
J. DIFFERENTIAL GEOMETRY
37 (1993) 639-649

ISOSPECTRAL CLOSED RIEMANNIAN MANIFOLDS
WHICH ARE NOT LOCALLY ISOMETRIC

CAROLYN GORDON

Two compact Riemannian manifolds are said to be isospectral if the
associated Laplace-Beltrami operators have the same eigenvalue spectrum.
Milnor [18] constructed the first pair of isospectral, nonisometric mani-
folds, a pair of 16-dimensional flat tori. Many new examples and also
techniques for constructing examples have appeared in the past decade;
see for example [2], [3], [4], [6], [10], [11], [12], [13], [22] and [25] or the
surveys [1], [2], [5] and [8]. However, in all these examples, the isospec-
tral manifolds are locally isometric; in particular, in all the examples of
isospectral closed Riemannian manifolds, the manifolds have a common
Riemannian covering.

Recently, Zoltan Szabo [24] constructed the first examples of isospectral
Riemannian manifolds (with boundary) which are not locally isometric.
The manifolds are geodesic balls in different harmonic manifolds of non-
positive curvature. These manifolds are first introduced in [23].

The purpose of this article is to construct pairs of isospectral closed Rie-
mannian manifolds with no common covering. The manifolds involved
are two-step nilmanifolds of Heisenberg type. In each case, the construc-
tion gives two continuous families Fχ and F2 of Riemannian manifolds
all of which are isospectral. Those in a given family are locally isometric
but not isometric. The manifolds in F{ are not locally isometric to those
in F2 . (See Remark 2.2.)

After describing the general construction, we will give specific examples
and describe the geometry of two of the pairs of isospectral but not lo-
cally isometric manifolds. We will note differences both in the size of the
isometry groups of the simply connected covers and in the curvature.

The author wishes to thank Zoltan Szabo for describing his examples to
her. The construction of isospectral manifolds given here was motivated
in part by Szabo's construction.

Received May 22, 1992. Partially supported by a grant from the National Science Founda-
tion.



640 CAROLYN GORDON

1. Lie algebras of Heisenberg type

A Riemannian nilmanifold (Γ\G, g) is a quotient of a simply con-
nected nilpotent Lie group G by a discrete (possibly trivial) subgroup Γ,
together with a Riemannian metric g whose lift to G is left-invariant.
We will abuse notation and call the metric on T\G left-invariant. We say
the nilmanifold is of step size k if G is fc-step nilpotent.

The metric g is uniquely associated with an inner product ( , } on
the Lie algebra g of 6 . We will call (g, ( , )) a metric Lie algebra.
Two metric Lie algebras (g{, ( , ){) and (g2, < , )2) will be said to be
isomorphic if there exists a Lie algebra isomorphism from %χ to g2 which
is also an inner product space isometry.

Proposition 1.1 (Wilson [26]). Two simply connected Riemannian nil-
manifolds are isometric if and only if the associated metric Lie algebras are
isomorphic.

Notation 1.2. Consider a two-step nilpotent metric Lie algebra
(g,( , )). Since g is two-step nilpotent, the derived algebra 3 = [g, g]
lies in the center of g. Let t) denote the orthogonal complement of 3.
Define a map y: 3 —• so(t>) by

(1.3) (j(Z)(X),Y) = ([X,Y],Z)

for all Z e 3 and X, Yet*. Following Kaplan [14], we say the two-step
nilpotent metric Lie algebra (g, ( , )) is of Heisenberg type if

(1.4) j(Z)2 = -\Z\2 I d .

This condition implies that the derived algebra 3 of g coincides with the
center of g. We say the nilmanifold (Γ\G, g) is of Heisenberg type if the
associated metric Lie algebra is of Heisenberg type.

The geometry of simply connected nilmanifolds of Heisenberg type was
studied in [7], [15], and [17].

