, r0 depending only on H, D,
V, such that

CR(M) > r0

for any M e J?{3).
By the Gromov precompactness theorem, Jί{n) is precompact with

respect to the Hausdorff distance [6]. It is of great interest to know the
structure of limiting spaces in this class. Appealing to a result of Grove-
Petersen-Wu [8], Proposition 3.1 immediately implies the following.

Corollary 3.1. If M{ e ^#(3), and X = lim M., where the limit is taken
with respect to the Hausdorff distance, then X is a homology manifold.

We devote the rest of this section in proving Proposition 3.1. We begin
the proof with a few lemmas. These lemmas hold for all dimensions. The
restriction to dimension three is only needed at the end of the proof.

The following lemma is well known. We present it here in order to fix
some constants.

Lemma 3.1. There exist constants Cχ, C2 and d depending only on
n, H, D, V, such that, for any M e J£{n), p e M, we have,

C/ < Yo\{Bp{r)) <C2r\ 0<r<D,

and

Diamp(M) > d,

where Diam/?(M) = sup{d(p, q)\q e M} .
Proof By the Bishop volume comparison theorem,

r)) < YolH(

< C 2 Λ 0<r<D,

where

C2 = sup -7Γ / I S m

/ - ) dt.
0<r<D f JO \ yti )

Similarly, by the Bishop-Gromov relative volume comparison theorem,
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we obtain

Vol(βD(r)) > V θ 1

VolH(B(D))
n — 1

V Γ /sinWffΛ'
YolH(B(D)) ' Jo \ \fΰ )

n V . . 1 f fsinhVHtY .
Cλ = FT inf -=: I 7 = — at.

1 V l ^ ^ C ) ) o<r<DnJ \ /H )

where

. . 1 fr fsi
inf -=: I

^ C ) ) o<r<DrnJo \

For the diameter, since

V < Vol(M) < C2(Diamp(M))n ,

we have

v\ι/n/ v
Όiamp(M) > \^—

Lemma 3.2. There exist constants R{(n, H,D, V)9rχ{n9H,D, V)

such that for any Mn e Jt(n9H,D9V), p e M, and s < rχ9

Bp{Rχ s)\Bp(s) has at most one component whose intersection with

dBp(Rχ s/3) is nonempty.

Proof. We prove this by contradiction. Let Cx and C2 be two such
components. Without loss of generality we can assume that

Yol(Cι Π Bp(R s/3)) < Vol(C2 n Bp(R s/3)).

Thus,

Vol(^(Λ s/3)\Bp(s)) < 2Vol(Bp(R . s/3)\(Cx Π Bp(R . s/3))).

Take Qχ e Cχ Π dBp(R s/3). Since every minimal geodesic γ with

γ(l) eBp(R s/3)\Bp(s) satisfies / < \R s, and γ(t) e Bp(s) for some /

satisfying \R s - s < t < ^R -s + s, we have

Bp(lR s)\(Cι

where ΓΓ Γ is the annulus of radius rχ and r2. Thus the triangle in-

equality implies that
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so that

Vol(Bp(R.sβ)\Bp(s))

Vol(Bp(3s)) ~ Vol(Bp(3s))
p

< 2 VoK7' ( 1 / 3 ) J t . t f (

< 2 ^
Vol;"

where we have denoted by Volf _ the volume of an annulus of radius

Γj and r2 in the space of constant curvature - ( Λ - 1)//. Together with

Lemma 2.2, the above yields

C, (*/3)" - C2

ζT^ ^ C R

This is impossible if we choose R(n, H, D, V) big enough. In the proof,
we also need that s-R<d. Thus 5 < d/Rχ = r , .

Lemma 3.3. There are constants R2, r2 and N depending only on
n,H,D, V, such that for any M eJT(n)> p €M, r<r2, if I:Bp{r)->
B (R r ) , then any subgroup of G of I^(πχ(Bp(r))) satisfies

order(G) < N.

In particular, there is no element of infinite order in I^(π{(Bp(r))) whenever
r<r2.

