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ON MINIMAL HYPERSURFACES WITH
CONSTANT SCALAR CURVATURES IN S4

SHAOPING CHANG

Introduction

Let Mn be a piece of minimally immersed hypersurface in the unit
sphere Sn+ι, and h its second fundamental form. Denote by R and S its
scalar curvature and the square norm of h , respectively. It is well known
that S = n{n-\)-R from the structure equations of both Mn and Sn+ι.
In 1968, J. Simons [9] observed that if S < n everywhere and either Mn

is compact or S is constant, then S e {0, n} . Clearly, Mn is contained
in an equatorial sphere if S = 0. And when S = n, Mn is indeed a
piece of a product of spheres, due to the works of Chern, do Carmo, and
Kobayashi [4] and Lawson [6]. These two kinds of hypersurfaces are the
so-called isoparametric ones of types 1 and 2, respectively.

Definition. A hypersurface of Sn+ι is called isoparametric of type g if
it has g distinct constant principal curvatures of constant multiplicities.

The classification of isoparametric hypersurfaces in spheres is far from
being completed although the study has been very fruitful. An interested
reader is referred to the book of Cecil and Ryan [2]. Here we will only
mention a pioneering work of E. Cartan [1] and leave our pursuit on this
topic in [3].

Theorem [Cartan, 1939]. There exist minimal isoparametric hypersur-
faces of type 3 in spheres only in the dimension of 3, 6, 12, and 24. More-
over, it is unique in each of such dimensions up to a rotation on the sphere.

These hypersurfaces will be referred to as Cartan}s minimal hypersur-
faces.

We are concerned about the following conjecture posed by Chern [11].
Chern Conjecture. For any n>3, the set Rn of all the real numbers

each of which can be realized as the constant scalar curvature of a closed

minimally immersed hypersurface in Sn+X is discrete.

There have been many works in this regard (e.g. [5], [7], [8], [10]). In
the special case of n = 3, Peng and Terng [7], [8] derived the following
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Theorem [Peng-Terng, 1983]. If M3 is a closed minimally immersed

hypersurface with constant scalar curvature R<3 in S4, then either R = 3

or R < 0 .

Moreover, if M3 in addition has only simple principal curvatures ev-
erywhere, then M3 is a Cartan's minimal hypersurface. In particular,
R = 0.

Remark. The second statement stated here appears to be slightly
stronger than their original one but follows directly from their proof.

Recently, De Almeida and Brito [5] exhibited the following theorem
Theorem [De Almeida-Brito, 1990]. If M3 is a closed minimally im-

mersed hypersurface with constant scalar curvature R>0 in S4, then M3

is isoparametric.
In the present paper, we will give an affirmative answer to Chern con-

jecture when n = 3 by settling the complementary case of the Peng-Terng
theorem. Namely, we will establish

Main Theorem. If M is a piece of minimally immersed hypersurface
with constant scalar curvature R in S4 and has multiple principal curva-
tures somewhere, then either R = 3,or6.

Consequently, combining the Main Theorem with the works of Cartan,
Simons, Chern, do Carmo, and Kobayashi, and Peng and Terng, we have
the following

Classification Theorem. A closed minimally immersed hypersurface
with constant scalar curvature in S4 is either an equatorial 3-sphere, a
product of spheres, or a Cartan's minimal hypersurface.

In particular, Rn = {0, 3, 6}.
Remark. Note that both our Main Theorem and the uniqueness theo-

rem of Chern, do Carmo, and Kobayashi cited at the beginning are valid
without assuming the compactness of M3. Our result also establishes the
following conjecture of Robert Bryant in the special case where M3 has
multiple principal curvatures somewhere.

Bryant Conjecture. A piece of minimally immersed hypersurface of con-
stant scalar curvature in S4 is isoparametric.

This conjecture is still open in general for there has been no local version
of the Peng-Terng theorem.

We will first present some terminology and set up notation in §1, and
the proof of the Main Theorem will be given in §2.

Unless otherwise indicated, the summation convention applies through-
out this paper. And we will always use /, j , k, . . . , for indices running
over {1, 2, 3} and A, B, C, . . . , over {1, 2, 3, 4}; δAB denotes the
Kronecker symbol.
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1. Terminology and notation

Let M be a manifold of dimension 3 immersed in a Riemannian
manifold TV4 of dimension 4. Choose a local orthonormal frame field
{eA} in TV4 such that, after restriction to M3, the e 's are tangent to

M3. Denote the dual coframe by {ω^} . Then the structure equations of

N4 are given by

dωAB = ωAC Λ ωCB - \KABCDωc Λ ωD, KABCD + KABDC = 0.