The metric Lie algebras of Heisenberg type have been completely clas-
sified [21]. We now describe this classification. Let (g, ( , )) be of
Heisenberg type and let j : 3 -> so(u) be the associated representation of
the center 3 of g. Let C(ι) denote the Clifford algebra associated to the
bilinear form -( , ) on 3. Using (1.4), one sees that j induces an action
of C(ι) on t).

Conversely, given an inner product space (3, ( , )) and a representation
T: C{ι) —• End(t)) of C(ι) on a finite-dimensional vector space t>, define
7: 3 -• End(o) by restriction of T. Then (1.4) is automatically satisfied,
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and we can define an inner product on Ό SO that the unit sphere in 3
acts orthogonally. Let (0, ( , )) be the orthogonal direct sum of the inner
product spaces 3 and t>, and define [ , ] : t) x 0 -> 3 by formula (1.3).
Extend [ , ] to a Lie bracket on 9 by requiring that 3 lie in the center
of g. Then under this structure, (9, ( , )) is a two-step nilpotent metric
Lie algebra of Heisenberg type.

Every representation of a Clifford algebra is completely reducible. The
inner product ( , ) is uniquely determined up to a scalar on each irre-
ducible submodule of D by the condition that the unit sphere in 3 acts
orthogonally. Moreover, one checks easily that the isomorphism class of
the metric Lie algebra is independent of the choice of such scalars. Thus
every finite-dimensional representation of C(j) determines a unique (up
to isomorphism) metric Lie algebra of Heisenberg type, and thus by Propo-
sition 1.1, a unique simply connected nilmanifold of Heisenberg type. We
caution though that the metric Lie algebras of Heisenberg type determined
by inequivalent representations of C(a) may still be isomorphic.

Proposition 1.5 (see [21]). If dim(3) is not congruent to 3 mod 4, then
C(ι) has a unique {up to equivalence) irreducible representation. If dim(3)
is congruent to 3 mod 4, then C(j) has exactly two inequivalent irreducible
representations, both of the same dimension.

In the sequel we will be concerned only with the case in which dim(3)
is congruent to 3 mod 4. We now describe all examples in which dim(3)
is 3 or 7.

Example 1.6. Let A denote either the quaternion algebra or the Cayley
algebra. Let 3 be the pure quaternions (respectively, the pure Cayley
numbers) with the standard inner product, and let D be the orthogonal
direct sum of k copies of A with the standard inner product. Choose
nonnegative integers a and b with k = a + b. Define the map 7 : 3 - *
so(t>) by

l ,Xa,Yl9 ,Yb)
(1.7)

(ZX. . ,ZXa9YxZ,... ,YbZ)

where ZX{ and Y.Z denote multiplication in A. Then j satisfies equa-
tion (1.4), and thus the resulting two-step nilpotent metric Lie algebra
(ββ b, ( , )a b) is of Heisenberg type. (We will use the same notation gab

for the Lie algebras constructed from either the quaternions or the Cayley
numbers. Whenever we discuss pairs of such algebras below, we assume
implicitly that they are both constructed using the same algebra A .) The
metric Lie algebras (gaJ), ( , )ab) and {%a b>, ( , )a>b>) are isomorphic
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if and only if (a, b) coincides with (a , bf) up to order. (The isomor-

phism between 0j 0 and g0 j is given by X + Z -• X-Z for I e ϋ and

Z € j . )

2. Isospectral manifolds of Heisenberg type

Let M = (Γ\G, g) be a compact two-step Riemannian nilmanifold.
The exponential map from g to G is a diffeomorphism; denote its inverse
by log. While log(Γ) need not be a lattice in g, it intersects the derived
algebra 3 of g in a lattice of maximal rank Li and it projects to a lattice
L1 of maximal rank in 9/3. We can identify 0/3 with the orthogonal
complement t) of 3 in 0 and ll with a lattice LΌ in α.