Proof This is basically the same as in [ 1 ] or as in the proof of Theorem
2. But let us point out that we are working with a metric ball, which is not
complete. Hence its universal covering space with the pulled back metric
is also not complete. Since we need to use the Bishop volume estimate for
geodesic balls, we have to show it is still valid in this case. This turns out to
be fairly easy in our situation since we are working with a relative version.
Namely, although Bp(r) is not complete, in the universal covering space
of a larger ball Bp(R2 r), B~{Nr) (N < R2) is a usual metric ball, and
hence Bishop's volume estimate still holds. We will address the problem
in the proof.

It is a well-known fact that we can choose a set of generators {[σz]}
for I^(πx(Bp(r))), such that length(σ ) < 2r and there is a bound on the
number of generators [19], say k(n, D, V, H). Let V be the universal
covering space of BAR r) with the pulled back metric. Pick p e V,
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such that π(p) = p. Let F be a fundamental domain of the covering
with p e F. Denote U(m) = {element of G of word length < m).
It is easy to see that #U(m) > m unless U(m) = G. (This is because
#U(m + 1) > #U(m) unless U(m) = G). Let mQ = [(§)" C2/C{] + 1.
Consider,

B= U ^(Fn^1(5;2mor))).
geu(m0)

Take any point x e B, and a curve γ from x to p. Then π(y) is a
curve from π( c) G Bp(2mQr) to ^ . Let σ be a minimal geodesic in the
homotopy class of π(γ) keeping the end points fixed. Then length(σ) <
m0 supz{length(σ-} -f m0 r < 3mor. If we choose R2 = 6m0 , then σ is
a smooth geodesic. Lifting σ to V, we get a smooth geodesic from /? to
x. What we have proved is that any point in B can be joined to p by
a smooth geodesic of length < 3mQr. It thus follows from the proof of
Bishop volume comparison theorem that

Vol(B) < VolH(3mQr).

If order(G) > #t/(m 0 ), then

- 1 ,
m0Yol(Bp(2m0r)) < #U(m0)Vol(F n n~l(Bp(r)))

= Vol{B) < VolH(3m0r).

Therefore,

mo — U P ° \\

Let r2 = D/(6m0). Then for any r < r2, we have 3mQr < D. It thus
follows from Lemma 3.2 that

C2(3mor)" / 3 \ " C
2

This contradicts the choice of ra0. Hence order(G) < #U(m0) < km° =
N.

Lemma 3.4. Let K be a compact Riemannian manifold, and K a k-
fold covering of K with the pulled back metric. Then

Diam(^) <2k Diam(iq.

Proof We denote by Γ the group of deck transformations, #Γ = k .
Fix a point p e K, and p e K such that π(p) = p. Let F be the
Dirichlet fundamental domain of the covering, that is, let

F = {x e K\d{x,p) < d(γx,p), for any γ e Γ}.
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We first show that for any x e F, d(x, p) < Όiam(K). Indeed, let σ be
a minimal geodesic from p to x, with σ(l) = x . Then π o σ is a curve
from /? to π(x) with length(π o σ) = length(σ) = /. If / > Diam(A:),
there exists a curve a from p to π(x) with length lχ < Diam(AΓ) < /. Lift
a io K with α(0) = j5 . Then d(a(lχ), p) < lχ < I. But T Γ ^ ) ) = π{x),
so a(/j) = yx for some y E Γ. This contradicts the definition of F.
Hence d{x, p) < Diam(Λ:).

Now for any two points x and y in ΛΓ, let γ be a curve connecting
them. # is the union of k Dirichlet fundamental domains with centers at
π~ι(p). Since dF has measure zero, we can choose the curve γ such that
it has the property that γndF has no accumulation points. Thus γ Π OF
is a finite set. Therefore for each fundamental domain F, we can pick the
point where γ first enters F and the point where γ last leaves F , say at
y(tχ) and γ(t2) We can replace the segment γ([tι, t2]) by a curve from
γ(t{) to p and then from p to γ(t2). The previous paragraph shows that
we can choose this curve to have length < 2Diam(AΓ), Continuing this
process we get a curve from x to y which intersects each fundamental
domain only once and inside each fundamental domain it has length at
most 2Diam(ί:). Thus, d(x,y) < 2k-Όmm(K). Therefore Diam(^) <
2k - Diam(ϋ:).