We call KABCD, its contractions KAC = KABCB and K = KABAR,

respectively, the curvature tensor, the Ricci curvature tensor and the scalar
curvature of N4.

When iV4 is the unit sphere S4 , it turns out that

Next, we restrict all tensors to M3. First of all, ω 4 = 0 on M3. Then
ω4i Λ ω = dω4 — 0. By Cartan's lemma, we can write

co A
 = h o) •.

4* IJ J ' *7 7*

We call Λ = Σi j h^ω^j , the eigenvalues λt of matrix (Λ ; ) , and H =

Σi hH = Σi λj, respectively, the second fundamental form, the principal

curvatures, and the mean curvature of M . And M is said to be minimal

if /f vanishes identically.

Second, from

i = ωijAωj, ωjj + ωji = Q,

dωu = ωik Λ ω ^ - %Rijklωk Λ ω7

we find the curvature tensor of M3 is

RUki = κijki + hikhji - huhjk

Therefore, if M3 is minimal, its Ricci curvature tensor and scalar cur-

vature are given by, respectively,

where S = ^ / ; Λf7 is the square norm of h .
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3Given a symmetric 2-tensor T = T^ω^ω. on M3, we also define its

covariant derivatives, denoted by VΓ, V 2 Γ and V 37\ etc. with compo-
nents T.j k, T{. kl and T{. klp , respectively, as follows:

iJMl iJ,k + Tsj,kωsi + TisΛωsj + Tij,sωsk >

ijMpωp = dTiJM + TsjMωsi + TisMωsj + TU,sl^sk + Tij,ksωsl > e t c

In the next section, we sometimes also use Ve Ttj to denote Ttj k , etc.

Example 1. T = Σ/ ωj , i.e., Γ/y = δtj .
Since ί/ .̂ = 0 and SSJωsi + δisωsj = ωjt + ωtj = 0, we find

In general, the resulting tensors are no longer symmetric, and the rules
to switch sub-indices obey the Ricci formulas as follows:

Tij,klp ~~ Tij,kpl ~ Tsj,kRsilp + Tis,kRsjlp + Tij,sRsklp >

ij,klpm ij,klmp ~~ sj,kl sipm

+ ^ij,klRsjpm + ^7,slRskpm + Γϋ,ksRslpm ' e t C <

Example 2, T = h- h^ω^. with N 4 = 5 4 .
For the sake of simplicity, we always omit the comma ( , ) between

indices in this special case.
Recall that ω 4 / = h^ω., and dω4i = ω4C Λ ωCi - \KAiCDωc Λ ωD.

Since K4iC£>ωc Λω D = 0 on M3 when N4 = S4, we find

Therefore,

Λ / Λ Λ ωy = (rfA/y + hjωki + A, Λ ω

W ) Λ ω. = 0

i.e., Af. .fc is symmetric in all the indices. Moreover, in the case that M3

is minimal, we have

"ijkk = hjcijk =

It follows that

(S)
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We finish the current section by noting the following combination for-
mula

Σ = * Σ + Σ + 3 Σ
i,jΛ i,jΛ distinct i=j=k i=jφk

provided the summand is symmetric in the indices i, j , and k . It will
be applied in the next section whenever we want to compute a summation
explicitly.

2. Proof of the Main Theorem

By virtue of the result of Simons, we only need to show that S = 3
if S > 3 and M3 has multiple principal curvatures at some point, say,
p e M3. The idea is to investigate the second fundamental form h and
its covariant derivatives at p.

Let λ , / = 1, 2, 3, be the principal curvature functions of M 3 .

Now suppose that at p e M3,

λx=λ2 (=λ).

By the minimality of M3,

λ3 = -2λ.

Thus, we may assume that at p,

-2λ.

where λ2 = f > \ since £V;λ
2 = S.

We will next study the covariant derivative Vλ of h at p. From

ΣίΛv- = c o n s t

It follows that, at p,

Note that hnk + h22k + hm = 0, V k, everywhere; we solve that, at p,

λχhxxk + λ2h22k + λ3hm = 0.

Furthermore, since at p, {ex,e2} is a basis of the λ-eigenspace of

( ) , we may rotate it if necessary to have

hm(p) = 0.
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R e c a l l t h a t h i j k i s s y m m e t r i c o v e r {i9 j , k } , a n d b y ( S ) i n § 1

h]jk = S(S - 3) everywhere.