The compact two-step nilmanifold M = Γ\G is a principal torus bundle
over a torus. The fibration arises from the fibration Z(G) —> (7 —• G/Z(G)
of (7, where Z(G) is the (necessarily central) derived group of G. We
will denote the fiber and base tori by TF and TB , respectively. The left-
invariant Riemannian metric g on G induces flat metrics gF and gB on
TF and TB so that Γ\G —• TB is a Riemannian submersion with totally
geodesic fibers. The tori TF and TB are isometric to the tori L^ \j and
L 0 \ D with the metrics arising from the inner product ( , ) on 9.

Theorem 2.1. Let M = (Γ\G,g) and Mf = ( Γ / \ G / , / ) be two-
step Riemannian nilmanifolds of Heisenberg type. Suppose that the cor-
responding pairs of flat tori are isospectral, i.e., spec(ΓF) = spectΓ^,) and
spec(T^) = spec(Γ^/). Then M is isospectral to M1.

Remarks 2.2. (1) Let (M, g) be a Riemannian nilmanifold of Heisen-
berg type, and let k and m be the dimensions of the associated tori TB

and Tf . The construction in [ 11 ] shows that the metric g lies in a contin-
uous k(m — 1) parameter family of isospectral, nonisometric (but locally
isometric) Riemannian metrics on M. Thus Theorem 2.1 gives a pair of
continuous families of metrics, all isospectral, such that those in the first
family are not locally isometric to those in the second.

(2) The special case of the theorem in which the centers of G and G'
are one-dimensional, i.e., G and Gf are (2n+ l)-dimensional Heisenberg
groups, was proven in [12]. In this case M and Mf have a common
Riemannian cover, i.e., (G, g) is isometric to (Gf, g).

(3) In all the examples below, the pairs of flat tori will actually be iso-
metric.

(4) Eberlein [7] proved that the condition spec(ΓF) = spec(ΓF/) and
spec(Γ^) = spec(Tβf) is necessary and sufficient for the pair of two-step
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nilmanifolds M and M' of Heisenberg type to have the same length
spectrum. (However, if one counts multiplicities in the length spectrum by
the number of free homotopy classes of closed curves containing a geodesic
of the given length rather than the total number, necessarily infinite, of
geodesies of that length, then this condition is not sufficient. See [9] for
details.)

The proof is by an explicit calculation of the spectra. Using the Kirillov
theory of representations of a nilpotent Lie group, Pesce [19] computed
the eigenvalues of an arbitrary compact two-step nilmanifold. We first
summarize his results.

Let M = (Γ\G, g) be a compact two-step Riemannian nilmanifold.
Recall that the Laplacian of (M, g) is given by Δ = -JZjXf where
Xj, X2, , Xn is an orthonormal basis of 9 relative to the inner product
( , ) defined by g. Letting p — pΓ denote the right action of G on
L2{M), then the Laplacian acts on L2(M) as Δ = - £ . p^xf .

Given any unitary representation (V, π) of G, we may define a Laplace
operator Δ on K by Δ = - ]Γ\ π^xf . The eigenvalues of this oper-
ator depend only on g and the equivalence class of the representation π .
The space (L2(M), p) is the countable direct sum of irreducible repre-
sentations (Va, πa), each occurring with finite multiplicity. The spectrum
of M is the disjoint union of the spectra of the operators Δ^ π .

Kirillov [16] showed that the equivalence classes of irreducible unitary
representations of the simply connected nilpotent Lie group G are in one-
to-one correspondence with the orbits of the coadjoint action of G on the
dual space Q* of the Lie algebra Q of G. We will denote the representation
corresponding to the coadjoint orbit of λ e 0* by πλ.

Richardson [20] computed the decomposition of L2(Γ\G) into irre-
ducible representations πλ for an arbitrary compact nilmanifold. In case
G is two-step nilpotent, Pesce obtained the following more explicit de-
scription.

