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ON MINIMAL HYPERSURFACES WITH
CONSTANT SCALAR CURVATURES IN S$*

SHAOPING CHANG

Introduction
Let M" be a piece of minimally immersed hypersurface in the unit
sphere Nk ,and 4 its second fundamental form. Denote by R and S its

scalar curvature and the square norm of #, respectively. It is well known
that S = n(n—1)—R from the structure equations of both M” and S™*'.
In 1968, J. Simons [9] observed that if § < n everywhere and either M"
is compact or S is constant, then S € {0, n}. Clearly, M" is contained
in an equatorial sphere if S = 0. And when S = n, M" is indeed a
piece of a product of spheres, due to the works of Chern, do Carmo, and
Kobayashi [4] and Lawson [6]. These two kinds of hypersurfaces are the
so-called isoparametric ones of types 1 and 2, respectively.

Definition. A hypersurface of ™ s called isoparametric of type g if
it has g distinct constant principal curvatures of constant multiplicities.

The classification of isoparametric hypersurfaces in spheres is far from
being completed although the study has been very fruitful. An interested
reader is referred to the book of Cecil and Ryan [2]. Here we will only
mention a pioneering work of E. Cartan [1] and leave our pursuit on this
topic in [3].

Theorem [Cartan, 1939]. There exist minimal isoparametric hypersur-
faces of type 3 in spheres only in the dimension of 3, 6, 12, and 24. More-
over, it is unique in each of such dimensions up to a rotation on the sphere.

These hypersurfaces will be referred to as Cartan’s minimal hypersur-
faces.

We are concerned about the following conjecture posed by Chern [11].

Chern Conjecture. For any n > 3, the set R, of all the real numbers
each of which can be realized as the constant scalar curvature of a closed
minimally immersed hypersurface in S™ s discrete.

There have been many works in this regard (e.g. [5], [7], [8], [10]). In
the special case of n = 3, Peng and Terng [7], [8] derived the following

Received February 26, 1992.



524 SHAOPING CHANG

Theorem [Peng-Terng, 1983]. If M 3 s a closed minimally immersed
hypersurface with constant scalar curvature R < 3 in S*, then either R =3
or R<O0.

Moreover, if M 3 in addition has only simple principal curvatures ev-
erywhere, then M 3 is a Cartan’s minimal hypersurface. In particular,
R=0.

Remark. The second statement stated here appears to be slightly
stronger than their original one but follows directly from their proof.

Recently, De Almeida and Brito [5] exhibited the following theorem

Theorem [De Almeida-Brito, 1990). If M 3 is a closed minimally im-
mersed hypersurface with constant scalar curvature R >0 in S*, then M 3
is isoparametric.

In the present paper, we will give an affirmative answer to Chern con-
jecture when n = 3 by settling the complementary case of the Peng-Terng
theorem. Namely, we will establish

Main Theorem. If M 3isa piece of minimally immersed hypersurface
with constant scalar curvature R in S* and has multiple principal curva-
tures somewhere, then either R = 3, or 6.

Consequently, combining the Main Theorem with the works of Cartan,
Simons, Chern, do Carmo, and Kobayashi, and Peng and Terng, we have
the following

Classification Theorem. A closed minimally immersed hypersurface
with constant scalar curvature in S* is either an equatorial 3-sphere, a
product of spheres, or a Cartan’s minimal hypersurface.

In particular, R, = {0, 3, 6}.

Remark. Note that both our Main Theorem and the uniqueness theo-
rem of Chern, do Carmo, and Kobayashi cited at the beginning are valid
without assuming the compactness of M 3 Our result also establishes the
following conjecture of Robert Bryant in the special case where M ? has
multiple principal curvatures somewhere.

Bryant Conjecture. A piece of minimally immersed hypersurface of con-
stant scalar curvature in S* is isoparametric.

This conjecture is still open in general for there has been no local version
of the Peng-Terng theorem.

We will first present some terminology and set up notation in §1, and
the proof of the Main Theorem will be given in §2.