Remark. In the statement of Lemma 3.4, we assumed that K is a
Riemannian manifold. From the proof we see that the same statement
holds for a much larger class of objects. In particular, it holds for compact
(smooth) metric balls B (r) c (AT, g). In the proof of Proposition 3.1,
we will use Lemma 3.4 in this form.

Next we prove a topological lemma concerning fundamental groups of
three-dimensional manifolds. This will be needed in the proof of Propo-
sition 3.1 for the orientable case. A basic reference on this subject is the
book by J. Hempel [10].

Lemma 3.5. Let M c int(iV) be two compact orientable three-mani-
folds with nonempty boundary. If π2(M) —• π2(N) is trivial, then πχ(M)
is torsion free.

Proof Let M = #k

i=ιMi be a prime decomposition of M. Since
π{(M) = πχ(Mχ) * πχ{M2) * ••• * πx(Mk), a free product, we can as-
sume that M itself is prime. Without loss of generality, we can assume
nχ(M) Φ {e} . We first prove that πχ(M) is infinite. In fact, if we denote
by M the manifold by capping off all two-spheres in d M by three balls,
then we claim that M is not closed. If it were, then dM would only
consist of two-spheres. Since π2(M) —• π2(N) is trivial, each S2 in dM



720 SHUN-HUIZHU

separates N. Moreover, at least one component of N-S2 is compact and
simply connected. In fact, if neither components were compact, it would
follow from Poincare duality that each such S2 is nontrivial in π2(N).
If none of the compact components were simply connected, lifting to the
universal covering space, duality would again imply that each such S is
nontrivial in n2(N). Hence we have that each S2 in dM bounds a ho-
motopy three-ball in N. If one of such S2 bounds a three-ball containing
M, then M is simply connected. This is a contradiction. So all 2-spheres
in dM bound in the exterior. By adding these homotopy three-balls to
M, we get a closed three-manifold embedded in a three-manifold with
nonempty boundary. This is impossible. So M is not closed. By taking
the double of Λf, we obtain a closed three-manifold M u ~ M. Hence,

0 = χ(MUd~ M) = χ(M) + χ(M) ^M)^ So χ(M) = \χ{dM) < 0.

On the other hand, χ{M) = 1 - bx(M) + b2(M) - b3(M), where b{ is the

/th Betti number. Since M is not closed, we have 63(Af) = 0. There-

fore bχ(M) > 1 + b2(M) > 1. By Mayer-Vitoris sequence, we obtain

b{(M) = bx(M)>l. So πχ{M) is infinite.
By the method of contradiction, we now prove nχ(M) is torsion free. If

not, let G be a finite subgroup of nχ(M), and let mχ be a covering space

of M such that p^(πχ(Mχ)) = G. Using the same notation as before,

we have nχ{Mχ) = G. Let Mj be the universal covering space of Mχ.

Then n2(Mχ) = 0 since Mχ is prime and orientable. We claim Mχ is

closed. Otherwise, by the Hurewicz theorem, H.(M{) = H^MJ = 0 for

1 > 2. Hence //,.((/) = 0 for / > 2. This is not possible since Cr is

finite. Therefore Mχ is closed. Hence Λfj is compact and its boundary

consists of two-spheres. It then follows that Mχ A M is a finite covering.

So ^(Λf) is finite. This is a contradiction. Thus 7Γj(Af) is torsion free.
Proof of Proposition 3.1. For any M e ^(3), p e M, consider the

inclusion I:Bp(r) -• Bp(R-r). The precise value of 7? will be determined
in the proof. Just as in the proof of Theorem 2, we first show that /
induces trivial maps on n2 and πx.