Notation 2.3. Given λ e 2*, define Bλ: g x g -» R by

Let Qλ = keτ(Bλ) and let Bλ be the nondegenerate skew-symmetric bilinear

form induced by Bλ on Q/QX .
The image of log(Γ) in Q/QX is a lattice, which we denote by Lχ .
We will write Agλ for Agπ .

Proposition 2.4 [19]. Let T\G be a compact two-step nilmanifold, let
g be the Lie algebra of G, and let λ e g*. Then πλ appears in the
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quasiregular representation pτ of G on L2(Γ\G) if and only if
Λ(log(Γ) Π gλ) c Z. In this case the multiplicity of πλ is mλ = 1 if
A(j) = {0}, and mλ = (detBλ)

1^2 otherwise, where the determinant is
computed with respect to a lattice basis of Lλ.

Let ( , ) be the inner product on Q* defined by the Riemannian inner
product on g.

Proposition 2.5 [19]. (a) If λ(i) = 0, then πλ is a character of G and

(b) // λ(i) φ {0}, let ±(-l)ι/2dι , , ±(-l)ι/2dr be the eigenvalues
of Bλ. Then

spec(Δ^) = {μ(λ,p, g) :p € NΓ}

where

i = i , ,/ ; = i , ,r

with {Zj, ••• , Z7} a g-orthonormal basis of Qλ. The multiplicity of an
eigenvalue μ is the number of p G Nr such that μ = μ(λ, p, g).

Proof of Theorem 2.1. Let M = (Γ\G, g) be a two-step nilmanifold
of Heisenberg type. Notice that the derived algebra 3 of g coincides with
the center of 0. Let

Aχ(Γ) = {λ e B* : λ{i) = 0 and A(log(Γ)) c Z}

and

* 0 and A(log(Γ) Π β/l) c Z}.

By Proposition 2.4, spec(Λf) is the union, with appropriate multiplici-
ties, of the spec(Δ^ λ) as λ varies over Aι(Γ)UA2(Γ). Let S{ and S2 be
the parts of the spectrum corresponding to ^jίΓ) and A2(Γ), respectively.
By Proposition 2.5(a), S{ is precisely the spectrum of the associated flat
torus TB.

Now consider S2 . For λ e A2(Γ), we have 3 = gλ and L̂  = log(r)n0A .

The coadjoint orbit of λ consists of all elements of 0* which agree with

λ on 3. Thus the map τ : Λ2(Γ).-» 3* given by τ(λ) = A, induces a

bijection between the set of coadjoint orbits in A2(Γ) and the dual lattice

L\ of L% in 3*. (Recall that L* = {a £ 3* : α(X) e Z for all X e L}} .)

Given A e ^ 2 ( Γ ) , let Z λ e 3 satisfy A(Z) = (Zλ, Z) for all Z e 3. For
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X:9 Y in the orthogonal complement t> of 3, we have

Since *> = Q/QX, the eigenvalues of Bλ are the eigenvalues of j(Zλ),
namely ± ( - l ) 1 / 2 | | Z J . Thus in the notation of Proposition 2.5, r =
(l/2)dim(t>) and d{ = | | Z J for i = 1, ••• , r. Moreover, since 3 = 0 λ,
we have

i = l , ,/

Thus

= Aπ2\\Zλ\\2

7 = 1 ,

= 4π2 | |τ(A)| |2+ :2π

,r

where | |ί(λ)|| is computed with respect to the inner product on 3* induced
by the Riemannian inner product on 3. Thus spec(Δ^ λ) depends only
on | | τ (λ) | | .

We use Proposition 2.4 to compute the multiplicity mλ of πλ in
L 2(Γ\G). With respect to an orthonormal basis SB of t), we have
det[5A]^ = | |Z λ | | 2 r = | |τ(λ) | | 2 r . Consequently, mλ, the square root of
the determinant with respect to a lattice basis of Lλ (viewed as a lattice
in 0), is given by

mλ = \\τ(λ)\\r(Vol(TB))

where the volume is with respect to the metric gB on TB .