Unless otherwise indicated, the summation convention applies through-
out this paper. And we will always use i, j, k, ..., for indices running
over {1,2,3} and 4,B,C, ..., over {1,2,3,4}; J,, denotes the
Kronecker symbol.
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1. Terminology and notation

Let M> be a manifold of dimension 3 immersed in a Riemannian
manifold N* of dimension 4. Choose a local orthonormal frame field
{e,} in N* such that, after restriction to M 3 , the e ’s are tangent to
M* . Denote the dual coframe by {w,}. Then the structure equations of
N* are given by

do, =0, Nwy, w,p+0,, =0,

_ it _
dw,p =0, NOcp = 73K pep®c A@p, K, pcp + Kyppc =0

We call K, , its contractions K, = K, z-p and K = K ¢ .,

respectively, the curvature tensor, the Ricci curvature tensor and the scalar
curvature of N*.
When N* is the unit sphere st , it turns out that

K pcp = JAcéap - JAD(SBC'

Next, we restrict all tensors to M 3 . First of al, o, =0 on M 3. Then

w,; ANw; =dw, =0. By Cartan’s lemma, we can write

Wy, =h;w;, withh; =h,

Wecall h = Zi,jhijwiwj , the eigenvalues 4; of matrix (h,;),and H =
Y hi = 24, respectively, the second fundamental form, the principal
curvatures, and the mean curvature of M 3. And M is said to be minimal
if H vanishes identically.

Second, from

dw,=w; Ao, w,+w,;=0,
= _1
dw;; = 0y Aoy ; — 3R, 1,0, N,
we find the curvature tensor of M is
Rijiy = Kij + highy — hyhjy.
Therefore, if M 3 is minimal, its Ricci curvature tensor and scalar cur-
vature are given by, respectively,

Rik=25ik—hijhjk’ R=6_Sa

where S =3, h,.zj is the square norm of 4.
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. . 3 .
Given a symmetric 2-tensor 7 = Tijw ;@; on M’ , we also define its

covariant derivatives, denoted by VT, V2T and V3T, etc. with compo-

nents T” > T Gkl and T respectively, as follows:

i ij,kip>

T,.j’kwk=dT..+T o+ T, NONP

T o, =dT;;  + T, 0,4+ T, 0, +T,; oy,

T p@y, =AdT;; yy+ Ty o+ Ty o+ T oy + T 0 etc.

In the next section, we sometimes also use V, T to denote T ij k> ete.
Examplel. T =3}, wl. , L.e., ij = 5:’;"
Since déij =0 and Jsjw ;+ 0,0, =0t = 0, we find
vT =0, 1ie., 61 r=0, Vi, j, k
In general, the resulting tensors are no longer symmetric, and the rules
to switch sub-indices obey the Ricci formulas as follows:
T =Ty e = TRy + Ty Ry »

T ki = Tijoxpt = Ty i Ritp + Tis i Rsjip + Ty Rk »
Tij,klpm - Tij,klmp - T:s*j,kIRsipm
+ Tis,kIstpm Tu sIRskpm + T} ks slpm ’ etc.

Example2. T =h- hijwia)j with N*=$*.
For the sake of simplicity, we always omit the comma ( , ) between
indices in this special case.
— 1
Recall that w,; = h;w;, and dw,; = a)4c A wc; 3K,4icp®c N @ .
Since K,;,w-Aw, =0 on M? when N* —S we find

d(huwj) hjkwk N@j,.

Therefore,
ie., A, ik is symmetric in all the indices. Moreover, in the case that A 3
is minimal, we have
hijkk = hkijk = hklk_] +h Rmkjk + hkm mijk
= hmi(zémj - mkhkj) + hkm(amjatk Jmkéij + hm1h1k hmkhij)
= 3hij - hkmhmkhij'
It follows that

(S) !

2
FAS=(3-9)S+ > B
i,j,k
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We finish the current section by noting the following combination for-

mula

dYo=6 > +> 43>

ij.k i,j,k distinct i=j=k  i=j#k
provided the summand is symmetric in the indices i, j, and k. It will
be applied in the next section whenever we want to compute a summation
explicitly.