We compute that at p

222) + 3(Aϊl2 + Aϊl3

where a = h2

ιl3(p)>0, b = h\n{p) + h\n(p) > 0.

= 6a + 4b,

Hence,
6a + 4b = 5(5 - 3).

It therefore suffices to show that α = b = 0. We will achieve this by
studying the higher covariant derivatives of h .

Let us start with the following
Lemma 1. At the point p,
(1) hijkι is symmetric in all the indices except when {i, j , k, 1} is a

permutation of either {1 , 1, 3 , 3} or {2, 2, 3 , 3 } .
(2) Λ3 3 1 1 = h3322 = j-λ(a+b), h3333 = §f, h33n = 0, Λ 3 3 1 3 = jχhιnhn3,

A 3 3 2 3 = l i A 1 1 2 A 1 1 3 ' U n d A l l l l = A 2 2 2 2 > A 1 1 3 3 = A 2 2 3 3 = ~fλ '

Proof. The first assertion simply follows from the Ricci formula
hijkl - hijlk = hsjRsikl + hisRsjkl

= (λ; - λj)(l + λiλjXδ^δj; - δHδjk) , Vi,j,k9L

To see (2), we employ hijkhijl + hijhijkl = 0, V k, I, everywhere from

Σ i j rfj = const. By evaluating the above equation at p , we have

hijkhijl -f λ\(hi,,,, + A1Uί) — 2ΛO,/W1 = 0.

Now, since hnkl -hh 2 2 k l + h33kl = 0, V /c, /, everywhere, it reads

3λh33kl = hijkhijΊ, atp, V / c , / .

This yields the first 6 equalities by explicitly writing out all terms on
the right-hand side for all pairs {k, I). And in turn, we find hnn =

~A2211 " A33Π = ~A1122 ~ A3322 = A2222

Finally, by the Ricci formula we compute that
A1133 = A1313 = A1331 + (λ\ ~ λ3^1 + V 3 )
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where in the last equality we use 7>λ(2λ2 - 1) = ±S(S - 3) = ^(3α + 2b).
Similarly, A2233 = ~fχ follows in the same way, or from A2233 =

-(Λ1 1 3 3 + A 3 3 3 3).
This proves Lemma 1.
Lemma 2. At p,

where x = Λ2[3(A2

123 + A2213) + h\xn + h2

2223] and y = λ2(h2

ιnι + AJ 1 1 2 ) +
(a + b)λhnn.

Proof. It is shown in [7] that

(*) Σ hmι = 3^(5 - 3)2 - I Σ fiJk(λt + λj + λkf.
ijykj i,j,k

Now at p,

Σ hUλι+λj+λ

fc)
2 = 3 Σ 4(2A, + A , ) 2 + Σ 4(3λ,.)2

i, 7 , k iφk i

Hence,

Moreover,

i

since

V^ u2

2s nijk

2s hijk
ij,k

= 3(Λ?1 2 +
= 36λ2b.

RHS of (*) = 3S(.

1 = 6 A 1 2 3 1 + Σ A I I I 1

2 2

~fl2 , 2

+ 3("ll21 + Λ1131
1(Ίh2 Λ- h2

- J ^ Λ n 2 3 + Λ1113
2

, , 2 , 2
= 6 Λ 2 2 1 3 + /Z1112 +

Λ2 2 1)(3,

S - 3) 2 -

2

+ A 2 2 1 1

+ A 2 2 1 3 )

A33Π+-

+ 3 S
Λ 2 2 2 2 + ,

- lOSb.

^3331
2

+ 4(Λ2

1 Π

, 2 v

^3332

+ A2

2 2)(3λ)2

Λ3231l)

+ A 2

1 1 2 )

+ 3 ( A 2

1 2 2 + A 2

1 3 2 + A 2 2 1 2 + A 2 2 3 2 + A 3 3 2 2 )

= 3 ( 2 Λ ? 2 u + Λ 2

1 2 3 + Λ 2

2 2 3 ) + 4 ( Λ 2

Π 1 + h 2 )2213 τ " 1 1 2 3 τ ' ^ Σ S ' ' ^ ^ V » i l l l ^ " 1 1 \2>

:2

3 3 2 + 3(2A l l π A 3 3 1 1 + A 3 3 1 1 + A 3 3 2 2 )
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i,j,k

9λ
Therefore,

4 , 8 5Sa + ll2ab + 4&b _ c / c , , 2

I 1 ^ A1^ 9Ϊ 2 = 3 5 ( 5 - 3 ) -

and the assertion follows since 5 = 6λ2 and 5(5 - 3) = 6a + 4b .
Unlike the Peng-Terng theorem, which can be established by studying h

and its covariant derivatives up to the second order at some distinguished
point, we next have to appeal to V3Λ since nothing can be drawn here,
due to the lack of constraints among the quantities x, y, a, and b .