Now spec(ΓF) is the collection of numbers 4π | |α| | as a ranges over
L*, counted with multiplicities. Equivalently, spec(ΓF) is the collection

of numbers 4π2 | |τ(/l)||2 as λ ranges over A2(Γ). The multiplicity of an
element γ of spec(ΓF) is the number of coadjoint orbits of elements λ
in A2(Γ) for which γ = 4π2 | |τ(A)||2. Since, moreover, Vόί(TB) depends
only on spec(J^), we see that both the eigenvalues in S2 and their multi-
plicities are determined by spec(Γ^) and spec(ΓF). The theorem follows.

Examples 2.6. Fix a choice A of quaternion algebra or Cayley algebra
and let (gα b, ( , )a b) be the Lie algebra of Heisenberg type constructed
in Example 1.6. Let Ga b be the corresponding simply connected Lie
group and ga b the Riemannian metric on Gab associated with ( , ) a b .

One way to construct a cocompact discrete subgroup Γ of Ga b is to
let La b be the lattice in gα b spanned by the standard basis elements.
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Then the image of La b under the Lie group exponential map generates a

cocompact discrete subgroup Ta b of Ga b. Theorem 2.1 implies:

Theorem 2.7. If a + b = a + b', then the nilmanifolds Ma b =

(Γa,b\Ga,b>8a,b) U n d Ma\b' = ( Γ β ' ,b'\Ga' ,b' ' #α' ,*') Mβ iSOSpβCtroI.

They are locally isometric if and only if {a!, b') coincides with (a, b) up
to order.

Remark. The simply connected nilmanifolds (Ga b, ga b) constructed
from the quaternions play a role in Szabo's construction referred to in the
introduction. It is not clear whether there is any connection between the
isospectrality of the nilmanifolds and the isospectrality of Szabo's exam-
ples.

3. Geometry of the examples

We will compare both the local and the global geometry of the simply
connected covers (G2t0, S2 o) a n d (G\ i > S\ \) of the manifolds M2 Q

and Mχ χ of Example 2.6 and Theorem 2.7 for both the quaternion and
the Cayley constructions.

Proposition 3.1. The isometry group of (G2 0 , g2 0) has higher dimen-
sion than that of (Gx l9 gχ {).

Proof As shown in [26], the isometry group of any simply connected
Riemannian nilmanifold (G, g) is the semidirect product of the group
G of left translations with the group of all orthogonal automorphisms of
(G, g). (An orthogonal automorphism of (G, g) is an automorphism φ
of G satisfying Φ*g = g.) The Lie algebra of the full isometry group
is then the semidirect sum g + D(g), where D(g) is the space of all
skew-symmetric derivations of (g, ( , )) . In the case of a nilmanifold
of Heisenberg type,

where 3 denotes the center of g, t) denotes the orthogonal complement
of 3 and

$o(υ) = {τ € SO{Ό) : τ o j(Z) = j(Z) o τ for all Z e 3}

(see [21, Theorem 6]). Thus we need only compare the dimensions of the
spaces SO^Ό) associated with G20 and Gχ χ.

If we view κ> as a module over the Clifford algebra C(i), then

SOj (t>) = 5θ(d) Π EndC ( 3 )(t))

where Endc ( 3 )(o) is the space of Clifford module endomorphisms of t).
In the case of Gχ χ, the Clifford module D is the direct sum of two
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inequivalent Clifford modules ϋj and o2 . Any τ€EndC ( )(t>) must leave
each of \>{ and t>2 invariant; i.e.,

003(0) =so3(t)

Thus, for example, if A is the quaternions, then

a six-dimensional Lie algebra. In this case D(g) is 9-dimensional and,
since 0 is 11 -dimensional, the full isometry group has dimension 20. On
the other hand, in the case of G2 0 , the Clifford module ϋ is the direct
sum of the two equivalent Clifford modules and, if A is the quaternions,
then so3(t>) = sp(2), a 10-dimensional Lie algebra. D(g) is then 13-
dimensional and the full isometry group has dimension 24. The Cayley
case is similar.