2. Proof of the Main Theorem

By virtue of the result of Simons, we only need to show that S = 3
if $S>3 and M 3 has multiple principal curvatures at some point, say,
DEM 3. The idea is to investigate the second fundamental form # and
its covariant derivatives at p.

Let 4;, i=1, 2, 3, be the principal curvature functions of M 3,

Now suppose that at p e M 3 ,

Ai=4, (=4).
By the minimality of M 3,
Ay = =24
Thus, we may assume that at p,
A
(hi j) = A s
—2A

where A= £ > 1 since 3,47 =S.

We will next study the covariant derivative VA of h at p. From
X h,.zj = const.

hijhijk =0, Vk.
It follows that, at p,
Ayhy g+ Aoy + Ashyy = 0.
Note that &, +h,,, +hy3, =0, V k, everywhere; we solve that, at p,
Py = =hyyes Py =0,V k.

Furthermore, since at p, {e,,e,} is a basis of the A-eigenspace of
(h; ;)» we may rotate it if necessary to have

hyy3(p) = 0.
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Recall that h;;, is symmetric over {i, j, k}, and by (S) in §1

Z hizjk = S(S —3) everywhere.
ij.k
We compute that at p

Z hizjk = 6”323 + Z:hizii + 3Eht'2ik

i j.k itk
2 2 2 2 2 2
= (hyyy + hyyy) + 3(h 1y + hyys + hyy + Byys)
= 6a +»4b,
where a = h},,(p) >0, b= h},,(p)+hi,,(p) > 0.

Hence,
6a +4b = S(S - 3).

It therefore suffices to show that a = b = 0. We will achieve this by
studying the higher covariant derivatives of 4.

Let us start with the following

Lemma 1. At the point p,

(1) h, ikl is symmetric in all the indices except when {i, j, k,l} isa
permutation of either {1,1,3,3} or {2,2, 3, 3}.

(2) h32.m =hypy = %(‘H‘b)' hyyyy = %% hyyy =0, by = %hmhmv
Py33 = 5ihiahyy 3, and h;m = Py s Piiss = Mypzs = _ﬁ;

Proof. The first assertion simply follows from the Ricci formula

h Pijie = g Ry + Hig Ry

=(4; —4;)(A +4,4))(6,0;, —6,0,), Vi, J, k, Il
To see (2), we employ hijkhij, + h,.jhijk, =0, V k, !, everywhere from
Zi’ ; hizj = const. By evaluating the above equation at p, we have

hijehijn + ALCRy g + hygrg) — 2h35,,]1 = 0.

ijkl —

Now, since h,,,; + hyp; + ha3 =0, V k, [, everywhere, it reads
3Ahyy, = hl.jkh,.j, , atp, Vk,l
This yields the first 6 equalities by explicitly writing out all terms on
the right-hand side for all pairs (k,/). And in turn, we find A, =

‘hzgll = ha3yy = _h.uz.z = hagpy = Mgy -
Finally, by the Ricci formula we compute that

hyy33 = hyg3 = hygs + (4 = A3)(1+445)
2 2
= ﬁ(a+b)+31(1 -217)

-4
34’
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where in the last equality we use 34(24% — 1) = £.S(S - 3) = L (3a +2b).
Similarly, hy,;; = —4; follows in the same way, or from #h,,,, =
_(h1133 + h3333) .
This proves Lemma 1.
Lemma 2. At p,

26 2 7 2 5

x+2y_—9—a +ﬁab—b ~ 2

where x = A*[3(h 1123+h2213)+h1113+h2223] and y = A’ (hllll +h1112)+
(a+b)Ahy,,, .