Now, on the one hand, by differentiating £V . hfj = 5 triply, we get

hijhijklm + hijmhijkl + hijkhijlm + hijlhijkm = ° > V fc , / , m.

Again, since at /?,

λ2h22klm

we have

3 λ A 3 3 * / m = A,7mAι7ik/ + A,7ikAι77m + Aι7/A*7ikm ' <** p , V k , I, m.

It follows that αί p ,
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On the other hand, by differentiating £ \ . k h2

ijk = S(S - 3) twice with
respect to e3, we have

Σ (hijhhijk33 + A,7«) = °> everywhere.

Recall that, at p,

v ^ 2 _ x 10α2 + 12αfe

It follows that

/ x t /L / x 1 L / / x 10α2 + 12αέ
(**) hijk\h33ijk ~ hijk3l) = lhijkhklmhijlm + 72 + ^T2 '

Bearing in mind the results in Lemma 1, Vδ^ = 0 and

Rϋki = ( ! + λiλj)(δikδji ~ δ n δ i k ) ' atp, V i , j 9 k , l 9

we compute

= hijk(<h3ij3k ~ h3ijk3 + hmikRm33j

hijk(2hmijRm33k + 5h3mjRmi3k)

+ hiikhmAhm3kh3j + hm3h3jk ~

+ hijkh3m(hm3hijk " hmjkhi3 " Λ

~ 2hijkhmj(hmk3hi3 ~ hm3hik3)

ΣΣ yW
i,j , k , m

+ MijkhmM +

- Σ
. 2 , 2

A
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= 2(1+ 4λ2)(2a) - 2(6a + 4b) + 4λ{4λb)

- 5(2α) + lθλ(2λa) + 2λ(2Aα) + 4λ2(2a)

+ 2λ(4λb) + 4λ2(6a + 4b)

= (72λ 2 - 18)α + (40A 2 -8) A ,

hijkKlmhijlm = hklm(hUkhlUm + h22kh22lm + 2hl2khl2lm

+ 2hl3khl3Im + 2 h 2 3 h )

= hUkhklm(hWm ~ h22lm)

+ 2(hll2hUm-h\l\h2lm)h\2lm

+ 2hmhllmhl3lm ~ 2hU3h2Imh23lm

= A l l * [ Λ * l l ( A l l l l ~ Λ221l) + hk22

+ 2 Λ 112( A 111 Λ 1211 + Λ122A1222 + 2 / ?112Λ1212 + 2 A 1 1

- 2 A 1 Π ( A 2 1 1 A 1 2 1 1 + Λ 2 2 2 A 1 2 2 2 + 2/z 1 2 2 A 1 2 1 2 + 2 A 2 2 3 Λ 1 2 2 3 )

+ 2 A Π 3 l A l l l A 1 1 1 3 + A122A1322 + 2 A 112 Λ 1312

+ A113(A1I33+A331l)]

- 2 A [ A A + Λ Λ + 2A212Λ2312

= 4ahnn + 2(a - b)

8a2-4b2
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Substituting all the above results to (**), we have

(72A 2 - lS)a + (40λ2 - S)b =
DA A yA

That is,

JC + 4aλhnn = - y f l 2 - jab + ̂ b2 + λ2(Ί2λ2 - 18)α + 22(40λ2 - S)b.

We are now in a position to conclude the Main Theorem. Recall that from
Lemma 2, at p

x + 2λ2(h2

nn+h2

n2) + 2(a + b)λhnn=^a2 + ̂ ab-b2 -\sb.

By eliminating x from the above two equations, we have

(t)
2λ2(h2

nn+h2

U2)-2(a-b)λhnn

Since λ2 = f and 5(5 - 3) = 6α + 4b,

^ α έ - \b2 - 25(5 - 3)α - ^
l o 3 V

2 0 2 31 , 7 , 2
a + a b b

It is clear that

LHS of (f) > -Ua - b)2 > -\{a2 + b2),

which yields a = b = 0 as desired and completes the proof of the Main
Theorem.
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