Proposition 3.2 [21]. Let A be the Cayley algebra. Then every geodesic
in (G2 0 , g2 0) is an orbit of a one-parameter group of isometries, whereas
some geodesies in (Gχ χ, gx x) are not orbits.

In the case that A is the quaternions, all geodesies in both manifolds
are orbits of one-parameter groups of isometries.

We now consider the curvature of these manifolds. We will say a sub-
space S of the tangent space at a point of a manifold is flat if every
two-plane in S has sectional curvature zero. Recall that for any nilmani-
fold (G, g), the tangent space at an arbitrary point is identified with the
Lie algebra g. The following result is elementary; see [7] for example.

Lemma 3.3. Let (G, g) be a two-step Riemannian nilmanifold. Let-
ting 3 denote the center of the Lie algebra g and t> the orthogonal com-
plement of 3, then 0 (respectively, 3) is the direct sum of all negative
(respectively, nonnegative) eigenspaces of the Ricci tensor. The subspace
3 is flat. In the case of Riemannian nilmanifolds of Heisenberg type, the
Ricci tensor has only two eigenvalues, one negative and one positive; the
eigenspaces are x* and 3.

Thus 3 and d are geometrically distinguished subspaces of g.
Proposition 3.4. Let A be the quaternions. In the case of (G{ {, g{ {),

the subspace t) of gx x decomposes into an orthogonal direct sum D =
t)j+t)2 of two flat four-dimensional subspaces. On the other hand, in the case
of (G2 0 , g2 0) the subspace t> of g2 0 contains no flat four-dimensional
subspaces.

Proof. In both cases, the sectional curvature of the 2-plane spanned
by a pair of orthonormal vectors X and Y in t) is given by K(X, Y) =
(—3/4)||[JST, Y]f . (See [7].) Thus a subspace of κ> is flat if and only if it
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is an abelian subalgebra of gfl b . Moreover, x> = AxA and 3 is the space
of pure quaternions. Denote elements of t> by (p, q) with p , q e A.
For q e A, let #Λ and qι denote the real and imaginary parts of q.
Using formulas (1.3) and (1.7), we see that the bracket operation in $ι {

is given by

[(p, q), {p, Q')] = (PPf + tf'tf)7 ~ 2pίp'R -

The subspaces t^ and D2 given by

δ i = { ( ί , ί ) : ί ^ } and t>2 = {(q, -q): q e A}

are abelian subalgebras of Q{ χ contained in t) and hence are flat.
Next the bracket operation in g2 0 is given by

We show that 0 contains no four-dimensional abelian subalgebras of Q2 O .
Suppose that m is such an abelian subalgebra. Denote by α and b the
subspaces A x {0} and {0} x A of t), respectively, and let πα and πh

denote the projections of 0 onto α and b. Since α and b commute and
neither subspace contains any abelian subalgebras of g2 0 of dimension
greater than one, both πα and π b restrict to isomorphisms on m. Thus
we obtain a vector space isomorphism

Φ = πb o πa : α —> b

satisfying [Φ{X), Φ(^)] = —[X, Y] - We may view Φ as a vector space
isomorphism of the quaternions A satisfying

Φ(p)Φ(p') = -p'p for all p, p e A.

An elementary argument shows that no such isomorphism exists. The
proposition follows.

Corollary 3.5. The 11-dimensional manifold Gx x admits three mutu-
ally orthogonal foliations corresponding to the distributions Ό{ , Ό2, and 3.
The leaves ofthese foliations are flat submanifolds of G{ χ of dimension 4,
4, and 3, respectively. The first two foliations are tangent to the negative
eigenspace of the Ricci tensor; the third is tangent to the positive eigenspace.
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