For this part, we have to distinguish between the orientable case and the
nonorientable case. The arguments are along a similar line with some dif-
ference in details. Let us briefly summarize it here. What we will actually
show is that either π2(Bp(r)) = 0 or a nontrivial element in n2{Bp(r)),

which is represented by an embedded S2 or RP2 according to orientabil-
ity, divides Bp(R r) into two parts; one part is compact and simply con-
nected. Thus, for the orientable case, this implies that / is trivial on π2.
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For the nonorientable case, this implies that π2(Bp(r)) = 0. Either case
implies π{(Bp(r)) is torsion free (the orientable case follows from Lemma
3.5 and the nonorientable case follows form group homology). Then the
conclusion that / is trivial on πχ follows immediately from Lemma 3.3.

In what follows, we first treat the orientable case.
If / is not trivial on π 2 , by the sphere theorem in three-dimen-

sional topology, there is an (smoothly) embedded S2 in Bp(r), represent-
ing a nontrivial homotopy class in Bp(R r). There are three possibilities
we have to consider.

Case 1. S2 does not separate Bp(R r). From standard three-dimen-

sional topology (Lemma 3.8 in [10]), we have the decomposition

Bp(R r) = Vχ#V2, where Vχ is a two-sphere bundle over Sι. Hence

there is an element [σ] e πχ(Vχ) of infinity order, and σ is contained in

B (R - r). Since Bp(R2 r) = Vχ#V3 for some manifold F 3 , σ is also an

element of infinite order in Bp(R2 r). This is impossible by Lemma 3.3.

For this case we require that R2 r < d/2, R > R2, R r < r2, where
r 2, R2, d are the constants in Lemma 3.1 and 3.3.

Case 2. S2 separates B (R r) into two components, both of which
have nontrivial intersection with dB (R- r) this is impossible by Lemma
3.2. For this to work we require that R > 3R{, r < r{, where Rχ, rχ are
the constants in Lemma 3.2.

Case 3. S separates B (R-r) into two connected components, one of
which, Mχ, has nontrivial intersection with dBp{R-r), and the other, M2 ,

is compact with d(M2) = S2 . Hence Bp{R-r) = Mχ#M2 . Let us note that

M2 cannot be simply connected. Otherwise the S2 would be contractible,
contradicting our assumption. Hence n{(M2) is nontrivial and, because
of the connected sum decomposition, the inclusion into π{(Bp(R r)) is

injective. Since the larger ball Bp(R2-r) is also a connected sum of M2 and

another manifold, we conclude that πχ(M2) is also injectively included in

πχ{Bp(R2 r)). Notice that M2 c Bp(R-r) (this is why we have to consider

the larger ball B (R2 r)). By Lemma 3.3, the order of nχ(M2) is bounded

by N. Consider the covering space K of Bp(R2 r) as follows. First

take the universal covering space M2 of M2 then glue Bp(R2 r)\M2

to each lifting of S2, and denote the resulting space as K. Thus the

deck transformation group of this covering is πx(M2). It is obvious from

this description that M2 separates K into #πχ{M2) components. Now
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by Lemma 3.4 (see the remark after it), Diam(Γ) < 27V - Όiam(Mχ) <
2N 2Rr. This is again impossible according to Lemma 3.2. For this part
we need R>4N, R>R2, R r<r2 and R2 r < d/2.

Thus, we have proved that if /: Bp(r) -• Bp(R r), then /̂  is trivial on

π 2 whenever R > max{3i?j, R2, 4N} and r < min{rι, r2/R, d/2R2} .

We now show that /# is trivial on π r This is now very easy. In fact,

consider the inclusions Bp(r) c Bp(R r) c ^ ( i ? 2 r). From the previous

paragraph, if we choose r smaller, say r < min{rι/R9 r2/R2, d/2R },

then the second inclusion Bp(R r) c ^ ( ϋ 2 r) satisfies the above con-

dition, and hence this inclusion induces a trivial map on π2. It now

follows from Lemma 3.5 that πχ(Bp(R r)) is torsion free. Thus, if

I^.B (r) -> Bp(R r) were not trivial on πx, there would be an element of
π\ (Bp(

r)) which is nontrivial in πχ {B (R r)), hence is necessarily of infi-

nite order in π{(B (R r)) since the later is torsion free. This is impossible

by Lemma 3.3. Therefore 7+ is trivial on πχ.