Proof. 1t is shown in [7] that

Sb,

() 3 R =38 -3 =3 Y R+ A+ A
i,j,k,l i,j,k
Now at p,
> h,]k(,l +2, +Ak) = 3Zh”k(2/1 +,1k) +th(3}.)
i,j,k i#k
= 3(hlp, + ho )R + (B, + hiyy)(3R)°
=364°b.
Hence,

RHS of (+) = 3S(S — 3)* — 10Sb.
Moreover, since

Z hljkl - 6h1231 + thl + 3Zhuk1

i,j,k i#k
= 6”1231 + hllll + h2221 + h3331
K10, FAPTIEE LN SR S
+ 3(hy gy + By + By + Ay 3311)
2 2 2 2 2
= 3(2hy p3 + hyy 3+ hyyps) + 4000+ Ryygn)
2 2
+ hyzay + 6(hy 1 hysyy + h3y0) s

Z hljk2 - 6hl232 + Z hutZ + 3 Z huk2

i,j,k i#k
= 6h2213 + hmz + hzzzz + h3332
3(hE, +hE e+ H L H L+
+ 3(hy1gn + hyysy + Bpapy + Bypyp + Hygp))
2 2 2 2 2
= 3(2hyy 3 + hyjpy + hypps) + 4R+ By)
2 2 2
+ h333y + 3(2hy  hasyy + hazyy + hyan)s
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2 2 2
Z hijks = th‘s +3 Zhiik3
ik i ik
2 2 2
= i3 + Pz + 3333
10, FOTY LTI LAY LAY LAy S
+ 3(hy 103 + P133 + Apags + Mypsy + 3zy3 + Nagys
2 2 2 2
= 3(h} 123 + hypi3) + Mz + Pygs
+3 a2+a2+4ab _|_4_a2
912 932 972 942
10a® + 12ab

2 2 2 2
=3(hyyp3 + hypis) + Ay + hygps + Y
2 2 2
LHS of (x) = Z hijky + Z hijr + Z Hijis
ik ik ik
2 2 2 2
= 12(h})53 + hyyy3) + 4(hyy 3 + hays)

2
+ 8(hyyyy + hiyy) + 12k, 57 (@ + b)

b

4ab 2a+b)]* 10a* + 12ab
+— +12 + —.
94> 34 94
Therefore,
2 2
%x + %y ML llgi‘jb 480 _ 35(5-3)2 - 108b,

and the assertion follows since S = 64> and S(S—3)=6a+4b.

Unlike the Peng-Terng theorem, which can be established by studying 4
and its covariant derivatives up to the second order at some distinguished
point, we next have to appeal to v3h since nothing can be drawn here,
due to the lack of constraints among the quantities x, y, a,and b.

Now, on the one hand, by differentiating Ei, ; h,.zj = S triply, we get

Riihijiam & BijmPiji + hijich

ijm"ijk ijim + hijlhijkm =0, Vk,I,m.
Again, since at p,
h,.jh

we have
34h3341m = Byt + i

ijm~ijk

ijkim

ijkim = 21 kim  22M20kim + A3P33kim = =30 3300m 5

ijim T hij,hijkm , atp, Vk,Il, m.
It follows that at p,

1
hklmh33k1m = Ihijkhklmhijlm'
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On the other hand, by differentiating _, ik hfjk = S(S — 3) twice with
respect to e, , we have

Z (h,.jkhijk33 + h,.zjk3) =0, everywhere.
i,j.k
Recall that, at p,
2 x 104+ 12ab
Z hijk3 = 2_2 + 9,2 .
i,j,k
It follows that

1 x 104> + 12ab
(%) (hagije = Pyjras) = Ihijkhklmhijlm + Z + o

Bearing in mind the results in Lemma 1, V4, ;= 0 and
Ry = (14+44)0,8,—3,8,), atp, Vi, j k.l
we compute
P (Pazije = Pijrss) = hijk[Vek(hliij‘!o + Ry Rz + My Ry )
=V, (Bijz + 2R, Ry i3)]
= hiji (B3 i3k = Pajjis + ik Ropzsj + 3P3mi Rpis )
+ iV o (Byyshs; — By ihss)