We have thus proved that for the orientable case, if

i^ 2JR

then I^'.B (r) —• -B (iϊ r) is trivial on 7Γj and π 2 .
Now we discuss the case where M is not orientable. Consider

Bp(r)XBp(R r)XBp(R2 r).

We can assume at lest one of the three sets are nonorientable. Otherwise we
are in a situation we just dealt with. Furthermore, if B (r) is orientable,
we can consider the following inclusions,

We are then in the orientable case. If this happens, we can just choose r
smaller. This will not affect our result (we will take this into considera-
tion when choosing R, r). Now we assume that B (r) is nonorientable.
Therefore all three sets involved are nonorientable.

We consider the first inclusion iχ. We will show π2(B (r)) = 0. Let us
point out here that for this to be true we need the nonorientability, since
there are strong topological restrictions on nonorientable three-manifolds.
We again prove this by contradiction, along the same line as in the ori-
entable case. If π2(Bp(r)) is not trivial, then by the projective plane theo-
rem (which is the nonorientable version of the sphere theorem, Theorem
4.12 in [10]), there is an embedded RP2 in B (r). Again, we need to
consider three cases; each will lead to a contradiction.
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Case 1. RP2 does not separate Bp(R r). We consider the double
covers of Bp(r) and Bp(R r) with the pulled back metric, denoted by

Bp(r) and Bp(R-r) respectively. Since the double cover of a nonorientable
manifold can be constructed as the unit sphere bundle of the determinant
bundle, there is a natural lift lχ of il9 so that the following diagram
commutes:

ΛR-r)

Here iχ is again an inclusion. Now Bp(r) and Bp(R r) are subsets in

the double cover of M which is orientable. Note that B (r) c B*f(4r),

5^(1? r)D B*f(R r) and the previous argument showed that Bf(4r) ->

^ ( i ΐ r) induces trivial maps on TTJ and π 2 . Thus iχ induces trivial

maps on πx and π 2 . Let π~[ι(RP2) = S 2 . If this S2 does not separate

Bp(R r ) , then there is a closed curve in Bp(R r) intersecting S2 at only

one point. This implies by the Poincare duality that S2 is a nontrivial
element in π2(Bp(R-r)). This contradicts the fact that z\ induces a trivial

map on π2 . If the S 2 separates Bp(R r ) , then both the two components

necessarily have nontrivial intersections with dB (R-r). In fact, if one

component is compact with S as its boundary (namely, does not intersect
dBp(R r)), then projecting it down, we get B (R r) as the union of a

compact set and a noncompact set having RP as the common boundary.
This means that RP separates B (R r). This contradicts the assumption.

Thus S2 separates B (R r) into two components both having nontrivial

intersection with dBp(R r). This is impossible by Lemma 3.2.

Case 2. RP separates B (R r) into two components both having
nontrivial intersection with dB (R r). This is impossible by Lemma 3.2.

Case 3. RP2 separates Bp(R r) into two components: one of them
has nonempty intersection with dB (R r), and the other, denoted by V,

is compact with boundary RP2 . We consider two cases separately.
The first case is when πχ(V) is finite. Since V is nonorientable, it

follows from the topology of three-manifolds that d V consists of two
RP2 's [10, p. 77(i)]. This contradicts that dV = RP2 .
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The second case is when πχ(V) is infinite. As before, we have the
following commuting diagram:

V —?-> Bp(R r)

•i
V — ^ Bp{R r)

Then dV = S2 and this S2 separates §p(R r) into a compact V and

a manifold AT which has nontrivial intersection with ΘB (R r). Since

Bp(R r) = V#K, we have 5p(Λ2 r) = Ftf^ for some Kχ. Thus, the

inclusion πχ(V) -• πχ(Bf(R2 . r)) is injective. Note that F c Bf {2Rr)

and π ^ F ) is infinite by assumption. This is impossible by Lemma 3.3.
We thus have proved that if π2(B (r)) Φ 0, then we will get a contra-

diction in all three cases. Hence π2(B (r)) = 0, and B (r) is a K(π, 1)
space. It follows that πx(B (r)) is torsion free (see the argument in the
proof of Theorem 2). The same argument shows that πx(B (R r)) is

torsion free, so that πx(Bp(r)) ^ πχ(Bp(R r)) is a trivial map since
otherwise it would contradict Lemma 3.3.

Let us summarize the nonorientable case. We have proved that if

R>4msΛ{3Rl9R294N}9 r < m i n f ^ ^ , - ^ , - i
2 I R R2 2R3

then either B (r) -+ Bp(R2 r) is trivial on πj and π 2 (this happens when

both balls are orientable or both are nonorientable), or Bp(r/R2) —• Bp(r)
is trivial on πj and π2 . Thus the composition of the two inclusions,

always induces trivial maps on TΓJ and π 2 .

Thus, we have proved that, no matter whether M is orientable or not,

B (r) —> B'(R r) induces trivial maps on πx and π2 when

R > (4max{3iί1, R2, 4N})4, r < r0 < min ( ^ , ̂  , - ^

We now show that for r < ro/R, B (r) is contractible in Bp(R2 r ) .
In fact, from the condition on r, iχ and z2 the two inclusions,
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both induce trivial maps on πχ and π2. Take a smoothing p% of the
distance function p, and consider a regular value c of p^ such that

P+l([Q> c]) 3 B

p(
r) τ h e n P*l([Q> c]) i s a smooth three-manifold with

nonempty boundary. A well-known theorem in Morse theory (Theorem
23.5 in [11]) implies that p~l{[0, c]) has the homotopy type of a two-
dimensional CW complex. Thus B (r) also has the homotopy type of
a two-dimensional CW complex. The same is true for Bp(R r) and

Bp(R2 r ) . Proposition 3.1 (with R = [4max{3R{, R2, 4N}f, r0 =

min{rι/R2, r 2/i? 3, d/2R4}) is an immediate consequence of the follow-
ing lemma.

Lemma 3.6. Let X, Y, Z fe two-dimensional CW complexes, and
/ , g continuous maps,

/ induces a trivial map on πχ and g induces a trivial map on
π2. Then g o / is homotopic to a constant map.

Proof. Since / is trivial on π{, we have the lifting / such that the
following diagram commutes:

where 7 is the universal covering space of Y. It thus suffices to prove
that goπof is homotopic to a constant map. Denote ψ — g°π\Ϋ ^ Z .
Then

that is, ψ is trivial on π 2 . We now show that ψ is homotopic to a
constant map. Since 7 is a two-dimensional CW complex which is simply
connected, by Corollary 3.6 on p. 221 of [21], Ϋ is homotopy equivalent
to the wedge of S2 % Ϋ = S2 V V S2. Each of these S2 represents an
element in π2(Y). Since ψ is trivial on π2(Ϋ), it follows that ψ , when
restricted on each S , is homotopic to a constant map. Therefore ψ is
homotopic to a constant map. Hence g o / is homotopic to a constant
map.

Proof of Theorem 1. The argument from Proposition 3.1 to Theorem
1 is somewhat formal. It is essentially the same for all types of finiteness
theorems, namely, a center of mass argument. The observation is that
J[(n) is precompact with respect to the Hausdorίf distance. And for two
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manifolds which are Hausdorff close, and geometrically contractible in the
sense of Proposition 3.1, we can construct a map between them which is a
homotopy equivalence. This can be easily seen from the point of view of
obstruction theory. Proposition 3.1 guarantees that there is no obstruction
for extending maps. We can thus start constructing the map skeleton-wise.
The detail is carried out by P. Petersen in [13]. This completes our proof
of Theorem 1.

Remark. Proposition 3.1 is actually more than what we need to con-
clude Theorem 1. In fact, the statement that / is trivial on π{ and π2 is
enough to imply Theorem 1. For this see P. Petersen [13].

Remark. As kindly pointed out by P. Petersen, our argument actually
shows there are only finitely many simple homotopy types for the class in
Theorem 1.
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