ijktmiY e,
bV, (hshyy = b i)
- Zhijkhm jve3(hmkhi3 - hm3hik)
= Ryjic (2R i Ropazic + 5P Roiic)
+ i (Pogichsj + Pogshs e — By i)
+h Py (Bshiiie = P jichis = P i)
- 2hijkhmj(hmk3hi3 - hm3hik3)
= Y 2Rk (14 A33,)(8,305 — 0,)

i,j.k,m

+ 5hy i Py i (1 + A34,)(8,,30 — 0,,k0:3)1

3Imj

2 2,2 2
+ Z}%lihﬂca + Zl3hik3 - Z A3A il
ik ik ij.k

— 2,2 N 2,2 2,2
+ Z Ashij — 2/13hjk3 - 2'13’11'1:3
ij

i,j,k ik
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-Zzz Ah ]k3 +22/1 hj,d

—22 +3) ,13 Zzuu Uk

l]k

—25(1+u j,d ZA llh,,d
+Z/1 iy = S Asdihiy + > 5y

i,j,k i,j,k
= 2(1 + 42%)(2a) — 2(6a + 4b) + 44(4Ab)
— 5(2a) + 10A(2Aa) + 24(2Aa) + 44°(2a)
+ 2A(4Ab) + 44%(6a + 4b)
= (722> = 18)a + (404* - 8)°,

RiiicPicimPijim = Prim (iR 1im + PasicPagim + 2P15 P 51m
+ 20 3R 30 + 2R3 hyy)

= Pyichicim(Pyiim = Paaim)
+ 201y 12R0m = Priaham) P 2im
+ 2y 131 Py 3 — 200 13R0 0 30m

= Ry ylPiery (Byggg = Paggy) + Pigp(Ryyp = Pg)
+ 2Ry (Byg1p — Pagyp) + 2k 5 (B3 — Bopys)

+ 2R3 (1123 — Pygas)]

+ 20,15 (hyyihigny + Rigahiag + 2Ri0R 0 + 2Ry 3h003)
= 2hyy (Bypyhygyy + Pygphings + 2R 00h0 505 + 2R3 b 553)
+ 20 35[0y Rigahisgs + 2Ry 5h0 0,

+ b3 (hyy33 + Byl
= 2hy 3[Ry 03 + Bypybysgy + 2051505515

+ hyys(hypsy + hyzp))]
=2(a+b)(hyyyy — hyyy) +4bhy 1y,
= 4hy 3 (hyyihysis + By Rasgs)
+2a(hyy33+ hyyyy + hyyzs + hygp)
2Aa+bh) . 2b . a+2b

—4a— +4a

=4ah,,,, +2(a->b) 3 3 i

8a® — 4b?

=4ah,, + 32
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Substituting all the above results to (xx), we have

4ah 84 — 4b* 10a” + 12ab
(722% — 18)a + (404> — 8)b = - v +1’%+—“%2—“.

That is,

3424

x +daihy,, = -’ - zab+ b +23(7124% = 18)a + A7(404” — 8)b.

We are now in a position to conclude the Main Theorem. Recall that from
Lemma 2, at p

296 P4 ab—b" - 2.
By eliminating x from the above two equations, we have
(1)

2)“2(”?111 + hfnz) —2(a—b)Ahy,y,

20 2 31 7.2 5 2 2 2 2
_—3—a +ﬁab—§b —ZSb—A (724 — 18)a — A"(404" — 8)b.

2,2
x + 223 (k) + by ) + 2@+ b)Yk, =

Since A% = g and S(S-3)=6a+4b,

RHS of (}) = 230 2+?; b 3b2— Sb——(12S 18)a— S(zfs 8>b
3-2-39(1 31 §ab — 2b* ~25(S ~ 3)a— S(S )b
=230 +f; b—%b —2(6a+4b)a-§(6a+4b)b
5—3(‘1 +5%).

It is clear that
LHS of (1) > —3(a~ b’ > —3(a’ + ),

which yieldsa = b = 0 as desired and completes the proof of the Main
Theorem.
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